
Asynchronous Packet-Switching for Networks-on-Chip

Jun Xu1, Mark B. Josephs2 and Reza Sotudeh1

School of Electronic, Communication and Electrical Engineering, University of Hertfordshire1

Faculty of Business, Computing, and Information Management, London South Bank University2

x.jun@herts.ac.uk1, mark.josephs@lsbu.ac.uk2, r.sotudeh@herts.ac.uk1

Abstract

System-on-Chip design is facing increasing
challenges in its integration, global wiring delay and
power dissipation. Interconnection network technology
has the advantage over conventional bus technology in
its scalability; on the other hand, asynchronous circuit
design technology may offer power saving and tackle the
clock-skew problem. Chip designers are thus turning
their attention to Network-on-Chip solutions. Packet-
switches play a key role in interconnection networks and
this paper focuses on their implementation as
asynchronous circuits. The results of experiments run to
evaluate several aspects of the routing switch
implementation are presented.

1. Introduction

As technology scales, a variety of challenges have
been presented to IC developers. System integration is
one among them. Although buses are still the dominant
approach, interconnection networks have been receiving
more and more attentions as an alternative integration
solution [2, 8, 9, 11]. An interconnection network is
comprised of communication links and packet-switches.
The links connect hosts to switches and switches to
switches. Packet-switches enable data and instructions to
be switched from source hosts to any desired destination.
One advantage of interconnection networks over buses is
the scalability in throughput, latency, cost and integration
of the system.

Wire delay is another challenge IC developers have to
confront. In the near future, technology scaling will
cause wire delay to dominate, while gate delay will no
longer be a critical factor in most systems. This dramatic
increase in the delay of a global wire, almost doubling
every year, affects the signaling, timing, and architecture
of digital systems. This makes it extremely difficult to
distribute a global clock with low skew [2]. One solution
is to devote a large quantity of interconnect metal to

building a low-impedance clock grid or wire using new
materials (e.g. copper). However, this solution is
anticipated to only be effective for one or two more
generations [1]. A more radical approach is to eliminate
global synchrony. One can either divide the chip into
separate clock domains (known as Globally
Asynchronous Locally Synchronous), or more
aggressively, fully employ asynchronous circuit design
technology, such as [4, 7, 14].

Power dissipation has become another critical metric
in VLSI circuit design. The growing market of mobile,
battery-powered electronic systems fuels the demands for
ICs with low power dissipation. Unfortunately, power
dissipation in real-life ICs does not follow the
descending trend in semiconductor technology [3].
Including asynchronous circuits into a complex VLSI
design can help reduce power dissipation [10]: unlike a
synchronous system, in which all switching gates charge
and discharge with the transition of the clock signal even
if they are not in use, consuming power in asynchronous
circuits takes place only when a circuit is in operation.

Having seen the challenges in SoC design and the
advantages of interconnection-network technology and
asynchronous circuit design technology, one question
may arise: could the combination of these two
technologies provide a solution to the interconnection of
SoC. This paper aims to address this question and to
consider the feasibility of interconnection network
components using asynchronous methods. In particular,
the asynchronous design of a packet-switch is examined.
The rest of paper is organized as follows: in Section 2,
the architecture of a packet-switch is presented; the
implementation of the packet-switch by asynchronous
technology is presented in Section 3; simulation results
are presented in section4; limitations of this work are
stated in Section5; finally conclusions are drawn in
Section 6.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

2. Pipelined data processing in output-
buffering packet-switches

Switch

Input
Block0

Output
Block0

Input
Block1

Output
Block1

Figure 1. Overview of a 2by2 output buffering packet-
switch

An output-buffering packet-switch [13] is proposed
for this study as illustrated in Fig.1. To ease our
implementation, the switch is only equipped with two
input/output ports. The switch consists of four blocks:
Output Block1, Output Block0, Input Block1 and Input
Block0. Both input and output blocks are further divided
into two parts: control block and data path. The input
data path can buffer one flit at a time and one flit is
defined as 32-bit wide in this paper. The output data path
as buffer memory is the main storage element of the
switch.

