On solving the inverse scattering problem with RBF neural networks : Noise-free case

Wang, Z, Ulanowski, Z and Kaye, Paul H. (1999) On solving the inverse scattering problem with RBF neural networks : Noise-free case. pp. 177-186. ISSN 0941-0643
Copy

Neural networks are successfully used to determine small particle properties from knowledge of the scattered light - an inverse light scattering problem. This type of problem is inherently difficult to solve as it is represented by a highly Ill-posed function mapping. This paper presents a technique that solves the inverse light scattering problem for spheres using Radial Basis Function (RBF) neural networks. A two-stage network architecture is arranged to enhance network approximation capability. In addition, a new approach to computing basis function parameters with respect to the inverse scattering problem is demonstrated The technique is evaluated for noise-free data through simulations, in which a minimum 99.06% approximation accuracy is achieved. A comparison is made between the least square and the orthogonal least square training methods.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads