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Abstract

This paper considers the well-known problem of dealing with non-convexity
during the minimization of a nonlinear function f(x) by Newton-like methods.
The proposal made here involves a curvilinear search along an approximation to
the continuous steepest descent path defined by the solution of the differential
equation

dx

dt
= −∇f(x).

The algorithm we develop and describe has some features in common with
trust region methods; and we present some numerical experiments in which its
performance is compared with other ODE-based and trust region methods.
Keywords: Non-convex optimization, ODE-methods, Continuous steepest-
descent path (CSDP), trust-region, Newton-like methods, curvilinear search.

1 Introduction and overview of the paper

In this paper we revisit a familiar problem in nonlinear optimization. Many – prob-
ably most – iterative optimization methods are based on the use of an underlying
convex quadratic model function which is usually very successful at approximating
the behaviour of a general nonlinear function in the neighbourhood of a minimum.
But difficulties can arise when such an iterative algorithm is applied to a function
f(x) which is not convex for all values of x. If the search enters a region where f
is non-convex then the underlying assumptions of, for instance, a Newton or quasi-
Newton method do not hold and subsequent iterations will not necessarily be very
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effective in traversing the region where the objective function is non-convex and lo-
cating any convex basin that lies beyond it. We shall say a more about these issues
in the next section.

In this paper we consider a way of traversing such regions of non-convexity by a
gradient-flow algorithm which follows (some approximation to) a continuous steepest
descent path (CSDP). This idea has often been considered before and its imple-
mentation usually involves the construction of an approximate CSDP using an iter-
ative scheme which has much in common with a gradient-flow algorithm devised by
Behrman [4] and also with a class of well-known trust-region methods. The approach
that we propose is unusual, however, in that each iteration performs a curvilinear
search along the current CSDP. This is an idea which appears not to have been
widely tested before and our main purpose in this paper is to investigate whether it
has any merit. Some evidence on this point can be found in the work of Higham [16]
which proposes an algorithm which essentially uses a curvilinear search for interpola-
tion. However the method we introduce in this paper can also perform extrapolation
and this is its most significant claim to originality. In practical terms our approach
also differs from Higham’s method (as described in [16]) because it performs the in-
terpolation phase of the search using only function evaluations whereas the Higham
approach treats step-size reduction like a new iteration and computes a new correc-
tion “from scratch” involving the additional computational cost of solving a system
of linear equations.

It is important to make clear in these introductory remarks both what we are and
what we are not seeking to achieve in this paper. Our chief aim is to investigate the
effectiveness of a curvilinear search along a CSDP as a means of escaping from regions
where the objective function is non-convex. The methods we introduce in section 5
make use of both first and second derivatives of the objective function and further-
more they compute the eigensystem of the Hessian matrix ∇2f(x) on each iteration.
The advantages of this for our present purposes are (a) it is very clear when the search
enters or leaves a region where f is non-convex; and (b) the curvilinear search can
be based on a good deal of accurate curvature information. However the algorithms
in section 5 are NOT intended or expected to be useful for practical problems in
large numbers of variables because obtaining the Hessian matrix and computing its
eigenvalue decomposition will be too expensive. Our aim here is to investigate the
behaviour of a curvilinear search under the most favourable circumstances when am-
ple curvature information is available. We see this as a first step towards devising a
similar CSDP approach which avoids the high-cost overheads of obtaining a complete
matrix of second derivatives and calculating eigenvalues. We shall say more about
possible future algorithm development in the final section of this paper.

In Section 2 we give a more detailed discussion of the difficulties presented to a typical
optimization technique when non-convexity is encountered. In sections 3 and 4 we
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give an overview of how, respectively, CSDP and trust-region approaches provide a
systematic way of escaping from such regions. In section 5 we describe two forms of
a new CSDP method which incorporates a curvilinear search. We then report some
computational experiments in which we compare the performance of these curvilinear
search CSDP methods with a pair of trust-region techniques. In section 6 we give a
brief discussion of some convergence questions relating to the new CSDP methods.
Our conclusions are set out in the final section.

2 Minimization methods and non-convex regions

Many successful iterative methods for solving the unconstrained minimization prob-
lem

Minimize f(x)

(where x ∈ Rn and f is a single real valued function assumed to be twice continuously
differentiable) are based on constructing a quadratic model of the objective function
f . Thus, if xk is the point reached at the start of the k-th iteration and if fk denotes
f(xk) while gk denotes g(xk) , the gradient of f , and Gk is the Hessian matrix, G(xk),
then a quadratic model in the neighbourhood of xk can be written

Q(p) = fk + pTgk +
1

2
pTGkp. (1)

A stationary point of Q can then be found by solving ∇Q(p) = gk + Gkp = 0 and
hence the step

p = −G−1k gk

can also be regarded as an estimate of the step from x to a nearby stationary point
of f .

If G(x) is positive definite then the stationary point of Q will be a minimum and
hence the following iterative scheme can be used to seek a minimum of f.

Algorithm 1
Given an initial point x1
Repeat for k = 0, 1, 2...
Calculate fk = f(xk), gk = g(xk), Gk = G(xk)
Find pk by solving Gkp = −gk
Set xk+1 = xk + s∗pk where s is chosen by a perfect or a weak line search.

A perfect line search is one where s∗ solves the one-variable problem of minimizing
f(xk + spk) w.r.t. s. A weak line search merely returns a value s∗ which is bounded
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away from zero and also yields a reduction in f which is bounded away from zero.
Both these requirements on a weak line search can be expressed in terms of the ratio

dk(s) =
f(xk + spk)− fk

spTk gk
(2)

which compares the actual reduction in f with a first-order predicted reduction.
Clearly dk(s) tends to 1 as s tends to zero and becomes negative if the steplength s
produces an increase in the value of f . Hence a weak line search typically terminates
with a value of s∗ that satisfies a condition of the form

1− α1 > dk(s
∗) > α2 or dk(s

∗) > 1 + α1 (3)

for some parameters α1, α2 ∈ (0, 0.5)

Algorithm 1 is known as the Newton method and it can be proved to have second
order convergence so long as x1 is chosen in a convex region around a minimum of f .
However the method may not be successful if it begins in, or subsequently enters, a
region where f is non-convex and hence encounters a point xkwhere the Hessian Gk

is not positive definite. In this situation the search direction pk may point towards
a saddle point, or even a maximum of Q; and then the correction pk may not be a
direction of descent w.r.t. f and the line search procedure may fail. Practical im-
plementations of the Newton method have to include an alternative correction step
calculation for use when Gk is not positive definite.

The previous difficulty is at least partially avoided by the so-called quasi-Newton
methods which have the same form as Algorithm 1 except that the Hessian Gk is
replaced by an approximate matrix Bk, say, which is revised on every iteration. In
some implementations of this approach, such as the widely-used BFGS method com-
bined with perfect line searches, the matrix Bk remains positive definite even when
the objective function is locally non-convex. In this case, the quasi-Newton search
direction is always a direction of descent; but the effectiveness of a quadratic model
based on a positive definite estimate of an indefinite Hessian must be questionable.
The resulting correction step may turn out to be little better than one which ignores
second derivative information altogether – e.g. the steepest descent method which
also follows the iterative scheme of Algorithm 1 except that the search direction is
given simply by pk = −gk. There are also other forms of the quasi-Newton approach
– such as the Symmetric Rank One method or the BFGS method combined with a
weak line search – in which the updating strategy for the approximate Hessian may
allow it to become indefinite. (In the case of the Symmetric Rank One method this
indefiniteness can occur even when f(x) is locally convex!) Once Bk becomes non-
positive definite then the quasi-Newton approach is subject to the same difficulties
as Algorithm 1 and needs similar safeguards.

The steepest descent method can converge to a minimum of f(x) even when x1 is in a
region of non-convexity; but the rate of convergence, even close to the solution, can be

4

© Springer Science+Business Media, LLC, part of Springer Nature 2019. 
This is a post-peer-review, pre-copyedit version of an article published in Numerical Algorithms.  

The final authenticated version is available online at: http://dx.doi.org/10.1007/s11075-019-00811-w.



very slow. This slowness arises partly because progress to the minimum takes place
in piecewise linear steps defined by a sequence of search-direction/line-search calcu-
lations. On functions whose Hessian matrix has widely spread eigenvalues (imagine
contours that are very long and very narrow ellipses) the minimum is typically ap-
proached via a series of very small zig-zags. Because of this, many authors – beginning
with Arrow et al [1], and also including Botsaris[5, 6] and Brown [8] – have pointed
out the possible benefits of smoothing out the zig-zags by following a Continuous
Steepest Descent Path (CSDP) defined as the solution of an initial value problem in
which x is regarded as a function of a parameter t.

dx

dt
= −g(x(t)), x(0) = x1. (4)

One advantage of the continuous steepest descent path is that it can be followed
through both convex and non-convex regions in order to locate a minimum of f(x).
For this reason we shall consider some minimization algorithms based on the idea of
solving (4).

3 Continuous Steepest Descent Paths

To devise a computational CSDP algorithm for minimizing a general function f(x) we
must use an approximate solution of (4) since analytic solutions will not be available.
Behrman [4] suggests that, at a point xk, we consider a linearised version

dx

dt
= −gk −Gk(x(t)− xk) where x(0) = xk. (5)

This linearised equation has an exact analytical solution which can be expressed in
terms of the eigenvalues and eigenvectors of Gk. Suppose Rk is the matrix whose
columns are the normalised eigenvectors of Gk and Dk is the diagonal matrix whose
elements are the eigenvalues λ1, ..., λn (where λ1 ≥ λ2... ≥ λn). Then Gk can be
written in decomposed form as

Gk = RkDkR
T
k

and the solution path away from xk is defined by points on the trajectory

pk(t) = x(t)− xk = −RkΛR
T
k gk (6)

where

Λii =
exp(−λit)− 1

λi
if λi 6= 0 and Λii = t if λi = 0. (7)

It is worth noting that if Gk is positive definite then (7) implies

Λii → −1/λi as t→∞
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Hence pk(t)→ −RkD
−1
k RT

k gk = −G−1k gk (the Newton correction) as t→∞.

The approximate steepest descent path given by (6) and (7) is the basis of Behrman’s
gradient flow algorithm [4] which we shall discuss again later.

Another way of approximating a solution to (4) involves applying the implicit Euler
numerical method to (5). If we take a step t in parameter space away from the point
xk = x(0) then the implicit Euler method gives

x(t) = xk − t(gk +Gk(x(t)− xk))

which rearranges to
(I + tGk)(x(t)− xk) = −tgk

and so the approximate solution trajectory is

x(t) = xk + pk(t) where pk(t) solves (I + tGk)p = −tgk. (8)

The solution path defined by (8) has been considered by many authors including
Brown and Bartholomew-Biggs [8, 9] and will also be the basis for an algorithm
which is the main object of study in this paper.

If Gk is positive definite then the coefficient matrix of the linear system in (8) is
positive definite for all positive t. If Gk is indefinite, then the coefficient matrix of
the linear system in (8) is positive definite for all t between zero and −1/λn, where
λn is the most negative eigenvalue of Gk. This upper bound on t for the non positive
definite case also puts a bound on the exponential term in (7) (which could otherwise
become unbounded when λi < 0 and t tends to ∞).

A solution to the linear system in (8) can be written in terms of the eigenvectors
and eigenvalues of Gk, as in Behrman’s gradient flow method [4] If Rk and Dk are
defined as in the lead-up to (6), (7) then, since RkR

T
k = I (because Rk is orthogonal),

the linear system in (8) can be written Rk(I + tDk)R
T
k p = −tgk. Hence pk(t) can be

obtained via the following calculations:

pk(t) = −tRkD̂R
T
k gk where D̂ii =

1

1 + tλi
, i = 1, ..., n. (9)

It is important to emphasise that this calculation is different from the calculation in
(6) and (7). However when Gk is positive definite (9), like (7), does yield a correction
pk(t) which tends to the Newton direction as t tends to∞. This is easy to see because
the linear system in (8) approaches Gkp = −gk as t→∞.

We note also that one would not normally set out to solve a linear system via an
(expensive) eigenvalue calculation. However we shall be considering methods in which

6

© Springer Science+Business Media, LLC, part of Springer Nature 2019. 
This is a post-peer-review, pre-copyedit version of an article published in Numerical Algorithms.  

The final authenticated version is available online at: http://dx.doi.org/10.1007/s11075-019-00811-w.



we follow a solution trajectory by performing several solutions of (6) or (8) for different
values of t on each iteration. The once and for all eigensystem calculation means that
the second and subsequent solutions are relatively cheap. Before we consider more
details of how such iterations might be carried out we need to look at another well-
known approach to non-convexity in optimization calculations.

