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A B S T R A C T   

The adverse environmental impact of fossil fuel combustion in engines has motivated research towards using 
alternative low-carbon fuels. In recent years, there has been an increased interest in studying the combustion of 
fuel mixtures consisting mainly of hydrogen and carbon monoxide, referred to as syngas, which can be 
considered as a promising fuel toward cleaner combustion technologies for power generation. This paper pro
vides an extensive review of syngas production and application in internal combustion (IC) engines as the pri
mary or secondary fuel. First, a brief overview of syngas as a fuel is presented, introducing the various methods 
for its production, focusing on its historical use and summarizing the merits and drawbacks of using syngas as a 
fuel. Then its physicochemical properties relevant to IC engines are reviewed, highlighting studies on the 
fundamental combustion characteristics, such as ignition delay time and laminar and turbulent flame speeds. The 
main body of the paper is devoted to reviewing the effect of syngas utilization on performance and emissions 
characteristics of spark ignition (SI), compression ignition (CI), homogeneous charge compression ignition 
(HCCI), and advanced dual-fuel engines such as reactivity-controlled compression ignition (RCCI) engines. 
Finally, various on-board fuel reforming techniques for syngas production and use in vehicles are reviewed as a 
potential route towards further increases in efficiency and decreases in emissions of IC engines. These are then 
related to the research reported on the behavior of syngas and its blends in IC engines. It was found that the 
selection of the syngas production method, choice of the base fuel for reforming, its physicochemical properties, 
combustion strategy, and engine combustion system and operating conditions play critical roles in dictating the 
potential advantages of syngas use in IC engines. The discussion of the present review paper provides valuable 
insights for future research on syngas as a possible fuel for IC engines for transport.   

1. Introduction 

Worldwide, approximately 80% of useful energy, including high- 
quality heat, propulsion work, and electricity, is produced by 
combustion-driven processes using fossil fuels. The main detriments of 
the application of fossil fuels in IC engines are their contribution to 
global warming and environmental pollution, and therefore govern
ments are encouraging the use of zero/low-carbon fuels in power and 
propulsion systems for achieving energy security and meeting emissions 
targets [1,2]. In the coming decades, both IC engine efficiency and fuel 
technology must improve and contribute to achieving carbon-neutral 
transportation [3]. Engine technology must also use fuels that 

minimize greenhouse gas (GHG) emissions on a well-to-wheel basis to 
meet worldwide emissions legislation [4]. The next generation of 
cleaner fuels is governed by several important factors, including the 
availability of the feedstock, production efficiency and environmental 
impact, distribution and storage, safety issues, integration and 
compatibility with engines, vehicle, and transportation systems – costs, 
regional variations, standardization and public acceptance [5,6]. In this 
regard, natural gas [7,8], hydrogen [9] and ammonia [10,11] and 
optimized engines [12] have recently drawn much attention from en
gine researchers to meet the future emission standards. 

Hydrogen (H2) has been considered as a viable energy carrier for fuel 
cells and future IC engines. The wide flammability range of hydrogen 
makes it suitable for engine operation over a wide range of air-fuel 
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mixtures, and the lean mixture operation can increase the fuel economy 
of the hydrogen-fueled engines. Moreover, its high diffusivity and flame 
speed result in a faster uniform fuel/air mixture and an improved 
combustion inside the cylinder [13,14]. The carbon-free structure of the 
hydrogen also makes it an excellent fuel for the clean and efficient 
operation of IC engines. Fig. 1 shows the energy density of various fuels 
based on lower heating values (LHV) compared to hydrogen. As can be 
seen, hydrogen has nearly three times the energy content of gasoline on 
a mass basis. 

In contrast, hydrogen’s high auto-ignition temperature (858 K) ne
cessitates the use of a spark plug or a supplementary low auto-ignition 
temperature fuel. On the other hand, its low ignition energy increases 
the propensity of phenomena like pre-ignition, backfire and knock. NOx 
emissions can also be increased due to the higher combustion temper
atures associated with hydrogen combustion in IC engines [15]. 

Hydrogen can be produced in various ways to be stored in a pres
surized tank on-board in a vehicle aiming at improving both combustion 
and aftertreatment processes [17]. The comparison of hydrogen usage in 

Nomenclature 

Greek 
λ Air–fuel equivalence ratio 
ϕ Fuel–air equivalence ratio 
γ Ratio of specific heats 
θ Crankshaft angle 
η Efficiency 

Abbreviations 
AFR Air fuel ratio 
AHRR Apparent heat release rate 
AKI Anti-knock index 
ATDC After top dead center 
ATR Autothermal reforming 
BMEP Brake mean effective pressure 
BSFC Brake specific fuel consumption 
BTDC Before top dead center 
BTE Brake thermal efficiency 
CA Crank angle 
CDC Conventional diesel combustion 
CFD Computational fluid dynamics 
CFR Cooperative fuel research 
CHP Combined heat and power 
CI Compression ignition 
CN Cetane number 
CNG Compressed natural gas 
CO Carbon monoxide 
COV Coefficient of variation 
CR Compression ratio 
CRI Common rail injector 
D-EGR Dedicated exhaust gas recirculation 
DFBG Dual fluidized bed gasifier 
DF Dual fuel 
DI Direct-injection 
DISI Direct injection spark ignition 
DME Dimethyl ether 
DNS Direct numerical simulation 
EGR Exhaust gas recirculation 
EPA Environmental protection agency 
ERC Engine research center 
FTP Federal test procedure 
FT Fischer–Tropsch 
GA Genetic algorithm 
GDI Gasoline direct injector 
GHG Greenhouse gas emissions 
GIE Gross indicated efficiency 
GT Gas turbine 
GTL Gas-to-liquid 
HCCI Homogenous charge compression ignition 
HD Heavy-duty 
HE Hydrous ethanol 
HOME Honge oil and its methyl ester 

HRR Heat release rate 
HTHR High-temperature heat release 
HWFET Highway Fuel Economy Test 
ICE Internal combustion engine 
IDT Ignition delay time 
IGCC Integrated gasification combined cycle 
IMEP Indicated mean effective pressure 
ITE Indicated thermal efficiency 
LFS Laminar flame speed 
LD Light duty 
LFG Landfill gas 
LHV Lower heating value 
LPG Liquefied petroleum gas 
MAP Manifold absolute pressure 
MBT Maximum brake torque 
MES Methane enriched syngas 
MFB Mass fraction burned 
ML Machine learning 
MN Methane number 
NIMEP Net indicated mean effective pressure 
NOx Nitrogen oxides 
NTC Negative temperature coefficient 
NVO Negative valve overlap 
PG Producer gas 
POX Partial oxidation 
PPM Parts per million 
PRF Primary reference fuel 
PRIEMER Premixed mixture ignition in the end-gas region 
RCCI Reactivity controlled compression ignition 
R-EGR Reformed exhaust gas recirculation 
RG Reformer gas 
RMG Reformed methanol gas 
RON Research octane number 
SAC Superadiabatic combustion 
SAE Society of Automotive Engineers 
SEC Specific energy consumption 
SI Spark ignition 
SMR Steam methane reforming 
SOC Start of combustion 
Syngas Synthesis gas 
SZM Single zone model 
SwRI Southwest Research Institute 
TCR Thermochemical recuperation 
TFR Thermochemical fuel reforming 
TFS Turbulent flame speed 
THC Total hydrocarbons 
TIDR Total inert dilution ratio 
TWC Three-way catalyst 
UHC Unburned hydrocarbons 
WGS Water–gas shift 
WHR Waste heat recovery 
WOT Wide-open throttle  
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vehicles through on-board hydrogen production, hydrogen storage, and 
stationary power generation systems is summarized in Table 1. The low 
ignition energy and volumetric energy density make storage of hydrogen 
on-board a challenging task [18,19]. Hydrogen as a low-density fuel 
needs to be compressed at high-pressure tanks (350–700 bar) to allow an 
adequate driving range of more than 500 km with safety and cost to be 
the main challenging issues. Difficulties involved in the storage and 
transport of hydrogen still present barriers to the commercial use of 
hydrogen as a secondary or a main fuel for IC engines [19,20]. However, 
hydrogen is currently viewed as the most promising clean energy carrier 
of the future, and the hydrogen infrastructure is now rapidly expanding 
in many counties, both in the EU and outside. This has sparked research 
interest in the energy conversion technologies, particularly fuel cells 
that are capable of using hydrogen as the fuel [21]. 

While the merits of operating IC engines with varying concentrations 
of hydrogen have been well documented [25], the key challenges 
remain unresolved, including practical approaches to hydrogen pro
duction without sacrificing system efficiency and/or sufficiently 
addressing its adverse combustion properties [26]. Syngas is considered 
an intermediate step in the transition from carbon-based fuels to 
H2-based fuels, since it is composed mainly of hydrogen (H2) and carbon 
monoxide (CO). In IC engines, using syngas produced from on-board 

stored liquid fuels on vehicles can mitigate many of the hydrogen stor
age and combustion challenges [27–31], and this will be extensively 
discussed in the upcoming sections. 

1.1. What is syngas? 

Syngas (an abbreviation for synthesis gas) can be derived by gasifi
cation processes from natural gas, heavy oil, biomass, and coal (carbon- 
containing fuels) for stationary application or by chemical processes 
from liquid and gaseous fuels for vehicular application, in which a 
complex and long-chain molecule converts to simpler molecules 
including H2 (hydrogen), CO (carbon monoxide), and CH4 (methane), 
CO2 (carbon dioxide), H2O (water vapor), and N2 (nitrogen). Based on 
the process adopted and the type of feedstock used, end-products as a 
form of syngas will have varying compositions and heating values, thus 
different terms such as “town gas”, “wood gas”, “water gas”, “producer 
gas”, “reformer gas”, “power gas”, and etc. have been used in the litera
ture. A possible range for the volumetric composition of syngas is shown 
in Table 2, indicating that it is comprised mainly of H2 and CO. The 
preferred composition generally depends upon the purpose of syngas 
usage, feedstock, and production cost. For example, if the goal is 
hydrogen production by a biomass gasification process, much more cost 
and effort are needed for adequate purification than the reaction 
reforming process. 

Syngas can also be produced through fuel reforming with steam and/ 
or air using compact systems that can be located on-board a vehicle [27, 
33,34]. External on-board and in-cylinder fuel reforming techniques 
have been identified as possible pathways to produce syngas on-board in 
IC engines to improve efficiency and emissions [33]. The details of 
on-board fuel reforming and syngas production will be covered in sec
tion 4. 

1.2. Syngas applications 

Syngas can be used as an intermediate to create other attractive clean 
fuels such as ammonia (NH3), dimethyl ether (DME), and methanol 
(CH3OH) [35–39]. Another use of syngas is as a primary chemical 
building block in petrochemical and refining processes [40]. Syngas can 
be used in many different applications, including:  

• Power generation in existing coal power plants [22]  
• Combined heat and power (CHP) plants [41]  
• Integrated gasification combined cycles (IGCC) [42]  
• Fuel cells [43–46]  
• Production of transportation fuels from gas-to-liquid (GTL) processes 

[47]  
• Gas turbines [48–50]  
• Directly as the primary or secondary fuel in IC engines [51] 

Fig. 1. Gravimetric and volumetric density of hydrogen and other fuels [16].  

Table 1 
Comparison of hydrogen usage in vehicles through on-board hydrogen pro
duction, hydrogen storage, and stationary power generation systems [22–24].  

Transportation (on-board 
in vehicles) 

Transportation 
(storage in vehicles) 

Stationary power 
generation  

• Ability to operate on H2 

partly  
• More complicated design  
• Less space required  
• Few safety concerns  
• Challenge with the catalyst 

activation under a wide 
range of temperature and 
reactants changes  

• Moderate cost  
• Fast response during 

transient operation is a 
challenge  

• Aesthetic issues  

• Ability to operate on 
100% H2  

• Simple design  
• More space required  
• Serious safety 

concerns  
• Challenge with 

hydrogen production, 
store and distribution  

• Highest cost  
• Fast response during 

transient operation  

• Ability to operate on 
100% H2  

• Simple design  
• No space problem  
• No safety problem  
• Hydrogen can be 

produced or can be 
used from the 
storage system  

• Lowest cost  
• Aesthetic issues are 

not important  

Table 2 
A possible range for syngas composition on a volume percent basis [29,32].  

Species Min Max 

H2 8.6 61.9 
CO 22.3 55.4 
CH4 0.0 8.2 
CO2 1.6 30.0 
N2+Ar 0.2 49.3 
H2O - 39.8 
H2/CO 0.33 2.36* 
LHV (MJ/m3) 5.02 12.57  

* The broad experimental studies of syngas-fed IC engines reviewed in sec
tions 3 and 4 have been performed with simulated syngas whose H2/CO ratio 
can go beyond this value, i.e., H2/CO: 3/1 (by vol.). 
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1.3. Syngas production methods 

Solid fuel (coal, biomass, wastes) feedstocks are sources for syngas 
production [52,53] by traditional gasification methods [54,55]. Also, 
liquid and gaseous feedstocks can be converted to syngas by 
non-gasification methods [56] that comprise one or a chain of reforming 
processes using the catalysts; such processes are expected to be viable 
in-situ methods of syngas production for automotive engines. In this 
section, only a brief review of different syngas production methods is 
presented since several comprehensive review papers [57,58] explain 
them in detail and emphasize the IC engine operation with gasification 
fuel [59,60] and non-gasification fuel [33]. 

1.3.1. Gasification processes 
Biomass gasification converts a solid fuel into syngas which can be 

burnt in stationary gas turbines and IC engines. Gasification is a ther
mochemical process that converts a solid hydrocarbon feedstock like 
coal, petroleum coke, refinery residuals, biomass, and municipal solid 
waste, into syngas without consuming a large part of its heating value 
[58]. In gasification, the carbon-containing feedstock reacts with a 
gasifying agent like oxygen, steam, and air, which breaks down the 
mixture into syngas, as illustrated in Fig. 2 [54,57,61,62]. The type and 
design of the gasifier, gasification temperature, type and flow rates of 
the feedstock and oxidizing agents, and type and amount of catalysts 
[63], are the main parameters in influencing the gasification process and 
syngas production [64–70]. Oxygen as the gasifying agent produces 
syngas called “medium syngas,” and if air is used, then it is called “pro
ducer gas” [71]; the following sub-section will clarify the terms used in 
the rest of the paper. Using gasification methods, in addition to H2 and 
CO, other typical products including H2O, CO, CH4, unwanted tars, 
small amounts of NH3, and H2S are also produced. The relative amount 
of each species depends on the feedstock and the gasification process 
[57]. Modeling approaches for biomass gasification have been exten
sively reviewed in [72]. 

For syngas production, a typical solid fuel gasification system 
coupled to spark ignition and dual-fuel diesel engines is illustrated in 
Fig. 3 [73]. The system includes a gasifier, a gas clean-up and cooling 
system, a gas mixer, a starting blower, and the engine. The engine draws 
air from the gasifier during the intake stroke, through the cleaning 
system, and from the gas mixer where air is combined with the syngas 
[74]. For example, Marculescu et al. [80] used food processing industry 
waste for energy conversion, using gasification and an IC engine for 

power generation. The biomass used consisted of bones and meat resi
dues sampled directly from the industrial line, characterized by high 
water content, about 42% in mass, and potential health risks. They re
ported that syngas with a composition of 19.1%CO, 17%H2, and 1.6% 
CH4 was produced. 

New gasification concepts such as dual fluidized bed gasifiers (DFBG) 
[76], plasma gasification [77–80], and supercritical water gasification 
[81,82], have demonstrated the potential to improve syngas quality 
from biomass gasification. However, they are not of significant interest 
at present, and are more applicable for stationary power generation. 
Moreover, wood and solid fuels seem to be not effective for transport 
applications due to their low energy density. A further analysis on this 
topic is presented in section 3. 

1.3.2. Non-gasification processes 
Non-gasification processes include catalytic fuel reforming, where 

the parent fuel reacts with steam and/or oxygen in a heterogeneous 
process to produce syngas [27,83]; and non-catalytic processes like 
plasma-assisted reforming [84]. The three main global reactions in fuel 
reforming are partial oxidation (POX), steam reforming (SR), and 
auto-thermal reforming (ATR) [47,85], which will be explained in the 
following. 

When a mixture of sub-stoichiometric oxygen and feedstock reacts to 
produce syngas, this self-sustaining chemical reaction is called “partial 
oxidation (POX),” It is an exothermic reaction. The complete combustion 
reaction forming CO2 is restricted due to insufficient O2 in the reactants 
[86,87]. In endothermic steam reforming (SR), a high-temperature 
mixture of fuel and steam is sent through a bed of catalyst. The heat 
required to drive the endothermic reaction is provided externally (e.g., 
electric heaters or combustion of fuel). The syngas stream from the 
steam reforming can then flow to a water gas shift (WGS) reactor, where 
additional steam converts CO to CO2 and generates additional H2 
[88–91]. 

When both the POX and SR reforming reactions are combined in a 
single reactor, it is called autothermal reforming (ATR). Industrially, the 
ATR reactor is implemented in a refractory-lined pressure vessel with a 
combustion chamber, burner, and catalyst bed. In this reactor, a sub- 
stoichiometric environment oxidizes fuel, natural gas in most cases, 
with O2. In the ATR reaction, POX provides heat for later SR reactions, 
thus controlling the exit temperature of the reactor. Endothermic dry 
reforming (DR) where the CO2 is reacting with hydrocarbons feedstock 
to create H2 and CO can also be employed [92–95]. The advantages and 

Fig. 2. Schematics of biomass gasification process [66].  
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Fig. 3. a) Syngas production system for an SI engine (Reprinted from [73] with permission of Elsevier); b) diagram of the entrained-flow gasifier for power gen
eration on dual-fuel diesel engine (Reprinted from [75] with permission of Elsevier). 
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disadvantages of these processes and the corresponding chemical re
actions are summarized in Table 3 as main reforming reactions and in 
Table 4 as side reactions that may occur. These fuel reforming processes 
have been proposed for on-board hydrogen-rich gas production in 
vehicular applications, discussed in detail in section 4. Note that the goal 
is high hydrogen content; therefore, understanding the nature of these 
reactions aids us in deciding which reactions should participate in 
reforming processes within a designed reactor and which ones to avoid. 

1.3.3. Syngas as an IC engine fuel 
Syngas as an IC engine fuel can be utilized in power generation and 

transportation, produced mainly by gasification and reforming pro
cesses, respectively. As mentioned above, syngas names would be 
different based on composition and LHV, while the terminology we use 
throughout the current work can be seen in Fig. 4, taken from IC engine- 
relevant published works. It is worth noting that the figure does not 
encompass all viable routes for syngas production. 

As seen in the first row of Fig. 4, producer gas (PG) or low heating 
value (LHV) fuel [59] is a gasification product with low LHV due to 
using air as the gasifying agent and, therefore, the presence of high N2 
content in products. With steam or oxygen or a combination of both 
utilized as the gasifying agent, the gasification product can be upgraded 
to fuel with a medium LHV. In general, the gasification process suffers 
from low thermal efficiencies (~ < 50%) due to the extra step of 
vaporizing the moisture contained in biomass and then from tar in the 
products [101]. Noting that in addition to gas constituents, tar and 
residue co-exist in the end-product of gasification, but their amounts 
reduce as high-temperature steam reforming is employed, as seen in 
Fig. 5. Thus, gasification fuel presumably creates concerns of NOx 
emissions (due to probably high N2 content) and deposit formation in 
the combustion chamber, which should be considered when this fuel is 
being used as an IC engine fuel. Several IC engine related studies, 
particularly with SI engines, with gasification fuels have been investi
gated so far, which will be discussed in section 3. 

In the second row of Fig. 5, reformate or reformer gas (RG) is a 
reforming reaction product, which often has high H2 and CO contents 
with negligible N2 and high heating value. RG can be economically 
produced with in-situ methods, which will be discussed partially in 
section 3 (sub-sections of 3.2.2, and 3.3) and comprehensively in sec
tion 4 (on-board fuel reforming technologies). 

The overall purpose of using syngas as a primary or secondary IC 
engine fuel is to benefit from renewable energy sources and clean power 
conversion technologies without scarifying efficiency, power derating, 
and pollutant emission formation of engines fueled with syngas [102, 
103]. However, its advantages are dependent on the physicochemical 
properties of syngas (i.e., the amount of CO and H2) (see section 2), the 
type of combustion engine (see section 3), and the fuel reforming 
technique used for on-board syngas production (see section 4). 

1.4. Historical use of syngas as an engine fuel 

The first application of syngas in vehicles was reported in the 1920s 
when German engineer Georges Imbert developed a wood gas generator 
for automobile use [104]. The gases were cleaned and dried, and then 
fed into the vehicle’s combustion engine. Later, during World War II, 
shortages of petroleum fuels led to further development of wood gas 
vehicles [105,106]. By 1945 syngas was used for trucks, buses, agri
culture, energy generation, and industrial machinery. After the end of 
World War II, the application of syngas was changed to integrated 
gasification combined cycles (IGCC) for stationary power generation. 
This could be due to less interest in syngas usage in IC engines related to 
the sharp drop in global oil price and intensified ambitions towards high 
power engines by increasing the anti-knock index (AKI) of gasoline fuel. 
The 1950s and 1960s are recalled as the “Power Wars” age [107]. The 
potential of syngas production and application in a low compression 
ratio SI engine fueled with a syngas-methane mixture was studied in 

1956 by Szezich [108]. Later, further interest in biomass-based fuel 
application in engines was sparked by the oil crisis in the mid-1970s 
[109]. Simultaneously, in response to the oil price shocks, US 
Congress passed the first national standards for tailpipe-out emissions to 
increase miles per gallon (mpg) of passenger vehicles within ten years 
[110], which was the onset of adopting further stringent regulations for 
oil-based fuels. As already mentioned, by that time, syngas use was 
mainly limited to IGCC for stationary power generation [40,111,112], 
and as an intermediate to produce other biofuels [113,114]. 

On the other hand, fuel reforming has been used for producing 
syngas industrially for more than 70 years [115], but the concept of 
compact on-board reforming for engine applications dates back to the 
1970s [116]. Investigations carried out in 1973–1975 in the US with a 
Chevrolet car with an engine equipped with a syngas generator 
demonstrated a decrease in petrol consumption by 26% when driving 
according to the Federal Drive Cycle CVS-3 [117]. On-board fuel 
reforming was first practically applied to a carbureted gasoline engine 
through a project named “Boston Reformed Fuel Car” by Newkirk and 
Abel [118], which had an on-board non-catalytic system operated at 
higher than T = 1100 ◦C for the steam reforming reactions of gasoline. 
Martin [119] at the University of Arizona demonstrated a better concept 
of this project using a catalyst to reduce the temperature of the steam 
reforming of gasoline to around T = 620 ◦C. In the meantime, Houseman 
and Cerini [120] from the Jet Propulsion Laboratory (JPL) evaluated 
on-board hydrogen generation by adding partial oxidation reforming to 
steam reforming along with the catalyst to perform the whole reforming 
process for both hydrocarbon and alcohol feedstocks fueled SI engine. A 
series of works from Lindström and Sjöström [121–123] at the Royal 
Institute of Technology (Sweden) was seemingly the first investigation 
on directly using the recirculated exhaust gases as the primary heat 
supplier for driving the endothermic reactions of the steam reforming 
process and as species that can participate in the reforming process. At 
the University of Birmingham, Jones [124,125] evaluated the feasibility 
of this concept as exhaust-gas reforming in more detail by incorporating 
the exhaust gases and using the entire fuel feedstock in the reforming 
process. For more reading on this topic, there are two notable reviews in 
the literature [126,127], and additional discussions are provided in 
section 4. 

The development of syngas-fueled IC engines was not commercial
ized because of the low lifespan of the catalysts and tightening of NOx 
emission standards. However, research on syngas as a potential fuel for 
IC engines in transportation has gained much interest in recent decades 
with advances in catalysts and the potential for on-board generation 
through waste heat recovery (WHR). An average of 30% substitution of 
fossil fuels by syngas has been proposed, based on extrapolating from the 
current EU Directives [128,129]. For further information, several review 
papers [27,51,59] and a book chapter [29] have been published on the 
historical and trends of syngas for power generation. 