Data transfers between two circuits are point-to-point,
involving requests, which initialize each transfer, and
acknowledgements, which signal the completion. Before
a sender can start its data transfer, the receiver must have
indicated the sender that it is ready to take in the data.

Each packet consists of two parts: header and payload.
Header is one flit long, located at the beginning of each
packet and containing all output ports a packet will pass
through. The rest of a packet is payload, only containing
data. Packet-size in this paper is fixed.

Packets at each switch are processed in a pipelined
fashion as shown in Fig2. Incoming flits from their
previous hosts are buffered at input blocks as they arrive.
If a flit is the header of a packet, its routing destination is
identified, and then a request is sent to the corresponding
output block to arrange memory space for the packet. If
the flit belongs to payload, it is then forwarded to the
same memory as its header. In this switch model, input
blocks are involved in stages 1(a) and 1(b), and output
blocks are involved in stages 1(c), 2 and 3.

Memory-bank
assignment

Main
Storage

Output
Routing
Decison

stage 1 stage 2 stage 3

(a) (b) (c)

pay load by pass path

H H HInput

Buffering

Figure 2. Pipelined processing model

2.1 Input data path

RIB

Data_out

Dff Dff Dff Dff Dff

Data_in

Shift_r bit0 bit31

"0

Buf_r
/Bufh_r

bit1 bit2

bit1 bit32bit2 bit31

bit32

Figure 3. Input data path

As a header arrives at an input block, its routing
destination is immediately identified. In a 2by2 packet-
switch, routing decisions for a packet can be made using
just one bit of information. Here, we assume that the
routing information bit (RIB) is always the Least
Significant Bit (LSB) at each header. This determines the
output block with which to communicate.

Making routing decisions is achieved by means of a
combinational operation: shifting and buffering, at the
input data path. As shown in Fig.3, the input data path
includes 33-bit D-type flipflops (DFF's). If the incoming
flit is payload, it is buffered from bit1 to bit32 and then
outputted from bit1 to bit32. However, if the flit is a
header, it is shifted and buffered from bit0 to bit31 and
then outputted from bit1 to bit32. In this scenario, bit32
is filled with "0", turning into the new Most Significant
Bit in the header, and bit1 turns into the new Least
Significant Bit. These two bits together with the rest of
header are then transmitted to their next host. The 33rd

bit, bit0, is therefore implemented to accommodate the
routing information bit and remove the used routing
information from each header.

2.2 Memory Allocation

Memory arrangement for each incoming packet
involves operations from both input blocks and output
blocks; however, it is mainly conducted at output blocks
as illustrated in Fig.4. The memory in such packet-
switches is constituted by multiple memory banks. Only
two memory banks are illustrated in the figure though
more banks could be accommodated if required.

2-to-l multiplexers at each output block are associated
with memory banks. Each memory bank has two 2-to-l
multiplexers in front of it, one for data, and the other for
control signals. Since each output block communicates
with two input blocks, through the multiplexers, signals
from either of the input blocks can be propagated to any
memory bank. The output control block forms
connections between input blocks and memory banks by
setting up the associated 2-to-l multiplexers. A counter,

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

implemented in the output control block, provides
memory bank addresses and determines which pair of 2-
to-l multiplexers is supplying data.

Control Block

MB0

Data_in10

Data to next
switch

Data Path

Ba_r00

Ba_a00

Ba_r10

Ba_a10

MB1

Data_in00

Datah_r00

2-to-1 Multiplexer

Datap_r00

Datah_r10

Datap_r10

 OR gate

R_st0 R_st1

Arbiter

Arbiter_r0

Arbiter_r1

Arbiter_a0

Arbiter_a1

Figure 4. Memory arrangement in Output Block0

To avoid collision, setting up 2-to-l multiplexers for
different packets must be mutually exclusive: only one
action is allowed to progress at a time, therefore, an
arbiter [16] must be employed. The arbiter allows one
request to pass through at a time; the one that arrives first
is selected. When two requests arrive simultaneously, it
arbitrarily selects one to go through. A request from an
input block for memory therefore will not proceed until it
is granted by the arbiter. To ensure that no two packets
will crash at the same memory bank, the arbiter must not
be released until the counter has been incremented to
point to the next memory bank.