4 Trust region methods

Although a quadratic model like (1) cannot be used to predict a local minimum when
the Hessian matrix Gk is not positive definite, it can be used to produce a search
direction away from a point xk as a solution to the constrained subproblem

Minimize Q(p) = fk + pTgk +
1

2
pTGkp subject to a step limit pTp = ∆k. (10)

This problem amounts to finding the lowest point of a quadratic hyper-surface on
its intersection with a hypersphere of radius

√
∆k and centred on xk. Problem (10)

always has a solution whether or not Gk is positive definite. ∆k can be thought of as
a trust-region radius around xk – that is, it defines the boundary of a region within
which we “trust” our quadratic model to be acceptably accurate. ∆k is adjusted on
each iteration, depending on how well progress on the previous iteration agreed with
the quadratic model.

For completeness we note that trust-region methods usually employ a version of (10)
in which the equality constraint is replaced by an upper bound on pTp. This is im-
portant if (10) is being used to determine a correction step when the Hessian Gk is
positive definite and the actual distance to a local minimum is less than the arbitrary
step-limit ∆k. But this situation need not concern us since we are only considering
the benefits of a trust-region step in regions where f(x) is non-convex, and so one of
our goals is to take a step which leaves the region where the current Gk is a good
approximation to the Hessian.

Algorithm 2 below gives an outline of how (10) can be used.

Algorithm 2
Choose an initial point x1
Choose an initial value ∆1 > 0 and constants β1 > 1, β2 ∈ (0, 1)
Repeat for k = 0, 1, 2...

calculate fk = f(xk), gk = g(xk), Gk = G(xk)
find pk by solving problem (10)
set xk+1 = xk + pk if f(xk + pk) < fk

xk+1 = xk if f(xk + pk) ≥ fk
set ∆k+1 = β1∆k if the reduction in f(x) has been “good”

7

© Springer Science+Business Media, LLC, part of Springer Nature 2019. 
This is a post-peer-review, pre-copyedit version of an article published in Numerical Algorithms.  

The final authenticated version is available online at: http://dx.doi.org/10.1007/s11075-019-00811-w.



∆k+1 = ∆k if the reduction in f(x) has been “acceptable”
∆k+1 = β2∆k if the reduction in f(x) has been “unacceptable”

The terms good, acceptable and unacceptable will be explained more fully later in this
section.

A solution to (10) corresponds to a stationary point of the Lagrangian function

L(p, µ) = Q(p) +
µ

2
(pTp−∆k)

where µ is an unknown Lagrange multiplier. Stationarity of the Lagrangian implies

∇L = gk +Gkp+ µp = 0

and so
(µI +Gk)p = −gk (11)

which is equivalent to the linear system in (8) if we make the parameter substitution

t =
1

µ
.

If we assume that µ ≥ 0 and (µI+Gk) is positive definite then we can say that a step
pk(µ) which solves the system (11) for an arbitrary choice of µ will also solve (10)
for some value of ∆k, in fact for ∆k = pk(µ)Tpk(µ). But the relationship between
µ and ∆k is not a simple one; and once ∆k has been specified it may be necessary
to solve a nonlinear equation in order to find a value of µ to use in (11) and hence
to solve (10). It is more usual for a trust region method like Algorithm 2 to obtain
pk by constrained minimization techniques which are outside the scope of this paper.
(For a fuller discussion of trust region methods see [13].)

There is, however, a trust region method proposed by Higham [16] which does use
equation (11) and works directly with the parameter µ rather than dealing with
∆k explicitly. It follows the spirit of Algorithm 2 by observing that an increase in
µ corresponds to a decrease in ∆k and vice versa. Hence µ is decreased after a
step which is judged “good” and increased after a step which is “unacceptable”. In
Higham’s method (as in many other trust-region methods) the quality of a step pk(µ)
is measured by a comparison with the quadratic model. If we define

rk(µ) =
f(xk + pk(µ))− fk
Q(pk(µ))−Q(0)

(12)

then a value rk ≈ 1 indicates that the behaviour of f is in good agreement with the
quadratic model. Similarly rk ≈ 0 means poor or unacceptable agreement.
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We also note that (dropping explicit dependence on µ for clarity)

Q(pk)−Q(0) = pTk gk +
1

2
pTkGkpk =

1

2
[pTk gk + pTk gk + pTkGkpk]

Since pk solves (11) it follows that

Q(pk)−Q(0) =
1

2
[pTk gk − µpTk pk]

If gk 6= 0 and if µ is positive and chosen sufficiently large that (µI + Gk) is posi-
tive definite then both terms in square brackets on the right hand side are negative
and hence the solution to (11) does yield a reduction in the quadratic model function.

In the next section we shall present a modified version of Higham’s algorithm (the
original can be found in [16]) which will be compared with implementations of the
two CSDP methods discussed in Section 3. The CSDP approach based on (6),(7) is
Behrman’s method [4]; and our own suggested approach based on (8) will henceforth
be referred to as Nimp1.

5 A Computational investigation

We now propose some computational algorithms which are developments of methods
outlined in Section 2. For consistency with the notation of Higham’s trust region
method, it will be convenient for us to express the continuous steepest descent calcu-
lations in (6), (7) and (8) in terms of µ = 1

t
. Thus (6) and (7) become

pk(µ) = −RkΛR
T
k gk (13)

where

Λii =
exp(−λi

µ
)− 1

λi
if λi 6= 0 and Λii =

1

µ
if λi = 0. (14)

Similarly (8) becomes

x(t) = xk + pk(µ) where pk(µ) solves (µI +Gk)p = −gk (15)

and the solution via (9) becomes

pk(µ) = −RkD̂R
T
k gk where D̂ii =

1

µ+ λi
, i = 1, ..., n. (16)

The CSDP algorithms we now propose are designed to perform a search in terms of
µ to obtain a new point of the form xk + pk(µ) where pk may be obtained either from
(13) and (14) or from (16). As µ varies, the trial points will trace out a curvilinear
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path in contrast to the straight line search that usually figures in optimization meth-
ods like Algorithm 1. The use of curvilinear searches in terms of µ has been discussed
in previous work by the present authors [3], [2]; and in what follows we describe one
particular approach in more detail.

We note first of all that if Gk is positive definite with smallest eigenvalue λn then the
linear system in (15) has a positive definite matrix for all µ > −λn. On the other
hand, if Gk is not positive definite and if λn denotes its most negative eigenvalue
then the matrix of the linear system in (15) is again positive definite for all µ > −λn.
Hence, if we define µmin as −λn, we have for any value of µ > µmin that pk(µ) is a
descent direction. The purpose of the curvilinear search is to obtain a value µ∗ so
that the ratio of actual change in f to the linear predicted change

dk(µ) =
f(xk + pk(µ))− fk

pk(µ)Tgk
(17)

is bounded away from one and zero, as in the discussion following Algorithm 1. The
same requirement can of course be applied to the search for µ∗ when pk(µ) comes
from (13) and (14).

We now look in more detail at how to carry out a curvilinear search along the path
pk(µ). For each trial value of µ interpolate− i.e. increase µ − if the current value does
not yield an acceptable decrease in f (s measured by the value of dk(µ)). Similarly
we can consider extrapolating − by decreasing µ − if the reduction in f produces a
value of dk that exceeds (or is close to) 1. As a precautionary measure, the curvi-
linear search procedure set out below uses both ratios (17) and (12) in choosing to
extrapolate.

The curvilinear search procedure distinguishes between the convex and non convex
cases. If Gk is non-positive definite then the starting value of µ is derived from the
successful value of µ at the end of the previous iteration. But if Gk is positive definite
it seems much more sensible to try the initial value µ = 0 (that is to attempt a Newton
step) and to adjust µ only if the Newton step is unsuccessful. All of this is formalised
in Algorithm 3 below, in which the step “calculate pk(µ̃)” may be performed either
by (13) and (14) (Behrman’s method) or by(16) (Nimp1).

Algorithm 3 (embodying both Behrman’s method and Nimp1)
Given an initial point x1 and an initial trial value µ1

Choose constants ν1, ν2, η1, η2 ∈ (0, 1) with ν1 < ν2 and η1 < η2
Choose constants α1, α2 ∈ (0, 0.5)
Repeat for k = 0, 1, 2...

calculate fk = f(xk), gk = g(xk), Gk = G(xk)
compute the eigensystem decomposition Gk = RkDkR

T
k

set µmin = −λn
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if µmin > 0 set µ̃ = max(µk, 2µmin)
if µmin ≤ 0 set µ̃ = 0
calculate pk(µ̃) and set x̃ = xk + pk(µ̃)
calculate d̃k = dk(µ̃) from (17) and r̃k = rk(µ̃) from (12)
if µmin > 0

repeat while d̃k > 1− α1 and r̃k > η2 and µ̃ > 1.1µmin
replace µ̃ by µ̃− ν2(µ̃− µmin)
calculate pk(µ̃) and set x̃ = xk + p(µ̃)
set d̃k = dk(µ̃) and r̃k = rk(µ̃)

end
endif
repeat while d̃k < α2

replace µ̃ by µ̃+ ν1(µ̃− µmin)
calculate pk(µ̃) and set x̃ = xk + pk(µ̃)
set d̃k = dk(µ̃) and r̃k = rk(µ̃)

end
set xk+1 = x̃ and µk+1 = µ̃

In regions where f is non-convex the procedure optionally performs extrapolation
steps if the initial move is sufficiently promising. It may also (or instead) perform
some interpolation steps if the initial (or an extrapolated) move does not produce an
acceptable function decrease. The extrapolation and interpolation loops are distinct;
hence, once interpolation has occurred there is no possibility of more extrapolation
(which might risk causing an “endless” cycle of interpolations and extrapolations).
Christianson [12] has previously pointed out that such separation of the two steplength
criteria (i.e. ensuring that a step is neither“too short” nor“too long”) is consistent
with established convergence theory.

It is worth considering whether an interpolation can ‘undo’ the benefits of a good
extrapolation step. Suppose therefore that µ̃ has defined a good move which permits
further extrapolation using

µ̃+ = µ̃− ν2(µ̃− µmin).

Suppose further that µ̃+ yields an unacceptable move and that interpolation takes
place and provides a new value

µ̃− = µ̃+ + ν1(µ̃
+ − µmin).

We do not want µ̃− to be larger than the good value µ̃. We can see that

µ̃− = µ̃− ν2(µ̃−µmin) + ν1(µ̃− ν2(µ̃−µmin)−µmin) = µ̃− (ν2− ν1 + ν1ν2)(µ̃−µmin)

Hence it follows that µ̃− < µ̃ if the parameters ν1 and ν2 are chosen so

ν2 − ν1 + ν1ν2 > 0.
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In particular this holds if ν1 = ν2. More generally we need

ν2 >
ν1

1 + ν1
.

We shall perform some numerical tests with implementations of Algorithm 3 in order
to compare the performance of the corrections pk(µ) corresponding to (13) and (15).
We shall also include in our tests a version of Higham’s method (which will be speci-
fied below as Algorithm 4). The interpolation procedure in Algorithm 3 is essentially
the same as in Higham’s method − i.e. it involves rejecting an unacceptable step and
calculating a new correction with an increased value of µ. However the algorithm
in [16] has to solve a linear system to compute a new correction for each value of µ
and Algorithm 4 is able to avoid this because of the eigenvalue decomposition done
once and for all on each iteration. Hence the main difference between Algorithm 3
and Algorithm 4 is that the latter does not perform extrapolation but simply carries
forward a reduced value of µ for the next iteration whenever the first correction step
is judged to be good. Our version of the Higham approach can therefore be stated as
follows; and it should be noted that it resembles Algorithm 3 in always taking µ = 0
as the initial choice in a convex region.