1.5. Scope and structure of the current review 

There are many studies in the literature on the use of syngas in 
different types of IC engines, and it has been shown that syngas can be 
used as a renewable and alternative low-carbon fuel for both spark 
ignition (SI) and compression ignition (CI) engines [130–133]. How
ever, there are still numerous subjects such as on-board syngas pro
duction and application in advanced combustion strategies that require 
further investigation and review. This work is focused on determining 
syngas’ potential as a renewable IC engine fuel in transportation. To do 
this:  

• Section 2 presents the fundamental physicochemical characteristics 
of syngas, which ultimately help us perceive the combustion 
behavior of syngas as an IC engine fuel under engine-relevant con
ditions. Due to the composition variability of syngas, various H2/CO 
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Table 3 
Advantages and disadvantages of the three main fuel reforming technologies [43,96-98].  

Reforming 
process 

Chemical formulaEnthalpy of 
reaction (kJ mole− 1) 1 

Characteristics Advantages Disadvantage 

Steam 
Reforming 
(SR)  

CxHy + xH2O→xCO+
(

x +
y
2

)
H2 

ΔhR = +12591  

Endothermic  • Highest H2 generation (H2/CO ~ 
3:1 by vol.)  

• Highly endothermic  
• Low rate of hydrogen production  
• Need significant quantity of water  
• Complex system regarding working in high 

temperature  
• Careful thermal management (S/C ratio 

control)  
• Less fuel flexibility (only certain fuel) 

Partial 
Oxidation 
Reforming 
(POX)  

CxHy +
x
2
O2→xCO+

y
2
H2 

ΔhR = − 6761  

Exothermic  • Simple system (absence of external 
heat and water) and compactness  

• Rapid start  
• Fast response to temperature and 

reactant changes  
• Not have thermal management 

issue  
• High fuel-type flexibility  

• Lowest H2 generation  
• Lower heating value of reformate than base fuel  
• Catalyst’s deactivation issues by Sulphur and 

coke depositions  
• Non-catalytic partial oxidation needs costly 

materials because it operates at very high 
temperatures 

Autothermal 
Reforming 
(ATR) 

CxHy + zH2O +
(

x −
z
2

)
O2→ 

xCO2 +
(

z +
y
2

)
H2  

Combination of exothermic 
and endothermic 
(thermally neutral)  

• Simple System (lack of water and 
external heat requirements)  

• Compact  
• Quick to start  

• H2 and CO selectivity is small, because the 
device uses two different catalyst types 

• During load changes and start-up, careful con
trol system is required to balance SR and POX  

1 With assuming that fuel is n-octane, and reactants and products are both at 273.15 K and 1 bar. 

Table 4 
Other side reforming reactions that may take place [99,100].  

Reforming process Reaction Enthalpy of reaction(kJ mole− 1) Notes 

Dry reforming 
(DR)  

CxHy + xCO2→2xCO+
y
2
H2  

ΔhR = +15881 Lower H2 yield than SR (H2/CO ~ 1:1 by vol.). 
Likely to happen at high temperature and low pressure. 

Combustion 
(complete oxidation)  

CxHy +
(

x +
y
4

)
O2→xCO2 +

y
2
H2O  ΔhR = − 51161 If enough O2 is available. 

Water-gas shift (WGS) CO+ H2O
↼
⇁

CO2 + H2  
ΔhR = − 411 A route to CO purification and thus increased H2 yield at low temperatures.  

Methanation 1 CO+ 3H2
↼
⇁

CH4 + H2O  ΔhR = − 2061 H2 will be consumed to increase CH4 yield.  

Methanation 2 CO2 + 4H2
↼
⇁

CH4 + 2H2O  ΔhR = − 1651 

Boudouard 2CO2
↼
⇁

CO2 + C  ΔhR = − 1721 Undesired reaction in catalytic reforming  

Thermal Decomposition C8H18 → CH4 + C7H14 Endothermic May occur on the catalyst and increase CH4 yield.  

Hydrogenolysis C8H18 + H2 → CH4 + C7H16 Exothermic May occur on the catalyst and increase CH4 yield.  

1 Assuming that the fuel is n-octane, and reactants and products are both at 273.15 K and 1 bar. 

Fig. 4. Syngas terminology used in the current review paper.  
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mixtures are considered in the first place, then the effects of diluents 
are discussed.  

• To better understand the effects of syngas on combustion, emissions, 
and performance of IC engines with conventional and advanced 
combustion strategies, section 3 reviews the syngas application in SI, 
HCCI and dual-fuel engines. In SI engine section, the power gener
ation applications of the syngas-fueled engines are also included.  

• The transition from syngas as an IC engine fuel to syngas as a 
transportation fuel requires producing and carrying the syngas on- 
board a vehicle, such that both fuel economy and engine efficiency 
can increase. We discuss all proposed on-board fuel reforming 
technologies compatible with IC engine in section 4 to achieve these 
goals, especially paying attention to waste heat recovery (WHR) 
from engine exhaust. 

• The final section represents the summary and demonstrates sugges
tions to make a feasible future for syngas as a transportation fuel. 

2. Fundamentals 

2.1. Physicochemical properties of syngas relevant to engines 

Table 5 lists the physicochemical properties of typical syngas mix
tures compared to hydrogen, methane, biogas, and conventional fossil 
fuels. It is apparent that syngas has the highest laminar flame speed and 
widest flammability limits amongst all fuels after hydrogen, making it 
beneficial for application as a secondary fuel in IC engines, especially at 
low engine loads. It means that a wide range of stable operation (from 
rich to lean) could be achieved with syngas fuel, especially promoting 
the ultra-lean combustion in spark-ignition engines. The volumetric 
energy content is the main parameter determining the fuel injection 
system design and required storage tank for vehicular applications 
[134]. In the case of syngas use in IC engines, the fuel injection system 
size should be larger, or the injection duration should be longer. 

Although there is no available data for the minimum ignition energy 
of syngas mixtures, it can be concluded that the high hydrogen content 
in syngas could facilitate cold starts and guarantee rapid ignition [135], 
considering the unwanted ignitions, specifically pre-ignition and back
fire (see sub-section 3.1.1). A scarcity in data has also continued for the 
quenching distance, and a lower value means a more complete com
bustion [136], but with a higher heat transfer losses. 

Detailed combustion characteristics of syngas mixtures for gas tur
bine engine-relevant conditions have already been reviewed by Lee et al. 
[137] and Jithin et al. [138]. In the following section, characteristics of 
the ignition delay times, laminar and turbulent flame speeds of syngas 
mixtures under engine-relevant conditions are reviewed and discussed 
with a focus on those aspects which have not been addressed carefully in 
previous reviews. 

Fig. 5. Yield of product for biomass gasification with thermal decomposition 
and steam reforming (Reprinted from [101] with permissions of Elsevier). 

Table 5 
Physicochemical properties of a typical syngas mixtures compared to other fuels [59,139-143].  

Properties Syn11 

* 
Syn21* Syn31 Syn41þ Syn51þ Biogas Hydrogen Carbon 

monoxide 
Methane Gasoline Diesel 

Density [kg/m3] 2 0.54 0.67 0.68 1.05 1.04 1.11 0.0824 1.145 0.656 719.7 832 
Molecular weight [kg/kmol] 2 13.91 15 15.2  23.2 34.4 2.0 28 16.04 103 200 
Stoichiometric air/fuel ratio [kg/ 

kg] 
5.3 4.58 7.23 1.4 2.07 5.67 34.2 2.5 17.2 14.7 14.7 

Flammability limits [vol.% in air] 24-60 6.06- 
74.2 

5.8- 
41.4 

7-21.6 13.4-58 7.5-14 4-75 12.5-74 5-15 1.4-7.6 0.6- 
7.5 

Flammability limit [ϕ] 0.2-7.2 - - - - - 0.1-7.5 0.3-6.8 0.4-1.6 0.7-4.3 1.0- 
6.5 

Autoignition temperature [K] 980 873-923 873- 
923 

898 898 923 858 882 813 550 589 

Minimum ignition energy [mJ] 3 - - - - - - 0.02 - 0.28 0.24 - 
Laminar flame speed [m/s] 3 1.0 1.8 - 0.5 0.5 0.25 1.8-2.8 0.4 0.38 0.37- 

0.43 
- 

Adiabatic flame temperature [K] 3 2584 2385 2400 - 2200 2145 2390 2214 2214 2580 - 
Quenching distance [mm] 3 - - - - - - 0.64 1.6 2.1 2.84 - 
Lower heating value [MJ/kg] 15.7 17.54 24.4 5 7.47 17.0 119.7 10.1 50.0 43.4 42.6 
Volumetric energy content [MJ/ 

m3] 
8.47 11.75 16.59 5.25 7.84 18.87 9.86 11.56 32.8 31235 35443  

1 Syn1:57/43:H2/CO, Syn2:50/50:H2/CO, Syn3:40/40/20:H2/CO/CH4, Syn4: 22.6/24.3/2.2/9.3/41.2:H2/CO/CH4/CO2/N2, Syn5: 19.6/29.6/5.27/5.41/40.56: 
H2/CO/ CH4/CO2/N2 and Biogas: 55.6/42.3/2.1: CH4/CO2/N2 (by volume). 

2 at NTP: normal temperature (T=298.15 K) and pressure (p=1 bar). 3 at ϕ=1 (stoichiometry). 
* A typical reformate, + A typical producer gas 
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2.2. Ignition delay time (IDT) 

The ignition delay times, IDTs, of syngas mixtures were measured in 
earlier studies mostly using a shock-tube apparatus confined to low 
pressure (up to 2.2 bar) and low-to-high temperature (up to 2850 K) 
conditions, which are less applicable to typical gas turbines and IC en
gines operating conditions [144–150]. The emergence of advanced in
tegrated system technologies like syngas-fired IGCC as an alternative to 
conventional coal-fired power plants, together with reported discrep
ancies between measurements and reaction model predictions of IDTs of 
syngas mixtures (see Fig. 6), has provoked researchers to reproduce 
experimental measurements and refine the reaction kinetics for syngas 
oxidation at higher pressures and temperatures [151,152]. Thus, some 
later studies were conducted using rapid compression machines (RCM) 
[152–154] and shock-tubes [155,156] at higher pressures, suggesting 
that the observed discrepancies between measured and calculated IDTs 
at these pressures are due to not considering the overall activation en
ergy correctly, HO2/H2O2 chemistry dominance in the 
chain-propagation regime, and particularly the role of CO + HO2 = CO2 

+ OH reaction. Those works were completely reviewed in [157,158]. 
Recently, in order to justify the observed discrepancies, Mansfield 

and Wooldridge [159] indicated two distinct ignition behaviors attrib
uted to the strong (or spontaneous ignition which is referred to as 
spatially homogeneous ignition) and mild ignition (or deflagration 
ignition which is characterized by the onset of localized reaction sites) 
for a syngas, with a molar ratio of H2/CO = 0.7, mixed with air (O2/inert 
gas molar ratio = 1/3.76) at ϕ = 0.1 and 0.5, T = 870-1150 K, and p =
3-15.4 bar through high-speed imaging in RCM experiments. Two 
high-speed imaging frames of that work are depicted in Fig. 7, in which 
multiple localized flame-like structures can be seen on the right side. The 
authors [159] indicated that the ignition behavior is weakly affected by 
the molar ratio of H2/CO, and, by comparison to other work [160], is not 
strongly dependent on the combustion device used, albeit strongly 
dependent on the initial thermodynamic state (i.e., pressure, tempera
ture, and equivalence ratio). Also, they stated that the mild ignition 
behavior is not avoidable by reducing the equivalence ratio towards lean 
condition; however, the available chemical kinetics mechanisms used in 
the zero-dimensional (0-D) homogeneous reactor modelling would be 
capable of predicting the IDTs quite accurately. 

As mentioned earlier, a review by Lee [137] evaluated IDTs of syngas 
mixtures at different H2:CO ratios with different pressures ranging from 
1.6 to 49 atm, by collecting data from Krejci et al. [161,162], Mathieu 
et al. [163], Vasu et al. [164], Keromnes et al. [165], Gersen et al. [166], 
and Mittal et al. [152], as shown in Fig. 8. Relying on this review and 
related works, the effects of various parameters on IDTs of syngas 
mixtures are summarized below: 

Temperature and equivalence ratio (ϕ) effects: 
While increasing the temperature shortens the IDT substantially, the 

IDT of the various compositions of H2/CO syngas at lean equivalence 
ratios (ϕ) has a decreasing trend, but only at higher pressures, e.g., 49 
atm, as seen in Fig. 8(h). Conversely, at lower pressures, e.g., 7.9 atm, 
the IDTs can have an increasing trend by reducing the ϕ, which is the 
case of Fig. 8(b). 

Pressure effect: 
The influence of pressure on IDT of 50:50 H2:CO at ϕ = 1.6, and at p 

= 8, 12, and 32 atm are shown in Fig. 9 (left). The complex behavior of 
IDT can be seen with altering pressure at different temperature regions. 
At high temperatures (>1250 K), higher pressures significantly shorten 
the IDT, while at intermediate temperatures (1110 K<T<1250 K), 
increasing pressure from 1.6 to 32 atm exhibits a mild decreasing and 
even increasing decreasing trend for IDT, which implies that a compe
tition effect may exist. Actually, this was attributed to the pressure 
dependence of H2 ignition [165], which is the competition between the 

Fig. 6. Discrepancies of ignition delay times between five homogenous reactor 
models’ predictions and three experimental datasets for syngas (H2/CO: 50/50, 
by vol.)/air mixture at ϕ = 0.5 and p = 20.2 bar (Reprinted from [156] with 
permission of Elsevier). 

Fig. 7. High-speed imaging of homogenous (left) and inhomogeneous (right) ignition behaviors of syngas, with a molar ratio of H2/CO = 0.7, mixed with air (O2/ 
inert gas molar ratio of 1/3.76) illustrating uniform and non-uniform chemiluminescence (Reprinted from [159] with permission of Elsevier). 
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chain branching reaction (H + O2 → O + OH) that dominates in the 
high-temperature region, and the pressure-dependent propagation re
action (H + O2(+M) → HO2(+M)) that dominates in the 
low-temperature region. Moreover, the latter reaction is more favorable 
at high pressures and is also pressure-dependent, inhibiting the chain 
branching and resulting in longer IDT at elevated pressures, as seen in 
Fig. 9 (right). 

CO effect: 
Though the H2-chemistry is dominant at low CO content, the CO has 

an inhibiting effect on the IDTs of H2/CO fuel due to the decrease in 
activation energy. Lower activation energy can be detected in the high- 
temperature region, followed by a very steep increase at around T =
1000 K. The inhibition effect is much more prominent as pressure in
creases from ~15 to 30 bar; that is, the CO oxidation is retarded by 
increasing pressure. Beyond p=30 bar, the incremental variation in the 
inhibiting effect would be trivial. These mentioned trends can be seen in 
the labeled pictures of (a), (c), (e), and (g) in Fig. 8. For high H2 

concentration (i.e., CO < 60%), adding CO to H2 did not lead to a sig
nificant increase in IDT, as shown by Gersen et al. [166] (see Fig. 8 (a)). 
Further discussions regarding the CO’s inhibiting effect have been re
ported in [152,166]. 

CH4 effect: 
Under engine-relevant conditions, it has been reported [167–169] 

that the addition of H2 has ignition-promoting effect in CH4 mixtures, 
with substantially reduced IDT by replacing CH4 with a 50% mole 
fraction of H2, particularly at higher temperatures. For the purpose of 
IDT measurement in CH4/H2/CO/oxidizer mixtures, Gersen et al. [166] 
carried out experiments and calculations at ϕ = 0.5 and 1, p = 20-80 bar, 
and T = 900-1100 K conditions using an RCM and the SENKIN code 
[170]. With the addition of CH4 (> 50% by mole fraction) to the 
H2/CO-oxidizer mixture, CO, with low mole fraction (≤ 30%), had no 
inhibiting effect on either IDTs of CH4/H2/CO or CH4/CO, while CH4 
had this effect, particularly at high temperatures, as illustrated in Fig. 10 
(a). In contrast to CO, CH4 with an even low mole fraction (~ 6%) in the 

Fig. 8. Ignition delay times of different H2:CO mixtures as a function of temperature at different pressures (Reprinted from [137] with permission of Elsevier).  
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fuel showed an ignition-inhibiting effect due to OH consumption by CH4 
+ OH = CH3 + H2O, as can be seen from Fig. 10 (b); noting that the 
ignition stage is depicted as a two-step ignition process, i.e., τign1 and τ 
ign2, due to the presence of two separate regions of fast pressure increase 
on the recorded pressure-time history plot. This behavior has not been 
explicitly reported before [171] for syngas fuel mixtures. The experi
mental works measuring IDTs of syngas mixtures under engine-relevant 
conditions are summarized in Table 6. 

There have been several correlations proposed in the literature for 
IDT calculation, which can provide a means to estimate syngas ignition 
properties in a simplified form, where detailed kinetic models are 
computationally expensive. Walton et al. [154] performed ignition 
studies of simulated syngas mixtures of H2, CO, O2, N2, and CO2 in an 
RCM. The IDT data spanned pressures between p = 7.1-26.7 bar, tem
peratures from T = 855-1051 K, equivalence ratios from ϕ = 0.1-1.0, 
oxygen mole fractions from 15% to 20% and H2:CO ratios from 0.25 to 
4.0 (molar basis). Regression analysis yielded the following best-fit to 

the data set: 

τign = 3.7 × 10− 6P− 0.5ϕ− 0.4χO2
− 5.4exp

(
12500

RT

)

(1) 

In this correlation, τign denotes the ignition delay time [ms], p pres
sure [bar], T temperature [K], φ the equivalence ratio, and χO2 

the ox
ygen mole fraction. The experimental data were also in good agreement 
with model predictions based on the detailed mechanism proposed by 
Davis [151]. 

As a final note, it is also important to study ignition delay times of 
syngas blended with other gases such as CO2, and H2O, since syngas is 
not suitable as a sole fuel for some type of IC engines (as will be dis
cussed in section 3). The effects of diluents like H2O [163,173], CO2 
(negligible) [163], impurities (e.g., trimethylsilanol) [171] and NH3 
(negligible) [163] on IDT of syngas mixtures have been studied in only a 
few studies. It was suggested that H2O has contradictory impacts on the 
IDTs under various pressures, increasing IDT at high pressures as 

Fig. 9. Effect of pressure on the ignition delay times for 50:50 H2:CO at ϕ = 0.5 (left) and for a mixture of 0.7 H2 + O2 + 3.76 Ar (right) (Reprinted from [137,165] 
with permission of Elsevier). 

Fig. 10. Effect of CH4 on ignition delay times of syngas (Reprinted from [166,171] with permission of Elsevier). 
(a) ϕ = 0.1, and p ~ 40 atm [166] 
(b) ϕ = 0.1, and p ~ 15 atm [171] 
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HO2/H2O2 reactions become more profound, thereby increasing the 
reactivity of the mixture [173]. Although substantial progress has been 
obtained in our awareness of IDT for H2/CO syngas, there are still few 
studies to achieve a general description for a representative H2/CO/di
luents/(possible) impurities syngas under engine-relevant conditions. 

2.3. Methane number (MN) 

In the IC engine community, to isolate the knock propensity of the 
fuel from the specific engine design and condition, a practical measure 
was required to indicate the ability of a fuel to resist knock [174]. Due to 
this, octane number is defined, and some octane rating methods like the 
motor octane number (MON) have been established by ASTM for liquid 
fuels based on primary reference fuel blends, in which iso-octane-like 
fuel is assigned with ON (or MON) of 100 and n-heptane-like fuel with 
ON (or MON) of 0; which means fuels with high MON resist 
auto-igniting more than those with low MON. Extending this concept to 
gaseous fuels leads to the so-called methane number (MN), taken from 
the work done for the Austrian AVL Company through 1964-1969 [175]. 
The system rating of MN employs a reference fuel blend of methane and 
hydrogen, by which methane and hydrogen are given to MN of 100 and 
zero, respectively. CH4-CO2 mixtures were also considered as reference 
mixtures for MN beyond 100, defining 100 plus the volume of existing 
CO2 for MON; for example, 20%CO2 + 80%CH4 (by vol.) results in MON 
of 120 while 20%H2 + 80%CH4 (by vol.) leads to MON of 80. Therefore, 
it is expected that an engine fueled with a syngas fuel having a higher 
CO2 fraction leads to a rise in the upper limit of compression ratio (CR) 
without knock issue. More generally, once the MN number through this 
method is determined, regulating both spark timing and CR can be 
employed to avoid knock, applicable to an engine fueling with either 
100% syngas or syngas blended with other gaseous fuels. To determine 
the MN, some researchers [176–179] have conducted their own pro
cedure and compared it to developed MN programs, such as the AVL 
Methane program V3.20 [180] and the MWM MN program [181], which 
are partly looked at in the following. 

Generally, the procedure for specifying the MN of tested fuel is 
basically a comparative basis in which unknown fuel is indirectly 
compared to a map of reference blends at the same CR via a curve; 
however, this subject is out of scope for the current review and can be 
found elsewhere [182,183]. As an alternative approach for indirectly 

comparing the tested fuels to reference blends, Malenshek and Olsen 
[182] conducted a direct comparison by developing a test procedure 
with a computer-controlled gas blending system, minimizing the effects 
of other uncontrolled variables besides CR, such as ambient temperature 
and atmospheric pressure, and producing maximum knock by sweeping 
the air-fuel ratio (rather than ϕ=1 for indirect comparison). Some results 
for a wide range of syngas composition are presented in Table 7. 

Experimental data, such as that represented in Table 7, were used in 
the literature to compare with the programs that estimate the MN of 
natural gas as a function of its composition. It was found that estimates 
can deviate considerably with respect to experimental data when syngas 
is considered as fuel [183]. These deviations are mainly caused by the 
various and high concentrations of carbon monoxide, and especially 
carbon dioxide (as a knock suppressor) and hydrogen (as a knock 
propagator) in syngas. The other reason, for example, for early version 
of AVL program was that carbon monoxide effects are not included 
[177]. Diaz et al. [177] carried out a comprehensive analysis of the 
auto-ignition tendency of binary mixtures of hydrogen and carbon 
monoxide diluted with carbon dioxide. They proposed a statistically 
validated second-order regression model to predict MN. Results revealed 
that increasing carbon dioxide concentration in the mixtures strongly 
increases the MN of the mixtures. A great fraction of H2 and CO intensely 
reduces the MN, whereas the CO2 or N2 raise knock resistance and thus 
increase the MN [176]. Lechner et al. [184] showed that the classical 
methane number or the propane knock index1 fail for the syngas com
positions in practice. Based on a review of published fuel data, 31 gas 
mixtures were developed using a D-optimal statistical design consisting 
of H2, CO, CH4, CO2, and higher hydrocarbons up to C3. Additionally, 
pure methane, pure propane, pure hydrogen and a biogas mixture 
consisting of 60 vol% CH4 and 40 vol% CO2 were examined as reference 
fuels. Practically all syngas blends were more prone to knock than 
methane or biogas. Admixtures of higher hydrocarbons were found to 
substantially increase the knock propensity. This indicates the promi
nent role of higher hydrocarbons with regard to the knock propensity of 
fuel gases. Lean equivalence ratios, exhaust gas recirculation, and the 
addition of water vapor were effective measures to mitigate the risk of 
knock. 

Under the MN determination, hydrogen should have the lowest 
resistance to knocking, which somehow is not true since some work has 
presented a research octane number (RON) of around 130 for hydrogen. 
Also, hydrogen and methane as reference fuels in the MN rating system 
have very different characteristics in flame speeds and ignition delays, in 
contrast to those in the ON rating system, which have similar flame 
speeds [185]. It was seen that the MN could be correlated to the adia
batic flame temperature and laminar flame speed, a high MN fuel having 
a low adiabatic flame temperature and long flame initiation period 
[176]. However, compared to H2, propane (C3H8) has shown more 
knock tendency, which may stem from its lower auto-ignition 
temperature. 

To summarize, there is still no comprehensive consensus to deter
mine the knock propensity of gaseous, namely syngas fuels. The 
currently potential errors in the MN method, such as various operating 

Table 6 
Available experimental datasets for ignition delay times of syngas mixtures.  

Year Author(s) Facility Mixture (by 
vol.) 

p 
(bar) 

T (K) ϕ (-) 

2007 Mittal et al.  
[152,153] 

RCM* H2/CO/O2/ 
N2/Ar 

15- 
50 

950- 
1100 

0.36- 
1.60 

2007 Walton et al.  
[154] 

RCM H2/CO/O2/ 
N2/CO2 

7.1- 
26.4 

855- 
1051 

0.1- 
1.0 

2007 Peterson et al. 
[156] 

ST* H2/CO/O2/ 
N2/CO2 

~ 20 943- 
1148 

0.5 

2012 Gersen et al. 
[166] 

RCM CH4/H2/ 
CO/O2/N2/ 
Ar 

20- 
80 

900- 
1100 

0.5 & 
1 

2012 Krejci et al. 
[161] 

ST H2/CO/O2/ 
Ar 

1.5- 
32 

960- 
2000 

0.5 

2013 Kéromnès et al. 
[165] 

RCM & 
ST 

H2/CO/O2/ 
N2/Ar 

1-70 914- 
2220 

0.1- 
4.0 

2014 Mansfield and 
Wooldridge  
[159] 

RCM H2/CO/O2/ 
N2 

3-15 870- 
1150 

0.1- 
0.5 

2015 Mansfield and 
Wooldridge  
[171] 

RCM CH4/H2/ 
CO/O2/N2 

+ TMS** 

5 & 
15 

1010- 
1110 

0.1 

2015 Ouyang et al.  
[172] 

ST CH4/H2/ 
CO/O2/N2 

/Ar 

5-10- 
15 

1100- 
1700 

0.5- 
1.0- 
2.0  

* RCM: Rapid compression machine, ST: Shock tube. 
** TMS: Trimethylsilanol which is added to syngas as impurity, 10-100 ppm. 

Table 7 
Measured MN for various test gases [182].  

Test gas H2 CO CH4 CO2 N2 MN 

Reformer gas 44.5 2.30 38.1 13.0 2.10 62.4 
Coal gas 22.3 63.1 - 1.30 13.3 30.0 
Wood gas or PG 39.2 23.5 8.50 26.4 2.40 61.4 
Digester gas - - 60.8 37.8 1.50 139.1 
Landfill gas - - 60.5 39.5 - 139.5  

1 The propane knock index is one of MN alternatives to index knock pro
pensity of gaseous fuels. 
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engine conditions and heavy hydrocarbon presence in syngas, lead to 
keep investigating this matter. 

2.4. Laminar flame speed (LFS) 

Laminar flame speed is a crucial parameter, which results from the 
net effects of the diffusivity, exothermicity, and reactivity of the mixture 
[186], and has a strong dependency on pressure, temperature, mixture 
composition, and equivalence ratio [187]. The LFS of syngas-air mix
tures at typical temperatures and pressures (NTP) conditions were 
extensively reported in [188–194], and Fig. 11 shows an example of 
published data for LFS of a syngas mixture (H2/CO: 5/95 by vol.) at 
atmospheric and high-pressure conditions. As can be seen, a relatively 
decent consistency in measured LFS values can be observed among all 
data, with a maximum variance of 10 cm/s peak-to-peak, while the 
difference was seen to be larger as pressure increases. 

Moreover, the discrepancies among measured LFS data are as high as 
40 cm/s at fuel-rich conditions (ϕ > 2) by increasing H2 concentration 
by just 10%. Fig. 12 shows that the maximum LFS value increases 
approximately from 65 in Fig. 11 to 130 cm/s by substituting 20% of CO 
with H2 in the syngas mixture. This can be attributed to the wide range 
of data sets used for extrapolation2 (to eliminate stretch effects from 
data), the applied stretch extrapolation model, the chosen flame radius 
range, and the inhibiting effect of carbonyl compounds coming from the 
steel containers utilized to store the CO content of syngas. More infor
mation on fundamentals and technical possible sources of observed 
discrepancies and uncertainties are described in [187] and [197] for 
each distinct fuel-air mixture, and in [198] for spherically expanding 
syngas flames. 

For the high-pressure operating condition, Sun et al. [196] were one 
of the first groups that conducted the LFS measurement of H2/CO mix
tures at pressures up to p=40 atm. They substituted nitrogen (N2) with 
helium (He) to increase the Lewis number (Le) of the mixture, mini
mizing flame-front instability3 due to wrinkling and cell formation over 
the flame surface. It is also noteworthy that if the ignition energy sup
plied by the spark plug of a SI engine is not enough to drive the flame 
front to a minimum radius at which stretch effects are decreased, the 
propagating flame of a mixture with Le>1 can extinguish [199]. Refer
ring back to Fig. 11 and now to Fig. 13 (left) for pressures higher than 
p=10 atm, it is obvious that increasing initial pressure substantially 
reduces LFS, which is attributed to hydrodynamic instabilities due to 
decrease in flame thickness as seen in Fig. 13 (right). Some studies are 
available concerning the LFS of syngas mixtures at higher pressure [162, 
165,194-196, 200,201]; most of them used helium rather than nitrogen. 

High-H2 syngas, the target fuel for IC engines, is more susceptible to 
flame front instabilities, taken from LFS of pure H2-oxidizer mixtures 
[19]. Both thermal-diffusive and hydrodynamic instabilities are 
involved in amplifying the flame front’s destabilization by affecting the 
Lewis number and flame thickness, respectively. So, as compared with 
CO, H2 has a more dominant effect on flame stabilities [202]. To mea
sure LFS of syngas with H2/CO: 85:15% (by vol.) at elevated pressures 
up to p = 10 bar and lean conditions (ϕ = 0.5-0.6), which is relevant to 
IC engines with premixed charge, Goswami et al. [203] conducted ex
periments using the heat-flux method and then compared the resulting 
LFSs with those obtained from the available mechanisms [165,204-206] 
by kinetic modeling. They observed significant differences between 
experiment and modeling, attributed to the uncertainty in key reactions, 
and suggested that further studies are requisite to modify their rate 

Fig. 11. Published measured data of laminar flame speeds for the model syngas mixture of H2/CO: 5/95 with oxidizer (by vol.) at atmospheric (symbols), 5 and 10 
atm (lines) (adopted and extended from [194] with permission of Elsevier, other references [165,188,189,192,193,195,196]). 

2 To correctly determine the LFS, particularly in spherical propagating flame 
at elevated pressures, stretch effects due to flame curvature and flame un
steadiness should be subtracted from experimental data to avoid scattering the 
data. Stretch effects can be eliminated by using non- and linear extrapolation 
equations. 

3 Two common intrinsic flame instabilities have been pointed out within the 
present work, the thermo-diffusivity instability that is characterized by Lewis 
number and the hydrodynamic (as known as the Darrieus-Landau) instability, 
which is due to density jump across the flame-front, that is characterized by the 
flame thickness and thermal expansion ratio. 
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constants. Later, Zhang et al. [207] studied the LFS of the same lean 
high-H2 syngas of the previous study [203] at elevated pressures but 
using the spherical flame method. Fig. 14 depicts that the measured LFS 
is seen to diminish monotonically as pressure increases, due to the fact 
that SL ~ p(n/2− 1) [197] and the overall order of reaction n is normally 
less than 2, due to the third body, inhibiting the H + O2 + M → HO2 + M 
reaction. As can be seen from Fig. 14, while mechanisms have better 
predicted the results of the latter study compared to that of the former 
study, the reason is unclear and needs additional study. In addition, the 
preferential diffusivity of high-H2 syngas must be noted here due to the 
high mass diffusivity of H2 [19], as it plays a vital role in the future of 
flame front structure [208]. Interestingly, at elevated pressures and lean 
conditions but lower H2 content (35:65 H2:CO mixtures), syngas laminar 
flames were determined [209] to be extremely unstable, resulting in 
cellular structures in the spreading flame front surface, where SL ~p− 0.15 

having a fairly small reduction in pressure compared to lean methane 
flames where SL ~p− 0.50. As a result, it is challenging to measure the LFS 
of syngas-air mixtures free of flame instability effects without diluents. It 
is almost impossible to obtain accurate LFSs before the onset of flame 
instabilities at lean and elevated pressure conditions [210]. 

Based on the above discussions and Refs. [211,212], it is worth 
noting that lean high-H2 syngas (H2/CO) flames at elevated pressures 
tend to wrinkle and exhibit cellularity even at the early stage of kernel 
development. Such unstable cellular flames can be self-accelerated by 

Fig. 12. Published measured data of laminar flame speeds for the model syngas mixture of H2/CO: 25/75 with oxidizer (by vol.) at atmospheric (adopted from [194] 
with permission of Elsevier). 

Fig. 13. Effect of pressure increase on laminar flame speeds of syngas diluted in helium (left) and flame front growth of syngas diluted in air with flame radius of 60 
mm (right), for H2:CO = 25:75 (by vol.) and at room temperature; p/pi: pressure ratio, σ: thermal expansion ratio, andδf: flame thickness. (Reprinted from [137] with 
permission of Elsevier). 

Fig. 14. Laminar flame speed of 85%H2–15%CO/12.5%O2–87.5%He mixture 
as a function of pressure (Reprinted from [207] with permission of Elsevier). 
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gradually increasing their frontal surface area, and, thus, this should be 
noted as a reason for knocking combustion in SI engines. Both intrinsic 
flame instabilities and the acceleration characteristic of the flame front, 
at decreased critical (minimum) flame radius, result in more difficulties 
in accurately measuring the LFS. Accordingly, Xie et al. [211] proposed 
an updated method, based on Bradley et al. [213], to obtain the LFS at 
various flame radii without the acceleration effect. Identification and 
characterization of self-acceleration of syngas flame are still in their 
infancy and an ongoing topic for research. 

As H2/CO mixtures do not represent real syngas and always refer to 
bottled gas or simulated gas, the effect of dilutions with CO2, N2, H2O, at 
least on LFS of H2/CO mixtures must be investigated by scrutinizing the 
thermal, chemical, and transport impacts of each of them. It has been 
separately reported in [195,200,202,214,215] that CO2 decreases the 
flame temperature, thereby reducing the rate of H2/CO oxidation and 
thus the LFS, which means the chemical effect of CO2 is dominating. Han 
et al. [200] measured the LFS of H2/CO (3/1, 1/1, and 1/3 by vol.) with 
CO2 dilution for elevated pressures p=1, 4, and 10 bar and temperatures 
T=298, 375, and 450 K using the outward spherical flame propagation 
method, and indicated that increasing CO2 dilution linearly decreases 
the LFS and directly affects the elementary reaction rates. A compre
hensive study by Vu [202] revealed that CO2- and N2-diluted syngas-air 
flames are more sensitive to stretch effects than a He-diluted one 
because of the reduced Markstein number with increasing diluent con
centrations. Also, from Fig. 15, it can be seen that the effective Lewis 
number (defined as a combination of fuel and oxidizer Lewis numbers) is 
reduced in both cases of CO2 and N2 dilution and will be more prone to 
thermo-diffusive instability at lean conditions; according to such trend, 
Parthap et al. [214] showed the minimum permissible quantity of the 
equivalence ratio to achieve flame stability would be shifted from 0.6 to 
0.8 for increasing CO2 concertation from 0 to 30%, respectively, for a 
H2/CO: 1/1 (by vol.) mixture. A recent study [216] showed that for a 
diluted H2/CO mixture, the flame would be more stabilized by 
increasing ϕ when the H2 fraction is more than 50%. Also, it was shown 
that the flame instability of high-H2 syngas (as H2/CO mixture) scarcely 
varies with increasing CO2 or N2 dilution fraction compared to a 
high-CO syngas whose flame becomes more stable with rising dilution. 

While decreasing LFS with both CO2 and N2 addition has been 
proven [217–222], syngas-air mixtures have higher LFS with N2 dilu
tion, which has a thermally dominant impact [222]. Therefore, 
increasing CO2 dilution has a more substantial inhibiting effect on LFS 
due to its direct engagement in the chemical reactions through CO + OH 
↔ CO2 + H [214,223], and hence it is necessary to evaluate it with more 
caution in predicting syngas containing CO2 by a reaction model. 

The LFSs of H2O diluted syngas-air mixtures have been explored by 
some researchers at atmospheric conditions using both stagnation [224] 
and spherical [193] flame methods, consistently concluding that H2O 
addition will non- and monotonically reduce the LFS of CO- and H2-rich 
syngas, respectively. For higher pressures up to p=10 bar, Santner et al. 
[225] found a monotonic drop in mass burning rate with increasing H2O 
concentration for an equimolar H2/CO syngas. Besides, they indicated 
that the inhibitory effect of H2O addition would be increased with 
increasing pressure. In a research on CH4 blended with H2/CO, Zhou 
et al. [226] conducted measurements and numerical simulations at 
Tin=303 K, ϕ = 0.6–1.5 and p = 0.1–0.5 MPa with a wide range of 
bio-syngas (H2/CO/CH4) compositions. They experimentally deter
mined and measured LFS of premixed bio-syngas/air flames under 
various compositions of fuel mixtures, as depicted in Fig. 16, in which 
αBasis, as a base for comparison, is set to H2/CO/CH4 = 40/40/20 (% by 
vol.) with constant mole ratios among species; and αH2-60 equals 
H2/CO/CH4 = 60/26.6/13.3. It was observed that the Li mechanism 
[204] is well in line with the measured LFS of premixed bio-syngas 
flames, particularly under fuel-lean conditions. There is a slight differ
ence between the expected findings and the experimental ones for 

Fig. 15. Effective Lewis number at rich/lean conditions and room temperature with the (Reprinted from [202] with permission of Elsevier).  

Fig. 16. Laminar flame speed of H2/CO/CH4/air mixtures at various compo
sitions (Reprinted from [226] with permission of Elsevier). 
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fuel-rich conditions. 
It can also be seen in Fig. 16 that the peak value of LFS moves to

wards fuel-rich conditions with increasing H2 content in the mixture due 
to the very high diffusivity of hydrogen [227], which has a severe, 
increasing trend with ϕ. Conversely, the addition of CH4 to the mixture 
leads to shifting the peak value to the lean side with a quite large 
reduction in the quantity of LFS due to the inherent slower LFS of CH4. 
Also, with an increase in CO fraction in the fuel, the LFS is not much 
influenced. The thermal and chemical kinetic analysis shows that the 
addition of CO has much more impact on the adiabatic flame tempera
ture but plays a minor role in its chemical kinetic impact as opposed to 
the addition of H2 [228]. The influence of H2 addition to LFS is mainly 
due to its chemical effect at lean and stoichiometric conditions. How
ever, with the addition of around 75% CO, the rise in laminar flamma
bility is attributed to the high adiabatic flame temperature (thermal 
effect) [229]. 

The effects of inert gases like N2, CO2, and H2O, and CH4 on the 
laminar flame speeds of syngas, in the form of H2/CO, were briefly 
reviewed here and are extensively discussed in [137,230]. The LFS of 
syngas in the form of producer gas (PG) have also been addressed in 
[231–235], which is the case of 100% syngas fueled IC engines in sta
tionary applications. Monteiro et al. [234] investigated the impact of 
various compositions of PG generated through fluidized bed, updraft, 
and downdraft gasification on the LFS, using the spherical flame 
method. Fig. 17 illustrates that the LFS of two studied PG over a wide 
range of ϕ have a similar trend to those of syngas with high CH4 content, 
although the maximum values are at stoichiometric conditions. Tippa 
et al. [236,237], concluded that PG combustion with higher H2, CO, and 
N2 fractions and comparatively lesser amounts of CH4 and CO2 are stable 
to preferential diffusion effects and predictable for minor changes in 
composition. 

Other researchers have tried to determine the LFS of syngas blended 
with hydrocarbon fuels [238–240] and with exhaust gas recirculation 
(EGR) [241,242], which is the primary case in syngas fueled engines 
through reforming fuel on-board a vehicle, of which detailed discussions 
can be found in sections 3 and 4. For instance, Kwon and Min [238] 
calculated the LFS of syngas/iso-octane-air mixtures by a 1-D model 
under conditions relevant to SI engines. The EGR effect was also 
included using different fractions of burnt gas up to 0.5 in volume. The 
LFS of the studied mixtures were observed to be proportional to the 
initial temperature, LHV, the fraction of syngas in the fuel mixture and 
H2 fraction in the syngas, and inversely proportional to the initial 
pressure, deviation of equivalence ratio from the stoichiometric condi
tion, and the fraction of burnt gas. A few studies have also considered the 
combustion characteristics of syngas mixtures in premixed SI engines 
[73,243,244]. However, the extent of accuracy and reliability in the 

results of such studies are vastly dependent on the capability of the 
developed reaction mechanisms in predicting the LFS under desired 
simulation conditions. 

Finally, measured LFS data can establish correlations [245], which is 
a simpler and more convenient approach than detailed simulations with 
kinetic mechanisms, for easy use in estimating the LFS of syngas-based 
mixtures during engine combustion simulations [191]. However, those 
are only applicable to regions far away from stretch and ignition energy 
effects. An example of the kind of LFS correlation is given below, which 
is a function of equivalence ratio, temperature, and pressure [194]: 

Su = Su0
(
1+ a(ϕ − 1)+ b(ϕ − 1)2)

(
T
T0

)c( p
p0

)d

(2)  

where Su0 is the reference LFS at certain point (ϕ = 1, T0 = 298.15 K, p0 
=1 bar), ϕ the equivalence ratio, T the temperature in K and p the 
pressure of the mixture in bar. The fitting coefficients, a, b, c, and d were 
obtained for different hydrogen concentrations using a nonlinear, least- 
squares method. This correlation is valid only for non-cellular laminar 
flames within the equivalence ratio range of 0.6 < ϕ < 5. The pressure 
and temperature ranges are a function of the equivalence ratio and 
hydrogen fraction. 

Semi-empirical correlations are also available to predict the LFS of 
H2/CO/air flames with N2 and CO2 dilution [246]. Although such cor
relations are preferred to comprehensive chemical kinetic models in 
terms of computational cost, they have been restricted to specific con
ditions, beyond which the predictions are inaccurate. This is because 
many earlier correlations were based on a small collection of experi
mental data, mostly carried out over a narrow range of engine operating 
conditions [73,191,196,238,245,247,248]. In addition, no flame speed 
correlation is available that allows the calculation of LFS for blends of 
syngas and gaseous fuels. For gaseous blends, blending has a non-linear 
effect on the LFS, resulting in complicated mathematical correlation 
equations to capture this behavior [249]. Therefore, the use of reaction 
kinetics calculations is preferred for the combustion study of 
syngas-fueled engines. With this in mind, data-driven machine learning 
(ML) algorithms [250], as a more recent solution, can be trained to 
overcome this issue based on a large dataset having high accuracy to 
anticipate the LFS of syngas with large fluctuations in their composition 
at various conditions. This approach also allows more researchers to 
participate in developing syngas-based combustion systems without 
requiring the in-depth knowledge that only qualified experts have. 

In summary, instabilities induced by high H2-containing syngas at 
elevated pressures make LFS measurements with reasonable accuracy 
impossible. In general, with an increase in pressure and concentration of 
H2, the LFSs for premixed H2/CO-oxidizer mixtures reduce and increase, 
respectively. Diluting syngas with N2, CO2, or H2O decreases the LFS. 
The maximum flame speed occurs at fuel-rich conditions, while the 
maximum flame temperature occurs near the stoichiometric condition. 
Also, the LFS has shown a strong dependency on pressure, inlet tem
perature, and equivalence ratio. It was shown that extensive modifica
tions in kinetic mechanisms should be taken into account. There is a 
broad experimental data collection available in the literature for the 
combustion of syngas with various concentrations of H2:CO. Nonethe
less, research on syngas mixed with other gases such as CO2 and H2O is 
still limited, and a few experimental data are available for the LFS of 
syngas mixed with CH4 at elevated pressures [158,195,239,251]. New 
measurements with thorough uncertainty analysis on the LFS of syngas 
(H2/CO + diluents) solely and blended with other fuels (like gasoline, 
diesel, etc.), which are of great interest in vehicular applications at 
elevated pressures and engine-relevant conditions, will help us to un
derstand syngas combustion behavior properly. 

2.5. Turbulent flame speed (TFS) 

Like the LFS, the turbulent flame speed (TFS), ST, is of interest and is 

Fig. 17. Laminar flame speeds comparison between two producer gas gener
ated by up- and downdraft gasification with H2/CO [189], H2/CO/N2 [217, 
231] mixtures (Reprinted form [234] with permission of Elsevier). 
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defined when the surface area of thin laminar flames interacting with 
the turbulent flow is increased. Unlike LFS that exclusively depends on 
mixture properties, TFS is also a function of turbulent flow, enclosed by 
the IC engine geometry. So, measuring TFS is sensitive to the experi
mental rig used, and it was confirmed [252,253] that it is an 
experiment-dependent variable. Turbulent spherical flames propagating 
inside the IC engine consume the unburned mixture when the 
flame-front enters to reaction zones, thereby determining the heat 
release rate. From an engine viewpoint, TFS is dependent on 
trapped-mass conditions, residual turbulence at trapping, and the mean 
piston speed, while processes such as auto-ignition, combustion, and 
heat conduction are also affected [254]. Generally, Lipatnikov and 
Chomiak [253] demonstrated that flame stretch and instability could 
significantly affect TFS, depending on the conditions and mixture 
properties. 

Because of high stretch sensitivity due to the high mass diffusivity of 
H2 content [255], the turbulent flame properties of model syngas 
(H2/CO) mixtures are of great importance and interest. A few helpful 
experimental measurements on the H2/CO-air mixtures have been car
ried out under elevated pressures, such as those by stabilized 
Bunsen-type flames [256–259] and centrally-ignited propagating flames 
[209,260]. The findings of several flame configurations suggested that 
the TFS of lean hydrogen flames are around a factor of two faster than 
those of hydrocarbon flames, although their magnitudes vary signifi
cantly for various flame geometries [29]. Regarding measuring the TFS 
of syngas-air mixtures in high-pressure environments, the two most 
discussed topics in the literature are: 

1- The impact of pressure increase, fuel composition, flame-front sen
sitives, and ReT on TFS.  

2- Extracting ST correlations from experimental data for a particular 
fuel-air mixture at specific conditions and generalizing them. 

Herein, the turbulent Reynolds number is defined as ReT = (u′l0)v, 
where u′, l0 and ν are the turbulent intensity or root-mean-square (r.m.s) 
turbulent fluctuating velocity, the integral length scale, and the kine
matic viscosity of the reactants, respectively. In the first topic, the in
fluence of pressure, two scenarios have been reported to date. The first 
states that the TFS increases with increasing pressure due to the 
improvement of flame instabilities, at constant u′ andl0, regardless of the 
fact that ReT also increases due to the inverse proportion of ν to pressure 
elevation. However, the second proved that TFS decreases, similar to 
LFS in a negative exponential behavior, with increasing pressure as the 
ReT is held constant [260,261]. 

As instances of the first scenario, Liu et al. [209] studied TFS for 
35:65 H2:CO-air mixtures at ϕ = 0.5 and 0.7 over an initial pressure 
range of p = 1–10 bar. They found that ST increases with increasing 
pressure (ST~p0.15 for ϕ = 0.7 and ST~p0.11 for ϕ = 0.5) at a fixed r.m.s 
turbulent fluctuating velocity (u′ ≈ 1.4 m/s), often attributed to cellular 
instability promotion due to thinner flame thickness (hydrodynamic 
instability) [253,262]. At higher pressure up to 20 bar, Daniele et al. 
[257] mentioned that the ST increase is because of diffusive-thermal 
instability co-acting with hydrodynamic impact. Additionally, it was 
demonstrated that increasing u′/SL is much more effective in increasing 
ST/SL than increasing pressure, particularly in the weak turbulence 
regime. Besides the pressure influence, the increase of ST/SL with 
increasing hydrogen fraction in syngas (H2/CO) mixtures was observed 
using OH-PLIF measurements in a work by Wang et al. [263], which 
resulted in the promotion of the intensity of flame front wrinkles due to 
amplified preferential diffusive-thermal instability. In addition to results 
consistent with prior studies, Venkateswaran et al. [264] displayed 
measured quantities of ST for 90:10 H2:CO that are around three times 
larger than for CH4 blends, with the same SL,u′, and operating condi
tions. An important conclusion from the work of the same authors [255] 
was that fuel effects on ST are not simply a low turbulence intensity 
phenomenon – it clearly persists over the entire range of turbulence 

intensities used in the measurements. It is believed that these fuel effects 
are due to the reactant mixture’s stretch sensitivity, which has a strong 
effect on the positively strained leading points of the turbulent flame 
brush for non-zero Markstein length fuels [265]. 

The second topic was devoted to extracting ST correlations for ease of 
use in combustion modeling. Regarding syngas-air mixtures at higher 
pressure than atmospheric, some of them are presented in Table 8. 

However, such correlations are obviously incapable of capturing all 
sensitivities of the TFS. For example, Venkateswaran et al. [267] used ST 
databases for negative Markstein length fuel blends, i.e., mixtures with 
small Lewis number like H2-rich syngas- or H2-air mixtures, and high
lighted that it is challenging to distinguish the effects of time-scale, 
length-scale, and ReT on these correlations. Thus, future works are 
needed with novel correlations in a more unified form. 

As the final point of this section, the detailed experimental study on 
chemistry-turbulence interaction and instabilities of the flame front for 
simpler fuels like H2 particularly, in turbulent flame combustion is next 
to impossible at this instant, while it is possible with the aid of the direct 
numerical simulation (DNS) [268]. An exciting subject addressed with 
DNS is the effect of preferential diffusivity on turbulent spherical syngas 
flames on the lean side of stoichiometric. This is due to the well-known 
behavior of lean hydrogen-air mixtures, which is a non-unity Lewis 
number fuel and differs from heavy hydrocarbon fuels. In an example 
study of three-dimensional DNS with detailed chemistry for lean 70:30 
H2/CO syngas at p = 4 bar, it was found [269] that thermo-diffusive 
instabilities have negligible impact on cellularity development of 
flame structures under high turbulence levels, though the flame accel
eration and species diffusive flux are still influenced by the preferential 
diffusion. The same authors [270] showed how the interaction between 
equivalence ratio variation and instabilities could affect the heat release 
rate. Performing two-dimensional DNS for a turbulent expanding 50/50 
H2/CO syngas flame at ϕ = 0.6 and atmospheric conditions, Bhide and 
Sreedhara [271] found heat release rate enhancement and a rise in flame 
speed for even a quiescent medium due to high mass diffusivity of 
hydrogen. Under greater turbulence levels, a further increase in HRR 
and a shift in the peak location of HRR towards low-temperature zones 
were also seen. The shifting trend was ascribed to atomic hydrogen 
species, and it disappeared at high pressure and temperature conditions. 
The differential diffusion effect (related to the different values of the 
species Le) was also observed to diminish when raising the CO fraction 
to 70%. 

In conclusion, while noting that high-pressure turbulent combustion 

Table 8 
Some correlations based on measured data for the turbulent flame speed (ST) of 
syngas-air mixtures at elevated pressures.  

Author(s) Correlation for ST Constants Eq. 

Daniele 
et al. 
(2011)  
[257] B 

ST

SL
=

a
(

u′

SL

)0.63(l0
δL

)− 0.37( P
P0

)0.63( T
T0

)− 0.63  

P0= 1 bar, T0 =

1 K 
a = 337.5 

(3) 

Wang et al. 
(2013)  
[263] B 

ST

SL
∝a

[(
P
P0

)(
u′

SL

)]n  For H2/CO: 35/ 
65 
a = 3.8, n ≈ 0.42 

(4) 

Shy et al.  
(2015)  
[260] S 

ST

u′ = aDab  For lean H2/CO: 
35/65 with Le ≈
0.76: a=0.12, 
b=0.5 

(5) 

Sun and Zhu 
(2020)  
[266] S 

ST
0 = (1.325.XH2 + 0.916).u′

+ 0.597.
e2.XH2  

- (6) 

Note(s): the Damköhler number is defined asDa = (l0/u′)(SL/δL), where δL is the 
laminar flame thickness which is approximated byδL ≈ α/SL, and α is the thermal 
diffusivity of unburned mixture. 
XH2 : Hydrogen fraction in H2/CO syngas. 

B : Bunsen-type flame method, 
S : Spherical-type flame method. 

A. Paykani et al.                                                                                                                                                                                                                                



Progress in Energy and Combustion Science 90 (2022) 100995

18

cannot be directly inferred from atmospheric turbulent combustion re
sults [209], there is no consensus among published findings at higher 
pressures than atmospheric, nor even a general description for turbulent 
premixed syngas flames. There are also very few studies presenting the 
turbulent combustion of spherical (model) syngas flames compared to 
Bunsen-type flames. As in Daniele et al. [257] study under gas 
turbine-relevant conditions, there is a need to study turbulent spherical 
syngas flames with boundary conditions matched with those in an IC 
engine, also considering the dilution effect. 

3. Syngas application in IC engines 

3.1. Syngas in SI engines 

Research on syngas application in SI engines has been focused on 
improving the fuel consumption (or fuel conversion efficiency) and 
engine-out emissions. All employed strategies that result in a more 
efficient SI engine4 can be divided into two categories, along with the 
associated engine design modifications:  

1- Improve stoichiometric operation with a combination of downsizing, 
boosting, and exhaust gas recirculation (EGR) strategies.  

2- Move towards lean or ultra-lean operation through the intake charge 
dilution and advanced direct injection strategies. 

The lean combustion concept in gasoline SI engines has allowed 
higher brake thermal efficiency due to reducing pumping and heat 
transfer losses, while keeping NOx emissions low because of lower peak 
combustion temperatures. However, ultra-lean combustion requires 
careful consideration in order to operate the engine beyond the lean 
limit or dilution limit. While a number of methods, including intake 
design improvement, advanced ignition systems, and EGR stratification, 
could address this, reformate containing hydrogen-rich gas can serve as 
an extender of lean and flammability limits of the engine. Additionally, 
since the choice of fuel directly affects the engine’s lean limit, alterna
tive fuels with reformate can also be used in SI engines. Also, synergies 
can emerge from syngas production via on-board fuel reforming and 
thermochemical energy recovery techniques. However, the focus of this 
section is to run SI engines with syngas as the primary fuel, which can 
only improve engine’s efficiency by extending its lean limit. 

3.1.1. 100% Syngas in carbureted and port fuel injection (PFI) SI engines 
The majority of studies on 100% syngas-fueled SI engine have used 

carburetor or port fuel injection (PFI) technologies in power generation 
for two main reasons. First, the SI engine can integrate thermo- and bio- 
chemical processes in which feedstock can be supplied from viable, eco- 
friendly energy resources, e.g., biomass. Second, since the LHV of syngas 
is lower than that of typical fuels such as gasoline and natural gas, the 
engine output power and torque could drop by 20-40% with syngas 
operation, as reported in several published works [59,272,273]. This 
drawback makes using 100% syngas in SI engines via carburetor or PFI 
technologies unsuitable for vehicular applications. However, it is a good 
choice for stationary applications where some limited operating points 
can be optimized by MBT timing. Also, the engine-out emissions can 
vary by changing the ways of syngas production or adding some other 
species to syngas. A brief review of 100% syngas fueled SI engines for 
stationary and transportation applications is presented below. 

Syngas composition variability can affect the level of extending the 
lean limit of engine combustion. Ando et al. [274] evaluated the per
formance of low-BTU gases produced from gasification and a two-step 

pyrolysis/reforming process in a small-scale naturally aspirated (NA) 
single-cylinder SI engine with variable compression ratio from 8.47 and 
11.9 and an installed mixer instead of the original carburetor. The gas 
produced from gasification was hydrogen-rich, while that from the 
two-step pyrolysis was methane-rich. They found that both gases pro
vided similar thermal efficiency compared to CNG. In addition, the 
hydrogen-rich gas was observed to show a wider stable engine operation 
range with the λ up to 2.0, and NOx and HC emissions were quite low for 
it compared to both CNG and the methane-rich gas. Bika [275] inves
tigated the combustion characteristics and knock limits of a 
syngas-fueled SI engine with a variable compression ratio 
(CR=6:1-10:1). The fuels investigated were pure H2, H2/CO: 75/25, and 
H2/CO: 50/50 (% by vol.). He reported that increase in the CO fraction 
increased the knock limit of syngas and advanced the ignition timing of 
MBT but did not affect the indicated efficiency up to H2/CO: 50/50. In 
addition, the maximum heat HRR was observed with pure hydrogen. 
However, the compression ratio increase affected the peak pressure 
more than by the CO percentage increase. A maximum ITE of 32% was 
reported with H2/CO: 50/50 at ϕ=0.6 and CR=10:1. The general 
conclusion was that the extended combustion duration with a higher CO 
percentage provides more knock resistance at a higher compression 
ratio. 

As mentioned earlier, the power output of SI engines is usually de- 
rated during operation with 100% syngas. For instance, Mustafi et al. 
[272] studied a syngas fuel named “Powergas” that contained 44%H2, 
52% CO, and 4% N2 produced from the Aqua-fuel process5, to evaluate 
the performance and emissions with Powergas (15.3 MJ/kg LHV) in a 
variable CR Ricardo E6 single-cylinder SI engine and also compared it 
with those with gasoline at lean (ϕ = 0.81) and CNG at stoichiometric 
conditions (ϕ = 1.0). The Powergas indicated no superior performance 
relative to CNG and gasoline as the main fuel in the SI engine. They 
observed more than 20% decline in brake torque output and more than 
100% increase in BSFC compared to gasoline and CNG at 1500 rpm and 
CR = 8.1:1, as seen in Fig. 18. Although the engine-out THC and CO 
emissions with syngas fueling were lower than those with gasoline and 
CNG, both CO2 and NOx emissions were higher. Similar power losses 
have also been reported with syngas combustion in SI engines [272,274, 
276-280], especially at lower CR and closer to stoichiometric conditions 
and operating away from the MBT timing. Munoz et al. [276] also found 
around 50% reduction in power output of a carbureted SI engine with 
producer gas compared to gasoline, at CR=8.1:1. 

Shah et al. [277] experimentally studied the performance of a 
single-cylinder SI engine with syngas produced from biomass gasifica
tion. The syngas was composed of 16.2–24.2% CO, 13–19.4% H2, 
1.2–6.4% CH4, 9.3–13.8% CO2, and the balance N2 with an LHV of about 
5.79 MJ/Nm3. Based on the results obtained, the overall engine effi
ciency from the combustion of both syngas and gasoline fuels was found 
to be similar at the same maximum power output, albeit higher 
maximum power output was achieved by gasoline operation. CO was 
observed to be 30–96% lower with syngas than gasoline at each oper
ating point due to the higher carbon content of gasoline fuel. In addition, 
the HC emission of syngas was negligible at less than 40 ppm in all 
operating conditions due to the presence of very less HC (1.2–6.4%) in 
the syngas used in this study. However, the main reason for HC reduc
tion could be the increased H2 content in the fuel mixture, which is 
responsible for promoting fast conversion of HCs [273]. It was also re
ported that NOx emissions in syngas operation were lower, about 
54–94%, compared to gasoline operation. This was due to the lower 
cylinder temperatures as a result of the lower LHV of syngas. The 
operating fuel/air equivalence ratio (ϕ) in this study was not directly 
declared while appearing that the operation of a designed 
gasoline-based engine is stoichiometric for gasoline and is lean for 

4 Here we can consider two ways of reduced pumping losses (also referred to 
as either throttling or gas exchange losses) at low to part loads and/or 
decreased friction losses at high speeds while maintaining emissions low 
enough. 

5 Aqua-fuel technology transforms clean by-products like glycerin into 
renewable fuels for standard generators. 
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Fig. 18. Brake torque and BSFC versus engine speed at WOT and MBT timing and CR = 8:1 (Reprinted from [272] with permission of Elsevier).  

Fig. 19. Brake thermal efficiency contour maps for specified fuels at ϕ = 1, 0.85, and 0.7 and a fixed ignition timing of 15◦ BTDC and CR = 10.7:1 (Reprinted from 
[281] with permission of Elsevier). 
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syngas. It is complicated to run a 100% syngas-fueled SI engine close to 
stoichiometric conditions (i.e., ϕ > 0.75) because the retardation of 
ignition timing after the TDC is required due to hydrogen presence in the 
syngas composition (irrespective of unstable combustion possibility due 
to high hydrogen content in syngas). With this in mind, the following 
two studies are presented for fixed and varying ignition timings. 

In a study intended for vehicular applications, Arroyo et al. [281] 
conducted an experimental study to compare the operation of a NA SI 
engine fueled with two different syngas cases and two typical gasoline 
and methane fuels, at ϕ = 1, 0.85, and 0.7 in full and medium-loads over 
a wide range of engine speeds. Two syngas fuels produced from catalytic 
decomposition of biogas with molar composition of 23% H2 and 23% 
CO, 26% CH4, and 28% CO2, with the LHV=14.095 MJ/kg as syngas #1, 
and 40% H2, 39% CO, 11% CH4, 10% CO2, with LHV=16.525 MJ/kg as 
syngas #2, were tested. A considerable loss in BTE was observed in 
gaseous fueling cases at stoichiometric conditions; however, a slight 
increase in power occurred at ϕ=0.85, as shown in Fig. 19 (gasoline did 
not achieve stable combustion at ϕ=0.7). As the authors reported, the 
reason for higher NOx emissions was the increased H2 and the decreased 
diluent contents, e.g., CO2, in syngas composition. The established 
comparison with syngas #1, syngas #2, and methane showed that the 

high methane fraction of the syngas fuel accounts for the increased 
levels of HC emissions. The general increasing CO2 trend of syngas cases 
with respect to gasoline and methane cases seen was due to the CO2 
content in syngas. Nevertheless, a fixed injection timing (15◦ BTDC) of 
gasoline used as a baseline for all cases in this study may result in a 
deviation from a realistic comparison. 

In the case of varying ignition timing to achieve MBT, Ran et al. 
[282] conducted experiments to differentiate the performance and 
emissions of a NA PFI single-cylinder CFR engine operating on E10 (90% 
gasoline + 10% ethanol vol.), CNG (95% CH4 vol.), ethanol (95% 
ethanol + 5% water vol.), and syngas (60% H2 + 40% CO vol.) at an 
engine speed of 1200 rpm and CR = 8:1. The ϕ was in the range of 
0.74-0.99, 0.63-0.98, 0.76-0.97, and 0.3-0.78 for fuels in the above
mentioned order. The high heat release rates and spark timing restricted 
the upper side of ϕ for syngas (see Fig. 20 (b)). Among tested fuels, 
syngas indicated the lowest net IMEP due to having the lowest volu
metric efficiency and LHV. Generally, the volumetric efficiency of syn
gas and CNG due to their gaseous nature and lack of evaporative cooling 
effects is lower than for liquid fuels. Also, the stoichiometric air/fuel 
ratio of syngas is lower than CNG; therefore, extra mass fuel is injected 
for syngas fueling, resulting in more degradation of volumetric 

Fig. 20. Volumetric efficiency (a), gross heat release rate (b), net indicated efficiency (c), and combustion efficiency(d) for specified fuels at MBT timings and CR =
8:1 (Reprinted from [282] with permission of Elsevier). 
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efficiency, as can be seen in Fig. 20 (a). Moreover, the lowest CA0-10% 
(flame development period) and CA10-90% (rapid burn period) belonged 
to syngas because of the high laminar flame speed and high diffusivity of 
the H2 content in syngas. However, the smaller quenching distance of 
H2, which implies the flame could travel nearer to the cylinder wall, 
leading to higher heat loss, reducing the net indicated efficiency (Fig. 20 
(c)) at closer stoichiometric conditions. 

Another work [283] tried to draw a comparison between syngas, and 
biogas, biogas-syngas blend fueling cases in a NA SI engine at various 
MBT timings and at a fixed engine speed of 1500 rpm, using experiments 
and numerical simulations. The syngas used had a molar composition of 
17% H2, 15% CO, 4% CH4, 15% CO2, and the balance N2 (HHV= 5.65 
MJ/nm3) and biogas had 65% CH4, 35% CO2 (HHV=25.83 MJ/kg). The 
corresponding ITE, NOx emissions, higher temperature, and maximum 
pressure derivative for both syngas and biogas fueling are shown in 
Fig. 21. As seen, all observed variables have a relatively distinct sensi
tivity to where ignition timing occurs, revealing that the previous work 
lacks a reasonable basis for comparison. Although the syngas fueled SI 
engine due to having high H2, low CO2, and presence of N2 contents 
produces more NOx and has the highest temperature regions over the 
entire ignition timing sweep than the biogas one, lower NOx formation 
belongs to syngas, 3 g/kWh, rather than biogas, 7 g/kWh, at maximum 
MBT operation, where the maximum ITE happens (26◦ and 50◦ BTDC for 
syngas and biogas, respectively). Additionally, syngas fueling not only 
indicates 1.5% more ITE compared to biogas at maximum MBT, but also 
tends to maintain high ITE over the whole range of ignition timing in 
contrast to biogas, indicating the superior combustion characteristics of 
H2 relative to CH4. 

3.1.2. 100% syngas in CI engines retrofitted to SI mode 
To mitigate the power loss with syngas use in SI engines, Sridhar 

et al. [284,285] experimentally studied syngas combustion in a 
multi-cylinder SI engine modified from a diesel engine at varying CRs 
(11:5:1 to 17:1). Fig. 22 shows in-cylinder pressure traces at different 
CRs, which did not show any trace of knock for all the studied loads. 
Performance of the engine at higher CRs was smooth and proved that 
syngas use in the SI mode at higher CR is technically feasible. Homdoung 
et al. [286,287] also reported that for CRs as high as 17:1, the engine 
fueled with producer gas (PG, see section 1) could operate smoothly 
without knock risk. This was attributed to the faster burn rate due to the 
presence of H2 in the PG. Although the maximum BTE for the PG engine 
was lower than the original diesel engine by about 3.5%, and the smoke 

density recorded in the diesel engine (1.5-12%) was much higher than 
that in the PG case (0-2%). Zero-dimensional (0-D) modeling was also 
employed to compare the brake power results obtained under a 
wide-open throttle (WOT) condition, and a good agreement was noticed 

Fig. 21. The effects of ignition timing on other variables for syngas (left) and biogas (right) fueling, at CR= 12.9 and 1500 rpm (Reprinted from [283] with 
permission of Elsevier). 

Fig. 22. In-cylinder pressure versus crank angle at different CRs (Reprinted 
from [284] with permission of Elsevier). 

Fig. 23. Power generation efficiency of the syngas, diesel and natural gas en
gines at different loads (Reprinted from [289] with permission of Elsevier). 
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with experimental results [288]. 
Raman and Ram [289] studied the efficiency of a syngas-fueled en

gine at different loads. Fig. 23 illustrates the comparison of syngas, 
diesel, and natural gas engines in power generation efficiency at 
different load conditions. The maximum power generation efficiency of 
the diesel, natural gas, and syngas engine is 28%, 24%, and 21%, 
respectively. Again, a reduction in torque and power de-rating for the 
syngas engine was observed, but at a lower amount. The syngas engine 
operates at 21% power generation efficiency at the full load condition, 
which is about 20% and 10% less than that of the diesel and natural gas 
engines. 

It can be mentioned that increasing the engine compression ratio 
through use of CI engines retrofitted to the SI mode is an efficient way to 
increase brake power. However, an average of 16% power loss can be 
observed in the gas mode compared to diesel operation at a comparable 
CR. Recently, Park et al. [290] demonstrated that high compression 
ratios and intake boosting could improve syngas (30% H2, 25% CO, 45% 
CO2) fueled SI engine power and efficiency. Engine operation with a 
high compression ratio of 17.1:1 was possible in the lean combustion 
mode owing to the low combustion temperature. The gross ITE in the 
lean combustion mode was 18.4% higher than that in the stoichiometric 
combustion mode, mainly because of a significant reduction in the heat 
transfer loss. However, the gross indicated power in the lean combustion 
mode was 25.6% lower than that in the stoichiometric combustion 
mode. In summary, stoichiometric operation using syngas was appro
priate for a high-power engine generator, whereas lean operation using 
syngas is more suitable for a high-efficiency engine generator. 

3.1.3. 100% Syngas in direct injection (DI) SI engines 
Hagos et al. [291–293] were the first researchers to utilize syngas 

(50%H2/50%CO) as the primary fuel in a direct-injection spark-ignition 
(DISI) engine, and then compared its combustion, performance, and 
emissions characteristics to those with CNG operation (as the baseline). 
It should be noted that besides overcoming the issues related to the 
volumetric efficiency of gaseous fuels, the backfire phenomenon is also 
being addressed by the DI ignition system. As well-known, imple
mentation of gaseous injectors in comparison with liquid ones has its 
own difficulty in terms of injector geometry and engine-related char
acteristics such as the interaction between piston design6 and the mixing 
process with late injection, injector width pulse, etc. An improvement to 
the previous work [272], as the authors stated, was a slight decrease in 
brake torque from ranging 20-30% to 14-19% at the same speed of 1500 
rpm, due to eliminating issues attributed to volumetric efficiency pen
alty of delivering gaseous fuels at the intake. Despite the improvement, 
Hagos et al. [294] came across a limitation on the injection duration at 
late injection timings and higher BSFC with syngas fueling than CNG 
fueling. Thus, the engine operation was limited to near stoichiometric 
conditions, leading to a restriction in maximum brake power and a 
request for a bigger fuel tank. These all were attributed to the low LHV of 
syngas, which is lower than a fifth of LHV of CNG (see Table 5). To 
overcome this, in a series of works Hagos et al. [294–296] investigated 
enriching the syngas with methane (a higher LHV fuel) in a DISI engine. 
The new fuel was named methane enriched syngas (MES), consisting of 
H2/CO/CH4: 40/40/20 (% by vol.). It was found that the MES shortens 
the injection duration of syngas and extends the air/fuel stoichiometric 
ratio (λ) compared to CNG and syngas at the same engine speed. 
Furthermore, the MES improved the maximum BTE and the BSFC by 
30.2% and 21.3%, with a little effect on the CO, NOx, and THC emissions 
[294] (see Fig. 24). 

Following the work of Hagos [292], Fiore et al. [297] numerically 
investigated the effect of piston shapes and injection specifications on 
the performance and emissions of a syngas-fueled DI SI engine. The 
parametric study included three different piston bowl profiles and 
half-angles of injection of 30◦, 45◦, 52.5◦ and 60◦. The SOI timing was 
also varied from 90◦ BTDC to 130◦ BTDC. They found that the Omega 
shaped profile can provide best performance, despite of maximum NOx 
emissions compared to the high clearance and low clearance combustion 
cups. The results were very sensitive to the injection angle and SOI, 
which affected the fuel distribution. 

Particulate matter (PM) emission: 
Compared to PFI engines, particulate matter (PM) emissions lead to a 

known big challenge in DISI engines, especially for ultrafine particles, 
which harmfully affect human health [298]. The sources of PM forma
tion in DISI stem from mixture inhomogeneity because of a lack of time 
for fuel atomization and spray impingement, which depends on many 
factors, including operating engine conditions, air-fuel equivalence 
ratio, injection timing, spark timing, and fuel-specific properties [299]. 
While fueling a DISI engine with hydrocarbon-free gaseous fuels is 
seemingly expected to lead to lower particle emission, Thawko et al. 
[300] surprisingly showed a 170% increase in total particle concentra
tion of reformate (H2/CO2:75/25 %by mole) fueling compared to gas
oline at the same and fixed engine speed and load. The most likely 
reason for the high measured particle is attributed to the interaction 
between lubricating oil and high-pressure reformate jet, as the authors 
claimed. Due to its lower density, the required time for syngas fuel in
jection at high pressure is much longer than that for the liquid fuel. 
Besides, the small flame quenching distance of hydrogen content in 
syngas may result in the syngas flame traveling closer to the lubricated 
cylinder walls. Thus, the chance of lubricant participating in the com
bustion rises. In terms of particle size distribution, it was indicated that 
the nucleation mode (< 50 nm) is primarily responsible for the 
discrepancy in total particle number concentration between reformate 
and gasoline fueled DISI engines, as can be seen in Fig. 25 (right). 

In contrast, Bogarra et al. [301] indicated that the addition of 
reformate (H2/CO/CO2/H2O: 5/2.7/11/9.0 %vol.) plus EGR (called 
R-EGR, see Section 4.1) as supplementary fuel to gasoline in a gasoline 
direct injection (GDI) engine reduced the engine PM emissions even 
more than the addition of EGR only, as shown in Fig. 26. It was found 
that the reformate combustion can significantly decrease the PM emis
sions, however, the reduction was dependent on the PM nature. Refor
mate combustion was also found to remove soot cores more efficiently 
than the volatile PM. Moreover, fuel reforming technology did not show 
significant detrimental influence on the TWC operation for the studied 
conditions. 

3.1.4. Syngas addition in SI engines 
As mentioned earlier, a possible use of syngas in SI engines is as an 

additive to enrich or improve the performance of another fuel such as 
methane or a methane-rich biofuel (natural gas or landfill gas); and 
gasoline. Since syngas has a lower heating value than these two fuels, the 
improvement obtained by adding it is not really on the engine power but 
rather on the efficiency, combustion, and pollutant emissions. Con
cerning knock studies, Gerty and Heywood [302] experimentally 
investigated the performance of a knock-limited SI engine by consid
ering the effects of relative air/fuel ratio, inlet boost pressure, 
compression ratio, and reformate added to the tested fuel-air mixtures. 
The tested fuels were: Unleaded test gasoline (UTG96, representing as 
gasoline or indolene fuel with octane number of 96), primary reference 
fuel (PRF, a mixture of iso-octane and n-heptane), and toluene reference 
fuel (TRF, a mixture of toluene and n-heptane). A bottled mixture, as 
reformate, of H2/CO/N2: 25/26/49 (% by vol.) was utilized to simulate 
the output of a POX fuel reformer (named Plasmatron, see subsection 
4.1.1). The mixture was considered the replacement for a portion of the 
main fuel (gasoline), which then mixes with the gasoline in the intake 
manifold. Fig. 27 (a) shows the combustion retard, which was defined as 

6 Even by eliminating the physical processes associated with the spray of 
liquid fuel (droplet breakup to evaporation), a sufficient time for the charge 
mixing process at late injection is still needed because the shape of the piston 
head affects the charge distribution, which may result in an uneven air/fuel 
ratio in the chamber. 
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the combustion phasing disparity at the current state and the optimal 
one (i.e., MBT spark timing), as a function of reformate fraction. A 
reduction in combustion retard can be seen with increasing reformate 
fraction. The reduction with the addition of reformate for each fuel was 
normalized, as shown in Fig. 27(b). As can be seen, reformate addition 

was most effective when added to PRFs that are entirely composed of 
alkane hydrocarbons. The combustion retard needed to avoid knocking 
decreased by about 2◦ CA per 3% reformate fraction. When applied to 
TRF fuels composed of more than 20% n-heptane with octane numbers 
of 95 or lower, reformate addition was only marginally less effective 
than for PRF fuels. As the content of alkanes declined and the aromatic 
content increased, reformate addition seemed to be less successful for 
TRFs to the point where there was no value in reformate addition to pure 
toluene. 

Using the same reformate and at low CR (9.8:1), a direct comparison 
between pure hydrogen and reformate additions showed that both of 
them could extend both peak efficiency and the lean limit of indolene 
combustion linearly [303,304]. On the contrary, at high CR (13.4:1), the 
reformate addition was no longer had a linear relationship, while pure 
hydrogen still indicated an obvious, proportional/linear extension of 
peak efficiency [305], as can be seen in Fig. 28 (left). The main reason 
for this behavior was due to the proportional extension of the location of 
the Δθ10 − 90%=30◦CA. However, no distinguishable curves were seen 
with increase of reformate, as shown in Fig. 28 (right). 

Smith and Bartley [306] evaluated stoichiometric operation of nat
ural gas + EGR and natural gas with syngas + EGR in a single-cylinder 

Fig. 24. Comparison of injection duration at maximum IMEP (left) and maximum brake torque vs. engine speed (right) for syngas, MES, and CNG at CR=14:1 
(Reprinted from [294] with permission of Elsevier). 

Fig. 25. Total PN vs. time (left) and total PN vs. particle diameter (right) comparisons between gasoline and methanol steam reforming (MSR) products as the fuel of 
a DISI engine at IMEP of 5 bar and engine speed= 2800 rpm (Reprinted from [300] with permission of Elsevier). 

Fig. 26. Total PN vs. particle size comparison among no EGR, EGR, and REGR, 
as well as with after and before using the three way catalyst (TWC) operation 
(Reprinted from [301] with permission of Elsevier). 
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Caterpillar engine converted to SI operation. A 44% extension of EGR 
tolerance on a mass basis and a 77% reduction in raw NOx emissions for 
using syngas with natural gas were detected compared to the natural gas 
case. Cha et al. [307] experimentally investigated the operating char
acteristic of an SI engine for power generation upon mixing CH4 and 
simulated syngas (H2 and CO) in a diesel engine that was modified to run 
in the SI mode with a CR=13:1. Fig. 29 shows the fuel conversion effi
ciency versus NOx emissions for various fuel mixtures, where NOx 
emissions were elevated as fuel conversion efficiency increased. How
ever, this increase was insignificant for syngas compared to H2 or CO 
when added to CH4-air mixtures at a ratio of 5% of the overall LHV. 
Since on-board fuel reforming methods can produce syngas as the pri
mary fuel, this will be discussed in section 4. 

A summary of the main research works published on syngas utili
zation in SI engine is presented in Table 9. Future study of 100% syngas- 
fueled SI engines can be followed in designing an appropriate injection 
system for gaseous fuel like syngas in DISI engines and applying 
advanced spark systems like multiple injections. 

3.2. Syngas in HCCI engines 

Research on syngas utilization in advanced combustion strategies 
has significantly increased due to its clean-burning properties and 
possible production from several paths. The homogeneous charge 
compression ignition (HCCI) engine is a low-temperature combustion 
(LTC) concept which combines the best features of SI and CI engines. 
The HCCI engine has shown the potential for higher efficiency and ultra- 
low NOx and soot emissions, however it has some drawbacks in terms of 
limited operating range, combustion control and excessive unburned 
products [319,320]. In this part, syngas-fueled HCCI combustion is 
analyzed in detail. 

3.2.1. 100% syngas fueling 
According to the finding of previously published papers, HCCI 

combustion with syngas has not shown superior performance over other 
fuels. It faces a similar barrier, such as the limited operating window and 
a need for regulating the intake temperature to control the combustion 
event. For instance, Stenlåås et al. [321] focused on HCCI combustion of 
100% syngas, which was reformed methanol gas (RMG), a mixture of 
hydrogen and carbon monoxide in the volume ratio 2:1, and then 

Fig. 27. a) Combustion retard to just avoid knock with increased reformate fraction for fuels with PRFs and TRFs; CR = 11.6:1, λ = 1.0, 1500 rpm, MAP for 40% 
boost (NIMEPMBT = 14.7 bar, 1.4 times un-boosted NIMEPMBT). b) Decrease of combustion retard with increased reformed fuel fraction at 1500 rpm, PRFs at λ =
1.0 (40% boost) and λ = 1.3, TRFs at λ = 1.0 (40% boost) and λ=1.3, and UTGs at λ = 1.3. Data is from all three compression ratios [302]. 

Fig. 28. Effect of air dilution on net indicated engine efficiency and CoV NIMEP (left) and on 10-90% burn duration (right) for various amounts of reformate 
(produced by Plasmatron) and pure hydrogen; at MBT, 1500 RPM, CR = 13.4:1, and NIMEP = 3.5 bar [305]. 
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compared it to pure hydrogen fueling [322] in SI operating mode. They 
found that a higher temperature for RMG fueling than pure hydrogen 
was required to achieve the same combustion duration with HCCI mode. 
Both hydrogen- and RMG-fueled HCCI did not provide sufficient exhaust 
energy for the on-board reforming process by waste heat recovery. In 
summary, the operating mode based on 100% reformate was more 
favorable for SI mode operation. 

Several years later, Bika et al. [323] measured the HCCI performance 
on 100% syngas fueling at two equivalence ratios, 0.26 and 0.30, and an 
engine speed of 1800 rpm, with a diesel engine converted to HCCI mode 
by adding PFI injection and intake air heating systems. Three compo
sitions were considered: H2=100%, H2/CO=3/1, and H2/CO=1/1 by 
volume. By increasing intake temperature, it was seen that the 
in-cylinder pressure, temperature, and heat release started to increase, 
and finally led to advancing the combustion phasing, which had com
bustion efficiency in the range of ηc = 83%-88%. Also, by altering the 
equivalence ratio towards leaner regions and increasing CO in syngas, 
the intake temperature was increased to maintain the best IMEP 
conditions. 

With the aim of improving HCCI combustion and reduction of 
pollution emissions based on the syngas-air mixture, a few modeling 
studies [324,325] have been carried out to explore the effect of various 
species addition. Starik et al. [325] assessed the potential of the addition 
of a highly reactive species such as ozone or singlet delta oxygen (SDO) 
into an HCCI fueled with syngas (50%H2/50%CO by volume). They 
noticed that the presence of 0.38% of O3 mole fraction (=1% of SDO) in 
total oxygen could diminish the dependency on high intake temperature 
by accelerating and intensifying the ignition and combustion event, 
especially under the low load regime (φ = 0.2); this resulted in a 7-14% 
improvement of engine power output and up to a 15% reduction of both 
CO and NO emissions due to lack of excessO2. 

For better understanding of auto-ignition and combustion develop
ment in HCCI based on 100% syngas, Yamasaki and Kaneko [326] 
conducted an experimental and modeling study using mock syngas with 
varying compositions, ranging from 20% to 40% for H2, 7-27% for CO, 
20-40% for N2, 10-30% for CO2, and a 3% CH4 by volume. An 
auto-ignition temperature of T=1100 K, almost similar to hydrocarbon 
fuels, was observed for syngas, governed by in-cylinder gas temperature 
and not by the fuel composition tested. It was also found that H2 has a 
longer conversion time than CO during the combustion process, and 
combustion duration can be roughly determined by the volumetric ratio 
of H2/ CO2. For detailed analysis of the syngas combustion in HCCI 

combustion, Maurya et al. [327] used a stochastic reactor model (SRM) 
with a detailed chemical kinetic mechanism (32 species and 173 re
actions) to numerically investigate syngas fueled HCCI combustion 
validated against previous experiments [323]. Within the SRM, a 
probability density function (PDF) was used to define the local (vari
able) and global (constant) physical parameters. For various engine 
operating conditions, simulations were performed by changing intake 
temperature, engine load, and speed at a constant compression ratio of 
19:1, and the obtained operating window is shown in Fig. 30. The in
clined hatched line represents operating conditions with a combustion 
efficiency of less than 80%. The area with PPRR > 5 MPa/ms is repre
sented by the crossed hatched region, and the contour lines in the plot 
represent IMEP. Operating conditions with combustion efficiency higher 
than 80% and PPRR < 5 MPa/ms are considered as the operating area of 
the HCCI engine. It can be seen that increasing the intake temperature 
(or Tivc, specified at intake valve closing) can help the operating range in 
the lean-side of stoichiometry, but at the expense of lowered IMEP due to 
decreased volumetric efficiency. At higher engine speed, suitable oper
ating range has adversely shifted to a more bounded region that is highly 
sensitive to intake temperature and excess air (λ or air-fuel ratio). In this 
case, the chance of incomplete or vigorous combustion is severe. The 
maximum combustion efficiency of 98% is reported in the study. 

While the abovementioned works have dealt with 100% syngas in 
the form of simulated reformate gas (with only H2 and CO), there are a 
number of published works with producer gas generated from a biomass 
gasification process. Przybyla et al. [328] compared SI and HCCI fueled 
with low calorific producer gas under the same load; they reported that 
the syngas-fueled HCCI engine had extremely high CO and a lower 
indicated efficiency than SI, equaling a more than 10% loss in the base 
fuel’s chemical energy. It is worth mentioned that the use of high intake 
temperature to control the combustion in syngas-fueled HCCI engines 
has been reported in previous works. Bhaduri et al. [329] employed high 
temperature strategy as a positive advantage over a syngas-fueled SI 
engine to introduce a novel concept of unprocessed syngas-fueled HCCI, 
which has tar contents and moisture. Because the intake temperature 
was set to around T=250◦C, which is higher than the dew point of the 
tars, issues related to tar condensation were eradicated. According to the 
authors, moisture in syngas tends to delay combustion, while tars’ effect 
was negligible. Nevertheless, such an intake temperature is not accept
able for vehicular applications, but the readers can refer to their later 
works [330–332] for in-depth information on this concept. We believe 
that a brief discussion of syngas impurities can also be useful here. 

3.2.2. Syngas addition 
Reformate as ignition controller: 
The operating range of kinetically-controlled HCCI combustion is 

narrow due to lack of any direct control on ignition timing; this can lead 
to extremely high pressure rise rates corresponding to nearly constant 
volume heat release of a homogeneous air-fuel mixture in the combus
tion chamber at high loads (for low octane fuels), and poor combustion 
and misfiring at low loads (for high octane fuels). To mitigate this, 
various techniques such as intake charge preheating [333], EGR [334, 
335], boosting [336,337], using two fuels with different reactivity (i.e., 
one has a high octane and the other has a high cetane number) [338, 
339] have been proposed which proved to have a profound effect on 
control of ignition event. For more details about these techniques, one 
can refer to [340,341]. 

Syngas or reformate plays the role of the ignition-timing controller 
by either retardation (if it is the primary fuel with high octane number, 
e.g., syngas/diesel fueling case) or advancement (if used as the sec
ondary fuel with higher combustibility characteristics, e.g., natural gas/ 
syngas) of the main combustion, which leads to widening the load 
operating range of the HCCI engine. In the former case, syngas has two 
widespread effects on fuels, showing two stages of heat release such as 
diesel, n-heptane, and dimethyl ether (DME). These result in prolonged 
ignition delay times, and widened combustion duration (in other words, 

Fig. 29. NOx emissions versus fuel conversion efficiency for various compo
nents added to CH4-air mixtures at different spark timings (Reprinted and 
modified from [307] with permission of Elsevier). 
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Table 9 
Summary of syngas utilization studies in SI engines.  

Author(s) Objective(s) Syngas 
composition  
(% vol.) 

Experimental info Simulation Finding(s) 

100% Syngas in carbureted, port fuel injection (PFI), direct injection (DI) SI engines 
Mustafi et al.  

[272] 
(2006) S 

A comparison study 
between ‘Powergas’, 
gasoline, and natural gas 
fueled SI engine 

H2/CO/N2: 44/52/ 
4.0 
LHV= 15.3 MJ/kg 

A 4-stroke, 1-cyl, SI 
engine, CRs= 8:1-11:1, 
rpm= 1000-2000, WOT, 
ITs = MBT timings 

Engine simulation 
program ISIS 

Compared to gasoline and CNG: 
23-30% ↓ in brake torque, ↑NOx, ↑CO2 while HC 
and CO were negligible. 

Conte and 
Boulouchos  
[308] 
(2006) 

Effect of RG addition on 
flame speed and flame 
front propagation in 
premixed, homogeneous 
charge gasoline engines 

H2/CO/N2: 21/24/ 
55 
LHV= 5.3 MJ/kg  

A 4-stroke, 2-cyl, PFI SI 
engine, CR= 8.7:1, 
rpm= 2000, BMEP= 2 
bar, ITs = MBT timings  

— When the stability limit was met, combustion took 
place in a very similar way for different 
gasoline–RG blends. 

Papagiannakis 
et al. [309] 
(2007) 

Comparison between 
conventional natural gas 
(NG) and syngas fueled SI 
engine 

H2/CO/CH4/CO2/ 
N2: 19/29/6/8/38 
LHV= 7.45 MJ/kg 

A 4-stroke, 20-cyl, TC, SI 
engine, CR= 11:1, 1500 
rpm 

Two-zone 
thermodynamic 
model 

↑syngas fuel concentration with ↑engine load: 
↑peak cylinder pressure and an improvement of 
the engine efficiency. Compared to NG: ↑CO, ↑NOx 
emissions  

Rakopoulos and 
Michos [310] 
(2008) 

Development of a zero- 
dimensional, multi-zone 
combustion model for 
predicting the performance 
and NO emissions of a SI 
engine fueled with syngas 

// //  A zero-dimensional, 
multi-zone, 
thermodynamic 
combustion 
model 

More reliable NO emissions prediction with 
multiple burned zones than single burned zone. 
Calculated NO were kept low at all engine loads (<
200 ppm) with lean combustion of syngas. 

Shah et al. [277] 
(2010) S 

Evaluation of syngas fueled 
SI engine-alternator and 
compared it with gasoline 
operation 

H2/CO/CH4/CO2/ 
N2: 
13-19.4/16.2-24.2/ 
1.2-6.4/9.3-13.8/ 
balance 
LHV= 5.79 MJ/kg 

A 4-stroke, 1-cyl, NA, SI 
engine, capacity= 5.5 
kW 

— Lower power output (by about 1000 W), a 
significant ↑ in CO2 (33-167%) but lower NOx (54- 
84%) and CO (30-96%) compared to gasoline 
operation 

Arroyo et al.  
[281] 
(2013) V 

Efficiency and emissions of 
a SI engine fueled with 
syngas, CH4, and gasoline 

Syn1: H2/CO/CH4/ 
CO2: 23/23/26/28 
Syn2: H2/CO/CH4/ 
CO2: 40/39/11/10 

A 4-stroke, 2-cyl, NA, SI 
engine, CR= 10.7:1, 
rpm= 2000-4500, 
loads= 50% and 100%, 
ϕ= 0.7-0.85-1, IT=
15◦BTDC 

— Both syngas cases have ↑ CO2 trend at all tested ϕ, 
and a ↓ BTE among others. 
Syn2 and CH4 had the highest NOx and lowest CO, 
respectively. 

Arroyo et al.  
[311] 
(2014) V 

Combustion behavior of SI 
engine with syngas, CH4, 
biogas, and gasoline 

Syn1: // 
Syn2: // 
Biogas: CH4/CO2: 
60/40 

// — In all speeds and ϕ: CoV of IMEP: 
biogas>CH4>syn1>gasoline>syn2.  
Maximum HHR and cylinder Pressure, highest 
NOx, and lowest HC belonged to syn2. 

Arroyo et al.  
[312] 
(2015) V 

Effects of IT and 
supercharging 

// //, various ITs= 11◦-59◦

BTDC, intake boost= 1 
to 1.3 bar 

— ↑H2, ↑CO, and ↓CO2 contents: ↑advancement of IT 
retardation. Right ϕ and IT result in higher 
efficiencies than the gasoline. ↑boost pressure: 
↓CO2, ↓CO, ↑NOx, ~HC. 

Hagos et al.  
[292] 
(2014) 

First attempt at study on a 
direct-injected (DI) syngas 
fueled SI engine and 
compare it with CNG 
(baseline) 

H2/CO: 50/50 
LHV= 17.54 MJ/kg 

A 4-stroke, 1-cyl, DISI 
engine, CR= 14:1, 
rpm=1500-2400, ϕ=
0.67-1, a fixed SOI of 
180◦ BTDC 

— Compared to CNG operation: ↓brake torque (14.2- 
19.6%) and ↓BTE (16.7%), and ↑BSFC. At higher 
loads: ↑NOx and ~CO. THC was negligible. 

Hagos et al.  
[294] 
(2015) 

Methane-enriched syngas 
(MES) in DISI engine 

Syngas: // 
MES: H2/CO/CH4: 
40/40/20 LHV=
24.4 MJ/kg 

// — At all tested BMEP: BTE at 1500 rpm: 
CNG>MES>syngas. BTE at 2100 rpm: 
MES>CNG>syngas. BSFC at both rpms: 
syngas>MES>CNG. Little effect on CO, THC and 
NOx. 

Hagos et al.  
[293] 
(2016) 

Study of effect of injection 
timing on a syngas fueled 
DISI engine 

H2/CO: 50/50 //, SOIs= 120◦ and 180◦

BTDC 
— SOI= 120◦ compared to 180◦ BTDC: Better BTE, 

power, and BMEP at all engine speeds. With 
↑speed, BTE started to ↓. THC, NOx, and CO all 
worsened. 

Hagos et al.  
[295]  
(2017) 

Effect of SOI timing on a 
DISI engine with 20% CH4 

augmented syngas 

H2/CO: 50/50 
CH4 augmentation: 
20% (volume/ 
volume) 

// — Based on improved performance and emissions: 
the engine well-performed with SOI=180 but with 
SOI=120 just at lower speeds. 

Hagos et al.  
[296] 
(2019) 

Engine speed and A/F ratio 
(λ) effects on the CH4 

augmented H2-rich syngas 
combustion in DISI engine 

// A 4-stroke, 1-cyl, DISI 
engine, CR= 14:1, 
rpm=1500-2400, ϕ=
0.3-0.8, SOI= 180◦

BTDC, WOT 

— With ↑λ: ↑CoV of IMEP in all speeds, ↑flame 
development and ↑flame propagation durations. 
All the durations were more sensitive to λ at lowest 
speed as compared to the other speeds. 

Kan et al. [283] 
(2018) 

Effects of IT, H2 and CH4 

contents on SI engine 
fueled with syngas and 
biogas 

H2/CO/CH4/CO2/ 
O2/N2: 17/15/4/ 
15/0.14/48.86 
Biogas: CH4/CO2: 
65/35 

A 4-stroke, 4-cyl, SI 
engine, CR= 12.9:1, 
rpm= 1500, ϕ=0.8, IT=
variable 

KIVA4-CHEMKIN Under WOT and MBT operation:  
ITE (%): syngas (39) > biogas (37.5), NOx (g/ 
kWh): syngas (3.3) < biogas (7.2) 
At advanced ITs: ↑H2 (11-20% by vol.): was less 
sensitive to NOx change, than ↑CH4 (55-88% by 
vol.).  

(continued on next page) 
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smoother combustion). This can be justified according to the following:  

1- Dilution (or concentration) effect: O2-deficiency happening by 
replacing O2 with H2 leads to weakening the low-temperature HR 
(LTHR or partial oxidation) stage of the fuel, which is a preparation 
step of combusting the in-cylinder mixture, resulting in lowering the 
hydroxyl (OH) concentration, and thus retarding the high- 
temperature HR (HTHR or combustion). It was shown that the 
magnitude of LTHR has a direct correlation with advancing or 
retarding the HTHR [342].  

2- Chemical effect: OH generated from the first HR stage may be 
consumed by hydrogen (i.e., H2 + OH = H2O + H), suppressing 
chemical kinetics of the mixture before the combustion. 

In the latter case, the strong thermal effect of syngas on high octane 
fuels like natural gas may result in rising the specific heat capacity of the 
mixture and increasing the compression temperature of in-cylinder 
charge eventually, depending on intake temperature. To highlight the 
thermal effect, valving strategies may be helpful without needing intake 
preheating. Eng et al. [343] reopened the exhaust valve during the 

Table 9 (continued ) 

Author(s) Objective(s) Syngas 
composition  
(% vol.) 

Experimental info Simulation Finding(s) 

Ran et al. [313] 
(2020) 

The potential of lean SI 
combustion with E10, 
CNG, ethanol, and syngas. 