This memory-management design allows packets
from different input blocks to be loaded into the memory
concurrently once their addresses have been assigned,
thus improving the performance of packet-transmission.

3. Asynchronous implementation

3.1 Asynchronous design methodologies

The asynchronous circuits in this paper are
implemented based on a Speed-Independent model. In
such a circuit, delays on wires are regarded as zero or
negligible while delays on gates are unbounded [12].

The handshaking signals (request and
acknowledgement) are encoded as a 4-phase level
signaling protocol (return-to-zero). The 4-phase signaling
protocol uses the level of the handshaking signals to

indicate events. There are four transitions involved in the
completion of each transfer. After each transfer, the
channel signaling system returns to the same state as it
was in before the next transfer can start.

Data encoding is in compliance with a bundled-data
protocol (also known as single-rail protocol), which
employs one wire for each bit of information. This
encoding is used the same convention as in synchronous
circuit design. In the case that data value is n-bit wide,
n+2 wires, i.e., n bits for data, 1 bit for request, 1 bit for
acknowledgement, are required in transferring each
datum from the sender to the receiver.

3.2 Input control logic

Processing headers and payloads at input blocks are
described into two separate Signal Transition Graphs
(STG’s) [5], as shown in Fig.5 and Fig.6 respectively.

H_r+

Bufh_r+

Bufh_a+ Bufh_r-

Bufh_a-

H_a+

H_r-

H_a-

Datah_a-

Datah_a+Datah_r+

Datah_r-

Ba_r+

Ba_a+Ba_r-

Ba_a-

Shift_a-

Shift_a+

Dummy

R
outing D

estination
Identification

M
em

ory
A

rrangem
ent

L
oading H

eader
into m

em
ory

Figure 5. STG for head-processing

Bufp_r+

Bufp_a+Bufp_r-

Bufp_a-

P_r+

P_a+

P_r-

P_a-

Datap_a-

Datap_a+Datap_r+

Datap_r-

P
ayload input
buffering

L
oading payload
into m

em
ory

Figure 6. STG for payload-processing at input blocks

H_r and H_a are the handshaking pair interacting with
the sender for header-transmission. The receiver notifies

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

the sender whether it is ready to accept a new header
using H_a, and H_r is activated when a new header is
asserted.

Shift_r is the shifting request signal, activated only
when an incoming flit is the header, and is released once
the header is buffered at the input data path. The shifted
header is buffered as Bufh_r goes high when the routing
information bit is sampled. Shift_a, Bufh_a are the
acknowledge signals corresponding to Shift_R and
Bufh_R respectively.

In order to accommodate the right routing destination
information from each packet, the shifting operation
must take place before the buffering operation. Since
Shift_a goes high only after the incoming header has
been shifted, the circuitry is safe when Bufh_r is
triggered only after Shift_a and H_r both are asserted.
The falling transition of Shift_a indicates that the routing
information has been stabilized in the input block.

Processing payload in an input block is conducted in
two steps, i.e., buffering it and then forwarding it to the
same output block as its header. The input control block
interacts with the sender using the handshaking pair
P_r/P _a. P_r goes high as one flit of payload is sent.
The flit is buffered at the input data path as Bufp_r goes
high once a high P_r is detected. The input block
acknowledges the sender its acceptance by driving P_a
high after Bufp_a goes high.

3.3 Output control logic

Memory arrangement in the output control block is
described in Fig.7. Ba_r00 and Ba_r10 are the request
signals asserted by Input Block0 and Input Block1, and
Ba_a00 and Ba_a10 are the corresponding acknowledge
signals, respectively.