Algorithm 4 (modified Higham procedure)
Given an initial point x1 and an initial trial value µ1

Choose constants ν1, ν2, η1, η2 ∈ (0, 1) with ν1 < ν2 and η1 < η2
Choose constants α1, α2 ∈ (0, 0.5)
Repeat for k = 0, 1, 2...

calculate fk = f(xk), gk = g(xk), Gk = G(xk)
compute the eigensystem decomposition Gk = RkDkR

T
k

set µmin = −λn
if µmin > 0 set µ̃ = max(µk, 2µmin)
if µmin ≤ 0 set µ̃ = 0
calculate pk(µ̃) and set x̃ = xk + pk(µ̃)
set d̃k = dk(µ̃) and r̃k = rk(µ̃)
if µmin > 0

if d̃k > 1− α1 and r̃k > η2 and µ̃ > 1.1µmin
replace µ̃ by µ̃− ν2(µ̃− µmin)

end if
end if
repeat while d̃k < α2

replace µ̃ by µ̃+ ν1(µ̃− µmin)
calculate p(µ̃) and set x̃ = xk + p(µ̃)
set d̃k = dk(µ̃) and r̃k = rk(µ̃)

end
set xk+1 = x̃ and µk+1 = µ̃
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5.1 Computational results

Using Algorithms 3 and 4 we can compare the performance of the methods Nimp1,
Behrman and Higham on a set of 139 small to medium-sized problems from the well-
known CUTEr test set [15]. Each of the problems in this test set is provided with a
standard starting point and thus provides a basis for a uniform comparison between
optimization methods.

Algorithms 3 and 4 have been coded in MATLAB (version R2010a) and computa-
tions were performed on Intel 2.60 GHz processors running under Linux. Algorithm
3 implements the two gradent-flow methods, Nimp1 and Behrman, while the version
of Higham’s method in Algorithm 4 can be regarded as something of a compromise
between a trust-region and a gradient-flow approach. In order to extend the compar-
ison we also consider a more conventional trust region method – denoted by TR –
which is implemented within the MATLAB optimization toolbox as fminunc [17].

The trust region method in fminunc is described in [7], [11] and it is comparable
with Higham in that it uses the exact Hessian of the objective function and works
with a trust region subproblem on every iteration. The approach differs from Higham
however in not obtaining an exact solution to the trust region subproblem but rather
restricting itself to a two dimensional subspace. This subspace is defined by the nega-
tive gradient −gk together with either an approximate Newton direction, n ≈ −G−1k gk
or a direction of negative curvature s, such that sTGks < 0. Obtaining the Newton
direction or a direction of negative curvature could involve the solution of the linear
system in (15) with µ = 0 or else the calculation of the eigensystem of Gk. However
the method in fminunc seeks to avoid doing as much work as Higham or Nimp1
on each iteration and hence it finds n or s, by applying a preconditioned conjugate
gradient (PCG) method see [10] to the system Gkn = −gk. When the search is far
from the optimum the PCG method may be terminated with quite a low accuracy
approximation to the Newton direction; and, in particular, if Gk is found to be non
positive definite the PCG method returns a direction of negative curvature, rather
than an approximate Newton direction.

In fairness we need to point out that, while fminunc is comparable with Algorithms
3 and 4 in using exact Hessian information, it may be at a disadvantage in that it
does not employ an eigenvalue decomposition which means that its correction step
calculation cannot be based on as much information as is available to Algorithms 3
and 4. Nevertheless we have chosen to use this method as our representative trust-
region approach,TR, largely because its MATLAB implementation enables us easily
to include it in a testing procedure alongside our own MATLAB codes. We justify
this decision by reminding the reader that our purpose in this paper is not to attempt
a definitive ranking among competing algorithms but rather to do a feasibility study
to see whether our selective use of curvilinear CSDP searches shows any promise.
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We present detailed results of our computing experiments in table form in an Ap-
pendix which also gives details of convergence and stopping criteria together with
the values used for the parameters which control the curvilinear search procedures
in Algorithms 3 and 4. The tables show the number of iterations needed to attain
the desired accuracy and the corresponding number of function evaluations. These
measures both give useful information on a solver’s robustness and efficiency. A com-
parison of run-times might have been interesting too – although possibly misleading
because we know that the implementations of Nimp1, Behrman and Higham are very
similar whereas TR is a “black box” code and details of its per-iteration computations
were invisible to us. Numbers of iterations and function calls are quantities which, to
some extent, are independent of the overhead costs of the algorithm itself.

For Algorithms 3 and 4, one “function call” per iteration is required to compute f(x)
along with the gradient and the Hessian matrix. All other function calls are simply
evaluations of the objective. Nimp1 and Behrman (Algorithm 3) use these extra func-
tion calls to perform extrapolation and/or interpolation along the curvilinear search
path. For Higham (Algorithm 4) the additional function evaluations relate only to
interpolation. It will be noted that TR, being a classical trust-region algorithm, com-
putes only one new point (involving one function call) per iteration. This new point
is then accepted or rejected and µ is adjusted appropriately for the next iteration. It
may be assumed that this single function call computes the gradient and Hessian as
well as the value of f(x).

As we consider the tabulated results in the Appendix we need some criteria for de-
ciding which method has performed best on each problem. Clearly, if one method
uses fewer iterations and fewer function calls it can be regarded as the“winner”. But
how should we judge between two methods where one takes fewer iterations but re-
quires more function calls? Suppose that on a problem involving n variables method
A requires IA iterations and fA function calls and that the corresponding figures for
method B are IB and fB. We know that one function call per iteration evaluates the
gradient and Hessian and hence can be regarded as being n2 times more expensive
than the other function calls. Hence if IA < IB but fa > fB then method A can be
regarded as more efficient than method B if

fA − fB < n2(IB − IA)

– that is if the additional cheap function calls made by method A during the curvi-
linear searches are outweighed by the expensive function calls made by method B on
its extra iterations. This way of ranking the performance of competing algorithms
does of course ignore overhead costs such as the linear algebra performed during each
iteration. It is however not unreasonable to ignore such costs in the present case
when one of the methods, namely TR, probably has very different overheads from
Nimp1, Behrman and Higham. In any case it is not the overheads of the compet-
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ing algoritms that we are interested in: instead we are investigating (a) the benefits
of adding a curvilinear search to a conventional trust-region framework and (b) the
effectiveness of performing extrapolation as well as interpolation during such a search.

When we use the above method of ranking the algorithms we find that the classi-
cal trust region approach TR comes out best on just under 25% of the problems
considered. This of course means that the use of some sort of curvilinear search is
advantageous in around 75% of cases. Moreover the methods Nimp1 & Behrman –
both of which use extrapolation – return the best result in 60% of the tests reported
in the Appendix. This represents a fairly encouraging endorsement of the curvilinear
search we have proposed in this paper. This being said, however, we note from the
results in the Appendix that all the tested methods have some shortcomings. There
are a number of instances where the methods based on Algorithms 3 and 4 all fail
to solve a problem. There are are also cases where only Behrman or Higham fail
but there do not appear to be any examples where Nimp1 records the only failure.
And while TR does not fail or terminate at a non-optimal point there are some cases
where it still has not converged within the limiting number of 10000 iterations.

Having discussed the methods in terms of a performance measure of our own devising,
we now also seek to draw some overall conclusions about the behaviour of the four
methods using the generally recognised yardstick of performance profiles as proposed
by Dolan & Moré [14]. Given a set of problems P and a set of solvers S , a performance
profile of a solver, s ∈ S, is a plot of the cumulative probability distribution function

ρs(τ) =
1

np
size {p ∈ P : rp,s ≤ τ}

for a given performance metric, where np ∈ P is the number of problems, rp,s is the
performance ratio

rp,s =
tp.s

min{tp,s : s ∈ S}
and tp,s denotes the number of iterations (number of function evaluations) to solve
problem p ∈ P with solver s to the required accuracy of convergence. It is easily
seen that the fastest solver has rp,s = 1 and if the solver fails then rp,s =∞ . It was
suggested by Dolan and Moré [14] that if a method does not solve a problem, rp,s is
simply given an arbitrary large value.

ρs(τ) represents the overall probability that the performance of solver s on any prob-
lem will be within a factor τ of the best available performance. If we plot ρs(τ) for
a number of solvers then the most efficient method will be the one for which ρs is
highest on the left hand side of the plot. On the other hand the method for which ρs
is highest on the right-hand side of the plot may be considered the most reliable.
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Figure 1: Functions calls for 1 ≤ τ ≤ 10.
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Figure 2: Iterations calls for 1 ≤ τ ≤ 10.
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From these graphs we can observe that Nimp1 and Behrman behave in a very similar
way, although it is also possible to say that Nimp1 seems to maintain a rather small
advantage. When function calls are used as a performance measure Higham does
considerably better than the other methods for smaller values of τ . This must reflect
the fact that Higham uses only one function call per iteration provided the initial step
is an acceptable one. On the other hand it is the absence of extrapolation that proba-
bly explains the relatively poor showing of Higham when performance is measured by
numbers of iterations needed for convergence. The relative superiority of Higham in
terms of function calls only occurs for values of τ less than about 5. Broadly speaking,
the effort expended in the curvilinear search by Nimp1 and Behrman seems to pay off
in terms of savings in iteration numbers (and the associated linear algebra overheads).

The behaviour of TR is also interesting. For small values of τ it appears as effective
as Nimp1 and Behrman in terms of function calls; but it does very much worse than
the other three methods in terms of iterations. This pattern persists for all values of
τ as regards iterations; and it also applies to performance in terms of function calls
when τ is bigger than about 2.

Overall therefore there are quite good grounds for believing that methods using a
curvilinear search with the option of extrapolation often have the potential to be
superior to − a conventional trust region approach.

6 Convergence of Algorithm 3 (Nimp1)

In this section we show that, under certain assumptions about f , Nimp1 will con-
verge to a stationary point. This stationary point will − except under exceptional
circumstances − be a local minimum rather than a saddle point.

Assumption 1: f(x) is twice continuously differentiable for all values of x and the
eigenvalues of the Hessian matrix G(x) are everywhere bounded and lie in the range
[λ̄min, λ̄max].

In practice we only need the eigenvalue bounds to hold within an appropriate basin
of convergence, say for all x such that f(x) < f(x0).

Theorem 6.1: If Assumption 1 holds the values of µ̃ (and hence µk) remain bounded
above when Algorithm 3 is implemented using (16) to calculate the search direction.

The proof depends on showing that the test condition dk > α2 can be obtained for all
values of µ greater than a finite threshold. Hence on any iteration at worst the first
trial value of µ which exceeds that threshold on any iteration will yield an acceptable
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point.

Dropping subscripts for convenience, (15), which is the definition of p(µ) used by
Nimp1, implies

pT (µ)g = −p(µ)T (µI +G)p(µ)

and hence, using Assumption 1

pT (µ)g ≥ −p(µ)Tp(µ)[µ+ λ̄max].

Similarly, using the mean value theorem,

f(x+ p(µ))− f(x) = p(µ)Tg +
1

2
p(µ)T Ḡp(µ)

where Ḡ is the hessian evaluated at some point between x and x+ p(µ). Hence

f(x+p(µ))−f(x) = −p(µ)T (µI+G)p(µ)+
1

2
p(µ)T Ḡp(µ) ≤ −p(µ)Tp(µ)[µ+λ̄min−

1

2
λ̄max].

Since

dk =
f(x+ p(µ))− f(x)

pT (µ)g

it follows that

dk >
µ+ λ̄min − 1

2
λ̄max

µ+ λ̄max
.

Thus dk(µ) > α2 if µ is sufficiently large that

µ+ λ̄min −
1

2
λ̄max > α2[µ+ λ̄max]

or in other words, if

µ(1− α2) > (
1

2
+ α2)λmax − λmin

We can now conclude that there is a finite upper bound, say µ̄, to the values of µ
encountered during the iterations of Algorithm 3.

Assumption 2: The function f is bounded below.

Theorem 6.2: If Assumptions 1 and 2 hold then the iterations of Algorithm 3 ensure
that limk→∞ ‖g(xk)‖ = 0, (i.e. the iterates converge to a stationary point of f) when
(16) is used to calculate correction steps.

The proof is by contradiction. Suppose that g(xk) does not converge to zero as k →∞
and in particular that ∃ĝ such that gTk gk > ĝ > 0 for an infinite number of k.
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Since pk = −(µkI +Gk)
−1gk it follows that

pTk gk = −gTk (µkI +Gk)
−1gk < −

ĝ

µ̄+ λ̄max

where we have made use of Assumption 1 and Theorem 6.1 which states that, for all
k, there is an upper bound on the values of µk.

The iterations of Nimp1 ensure that

f(xk + pk)− f(xk) < α2p
T
k gk < −

α2ĝ

µ̄+ λ̄max

which implies that an iteration of Nimp1 yields a decrease in objective function value
which is bounded away from zero for an infinite number of k − 1, 2, ...∞. But this
contradicts the assumption that f is bounded below. Hence gk must tend to zero as
k →∞.

We now consider whether a stationary point to which Algorithm 3 converges must
be a minimum. Unfortunately we cannot guarantee this. Consider for instance the
application of Nimp1 to the function f(x) = x21 − x22 + x42 starting from the point
(1, 0)T . There is no value of µ that will cause (15) to generate a step pk(µ) which
does not point towards the saddle point at (0, 0)T . This is because the gradient at
x = (1, 0)T has no component in the subspace where f(x) has negative curvature.
This illustrates a difficulty which could arise in a practical problem. Therefore, for
the purposes of our next result, we introduce an extra assumption:

Assumption 3 The iterations of Nimp1 do not generate any points where the gra-
dient vector gk is orthogonal to all the eigenvectors of Gk which are associated with
negative eigenvalues. (This of course also excludes the possibility that an iteration of
Nimp1 terminates precisely at a saddle point.)

Theorem 6.3: If Assumptions 1,2 and 3 hold and if xk is a point close to, but
above, a saddle point of f then there exist values of µ in (15), the step calculation
used in Algorithm 3, which can yield a new point which is below the saddle point of
the quadratic model function Q.

Let nk be the exact step from xk to the saddle point of Q. We show that

Q(nk)−Q(0) = nTk gk +
1

2
nTkGknk = −1

2
nTkGKnk > −

||gk||2

2λ+min

where λ+min denotes the smallest strictly positive eigenvalue of Gk.
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To see this, express nk =
∑

i aiui as a sum of the eigenvectors ui of Gk. Then
nkGnk =

∑
i λia

2
i , and gk = −

∑
λiaiui so ‖gk‖2 =

∑
i λ

2
i a

2
i . Since for all i we have

(λ+minλi) ≤ λ2i it follows that λ+min nkGnk < ‖gk‖2 as required.

The indefiniteness of Gk implies that there is a unit vector v and a positive constant
β such that vTGkv = −β. Now suppose that ∆k(µ) denotes pk(µ)Tpk(µ) when pk(µ)
is obtained by solving (15) and consider a step away from the point xk which is of the
form w = σ

√
∆k(µ)v and σ is chosen as ±1 in order that wTgk ≤ 0. It follows that

Q(w)−Q(0) = wTgk +
1

2
wTGkw < −1

2
∆k(µ)β.

Now the correction pk(µ) solves (10) with ∆k = ∆k(µ) and hence the reduction in Q
due to a step from xk to xk + pk(µ) must be at least as large as that produced by the
step w. Hence

Q(pk(µ))−Q(0) < −1

2
∆k(µ)β.

But if µ is chosen small enough that that

∆k(µ) >
||gk||2

βλ+min

the step pk(µ) must produce a bigger decrease in Q than the step nk and hence it
reaches a point below the saddle point of the quadratic model function. Since ||p(µ)||
becomes arbitrarily large as µ tends to −λ+min, it is clear that a suitable value of µ is
available to be located in the extrapolation phase of Nimp1.

Note In the above Theorem we do not claim to have proved that the precise curvi-
linear search algorithm in Algorithm 3 will guarantee to find a suitable value of µ
as identified above. As we have mentioned before, Algorithm 3 has been devised in
order to test the potential benefits of a curvilinear CSDP search and is not presented
as a“watertight” general purpose method.

Some of our foregoing discussion of ultimate convergence might however be said to
miss the point of Nimp1 (and also of Behrman) because the main feature of these
methods is to provide efficient ways of dealing with regions where f is non-convex.
Both methods revert essentially to Newton’s method around a local minimum where
f is convex and hence ultimate convergence (and rate of convergence) properties are
supported by a good deal of existing theory. Bearing that in mind, it is probably more
important to consider whether the iterations of Nimp1 will provide an efficient escape
from non convex to a convex region, which requires them to move well away from
any local saddle point, rather than slightly below it. The counter-example preceding
Theorem 6.3 shows that Assumption 3 must hold in order for such an escape to be
guaranteed.
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7 Conclusions

We have considered two algorithms for non-linear optimization (Nimp1 and Behrman)
which can be viewed as following an approximate steepest descent path. These meth-
ods have features in common with trust region methods, but differ from most trust
region methods by essentially reverting to Newton’s method when the search is in a
convex region. We have compared the performance of these two techniques with that
of two more conventional trust-region approaches Higham and TR/fminunc. The
results with Nimp1 and Behrman do give grounds for believing that there is some
promise in the idea of using a curvilinear search continuous steepest descent path to
traverse efficiently regions where the objective function is non-convex.

All the methods described in this paper use exact second derivatives; and three of
them incur the unusual overhead cost of performing an eigenvalue analysis of the
Hessian matrix. This makes it easy to distinguish a convex from a non-convex region;
and it also has some modest advantages in cost-saving during the curvilinear search.
But it would obviously be worthwhile to consider algorithms which seek to follow a
similar philosophy to Nimp1 by following some sort of CSDP in regions where the
objective function is non-convex while reverting to a non-second-derivative approach
(e.g. quasi-Newton) when the function is convex. We intend this to be the focus of
our further work in this area.
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Appendix Some Results Using CUTEr test problems

The following tables present results obtained with the methods discussed in this paper.
The problems are drawn from the CUTEr test set [15] and the methods compared
are the trust-region approach fminunc – denoted by TR – along wth Nimp1 and
Behrman (as implemented in Algorithm 3) and the Higham method as implemented
in Algorithm 4.
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The stopping criteria used by all the methods were

||g(xk)||2 < 10−6 and ||xk+1 − xk||2 < 10−6(1 + ||xk||2)

The values used for the controlling parameters for the iterations in Algorithms 3 and
4 are as follows

α1 = 0.4, α2 = 0.1, η2 = 0.9, ν1 = 0.5, ν2 = 0.75.

It will be noted that the tables do not report on every one of the 139 test problems.
We have omitted results for problems where it is clear from the counts of iterations
and function calls that no interpolation or extrapolation has taken place. This allows
us to observe more clearly the differences in performance in situations that are actu-
ally relevant to our investigation.

The following notation is used in the tables:

n: the number of variables

Its/Fcs: the number of iterations/function calls
(The maximum number of iterations allowed was 10000 and a table entry of the form
10000/10001 indicates this limit has been reached.)