H2/CO: 60/40 
LHV= 20.4 MJ/kg 

A 4-stroke, 1-cyl, SI 
engine, CRs= 9:1-11:1, 
rpm= 1200, intake 
pressure= 0.75 bar, ϕ=
0.3-1, various ITs 

With ↑CR: ↑engine efficiency and improved lean 
burn capability for all tested fuels. The leanest 
misfire limit (0.4<ϕ<0.7) was achieved with 
syngas with low NOx, low CO, and no THC. 

100% syngas in CI engines retrofitted to SI mode 
Sridhar et al.  

[284] 
(2001) 

Use of producer gas (PG) in 
engines at high CRs 

H2/CO/CH4/CO2/ 
H2O/N2: 19/19/2/ 
12/2/46 
LHV= 4.5 MJ/kg 

A 4-stroke, 3-cyl, NA, CI 
engine, CRs= 11.5:1- 
17:1, 1500 rpm, various 
ITs 

— Smooth combustion at CR=17:1. To achieve MBT, 
a retardation in spark timings is needed. Compared 
to diesel mode, at equal CR, the maximum power 
loss was 16% in SI mode with PG.  

Sridhar et al.  
[131] 
(2005) 

Develop a PG engine 
integrated with a biomass 
gasifier, with a new 
designed gas carburetor. 

// A 4-stroke, 3-cyl, NA, CI 
engine, CRs= 11.5:1- 
17:1 
A 4-stroke, 12-cyl, TC, CI 
engine, CR= 12:1 
A 4-stroke, 6-cyl, NA, SI 
engine, CR= 10:1 

— 20 – 30% loss in power compared to diesel 
(baseline) case 
At CR =17:1 and maximum MBT: both NOx and 
CO were minimum. 

Gamino and 
Aguillon [314] 
(2010) 

Simulation of syngas 
combustion with a multi- 
spark ignition system 

H2/CO/CH4/ CO2/ 
N2: 6/25/5/11/53 

— 2-D thermodynamic 
code and commercial 
CFD package, 
PHOENICS 

A predictive model with capability to use in 
parametric studies of syngas combustion. 

Ulfvik et al.  
[315] 
(2011) 

Engine performance, 
efficiency and emissions of 
SI engine with PG and 
natural gas 

H2/CO/CH4/CO2/ 
N2: 30/20/1/15/34 

A 4-stroke, 1-cyl, CR=
12.6:1, rpm= 1050, 
ITs= variable 

— Compared to NG: ↓NOx, ↓THC, and ↓maximum 
IMEP, ↑CO, wider the lambda range, with PG 
under comparable conditions. 

Raman and Ram  
[289] 
(2013) 

Comparison of PG engine 
with diesel and natural gas 
(NG) engines at various 
loads 

H2/CO/CH4/CO2/ 
H2O/N2: 23/21/ 
0.9/9.0/2.0/46.1 

A 4-stroke, 6-cyl, NA CI 
engine, CR= 12:1, 1500 
rpm, a fixed IT of 28◦

BTDC 

— At all loads: 
Overall efficiency: Diesel>NG >PG. 
Specific fuel consumption: PG>NG>PG. 
At full load the discrepancies were decreased. 

Shivapuji and 
Dasappa [316] 
(2014) 

The PG impact on overall 
engine performance with 
turbocharger (TC) 

H2/CO/CH4/CO2/ 
H2O/N2: 19/19/2/ 
12/2/46 

A 4-stroke, 6-cyl CI 
engine, CR= 16.5 in CI 
mode and 10.5 in SI 
mode, 1500 rpm 

zero-dimensional 
model 

TC imbalance led to the highest power de-rating. 
The selection and optimization of TCs were 
described as the technique for recovering the loss 
of non-thermodynamic power. 

Shivapuji and 
Dasappa [317] 
(2015) 

Analysis of thermo- 
physical properties and 
experimental analysis of 
the proportion of fuel 
hydrogen on syngas fueled 
by SI engine 

// – Effect of H2 

ratio 
A 4-stroke, 2-cyl, 
SI research engine, CR=
11:1, 1500 rpm 

CHEMKIN  ↑H2 part from 12.8% to 19.4% by vol.: ↑BTE 
↑H2 part up to 37.2% by vol.: 
↑engine cooling load, ↓BTE, due to increasing the 
combustion stage 

Cha et al. [307] 
(2015) 

Study of a SI engine by 
adding syngas into CH4, 
with a mixing ratio 

H2/CO: 50/50 A 4-stroke, 4-cyl, TC, CI 
engine, CR= 13:1, 
various ITs 

— ↑Syngas mixing ratio (5%, 10%, and 15%): 
Combustion was improved, ↑fuel conversion 
efficiency, ↑NOx, and the rate of ↑ was non-linear. 
A/F and spark timings should be calibrated. 

Homdoung et al. 
[286] 
(2015) 

Effects of variable CRs, 
engine speeds and loads on 
the performance of a small 
engine operated on PG 

H2/CO/CH4/CO2/ 
O2/N2: 8.5/30.5/ 
0.35/4.8/6.3/49.55 
8.5%H2; 30.5% CO; 
0.35% CH4; 4.8% 
CO2; 6.3%O2 and 
49.55%N2 

A 4-stroke, 1-cyl, CI 
engine, CRs= 9.1-17:1, 
rpm=1000-2000, 
load=20%-100% 

—  
The modified engine worked well at higher CRs 
with PG than with gasoline. Up to 23.9%, BTE was 
obtained. 
Rather to the original diesel: 
↓BTE (11.3%), ↓engine’s smoke density, ↑CO, with 
similar HC emissions. 

Kim and Kim  
[318] 

Feasibility assessment of 
hydrogen-rich syngas 
spark-ignition engine for 
heavy-duty long-distance 
vehicle application 

H2/CO/CO2: 70/ 
15/15 

A 4-stroke, 1-cyl, CI 
engine, CRs= 15:1, 
rpm=1800 

1-D multicylinder 
engine model in GT- 
SUITE  

The vehicle with the syngas engine could travel for 
152.6 km without refilling. The syngas bus 
exhibited lower fuel consumption than the 
equivalent CNG bus by 15%. 

Denotations: ↑: increase, ↓: decrease, ~: nearly constant or insignificant, //: similar to above. 
IMEP: indicated mean effective pressure, CR: compression ratio, ITE: indicated thermal efficiency, BTE: brake thermal efficiency, CoV IMEP: coefficient of variation of 
IMEP, TC: turbocharge, NA: naturally aspirated, IT: ignition timing, SOI: start of ignition, ϕ: the fuel/air equivalence ratio, WOT: wide open throttle, and MBT: 
maximum brake torque. 
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intake stroke to obtain more hot gases in the cylinder, i.e., exhaust 
re-breathing. The combustion chamber of an HCCI-mode engine fueled 
with iso-octane and partial oxidation gas (POX gas) added to the intake 
experiences a high quantity of internal residuals and thermal stratifi
cation; this causes the ignition timing to advance. Another technique is 
negative valve overlap (NVO), in which the residuals are trapped and 
recompressed, as described in section 4. 

Dimethyl ether (DME) has some more interesting combustion char
acteristics than diesel (i.e., soot-free combustion and lower NOx emis
sions), but still faces challenges with regard to its physical properties (i. 
e., low viscosity, which leads to higher leakage and in turn engine 
durability concerns) [344]. Similar to syngas, DME can benefit from 
on-board fuel reforming in vehicles via a methanol-steam reforming 
process [345]. With these mentioned potentials for DME, and emerging 
dual-fueling strategies for achieving controllable HCCI combustion, 
Shudo et al. [346–351] conducted a number of experiments supported 
by chemical kinetics analysis, to run a single-cylinder SI engine con
verted to the HCCI mode fueled with DME and MRG (methanol reformed 
gas or syngas). Both fuels were produced from endothermic methanol 
steam reforming using engine exhaust gases, and then followed by 
methane dehydration for DME generation; with a single fuel tank 
required for liquid methanol, as seen in Fig. 31 (left). While using 
simulated reformate comprising 67% H2 and 33% CO (by volume) in the 
experiments, they found that ignition of the second heat release (main 
combustion) and engine load could be controlled by altering the pro
portion of the MRG/DME ratio; by increasing the ratio, the overall 
system efficiency reached 49% and a 14% rise in engine efficiency over 
the baseline was obtained (see Fig. 31 (right)). This controllable HCCI 
concept was achieved due to delayed ignition and increased temperature 
before the main combustion, corresponding to the hydrogen content of 
the MRG. Similarly, they proposed this concept by storing a tank of DME 
and partial oxidation of it to produce DME reformed gas (DRG) [352]. 

They stated that this concept with HCCI combustion can result in 
high thermal efficiency over a wide operable window of equivalence 
ratio and high overall system efficiency, which is comparable to the fuel 
cell system. A brief summary of their work is given as follows:  

1- Using an optimal compression ratio along with a suitable DME/MRG 
ratio (with increasing amount of MRG) resulted in a higher thermal 
efficiency for HCCI combustion, and a higher overall thermal effi
ciency can be achieved by using waste heat recovery (WHR) [346].  

2- Higher compression ratio led to advanced ignition timing, but with 
higher heat transfer (cooling) loss [346] due to the small quenching 
distance and fast burning velocity of hydrogen content in MRG 
(syngas) [353].  

3- While both H2 and CO have influence on retarding the second stage 
HR, the role of H2 is much more intense due to having a larger effect 
on first stage HR by consuming the OH radical [347]. Also, com
bustion of hydrogen during LTHR is controlled by H + O2 → OH + O 
and less reactive HO2 [349]. CO2 also caused a slight retardation 
[348].  

4- Despite larger amounts of H2 being useful for ignition control effects, 
H2 has a lower effect on WHR.  

5- Highest overall thermal efficiency was expected from thermal 
decomposition [350] and highest output would be from steam 
reforming, which resulted in MRG with higherH2 content. 

A collection of works [354–356], which have studied use of a cata
lytic reforming reactor in the exhaust stream of a natural gas HCCI en
gine, have shown that hydrogen-rich gas could be a substitute for intake 
preheating for the same emitted NOx, greatly benefiting low engine 
loads. These works have been expanded to form on-board fuel reforming 
strategies, which are called reformed exhaust gas recirculation (R-EGR), 
as described in the next section. Those works concluded that employing 

Fig. 30. Operating range for syngas fueled HCCI engine under various engine speeds at a constant compression ratio [327].  

Fig. 31. Schematic of proposed concept (left) heat balance of this concept (right) (Reprinted from [349] with permission of Elsevier).  
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on-board fuel reforming products to extend the lower load-limit, along 
with using the supercharging and high internal EGR technologies for 
increasing the upper load-limit could be a solution for extending the 
entire operating window of HCCI engines fueled with natural gas or 
gasoline [357]. 

At the University of Alberta, a series of research works have been 
experimentally conducted to capture the effect of reformer gas (RG) 
blending on the base fuels, including high-octane primary reference 
fuels (PRF) [358], low-octane PRF [359], natural gas [360,361], 
n-heptane [361,362], and iso-octane [361] in a variable compression 
ratio, single-cylinder CFR engine operated in the HCCI mode. The effect 
of varying RG blend fraction ( mRG

mRG+mbase fuel
∗ 100) was studied, while 

intake temperature, air-fuel ratio, and EGR were kept constant. For 
low-octane PRF, such as PRF0 (i.e., 100% n-heptane) and PRF20 (i.e., 
20% iso-octane and 80% n-heptane), it was observed, in conformity with 
the above discussion, that increasing values of RG replacement leads to a 
retarded and prolonged combustion event even after TDC [359]. As a 
reported case, 20% of RG replacement delayed the start of combustion 
(SOC) by about 14 CAD (3 ms) and lengthened the combustion duration 
by 50%, and increased the indicated power and thermal efficiencies by 
17% and 12%, respectively. This remarks that combustion can be 
controlled by syngas without using other strategies like preheating the 
intake charge, adjusting dilution level or EGR, and by using valving 
strategies, which do have slow response or penalty in engine power. 
They also applied a similar procedure to high-octane PRF [358], PRF80 
and PRF100, except by increasing CR and intake temperature (from 
100◦C to 140◦C). Fig. 32 displays representative in-cylinder pressure 
traces and their corresponding heat release. As can be seen, the peak 
in-cylinder pressure and pressure rise rate were reduced by increasing 
the RG, with peak pressure shifting from approximately TDC to 
approximately 10◦ ATDC. RG substitution effectively smoothed com
bustion by retarding the combustion phasing towards a more efficient 
timing for HCCI combustion, and by widening the combustion duration. 
Replacing RG did not impact NOx emissions but increased CO and HC 
marginally, therefore, with a slight decrease in combustion efficiency. 
The indicated fuel conversion efficiency was slightly increased, because 
the combustion phasing was better than the baseline case. It was found 
that 40% of RG blended in a PRF80 fuel (by mass) has an octane number 
as close as PRF100, but with totally different combustion characteristics. 
Thus, the calculated octane number is not a good indicator of the 
characteristics of HCCI combustion. 

Later in 2008, the same researchers [361] examined the effects of 
varying simulated RG compositions on HCCI combustion timing with 
natural gas, iso-octane, and n-heptane. The RG compositions chosen had 
H2/CO ratios of 3/1 (H2/CO=75/25 %by volume) and 1/1 
(H2/CO=50/50 %by vol.). The first and latter are a typical output of 
natural gas steam reforming and gasoline partial oxidation in an 
on-board fuel reformer, respectively. Fig. 33 reveals the impact of two 
selected RG compositions on ITE and SOC for selected fuels. For 
iso-octane, both compositions retarded the combustion timing similarly 
(i.e., +1.5 CAD per each 10% of RG); which implies that iso-octane may 
behave more sensitively to the thermal effect than the chemical effect of 
the H2 content in RG. Also, at the same IMEP, the RG 75/25 moved the 
mixtures towards the richer region compared to the RG 50/50, which 
was operated at the leaner condition. Fig. 33(a) shows the ITE with the 
expanded rich-limit of RG75/25 decreased, presumably due to increased 
heat transfer losses. For natural gas, both compositions advanced the 
combustion timing with no obvious discrepancy by increasing the spe
cific heat ratio and compression temperature of the mixture. The sup
porting modeling studies showed that the thermal effect is dominant, 
and the chemical effect arising from the various compositions used has 
an insignificant effect. Also, ITE with RG75/50 is increased due to H2 
properties in extending the lean limit of the mixture (see Fig. 33(c)). 

For n-heptane, both compositions retarded the combustion timing by 
suppressing the LTHR stage (see Fig. 33(e)), in which H2 indicates a 
stronger effect than CO (see Fig. 34). Indicated efficiency of the RG 75/ 
25 fueling decreased after reaching an RG fraction of 10%, staying away 
from optimal combustion phasing of n-heptane, with more retardation 
(see Fig. 33(b)). 

Thus, it is evident that RG with emphasis on the H2 content acts as an 
LTHR inhibitor (chemical effect) due to its participation in low tem
perature oxidation for fuels having two-stage heat releases like n-hep
tane, PRFs, and DME. In this regard, Gou et al. experimentally [364] and 
numerically [365] studied the thermal, chemical, and dilution effects of 
hydrogen enrichment on HCCI fueled with n-heptane. Recently, based 
on numerical validation against experimental data acquired from the 
work of Hosseini and Checkel [358,359], multi-zone modeling studies 
with detailed chemical kinetics and with artificial inert species have 
been carried out to assist in the fundamental understanding of the 
chemical, dilution, and thermal effects of RG blending on the base fuels 
during the HCCI combustion [363,366-370]. For n-heptane [370] and 
low-PRF fuels [368], the dominance of the chemical effect among other 

Fig. 32. Effect of reformer gas on in-cylinder pressure traces and heat release rates with PRF80 at CR = 14.4:1 and EGR = 33% [363].  
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effects on retarding the SOC was confirmed, mostly due to H2 presence 
in low-temperature oxidation reactions during the negative coefficient 
temperature or NTC (period between LTHR and HTHR). For high PRF 
fuels, the dilution effect increases by increasing the PRF number [368]. 

Table 10 summarizes the main syngas works on HCCI engines pub
lished in the literature. Syngas as a primary fuel of an HCCI engine has 
serious obstacles such as its lower combustion efficiency than 90%, high 
CO emissions, and excessive dependency on intake preheating and high 

Fig. 33. Effect of RG composition on ITE and start of combustion of HCCI combustion of iso-octane (a & d), n-heptane (b & e), and natural gas (c & e) [361].  

Fig. 34. Heat release of HCCI combustion of n-heptane for: (a) RG 75/25 and (b) RG 50/50 [361].  
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Table 10 
Summary of syngas utilization studies in HCCI engines.  

Author(s) Experiments/Simulation Main fuel Fuel addition (% 
by volume) 

Objective(s) Finding(s) 

Syngas addition (Bold ones showed retarding effect on SOC), others showed advancing effect on SOC) 
Shudo and 

Ono [346] 
(2002) 

1-cyl SI converted to HCCI, CR=
8.3, 9.7, 12.4, 15.8, rpm= 1000, 
Tintake= at room temp. 

Dimethyl-ether 
(DME) 

A model gas for 
methanol reformed 
gas (MRG): 
H2/CO: 67/33 

Using onboard generated DME 
and MRG by waste heat recovery 
to control HCCI combustion 
timing 

Combustion ignition timings were 
controlled by DME/MRG ratio. 
With ↑ CR: HRR advances and cooling loss 
increases 

Peucheret and 
Wyszynski  
[354] 
(2004)  

A modified 1-cyl SI, 
CR= 12.0-14.5, Tintake=140◦C- 
230◦C 

Natural gas 
(NG) 

10% of Reformate 
was added into 
intake. 
H2/CO/CH4/CO2/ 
O2/N2: 10/0.3/0.4/ 
9.0/0.8/79.5 

A solution to: 
High auto-ignition of NG fueling 
needs a high compression ratio 
(CR) and high intake 
temperatures at low load 

Proposed an onboard catalytic exhaust gas 
fuel reforming strategy for NG HCCI engine. 
Stable combustion 
Lower intake temperature requirement 
↓ NOx ↑ HC ↑ CO. 

Hosseini and 
Checkel  
[360] 
(2006) 

1-cyl CFR, CR= 16.0, 17.0, 18.5, 
rpm= 470, 700, Tintake= 140◦C 

CNG Reformer gas (RG) 
was introduced to 
the intake charge 
(0-60% replacement 
with the main fuel 
by mass) 
H2/CO = 3/1 

A solution to: 
Pure NG-fueled HCCI with knock 
severity, high NOx and low 
performance 

By ↑ RG replacement fraction: 
Expanding the operating window to very 
lean range: 
↓ Knock  
↓ NOx ↑ CO ↑ Combustion eff. 

Hosseini and 
Checkel  
[358] 
(2007) 

1-cyl CFR, CR= 14.4, 16.0, 
rpm= 700, Tintake=140◦C  

PRF80 (20% n- 
heptane, 80% 
iso-octane) 
PRF100 

RG 
(0-40% replacement 
by mass) 
RG1: H2/CO = 3/1 
RG2: H2/CO = 1/1  

A solution to SI at part load: 
RG effects on high octane fueling 
in an engine with dual SI/HCCI 
modes (improving HCCI 
operating at part load) 

By ↑ RG replacement fraction: 
Expanding and shifting the engine operating 
window towards ultra-lean: 
↓ Maximum cylinder pressure  
∼ NOx ↑ HC ↑ CO ↓ Combustion efficiency.  

Hosseini and 
Checkel  
[359] 
(2007) 

1-cyl CFR 
CR= 9.5, 11.5, rpm= 700, 
Tintake= 100◦C  

PRF0 
PRF20 

RG 
(0-40% replacement 
by mass) 
H2/CO = 3/1 

A solution to high emissions of 
diesel engines: 
RG effects on low octane fueling 
in an effective HCCI 

By ↑ RG replacement fraction: 
Expanding the engine operating window on 
the rich side: 
↓ Peak cylinder pressure and PRR 
↑ IMEP ↓ CoV IMEP ↑ Engine power 
∼ NOx ↑ HC ↑ CO.   

Hosseini and 
Checkel  
[361] 
(2008) 

1-cyl CFR, CR= 14.4, rpm= 800, 
Tintake=100◦C 

iso-octane  H2/CO = 3/1 
H2/CO = 1/1 

Thermal and chemical effects of 
RG blending 

At high initial temperature:  
Thermal effect dominates (advancing the 

combustion phasing). At moderate 
temperature: Chemical effect dominates 
(retarding the combustion phasing). 
Overall: insignificant effect on combustion  

Hosseini at al.  
[371] 
(2009) 

1-cyl CFR 
CR= 11.8, rpm= 800, Tintake=

110◦C 

n-heptane  RG blending 
(0-40% replacement 
by mass) 
RG1: H2/CO = 3/1 
RG2: H2/CO = 1/1 

A solution to: 
Knock propensity at high load 

With RG blend fraction of 10%: 
4.4○ CA retardation in SOC, 
↑ H2content was more effective in retarding, 
↑IMEP by 0.25 bar, ↑ITE by 2.8% 

Voshtani et al. 
[372] 
(2014) 

Single-zone and multi-zone 
thermodynamic-kinetic models, 
based on [360] 

NG RG1: H2/CO = 3/1 
RG2: H2/CO = 1/1 

RG enrichment effects on a HCCI 
combustion engine operating 
with NG.  

Both chemical and thermal effect advance 
the SOC, but dilution retards that. 
chemical > dilution > thermal 
H2 and CO in RG at low and high amount of 
RG have strong responsibility of altering 
SOC.  

Zheng et al.  
[373] 
(2014) 

Zero-dimensional (0D) and 
three-dimensional (3D) 
combustion models 

DME DME reformed gas 
(DRG) produced by 
REGR strategy: 
H2/CO: 66.7/33.3 

Effect of REGR on HCCI fueled 
with DME 

REGR (EGR + DRG): can delay ignition 
time, allowing main combustion closer to 
TDC, minimizing negative compression 
work. 
Compared to EGR-only: ↓HC, ↓CO. 

Neshat et al.  
[368] 
(2016) 

Multi-zone model 
and semi detailed chemical- 
kinetic mechanism 

PRFs (0-30% 
replacement) 
H2/CO = 1/1 

Effect of RG blending on HCCI 
combustion of PRFs 

By RG addition: ↓ H abstraction reactions 
rate ↑ decomposition fuel time ↓ LTHRR 
peak. 
↑ PRF number: ↑ dilution ↓ chemical effect. 
↓ NOx ↑ HC ↑ CO 

Reyhanian 
and Hosseini 
[370] 
(2018) 

Multi-zone model 
with detailed chemical-kinetic 
mechanism 
+

an artificial inert species method 

NG 
iso-octane 
normal- 
heptane 

H2/CO = 3/1 Understanding of various effects 
of RG addition, with composition 
of RG in HCCI combustion  

Thermal effect: 
SOC was advanced for all fuels. 
Chemical effect: 
SOC was advanced with NG and iso-octane 
and retarded with n-heptane, mainly due to 
H2. 
Dilution effect: 
SOC was retarded for all fuels.  

Kozlov et al. 
[374] 
(2018) 

2D CFD simulation 
At ϕ= 0.2, 0.4 

iso-octane H2/CO = 2/1 Combustion and emission 
characteristics of HCCI operating 
on iso-octane/syngas 

Ignition timing and combustion duration 
were retarded and decreased, respectively, 
especially at ϕ= 0.2. 

(continued on next page) 
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compression ratios, hindering it from progress in vehicular engines. In 
contrast, syngas as a fuel additive can support the HCCI combustion of 
other fuels to push its operating window to a broader range with 
attainable high thermal efficiency comparable to that of SI combustion. 
Briefly, syngas addition can be regarded as a means of extending the 
lean- or the rich-side of the operating equivalence ratio of HCCI com
bustion fueled with low- and high- octane fuels, respectively. 