Arbiter_a0-

Ba_a00- Ba_r00+

Arbiter_r0+

Arbiter_a0+

St_r0+

St_a0+Ba_a00+

Ba_r00-

St_r0-

St_r0-

Arbiter_r0-

Counter_a-

Counter_r-

Counter_a+

Counter_r+

Ba_a10-Ba_r10+

Arbiter_r1+

Arbiter_a1+

St_r1+

St_a1+ Ba_a10+

Ba_r10-

St_r1-

St_a1-Arbiter_a1-

Arbiter_r1-

Figure 7. STG for memory-arrangement in Output
Block0

The output control block forms the connections
between Input Block0 and memory banks by setting up
the associated 2-to-l multiplexers using handshaking

pairs, St_r0 and St_a0, and for Input Block1 using St_r1
and St_a1, respectively. The counter, which provides
memory bank addresses and determines which pair of 2-
to-l multiplexers are supplying data, is driven by the
handshaking pair Counter_r and Counter_a. The output
control block communicates with the arbiter using the
handshaking pair, Arbiter_r0 and Arbiter_a0, for packets
from Input Block0, and Arbiter_r1 and Arbiter_a1, for
packets from Input Block1 respectively.

The output control block is also responsible for
forwarding the packets stored in the memory to their next
switches or destination hosts. The operation is described
in Fig.8. Packets are read out of memory flit by flit using
the handshaking pair, Datao_r and Datao_a, and then are
forwarded to their next switches or destination hosts
using the handshaking signals, Inout_r and Inout_a.
lnout_r and Inout_a are the handshaking pair employed
between switches or between a host and a switch. Signals
on Inout_r are passed onto H_r (refer to section 3.2)
when the incoming flit is a header, and are passed onto
P_r when it is payload. Correspondingly, Signals on H_a
and P_a are multiplexed onto Inout_a.

Datao_a+

Inout_req+

Datao_r-

Datao_a- Inout_ack-

Datao_r+

Inout_ack+ Inout_req-

Figure 8. STG for packet-output

4. Experimental results

4.1 Simulation environment

To evaluate the asynchronous implementation, a
synchronous packet-switch was also implemented based
on the same architecture presented in Section 2.
Asynchronous control circuits in this paper were
synthesized using Petrify with 0.5 m CMOS technology,
and synchronous control circuits were synthesized using
SIS. The implementations were evaluated in MicroSim
Design Centre. The minimum clock period was
determined by the critical path, and a minimum clock
period of 6ns was obtained from the PSPICE simulation.

The base system used for the simulation was a k-stage
butterfly network [15]. The packet size in the evaluation
was fixed to 8-flit, l6-flit, 24-flit or 32-flit long, and the
traffic of networks was always unloaded. The interface
between a host and a network was viewed as contributing
to the same routing delay as a switch [6]. Packets in the
interface were stored at a memory, which had the
identical performance to the memory in the switch. The

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

control logic in the network-to-host interface and the
host-to-network interface had the same performance as
the input control logic and the output control logic in the
packet-switch respectively.

4.2 Simulation results

Fig.9 shows that the latency of routing an 8-flit long
packet through an unloaded 2-stage network as well as
the contributions of header and payload to the overall
latency. Fig.10 further shows the performance of each
switch in the network in processing each individual flit.
The simulation results indicate that although the
asynchronous switches outperformed the synchronous
switches in processing each individual flit, routing the
whole packet in the asynchronous network was slower
than in the synchronous network.

46.4

96

103.6
42

0

40

80

120

160

Async Sync

T
im

e
(n

s)

Payload

Header

Figure 9. Latency of transmitting an 8-flit packet
through a network

30.2

21.5

48

24

0

10

20

30

40

50

60

Header 1-flit Payload

T
im

e
(n

s)

Async
Sync

Figure 10. Latency of transmitting 1-flit through a
switch

The asynchronous switch won over the synchronous
one in transmitting each individual flit was mainly
benefited from the way it making progress: the
asynchronous circuitry never wasted time in waiting
clock transitions like its synchronous counterpart, and
always immediately progressed once its communication
partner responded.