“*” denotes the performance on each problem that is judged “best” by the criteria
discussed in section 5.1

“F” indicates a method has suffered a numerical failure such as floating overflow in a
function evauation, e.g. because of an exceptionally large correction step.
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Methods → TR Nimp1 Behrman Higham

Problems ↓ n Its/Fcs Its/Fcs Its/Fcs Its/Fcs

2 ALLINITU 4 10/11 7/12 7/15 9/11*
4 ARWHEAD 100 6/7 5/6 5/6 5/6
5 BARD 3 192/193 10/16 7/14 7/8*
7 BEALE 2 9/10 7/13* 6/8 17/19
8 BIGGS6 6 41/42 30/86* 64/173 88/91
12 BROWNAL 200 7/8* 15/40 11/26 16/17
13 BROWNBS 2 7075/7076 7/11* 8/11 11/12
15 BROYDN7D 10 17/18 11/13* 12/17 12/13
16 BRYBND 10 16/17 11/15 10/22* 13/15
17 CHAINWOO 4 208/209 37/63* 36/67 40/44
18 CHNROSNB 50 64/65 41/82* 40/89 50/61
20 COSINE 10 9/10 10/20 7/14* 10/11
21 CRAGGLVY 4 14/15* F F F
22 CUBE 2 31/32 24/30* 26/50 31/39
23 CURLY10 100 17/18 11/31* 15/35 21/23
24 CURLY20 100 17/18 11/24* 16/38 21/22
25 CURLY30 100 17/18 11/23* 15/38 22/24
26 DECONVU 61 21/22* 37/97 F 35/36
28 DENSCHNB 2 6/7* F F F
30 DENSCHND 3 257/258 28/42* 25/47 33/34
31 DENSCHNE 3 10/11 8/13* 11/21 13/14
33 DIXMAANA 15 8/9 4/10* 5/17 6/7
34 DIXMAANB 15 7/* 8/22 6/12* 7/8
35 DIXMAANC 15 8/9 8/18 7/16* 8/9
36 DIXMAAND 15 9/10 10/24 7/18* 9/10
37 DIXMAANE 15 6/7* 6/15 7/15 7/8
38 DIXMAANF 15 9/10 11/31 7/18* 14/16
39 DIXMAANG 15 10/11 8/21* 9/32 21/23
40 DIXMAANH 15 10/11* 14/32 11/28 12/13
41 DIXMAANI 15 6/7* 7/13 8/18 9/10
42 DIXMAANJ 15 12/13 9/22* 12/30 13/15
43 DIXMAANK 15 13/14 13/32 10/28* 34/42
44 DIXMAANL 15 13/14 10/21 11/26 13/14
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Methods → TR Nimp1 Behrman Higham

Problems ↓ n Its/Fcs Its/Fcs Its/Fcs Its/Fcs

46 DJTL 2 103/104* 87/731 552/2235 F
48 DQRTIC 10 15/16* F F F
52 ENGVAL2 3 108/109 14/19* 16/25 17/19
53 ERRINROS 50 56/57 21/55 20/47* 25/33
54 EXPFIT 2 11/12 6/10* 8/16 9/11
55 EXTROSNB 10 330/331 360/638 355/669 71/101*
58 FLETCHBV 10 334/335* 726/1599 1388/3875 2633/634
59 FLETCHCR 10 131/132 24/31 24/35 22/27*
60 FMINSRF2 16 10/11* 16/536 12/460 F
61 FMINSURF 16 11/12* 14/625 11/369
62 GENROSE 500 614/615 267/882* F 338/339
63 GROWTHLS 3 10000/10001 67/140 66/144 79/87*
64 GULF 3 301/302 23/51* 22/56 37/40
65 HAIRY 2 91/92 43/96* 55/110 10000/10001
66 HATFLDD 3 114/115 19/24 16/23* 17/18
67 HATFLDE 3 15/16* 19/28 15/21 17/18
68 HEART8LS 8 131/132 81/211 72/183 71/74*
69 HELIX 3 748/749 13/30 8/14* 12/14
73 HIMMELBB 2 13/14 7/16* 14/29 18/19
74 HIMMELBF 4 201/202 49/93 8/19* 407/409
76 HIMMELBH 2 7/8* F F F
77 HUMPS 2 5459/5460 4/11* 91/258 110/112
79 KOWOSB 4 21/22 6/17* 6/17* 51/57
81 LOGHAIRY 2 514/515 5/9* 6/17 70/71
82 MANCINO 100 15/16 9/20* 9/20* 13/14
83 MARATOSB 2 779/780 651/1209 6/46/1195 124/158*
84 MEXHAT 2 29/30 21/28* 21/28* 25/31
87 NONCVXU2 10 17/18 12/20 9/11* 16/18
88 NONCVXUN 10 18/19 10/16 9/13* 21/23
89 NONDIA 10 14/15* F F F
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Problems ↓ n Its/Fcs Its/Fcs Its/Fcs Its/Fcs

91 NONMSQRT 9 88/89 348/1296 449/1647 85/110*
92 OSBORNEA 5 56/57 8/16* 40/80 56/62
93 OSBORNEB 11 30/31 13/24 13/20* 17/19
94 OSCIGRAD 10 16/17 10/52 8/10* 10000/19979
95 OSCIPATH 10 2/3* 2/44 2/44 10000/10003
107 PENALTY3 50 18/19 12/20* 14/28 16/18
108 PFIT1LS 3 10000/10001 225/406* 237/438 F
109 PFIT2LS 3 35/36* 41/74 94/184 10000/10001
110 PFIT3LS 3 33/34* 134/249 114/219 46/57
111 PFIT4LS 3 43/44* 227/423 199/398 F
114 QUARTC 25 19/20* F F F
115 ROSENBR 2 27/28 19/31 19/33 11/15*
116 S308 2 10/11 8/10* 8/11 8/10*
119 SENSORS 100 16/17* 20/40 19/50 31/33
120 SINEVAL 2 55/56 41/81 40/76 20/25*
121 SINQUAD 5 11/12 7/20* 7/24 13/15
123 SNAIL 2 104/105 61/103 59/104 51/66*
124 SPARSINE 10 7/8* 7/12 7/11 9/10
126 SROSENBR 10 8/9 7/9* 7/10 7/9*
130 TOINTPSP 50 28/29 14/72* 15/115 10000/10001
134 VARDIM 200 28/29 20/23* 20/23* 28/29
135 VAREIGVL 50 15/16 11/17 7/12* 14/17
136 WATSON 12 13/14 12/28 12/24 12/13*
137 WOODS 100 58/59 37/63* 37/68 40/44
138 YFITU 3 3119/3120 37/80* 36/84 46/54

Table 1: CUTEr Test Results from TR, Nimp1, Behrman and Higham
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