3.3. Syngas in dual-fuel engines 

Stable combustion of a premixed syngas-air mixture is problematic in 
CI engines due to the low reactivity and high auto-ignition temperature 
(> 500 ◦C) of syngas [59]. Also, more stringent diesel engine emissions 
regulations have directed research towards further development of 
advanced combustion engines. Meanwhile, dual-fuel operation 
[379–381] with a premixed fuel and pilot-injected diesel has shown 
interesting advantages in terms of efficiency and emissions over 

conventional diesel combustion (CDC). Similar to compressed natural 
gas (CNG) and liquefied petroleum gas (LPG) [382], syngas is also a 
good candidate for the premixed fuel in dual fuel mode owing to its 
variable composition, flexible feedstocks, and possibility of on-board 
production on a vehicle [383,384]. In this part, syngas utilization in 
dual-fuel combustion is analyzed and reviewed in detail. 

3.3.1. Diesel/syngas engine performance and emissions 
Several studies have been focused on using syngas in dual-fuel con

cepts, where diesel is directly injected into the cylinder as a pilot fuel to 
initiate the ignition, while syngas is introduced into the intake port as a 
premixed fuel. Syngas application in diesel engines as a secondary en
ergy carrier has been considered to be a promising alternative method 
mainly for emissions reduction. In the early stages of the research, ef
forts were dedicated to clarifying and distinguishing dual-fuel combus
tion from CDC, which led to the recognition of two-stage combustion for 
dual fueling at higher engine loads. Specifically, Garnier et al. [385] 

Table 10 (continued ) 

Author(s) Experiments/Simulation Main fuel Fuel addition (% 
by volume) 

Objective(s) Finding(s) 

↑ NOx at ϕ= 0.4  
↓ HC ↓ CO at ϕ= 0.2 

100% syngas fueling (%vol) 
Achilles et al.  

[375]  
(2011) 

Modified, 1-cyl truck/bus 
engine, CR= 22.5:1, 1050 rpm, 
Tintake=80-180◦C for NG, 
Tintake=75-145◦C for PG 

PG: 
H2/CO/CH4/ 
CO2/N2: 30/20/ 
1.0/15/34 

— Comparing producer gas (PG) 
and natural gas (NG) in HCCI 
engine 

PG as compared to NG fueling: 
Wider ϕ range, faster combustion, more 
smooth and stable, ↓maximum IMEP, 
↓intake temperature requirement, ↓THC, 
and ↑CO emissions.  

Bika et al.  
[323] 
(2012) 

1-cyl engine, CR=21.2:1, 1800 
rpm, Tintake=60-90◦C 

RG 1: H2/CO: 
75/25 
RG 2: H2/CO: 
50/50 

— Studying HCCI engine with two 
different syngas compositions at 
ϕ=0.26 and 0.3 

↑CO fraction in RG: ↑auto-ignition 
temperature, ↑intake temperature 
requirement, ↓combustion efficiency (83- 
88%). At low load and high intake temp.: 
↑↑heat transfer to wall.  

Przybyla et al. 
[328]  
(2016) 

SI engine with CR=8.2, HCCI 
engine with CR=20, 
Tintake=132-153◦C 

H2/CO/CH4/ 
CO2/N2: 10.1/ 
24.9/2/5.2/ 
57.8 

— Fueling of SI (ϕ=1) and HCCI 
(ϕ=0.5) engines with low 
heating value PG 

ITE: SI>HCCI by about 3.5%, 
Energy loss in exhaust based on chemical 
energy of the fuel:  
HCCI (10%) > SI (2%). The SI efficiency can 
be easier than HCCI optimized.  

Bhaduri et al.  
[329]  
(2015) 

Air cooled mono-cylinder HCCI 
engine CR= 12, rpm=1500, 
Tintake=230-270◦C 

H2:CO ratio 
from 30:70 to 
55:45% 

— Proposing a novel tar-tolerant 
HCCI engine in response to 
various syngas compositions 
(with water and tars) 

Moisture in syngas: water’s damping effect 
on chemical reaction rate, delay in 
combustion (positive effect). Tars in syngas: 
↑LHV of syngas, but their effect on the 
combustion phasing were negligible.  

Bhaduri et al.  
[330]  
(2016) 

Air cooled mono-cylinder HCCI 
engine CR= 12.2, rpm=1500, 
Tintake=250◦C 

H2/CO/CH4/ 
CO2/N2: 
15-25/15-25/1- 
3/8-15/balance 

— Testing the stability of the engine 
in response to the naturally 
occurring random variations in 
the syngas composition 

Over a 24 h test: high ITEs of 33%-39%, a 
low IMEP of about 2.5 bar, and a relatively 
high NOx (due to ammonia in the syngas) 
were observed.   

Bhaduri et al.  
[376] 
(2017) 

Air cooled mono-cylinder HCCI 
engine CR= 12.2, rpm=1500, 
Tintake=250◦C 

H2/CO/CH4/ 
CO2/N2: 
18/22/1.0/11/ 
48 

— EGR effect on a tar tolerant HCCI 
engine 

↑EGR from 0% to 25%: 
↑IMEP from 2.5 bar to 3.3 bar, via damping 
maximum pressure rise and allowing higher 
ϕ.  

Starik et al.  
[377] 
(2017) 

Zero-dimensional single-zone 
thermochemical model 

H2/CO: 50/50 — Improvement of combustion in a 
syngas fueled HCCI engine by 
adding ozone or excited oxygen 
molecules 

Ignition can be accelerated before TDC, thus 
↓intake temperature. At the same IT, 1% of 
SDO in total oxygen may ↑ the power by 7- 
14% compared to the base case with higher 
intake temperature. 

Jamsran et al.  
[378] 
(2021) 

1-cyl 126TI-II series, Doosan 
Infracore, CR= 17.1, rpm=

1800, Tintake=140◦C-140◦C- 
230◦C 

H2:CO:CO2: 
30/2545 
30/15/55 
15/25/60 
15/15/70 

— Investigate the combustion and 
emissions of an HCCI engine 
with various syngas 
compositions 

↑ intake temperature and boosting: Low- 
calorific syngas (15% H2, 15% CO, and 70% 
CO2 3.34 MJ/Nm3) can be auto-ignited 

Denotations: ↑: increase, ↓: decrease, ~: nearly constant or insignificant, //: similar to above. 
IMEP: indicated mean effective pressure, CR: compression ratio, ITE: indicated thermal efficiency, BTE: brake thermal efficiency, CoV IMEP: coefficient of variation of 
IMEP, TC: turbocharge, NA: naturally aspirated, IT: ignition timing, SOI: start of ignition, ϕ: the fuel/air equivalence ratio, WOT: wide open throttle, and MBT: 
maximum brake torque. 
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established a predictive model to determine the ignition delay and 
combustion of a syngas/diesel CI engine, based on an empirical model 
and three Wiebe functions (for pilot-fuel, gaseous-fuel, and diffusive 
combustions) calibrated with experimental data. After that, some ex
periments were conducted to characterize syngas/diesel dual-fuel 
combustion in terms of engine performance and emissions by varying 
syngas compositions. Sahoo et al. [386] evaluated the dual-fuel concept 
using syngas with a H2/CO ratio = 1/1 by volume in a single-cylinder 
diesel engine at a constant 1500 rpm and injection timing of 23◦

BTDC by altering the load from 0 to 100%. Compared to the diesel-only 
mode, a lower BTE with a peak reduction of 21% at 80% load, increased 
exhaust gas temperature (50-100◦C), increased CO and HC emissions for 
all engine loads were observed; however, both NOx emissions and peak 
cylinder pressure were decreased. Also, by varying H2/CO’s volumetric 
ratio during various loads [387], the maximum HC, CO, and CO2 
emissions and minimum BTE occurred with 100% CO; however, the 
opposite behavior was observed with 100%H2 [388]. Moreover, from 
the second law efficiency point of view, the same authors [389] 
concluded that a syngas/diesel CI engine’s theoretical performance fa
vors higher load (beyond 40% load) over lower loads, where the exergy 
destruction increases due to the heat transfer losses, see Fig. 35 (right). 

Bika et al. [390] experimentally assessed the cycle efficiency of a 
single-cylinder syngas/diesel engine for four diesel substitutions of 0% 
(diesel-only baseline case), 10%, 20%, and 40%, at two net IMEPs of 2 
and 4 bar, see Fig. 35 (left). Bottled gases of H2 and CO with varying 
proportions (H2/CO: 100/0, 75/25, 25/75, and 0/100 by %volume) 
were used to simulate syngas. Compared to the diesel baseline case, they 
displayed lowered efficiencies at both loads (10-25% for 2 bar and 
5-17% for 4 bar IMEP), presumably attributed to the unburned syngas 
discharged in the exhaust stream. Moreover, NOx emissions were 
increased for all syngas proportions at 4 bar IMEP. 

So far, syngas/diesel dual fuel operation findings have shown a 
common trend of efficiency degradation particularly at low- and part- 
engine loads with the decrease in combustion efficiency being due to 
increased H2 and CO. Wagemakers and Leermakers [382] reviewed the 
comparison of dual fueling of diesel with various gaseous fuels like CNG, 
LPG, syngas, and hydrogen. They reported that all gaseous fuels could 
reduce soot emissions except for syngas. As a consequence of the dual 
fuel mode for diesel substitution, methane demonstrated better perfor
mance than syngas. The drawbacks generally reported from engines 
operating on gaseous fuels/diesel at part loads are excessive HC and CO 
emissions, and high fuel consumption, resulting in lower combustion 
efficiency and low thermal efficiency [391]. Also, a recent review on 
natural gas (NG)/diesel engines reported the same trend with up to a 
2.1% fall in engine power and low BTE at low-to-part engine loads, 
while a maximum rise of 3% at high loads would be attainable compared 
to the diesel engine [392]. The only reported solution to the stated 
problems was to increase the H2 content of the syngas, while the pilot 

injection strategy has not received much attention. It is also worth 
noting that higher efficiency with H2/diesel dual operation than 
diesel-only operation has been obtained when H2 is injected directly 
within the cylinder [393,394]. Antunes et al. [393] indicated fuel effi
ciencies of 34% for H2/diesel and 43% for H2-only compared to 28% for 
the diesel-only case. 

At Okayama University, a group has conducted research on dual-fuel 
operation [395–402] with different producer gas generated by biomass 
gasification (BMG) and coke-oven gasification (COG) in a supercharged, 
single-cylinder diesel engine. They reported performance and emissions 
characteristics of a dual fuel syngas/diesel engine considering the effect 
of pilot injection. Their key findings are summarized below:  

• The effect of injection pressure and amount of pilot fuel (diesel): 
Smoke emissions were increased with increasing amount of injected 
diesel, while decreasing with increasing injection pressure (i.e., 2 
mg/cycle with 400 bar has the same measured smoke with 10 mg/ 
cycle with 800 bar) [395].  

• The effect of pilot-injection strategy with timings ranging from 4 to 
12 ○BTDC, injection pressures of 40, 60 and 80 bar, pilot quantities of 
2 to 10 mg/cycle: 80 MPa with 3 mg/cycle was optimal for best 
performance [396].  

• The lowest energy content PG used showed the lowest level of NOx 
emissions and smoke-free operation with smooth combustion [398].  

• The effect of varying hydrogen content in PGs from 13.7% to 20% by 
volume: High hydrogen content in syngas led to a wide operating 

Fig. 35. Comparison of cycle efficiency vs. diesel substitution at 4 bar IMEP (left) [390] and exergy efficiency vs. engine load (right) [389] for various H2/CO 
volumetric ratio (Reprinted with permission of Elsevier). 

Fig. 36. Premixed mixture ignition in the end-gas region (PREMIER) com
bustion concept (Reprinted from [401] with permission of Elsevier). 
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range (i.e., equivalence ratio) and high thermal efficiency; however, 
increased NOx emissions [397]. 

Following this work, Azimov et al. [403] suggested a novel com
bustion strategy with inspiration from the knock event in the end-gas 
regions of SI engines. The natural gas engine with a homogenous 
air-fuel mixture could be controlled; when natural gas combusts with the 
flame front supported concurrently by pilot-injected diesel fuel, which 
has already been ignited. They called it premixed mixture ignition in the 
end-gas region (PREMIER) combustion; also, shifting from diffusion 
combustion to flame front combustion for syngas/diesel dual-mode was 
reported in [404]. With the proposed combustion strategy illustrated in 
Fig. 36, the effect of H2 and CO2 content in syngas on the performance 
and emission of a syngas/diesel engine was investigated under lean 
operating conditions [401]. PREMIER combustion was observed pri
marily when the amount of pilot fuel used was minimal. Additionally, 
they [401] stated that an increase in syngas’s hydrogen content short
ened the main combustion period and caused the mean combustion 
temperature, IMEP, and efficiency to increase. They also found that 
diesel could not be substituted completely, or syngas could not be used 
as a single fuel in the diesel engine. 

Some other researchers [396,405-409] have explored the feasibility 
of the dual-fuel concept with syngas generated from various sources by 
either gasification like producer gas or on-board reforming processes 
like reformer gas. Dohle et al. [409–411] performed a series of experi
mental studies to investigate the combustion characteristics of a 
dual-fuel diesel engine fueled by three cases of H2, PG, which was 
generated from rice husk, and PG in combination with H2 (PG + H2) as a 
secondary fuel. Fig. 37 (left) shows the thermal efficiency variations 
with five different combinations of gaseous fuel replacement at 13%, 
40%, and 80 % engine loads. Again, up to 30% load, a decrease of BTE 
was found due to the poor combustion characteristic of low calorific 
producer gas even in combination with H2 at low loads. While by 
increasing the total mass quantity of fuel through increasing the engine 
load, the combustion of the dual fuel mode improved due to the higher 
flame velocity and diffusivity of gaseous fuels compared to diesel. As 
compared to H2/diesel and PG/diesel cases (see Fig. 37 (right)), H2 

would augment more stability in the flame of the H2+PG/ diesel case, 
presumably attributed to the high stability of H2-air flames while the PG 
flames tend to become unstable. Nevertheless, the increase in H2 from a 
certain amount (here, 40% of H2 in PG/H2 mixture) resulted conversely 
in the destabilization of the flame, which may be attributed to a decrease 
in the Markstein length [412]. At higher loads, much oxygen was 
consumed by PG/H2 while hydrocarbon fuel received not enough oxy
gen; thus, a reduction in BTE would be sensible. 

Fig. 38 depicts the variation in emissions at 80% load conditions for 
the three cases, with PG/H2 ratio of 60:40. Because of the low pilot 
quantity, HC emission is high with gaseous fuel replacement at higher 
engine loads. As noted above at higher loads, larger gaseous fuel sub
stitutions, which replace some of the air during the intake stroke, can 
lead to increased utilization of oxygen and the reduction of oxygen 
available for further combustion of the pilot diesel fuel, thus raising the 
HC level. Higher CO emissions implies that incomplete combustion and 
burning of lubrication oil take place, together with the lower heating 
value of PG, CO-containing PG (lower mean effective pressure), lower 
adiabatic flame temperature, and lower over-mixing. For the PG case, 
the drop in NOx may be due to the lower adiabatic flame temperature of 
PG and the absence of nitrogen in the PG, as well as a more uniform 
temperature distribution achieved with the gaseous fuel-air mixture, 
allowing the number of high-temperature regions around the diesel 
flame to decrease. 

The summary of relevant literature that has been reviewed so far 
indicates:  

1- Feasibility of syngas/diesel among gaseous fuels/diesel as a good 
choice for dual-fuel operation: according to all cited work here, while 
it has no beneficial aspects in terms of engine performance, and even 
also emissions, it performs well at low and part loads.  

2- The influence of syngas compositions confirmed that increasing the 
H2 content of the syngas has considerable merit in combustion 
improvement.  

3- Modifying the pilot injection strategy can be a promising way of 
extending the prospects of the dual-fuel mode with syngas. 

Fig. 37. Brake thermal efficiency for PG+H2/diesel mixtures (left) and for H2/diesel and PG/diesel (right) at different loads (Reprinted from [409] with permission 
of Elsevier). 
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4- This concept’s flexibility with a broad range of synthetic gases 
derived from varying sources has led to more attention in research. 

The pilot injection strategy of Roy [396], is regarded as a means of 
controlling the in-cylinder reactivity and combustion phasing. By 
introducing two fuels having different reactivity (i.e., low and high 
reactivity) with a pair of separate injections for the high-reactivity fuel 
within the cylinder control can be achieved. This concept has been 
presented by Kokjohn et al. [413], who named it reactivity-controlled 
compression ignition (RCCI). In terms of commercialization, RCCI 
[380,381,414,415] is under more investigation for single-fuel operation, 
where high reactivity like diesel as the parent fuel, can be converted into 
a low-reactivity fuel by suitable in-situ on-board fuel reforming [34, 
416-424]. 

Rahnama et al. [34] investigated the effects of reformer gas, 
hydrogen, and nitrogen on the combustion characteristics of a 
heavy-duty RCCI engine fueled with natural gas/diesel. The impact of 
the introduction of syngas (up to 5%vol) at medium load engine oper
ation was also investigated. As shown in Fig. 39, by adding syngas, peak 
pressure, combustion, and gross indicated efficiency values significantly 
increase, but after a certain point, the gross efficiency drops due to 
improper phasing in combustion and heat release during the 

compression stroke. With respect to emissions, the introduction of syn
gas increases NOx emissions due to the higher temperature induced by 
the higher adiabatic flame temperatures of carbon monoxide and 
hydrogen. It also decreases soot emissions, due to the higher tempera
ture of combustion resulting from the hydrogen content of the syngas, 
which allows soot oxidation. It is also confirmed in a recent study by 
Zhong et al. [425] that hydrogen in syngas promotes NOx emission but 
suppresses soot emission. Even though HC and CO emissions at medium 
load operation are relatively low, syngas addition slightly reduces HC 
emissions and increases CO emissions due to the syngas CO content, as 
depicted in Fig. 40. In another work, Rahnama et al. [418] numerically 
studied the effects of reformer gas composition (3% syngas enrichment 
of intake air) on the combustion and emission characteristics of a natural 
gas/diesel RCCI engine at a low load condition. They observed that with 
increasing CO fraction in the syngas, peak pressure, ringing intensity, 
and pressure rise rate increased significantly. Using a mixture with a 
higher CO content, a shorter ignition delay and combustion time and 
advanced CA50 were achieved. These were interesting results but was 
attributed to the lower cylinder temperatures as a result of using lower 
intake temperatures with high-H2 syngas. 

Chuahy and Kokjohn [416] were the first to experimentally examine 
the effect of varying syngas composition on a single-fuel RCCI fueled 

Fig. 38. UHC, CO and NOx emissions at 80% load for different Diesel+PG+H2 mixtures (Reprinted from [409] with permission of Elsevier).  

Fig. 39. Syngas addition effects on cylinder pressure and HRR, gross indicated efficiency and ringing intensity at 9 bar IMEP for a natural gas/diesel RCCI engine 
(Reprinted from [34] with permission of Elsevier). 
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with diesel and simulated reformed diesel (50% H2 and 50% CO by 
mole); it was done by keeping both the fuel energy level (4100 J/cycle) 
and the combustion phasing (at -0.3◦ and 0.5◦ ATDC for 0% and 40% 
EGR, respectively) constant by adjusting the injected diesel mass. The 
authors indicated that syngas with high H2 content suppresses the 
low-temperature heat release (LTHR) stage and shortens the duration of 

high-temperature heat release (HRHR) or combustion with rising its 
peak, as seen in Fig. 41. They pointed out that by keeping the combus
tion phasing constant, increasing the H2 content in syngas has an iden
tical effect on the engine’s gross indicated efficiency. Moreover, as 
shown in Fig. 42, the effect of syngas replacement by energy on the 
combustion phasing was shown that excessively high syngas has HTHR 

Fig. 40. Effect of syngas addition on engine emissions at 9 bar IMEP (Reprinted from [34] with permission of Elsevier).  

Fig. 41. In-cylinder pressure and heat release rate of a single-fuel RCCI fueled with diesel and syngas with lowest and highest H2 content (Reprinted from [416] with 
permission of Elsevier). 

Fig. 42. In-cylinder pressure and heat release rate of a single-fuel RCCI fueled with diesel and syngas, with various syngas replacement (Reprinted from [416] with 
permission of Elsevier). 
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with two distinct stages and higher cyclic variability, represented by 
shaded regions, which is ± standard deviation. 

In light of the integration of single-fuel RCCI with varying fuel 
reforming reactions, work by Chuahy and Kokjohn [417] has shown that 
reformate generation from all reactions, including steam reforming, 
partial oxidation, and auto-thermal, have the capability of raising the 
net indicated efficiency of the engine by 4% compared to that of con
ventional diesel. The steam reforming case had the highest system effi
ciency if exhaust energy recovery was enabled. Further, it was reported 
[426] that the engine-reformer system with endothermic reforming has 
comparable efficiency to a conventional diesel engine at equal 
tailpipe-out NOx and negligible soot emissions; lower hydrogen to car
bon ratios allows to achieve more engine-reformer efficiency. 

By utilizing a thermally integrated R-EGR reactor (see the next sec
tion), single-fuel RCCI operation in a light-duty diesel engine was ach
ieved by Hwang et al. [427]. Data were collected over a range of EGRs 
and main diesel injection timings at a constant fuel flow rate. The 
analysis indicated that RCCI is achievable with low efficiency in reactor 
conversion as long as reformate produced has reasonably small reac
tivity compared to diesel. The results also showed that while operating 
the reformer at a lower equivalence ratio resulted in higher hydrogen 
production, ignition was significantly delayed at achievable diesel in
jection timings. This work showed that while single-fuel RCCI is possible 
using an R-EGR diesel engine design, more research is required to 
optimize the system in order to reach the efficiency and emission rates 
achieved by dual-fuel RCCI engines. 

3.3.2. Biofuels/syngas engine performance and emissions 
Vegetable oils such as honge, rice bran, and neem oils have been 

investigated for their suitability as diesel engine fuels [428] due to being 
renewable, non-toxic, and biodegradable. Many researchers have per
formed tests on CI and dual-fuel engines with different vegetable oils at 
different operating condition. Banapurmath et al. [429–432] studied the 
combustion characteristics of a CI engine operated on the dual-fuel 
mode with PG as the premixed fuel and honge oil and its methyl ester 
(HOME) as the injected fuels (liquid pilot fuels). Fig. 43 represents heat 
release rate comparisons for the dual-fuel mode at optimum injection 
timings for the selected fuel combinations. It was observed that the 
premixed burning phase associated with a higher heat release rate is 
significant with diesel–PG dual-fuel mode leading to the higher thermal 
efficiency of diesel–PG operation. Furthermore, the diffusion burning 
process indicated under the second peak was higher for honge oil-PG 
and HOME-PG than diesel-PG dual fuel operation, which is in agree
ment with the effects of the viscosity of vegetable oils on the fuel spray 
and reduced air entrainment and lower fuel-air mixing rates. Higher 
exhaust temperatures and lower thermal efficiency were noticed with 

honge oil–PG due to the significantly higher combustion rates during the 
later stages. However, HOME–PG operation showed improvement in 
heat release rate compared to neat honge oil–PG dual-fuel operation. 

Yaliwal et al. [51,433-438] increased the fuel efficiency of a 
single-cylinder, dual-fuel DI stationary diesel engine using 
HOME-Bioethanol (BE) blends, such as HOME+5% bioethanol (BE5), 
HOME+10% bioethanol (BE10) and HOME+15% bioethanol (BE15). 
Fig. 44 depicts in-cylinder pressure versus crank angle for diesel-PG, 
HOME-PG, and HOME+ bioethanol-PG combinations at a load level of 
80%. The cylinder pressure was determined to depend on the combus
tion rate, the type of combinations of fuel utilized, and how much of the 
fuel is involved in the rapid combustion cycle. Lower cylinder pressure 
was observed for the combination of HOME –PG and HOME+ bio
ethanol – PG compared to the combination of diesel–PG, due to the 
combined impact of the lower heating value of the blends and PG and 
the longer ignition delay due to inadequate mixing with the 
slow-burning nature of the PG. Nonetheless, for the BE5–PG combina
tion, a significantly higher in-cylinder pressure was observed compared 
with the combinations of HOME–PG, BE10-PG, and BE15–PG. This may 
be attributable to the BE5 blend’s improved spray properties. Further
more, when PG is present, a higher blend of bioethanol with HOME 
lowers the energy content for dual-fuel operation. 