When flits were transmitted consecutively in a
pipeline style in an unloaded network, it was found that
the routing time of each flit was overlapped by its
neighboring flits. The more they could overlap with each
other, the less routing latency they would have. However,
it was also found that the impact of the recovery time for
the asynchronous circuitry, ruled by a 4-phase level

signaling protocol, also became significant. Our
simulation result shows that the recovery operation
caused the asynchronous pipeline loosely overlapped:
only 31% of processing time on each flit was overlapped
by its neighboring flits, compared to the synchronous
network, in which the payload only contributed seven
clock cycles to its overall routing latency.

The impact of packet-size on the network
performance is illustrated in Fig.11, in which packets
varied from 8 flits to 32 flits routing in an unloaded 2-
stage network. The simulation result shows that
increasing packet-size weakened the performance of the
asynchronous implementation more than its synchronous
counterpart. This again can be explained by the
sluggishness of the asynchronous pipelining as the result
of the recovery operation.

0

200

400

600

8-flit 16-flit 24-flit 32-flit
T

im
e

(n
s)

Async

Sync

Figure 11. Latency of routing a packet in a network
as packet size increases

The impact of network-scale on the network
performance was examined by routing an 8-flit long
packet in unloaded networks, as illustrated in Fig.12. The
result shows that the asynchronous network caught up its
synchronous counterpart as the network scaled up to 4.
This is because when the packet size was fixed, the
impact resulting from the pipelining due to the recovery
operation on the overall latency became constant. As the
network scaled up, the latency of header began to
dominate and the routing latency of a packet in an
asynchronous implementation improved on that of a
synchronous implementation.

100

200

300

400

stage 2 stage 4 stage 6 stage 8

T
im

e
(n

s)

S_Packet

A_Packet

Figure 12. Latency of packet over different numbers
of stages

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

4.3 Gate-counts

The number of gates used in both implementations to
achieve the targeted functions is compared. Since the
data paths and memory in both implementations share
very similar structures, in this paper only the result of the
control logic is listed. Both implementations cover a
variety of logic gates, these logic is therefore first
converted to equivalent standard gates: 2-input NAND.
The mapping table is presented in Table 1.

Table 1. Mapping logic to 2-input NAND's

Gate
Name

Equivalent
Gate-
counts

Gate
Name

Equivalent
Gate-
counts

2-Input
NAND

1
2-Input
AND

1.5

3-Input
AND

2 Arbiter 5

D-type
flipflop

4 Inverter 0.5

3-Input
NAND

1.5
4-Input
NAND

2

2-Input
NOR

1
3-Input
NOR

1.5

3-Input OR 2 4-Input OR 2.5

Table 2. Gate-counts of the asynchronous and the
synchronous control logic

Asynchronous
Implementation

Synchronous
ImplementationBlock

Name Gate
counts

Equiv
Gate

counts

Gate
counts

Equiv
Gate

counts
(one)
Input

control
logic

161 223.5 73 121.5

(one)
Output
control
logic

83 121 69 128

Total
Gate

counts
488 689 284 499

Table 2 shows that the asynchronous implementation
cost 190 more equivalent gates than the synchronous one.
These extra gates mainly came from the input control
logic, in which processing header and payload were
described into two separate STG’s. It nearly doubled the
gate-counts of asynchronous input control logic.
However, the table shows that the asynchronous output

control logic has similar size to its synchronous
counterpart.

5. Limitations and future work

It has been known that when contention occurs,
metastability in an arbiter for asynchronous circuits may
last for an unpredictable period. In this paper, we restrict
our performance evaluation and related conclusions to
the arbiter's typical behavior only. Secondly, our
experiment results were only based on the assumption
that the networks were unloaded, and therefore more
research should be conducted in investigating the impact
of traffic on the performance. Thirdly, a 2-phase
signaling protocol should be explored for the
improvement of the performance of the asynchronous
implementation.

6. Summaries and conclusions

In this paper, we explored the feasibility of
implementing an asynchronous on-chip network as the
interconnection solution of SoC. In particular, a packet-
switch was proposed and implemented. Comparison was
made between the asynchronous implementation and its
synchronous counterpart. The simulation results
suggested that the asynchronous networks could
outperform the synchronous networks as the network-
scale increased but would underperform the synchronous
ones as the packet-size increased. The causes of these
phenomena were also explained.

7. References

[1] M.T. Bohr, Interconnect scaling-the real limiter to high
performance ULSI, Proc. Int. Electron Devices Meeting, Dec.
1995, pp. 241-244.

[2] L. Benini and G. De Micheli, Networks on chips: a new
SoC paradigm, Computer, Volume: 35 Issue: 1, Page(s): 70 -
78, Jan 2002.

[3] L. Benini, G. De Micheli and E. Macii, Designing low-
power circuits: practical recipes, IEEE Circuits and Systems
Magazine, Vol: 1, Issue: 1, Page(s): 6 -25,2001.

[4] J. Bainbridge and S. Furber, Chain: A Delay-Insensitive
Chip Area Interconnect. IEEE Micro 22, 5 Sep. 2002, 16-23.

[5] T.-A. Chu, Synthesis of Self-timed VLSI Circuits from
Graph-theoretic Specifications, PhD Thesis, MIT, June 1987.

[6] D.E. Culler and 1P. Singh, Parallel Computer Architecture,
a hardware/software approach, Morgan Kauflnann Publishers,
Inc. 1999, USA.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

[7] D. Garside, W.J Bainbridge, A. Bardsley, D.M. Clark, DA
Edwards, S.B. Furber, 1 Liu, D.W. Lloyd, S. Mohammadi, 1S.
Pepper, O. Petlin, S. Temple and 1V. Woods, "AMULET3i-an
Asynchronous System-on-Chip", 2001.

[8] P. Guerrier and A, Greiner, A generic architecture for on-
chip packet-switched interconnections, Design, Automation and
Test in Europe Conference and Exhibition 2000 Proceedings,
Page(s): 250 -256,2000.

[9] K Goossens, E Rijpkema, P Wielage, A Peeters and J van
Meerbergen, Philips Research, NL, Networks on Silicon:
Combining Best-Effort and Guaranteed Services, Design
Automation & Test in Europe (DATE) 2002.

[10] Scott Hauck, Asynchronous Design Methodologies: An
Overview, Proceedings of the IEEE, Vol.83, No.1, pp69-93,
January 1995.

[11] A. Jantsch and H. Tenhunen, Networks on chip, Kluwer
Academic Publishers, Hingham, MA, 2003.

[12] M.B. Josephs, S.M. Nowick and c.H. van Berkel,
Modelling and Design of Asynchronous circuits, Proceedings
of the IEEE on Asynchronous circuits and systems, v. 87:2,
Feb., 1999.

[13] M. 1. Karol, M. G. Hluchyj, and S. P. Morgan, Input
versus output queuing on a space division packet switch, IEEE
Transactions on Communications, COM-35 (12): 1347-1356,
December 1987.

[14] A. Lines, Nexus: An Asynchronous Cross-bar Interconnect
for Synchronous System-on-Chip Designs, 11th annual Hot
Interconnects conference in August, 2003.

[15] F. Thomson Leighton, Introduction to Parallel algorithms
and architectures: arrays, trees, hypercubes, Morgan kaufmann
Publisher San Mateo, California, 1992.

[16] C. L. Seitz, System Timing. In C.A. Mead and L.A.
Conway, editors, Introduction to VLSI Systems, chapter 7.
Addison-Wesley, 1980.

Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD’06)
0-7695-2556-3/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