Overall, experimental work on the dual-fuel engine utilizing BE5-PG 
operation resulted in up to 4-9% increased BTE with reduced HC, CO 
emissions, and slightly equivalent NOx emissions compared to HOME- 
PG, BE10-PG, and BE15-PG modes. However, the overall performance 
of BE-PG operation was lower compared to diesel-PG operation. 

Later in 2018 [439], the same group compared the performance, 
combustion, and emission characteristics of a single-cylinder, DI sta
tionary diesel engine operated in dual fuel mode with a combination of 
HOME and the gaseous fuels CNG, HCNG, and PG. The combined effect 
of poor mixture preparation, longer ignition delay, lower heating value, 
and adiabatic flame temperature (1800 K) and slowing burning velocity 
nature of the PG (50 cm/s) resulted in the lower peak pressure and 
lowered rate of pressure rise for HOME–PG operation compared to 
HOME–CNG/HCNG operation. 

Carlucci et al. [440–442] studied the improvements in dual-fuel 
biodiesel-producer gas combustion seen at low loads through pilot in
jection splitting. Utilizing a common-rail injection, single-cylinder 
research diesel engine fitted with a high-pressure common rail injec
tion system controlled in dual-fuel mode, they measured changes 
resulting from splitting of the liquid fuel injection. In this case, the 
inducted gaseous fuel was a synthetic PG, while biodiesel was utilized as 
the pilot fuel. The experimental campaign was split into two parts, 
running on engine speed at 1500 rpm. First, only one pilot injection of 
constant fuel quantity (11 mm3/cycle) was used, the rail pressure was 
set at 500 or 1000 bar, while the quantity of gaseous fuel produced in the 
cylinder was varied on three stages. Second, splitting pilot injection was 
shown to be an efficient way to increase the efficiency of fuel conversion 
and to reduce the levels of all polluting emissions compared to the single 
pilot strategy. Based on the comprehensive experimental tests, a dwell 
ranging from 10 to 30 degrees of crank angle combined with a first in
jection timing varying from 35 to 20 degrees of crank angle BTDC 
allowed the highest fuel conversion efficiency and the lowest emission 
levels. The injection pressure was verified to be a significant factor 
affecting the development of combustion, while the gaseous mass 
inducted in the cylinder determined a side effect in terms of oxygen 
depletion. Eventually, pilot injection splitting proved to be an efficient 
way to boost the combustion of gaseous fuel under low load (lean 
mixture) conditions in the dual-fuel system. Kan et al. [443] simulated 
the combustion and emission performance of three dual-fuel strategies 
for utilizing the syngas and biodiesel produced from the biomass wastes, 
namely syngas-biodiesel, hydrogen-enriched syngas-biodiesel and 
DME-biodiesel in a compression ignition engine using the 
KIVA-CHEMKIN code. It was found that syngas-biodiesel and 
hydrogen-enriched syngas-biodiesel cases can improve the combustion 

Fig. 43. HRR for honge oil–producer gas and honge oil methylester–producer 
gas at optimum injection timings (Reprinted from [429] with permission 
of Elsevier). 
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and had higher indicated power at high engine loads of 50% and 100%. 
The DME-biodiesel case was advantageous for the combustion at 10% 
load comparing to the other two cases. With the increase in fuel sup
plement ratio, the soot emission generally showed a decreasing trend at 
all engine loads for all three strategies. 

Table 11 summarizes the main syngas combustion works on dual fuel 
engines published in the literature. 

3.4. Syngas contaminants in IC engines 

There are two sources of contaminants leading to deposit formation 
after running the engine with syngas fuels:  

1- Impurities that originate from the production method,  
2- Changing syngas composition during the storage process. 

Impurities in biomass feedstocks and partial gasification lead to 
contaminants in syngas, which are mainly classified as tars, PM, alkali, 
nitrogen (NH3), Sulphur (H2S), halides, and trace elements [451]. These 
contaminants are responsible for downstream problems in the gasifier, 
such as corrosion, clogging, and catalyst deactivation [61,452-455]. 
Syngas produced from biomass gasification should be refined to remove 
condensable tars prior to using it as a fuel for IC engines [456]. Syngas 
impurities affect engine performance for all types of IC engines, but 
there are few studies in the literature on this. Bhaduri et al. [329,331, 
376] developed a tar tolerant system, wherein syngas with tar 
contamination was used as a fuel for an HCCI engine where intake 
temperatures were set to be above the tar dew point to prevent 
condensation of tars. They noticed that the moisture content of the 
syngas adversely affects combustion efficiency. In addition, the results 
demonstrated that the introduction of tars leads to an increase in the 
LHV without affecting the timing of combustion for neat syngas opera
tion. In another work, Bhaduri et al. [330] carried out experiments using 
an impure and hot biomass syngas burned in an HCCI engine without the 
intermediate cooling and tar purification steps to test the engine’s sta
bility in response to naturally occurring random variations in the syngas 
composition. Minimal tar deposits were found due to the use of a low tar 
gasifier after 24 h of operation (see Fig. 45). Besides, brown discolor
ation from some deposits was observed on the piston and cylinder heads, 
which was attributed to the regular oil-related deposits. 

In the second case, Hagos et al. [457] ran a DISI engine with various 
syngas compositions free of tar and periodically checked the fuel 
injector, spark plug, piston, cylinder head, and valve seats during the 
engine shutdown. Deposit formation was visibly observed on the surface 
of the injection tip, turning the color glow red, as can be seen from 
Fig. 46 (left). While a similar deposit color was also seen in other engine 

components, as shown in Fig. 46 (right), such deposits have never been 
found when running the engine with CNG, hydrogen, or a combination 
of them. It was pointed out that producer gas with light tar compounds 
as fuel has less impact on the deposit formation [458], although neither 
the effect of engine hours running nor the effect of syngas composition 
on the deposit quantity were investigated. The deposit characterization 
revealed that reacting the CO content in syngas with the metallic wall of 
storage tanks at high pressure may result in metallic carbonyl contam
inants such as iron pentacarbonyl (Fe(CO)5) in the syngas, which in turn 
participates in the engine’s combustion. Before deposit formation, as 
mentioned in section 2.4, these components also affect the ignition delay 
and laminar flame speed of the whole combustion process. Besides, such 
metallic carbonyl could be generated during syngas production via 
gasification. Consequently, extra attention should be paid to the design 
of syngas production and storage systems. 

4. Syngas from on-board fuel reforming in IC engines 

A study by Yang et al. [459] reported that syngas could be stored 
under pressures as high as p=83 bar and temperatures of T = -15◦C to 
45◦C. However, with on-board syngas production, the storage-related 
issues such as the demand for a large storage tank due to the low en
ergy density of the syngas and the syngas contaminants (see Section 3.4) 
can be eliminated. This section provides a comprehensive overview of 
previous research on on-board fuel reforming and syngas production in 
IC engines. Regarding the vehicular applications, the fuel reforming 
process can be achieved either inside cylinders (i.e., in-cylinder fuel 
reforming) or outside the engine cylinders (i.e., external fuel reforming). 
In-cylinder reforming methods are a preventive measure to achieve a 
more efficient engine by increasing thermal efficiency, reducing energy 
content in the engine’s exhaust stream. In contrast, external reforming 
methods are a corrective one to a lower engine efficiency by capturing 
the exhaust gas energy via placing a WHR device (reformer) in the 
exhaust stream. Both methods are considered as thermochemical recu
peration (TCR) technologies [460–462], which can be more efficient 
than thermomechanical methods [463] such as turbo-compounding and 
bottoming cycles because the energy transfer is not bounded by isen
tropic expansion and Carnot efficiency. Additionally, there is no sig
nificant modification needed in the design of production engines. Fig. 47 
shows the schematic of the mentioned techniques by classification, and 
they are reviewed in detail in the following sections. 

4.1. External fuel reforming 

4.1.1. Intake fuel reforming 
Engine intake on-board fuel reforming involves all methods in which 

Fig. 44. In-cylinder pressure and HRR versus crank angle for different HOME/bioethanol blend–PG combinations at the 80% load condition [433].  
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Table 11 
Summary of syngas combustion research in the dual fuel engine mode.  

Authors Research objectives Syngas 
composition 

Experiments Simulations Main results 

Reformer gas (RG)/diesel dual fuel CI engine 
Bika et al. [390]  

(2011) 
Cycle efficiency comparison between 
RG-diesel dual case and diesel-only 
case, at 2 and 4 bar IMEP 

RG1: 100%H2; 0% 
CO 
RG2: 75%H2; 25% 
CO  
RG3: 25%H2; 75% 
CO 
RG4: 0%H2; 100% 
CO 

4-stroke, 1-cyl Yanmar 
L100V CI engine, CR=
21.2:1 
rpm= 1825 

— Cycle efficiency: 
10-25%, 5-18% lower than the diesel- 
only for 2 and 4 bar IMEP, 
respectively. 
NOx: 
∼ for 2 bar, ↑ for 4 bar with increasing 
diesel substitution.   

Sahoo et al. [387] 
(2011) 

Effect of load level on the 
performance of the RG-diesel and 
diesel (baseline) operation 
with varying H2/CO content 

RG1: 100%H2; 0% 
CO 
(119.81 MJ/kg) 
RG2: 75%H2; 25% 
CO (23.09 MJ/kg) 
RG3: 50%H2; 50% 
CO (14.81 MJ/kg) 
RG4: 0%H2; 100% 
CO 
(10.12 MJ/kg) 

4-stroke, 1-cyl Kirloskar 
CI engine 
CR= 17.5:1 
rpm= 1500 

— Maximum diesel replacement = 72.3% 
for RG1. At almost all loads: 
Ignition delay: 
diesel < RG4 < RG3 < RG1, RG2 
HC: 
RG1 < diesel < RG2 < RG3 < RG4 
CO: 
RG1 < diesel < RG2 < RG3 < RG4 
NOx: 
RG4 < RG3 < RG2 < diesel < RG1  

Sahoo et al. [389] 
(2011) 

Second-law analysis of RG-diesel 
operation under varying load 
conditions 

// // — At higher loads: 
↑ Combustion temperature and 
pressure; ↑ cumulative work 
availability; ↑ exergy efficiency. 
At 80% loads: max. ITE for RG 1-4: 
19.8, 18.3, 16.1, 15.7% 
At lower loads: 
Opposite of higher loads due to poor 
combustion.  

Christodoulou and 
Megaritis [444] 
(2014) 

RG-N2 mixture effects on an high 
speed direct injection (HSDI) diesel 
engine’s emissions and performance 
at various speeds 

60%H2; 40%CO 4-stroke, 4-cyl Ford Puma 
CI engine 
CR= 18.2:1 
rpm= variable 

— With introducing RG+ N2 mixture: 
↓ NOx and smoke emissions over a 
large engine operating conditions; 
↑ Engine speed: ↓ overall rate of 
pressure rise.  
Engine is more fuel efficient with neat 
diesel.  

Rahnama et al.  
[34]  
(2017) 

The effects of H2, RG and N2 (by 
direct injection) on combustion, 
emissions and load limits of a heavy- 
duty natural gas/diesel RCCI engine 

H2:CO – 0-100% 
variation in 
hydrogen fraction 

— 3-D simulations 
using CONVERGE 
CFD 

Extending high load by adding N2: 
↑ combustion phasing delay,↓ ringing 
intensity 
Extending low load by adding H2 and 
syngas: ↑combustion efficiency 
At medium load with adding syngas: 
↑ NOx, ↑ ringing intensity, ↑ pressure 
rise rate.  

Chuahy and 
Kokjohn [416] 
(2017) 

Effects of RG composition on a single- 
fuel RCCI engine at constant fuel 
energy and combustion phasing 

50%H2; 50%CO  
H2 is variable from 

10% to 80% by mole 

4-stroke, 1-cyl Caterpillar 
C15 CI engine 
CR= 16.9:1 
rpm= 1300  

Constant volume 
ignition delay 
calculation by 
ChemkinPRO 

By replacing CO with H2: 
↑ Charge reactivity, ↓ combustion 
duration, ↓ magnitude of low 
temperature heat release. 
↑Soot with increasing fuel reforming.  

Hariharan et al.  
[421] 
(2020) 

Study on single-fuel RCCI with diesel 
and reformed diesel by catalytic 
partial oxidation 

H2:3%, CO:11%, 
CO:3.4%, 
N2:78.15%, 
CH4:1.35%, 
C2H4:2.9% 
(2.3 MJ/kg) 

4-stroke, 1-cyl Ricardo 
Hydra CI engine 
CR= 15.5:1 
rpm= 1200  

3-D simulations 
using CONVERGE 
CFD 

In comparison to gasoline/diesel and 
natural gas/diesel RCCI: 
Comparable thermal efficiency with 
↓NOx, ↓THC, and good controllability, 
but at ↑CO and ↑CO2. 

Producer gas (PG)/diesel dual fuel CI engine 
Roy et al. [397] 

(2009) 
Performance and emission 
comparison of a supercharged dual- 
fuel diesel engine fueled by PG with 
varying 
H2 content 

PG 1: 13.7%H2; 
22.3%CO; 1.9% 
CH4; 16.8%CO2 and 
45.3%N2 

PG 1: 20%H2; 
22.3%CO; 1.9% 
CH4; 16.8%CO2 and 
39%N2 

4-stroke, 1-cyl CI engine, 
CR= 16:1, rpm=1000 
Pilot injection timing=
variable 

— Smooth and smoke-free, two-stage 
combustion was obtained. 
High H2-content PG compared to low 
H2-content PG: 
↑12% at engine power 
↑operable range of φ ( from 0.52-0.68 
to 0.42-0.79) 
↓combustion duration by 4-5○ CA 
↓HC and CO by 10–25%.  

Azimov et al.  
[401] 
(2011) 

PG composition effects on a dual-fuel 
engine with PREMIER combustion at 
various equivalence ratios 

7 different 
composition, H2 

varying between 

4-stroke, 1-cyl CI engine, 
CR= 16:1, rpm=1000 

— ↑ H2 content:  
↑ Combustion temperatures, ↑ IMEP, 

↑efficiency, ↓ CO,↓ HC, but ↑ NOx. 

(continued on next page) 
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Table 11 (continued ) 

Authors Research objectives Syngas 
composition 

Experiments Simulations Main results 

13.7-56.8%. 
PG was from cock- 
oven and biomass 
gasification 

↑ CO2 content up to 34% in gas (just at 
a certain level): 
↓ Combustion temperatures, ↓ IMEP, 
↓efficiency, ↓ maximum pressure rise 
rate, ↓ NOx. 
COVIMEP< 4% at various φ for all types 
of fuel.  

Dhole et al. [409] 
(2014) 

Effect of H2, PG, and H2(40%)+PG 
(60%) as secondary fuels on 
combustion 
parameters of a dual fuel diesel 
engine 

21.6%H2; 23 %CO; 
2.1%CH4; 10.2% 
CO2 and 43.1%N2 

(6 MJ/kg) 

4-stroke, 4-cyl, 
Turbocharged, Ashok 
Leyland ALU WO4CT 
engine CR= 17.5:1, rpm=

1500 

— At all loads and gaseous fuel 
substitutions: 
BTE: PG < PG+H2 < H2 

Mean cylinder temperature: 
H2 < PG < PG+H2 

HC: PG+H2 < PG < H2 

CO: H2 < PG < PG+H2 

Lowest NOx: for H2 at 20% for PG at 
80% load. 

Rinaldini et al.  
[445] 
(2017) 

Exploring the potential of using both 
Diesel fuel and syngas in a current 
turbocharged diesel engine 

9.4%H2; 22.4%CO; 
3.4%CH4; 5.4%CO2 

and 59.4%N2 

(4.65 MJ/kg) 

4-stroke, 4-cyl VM Motori 
CI engine , CR= 17.5:1, 
rpm=3000 

— No need to significantly alter the 
standard stock engine design.  
↑ Engine brake efficiency up to 5%. 
The use of syngas: 
↓ Diesel oil consumption, ↑ quality of 
combustion.  

RG or PG/biodiesel dual fuel CI engine 
Balakrishnan and 

Mayilsamy  
[446] 
(2014) 

CR effects on CI engine performance 
with biodiesel and PG in mixed fuel 
mode 

12.31%H2; 10.13% 
CO; 1.48%CH4; 
14.58%CO2 and 
58.8%N2 

(3.56 MJ/m3) 

4-stroke, 1-cyl Modified 
Kirloskar AV1 engine 
CR= 5:1 to 20:1, 
rpm= 1450-1600 

— With ↑ CR: ↑ BTE and decrease ↓brake- 
specific energy consumption. 
At higher possible CR: ↓emissions, due 
to the well-mixed fuel with no engine 
modifications. The CR is limited by the 
ignition delay, noise pollution, and 
engine vibration to a maximum of 18.  

Balakrishnan et al. 
[447] 
(2015) 

Investigation on a CI engine fueled 
with 4 cases: 
Diesel (D) – D/PG - 
vegetable oil methyl ester (biodiesel 
or BD) – BD/PG 

//  //  — Maximum BTE: 
D:28.5%, BD:29.9%, D/PG:27.2%, 
BD/PG:26.8% 
Ignition delay: dual-mode > single- 
mode, BD/PG < D/PG by 13.6◦. 
Smoke: BD/PG < D by 16%. 
The ICE could operate without any 
modifications with all fuel modes.  

Carlucci et al.  
New(2014) 

Study on splitting pilot injection to 
improve of dual-fuel biodiesel-PG 
combustion at low loads 

20%H2; 20%CO and 
60%N2 

4-stroke, 1-cyl Modified 
Kirloskar AVL model 
5402 engine CR= 17.1:1 

— By splitting the pilot injection: 
↑ Fuel conversion efficiency, ↓ THC 
and ↓ CO. 
↑ Dwells between two injections: 
Two-phase HRR was clearer. 
NOx showed an increasing-decreasing 
behavior.  

Carlucci et al.  
(2017) 

Investigate on pilot biodiesel 
injection parameters and strategy on 
the biodiesel-PG dual-fuel 
combustion 

// 4-stroke, 1-cyl AVL model 
5402 engine CR= 17.1:1, 
rpm= 1500 

— Highest fuel conversion efficiency and 
lowest emissions: 
Dwell with a range of 10-30○ CA + first 
injection in the range of 20-35○ BTDC. 
The injection pressure reported to be a 
major factor.  

Yaliwal et al.  
[434] 
(2014) 

Honge oil methyl ester (HOME) and 
PG fueled dual-fuel engine operated 
with varying CRs 

15-19%H2; 18-22% 
CO; 1-5%CH4; 4% 
HO2 and 45-55%N2 

(5-5.6 MJ/m3) 

4-stroke, 1-cyl Kirloskar 
CI engine, CR= variable 
(15:1, 16:1, 17.5:1) 

— ↑ CR from 15 to 17.5: 
↑ BTE by 39.1%, ↓ exhaust gas 
temperature by 26%, ↑ peak pressure 
by 9.65%, ↓ smoke by 20.5%, ↓ CO by 
44.5%, ↓ HC by 30.2%, ↑ NOx by 
24.4%. 
At various CRs, lower BTE was seen 
with HOME/PG than diesel/PG.  
More improvement by turbocharging 
was suggested.  

Yaliwal et al.  
[436] 
(2016) 

Combustion chamber and nozzle 
geometry effects on a diesel engine 
performance operated on HOME/PG 
dual-fuel mode 

// 4-stroke, 1-cyl Kirloskar 
CI engine, CR= 17.5:1 

— ↑ Injection pressure, ↑ hole number 
with ↓ hole size could result in efficient 
preparation of mixtures. 
With re-entrant combustion chamber 
+ optimized nozzle geometry: ↑BTE by 
4-5%, ↓ smoke by 19%, ↓ CO by 

(continued on next page) 
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fuel for the reformer is supplied from the engine’s main fuel, and no 
relationship exists between the reformer and engine exhaust in terms of 
heat recovery, and the main purpose is not only to improve the com
bustion process, but also to improve the aftertreatment system perfor
mance at particular operating conditions. For example, on-board 

reformers have been employed to reduce HC and CO emissions during 
cold start and warm-up periods of a SI engine. Isherwood et al. [464] 
integrated a multi-cylinder SI engine with an electrically-heated proto
type POX reactor to produce reformate as replacement of gasoline fuel 
during cold-start, and then observed time-averaged reductions in HC 

Table 11 (continued ) 

Authors Research objectives Syngas 
composition 

Experiments Simulations Main results 

17.64%.  

Yaliwal et al.  
[448] 
(2021) 

Influence of producer gas and dairy 
scum oil methyl ester (DiSOME) on 
the thermal efficiency and emission 
character of a compression ignition 
engine under dual and HCCI mode 

// // — Diesel and DiSOME based DF mode of 
operation:  
↑BTE by 4.01% and 6.4%;  

↓ HC by 7.4% and 9.6% 
↓ CO by 8.5% and 13.4%  
↑NOx by 26.4% and 23.6% 
respectively than the operation with 
HCCI mode at 80% load. 

Costa et al. [449] 
(2017) 

Highlight the main influences on the 
combustion process related to the use 
of syngas and the effects of different 
biomass moisture contents on power 
output and main pollutants emission 

18.58%H2; 21.77% 
CO; 1.03%CH4; 
10.35%CO2 and 
48.28%N2 

— 3D engine model 
with 
the AVL Fire™ 

↑ Percentages of syngas: 
↓ Combustion efficiency but ↑thermal 
efficiency. 
With syngas addition: 
↓ NO formation ↑ CO and ↑ soot as 
compared to the case of pure use of 
biodiesel.  

Krishnamoorthi 
et al. [450] 
(2020) 

Experimental and numerical study on 
syngas/diesel and syngas/B20 (20% 
biodiesel) 

50%H2; 50%CO 4-stroke, 1-cyl 
direct injection, naturally 
aspirated KIRLOSKAR 
TV1 diesel engine 
CR = 15:1 

3-D simulations 
using CONVERGE 
CFD 

As compared diesel-only: 
Syngas/diesel with an inj. timing of 
19◦ BTDC:  
Slightly ↑ BTE, ↓ NOx by 22%, ↓PM by 
77%. 
Syngas/B20 with a pre-inj. at 50◦

BTDC and main inj. at 18◦ BTDC: 
Maximum BTE of 24%, ↓NOx by 29%. 

↑: increase, ↓: decrease, ∼: approximately constant, //: similar to above. 
IMEP: indicated mean effective pressure, CR: compression ratio, ITE: indicated thermal efficiency, BTE: brake thermal efficiency, BTDC: before top dead center, φ: air- 
fuel equivalence ratio, COVIMEP: coefficient of variation of IMEP, and UHC: unburned hydrocarbon 

Fig. 45. (a) Tar deposits on a component of the check valve; (b) piston showed no deposits, but small impurities were found in the oil rings (Reprinted from [330] 
with permission of Elsevier). 

Fig. 46. Injector tip (left), cylinder head and valve seat (right) after and before syngas fueling [457].  
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and CO by about 80% and 40%, respectively. Kirwan et al. [465], at 
Delphi automotive, also established an intake-side, external POX 
reformer to convert a fraction of gasoline at rich conditions to reformate 
by catalytic reforming; then, the reformate was split into separate in
jections, a portion into the cylinder and the rest into the exhaust stream, 
resulting in a reduction of both engine-out and tailpipe emissions during 
cold-start. Another study [466] proposed an on-board water electrolysis 
system to reduce fuel consumption of the SI engine fueled with ethanol 
and gasoline at the idle condition. 

The most significant way of producing reformate from this category 
is partial oxidation because of its inherently fast start-up and shut-down, 
rapid response to transient loads, and high hydrogen production, but at 
the expense of a drop in the reforming process efficiency, which should 
be offset by the increased engine thermal efficiency. Overall, enhance
ment in engine-reformer efficiency was reported for motorcycle appli
cations assisted with plasma converter [467,468]. 

Briefly, although these on-board reforming processes could be 
operated independently of the engine condition (as a positive point), the 
complexity and extra costs bring additional issues. It is worth noting that 
developments in the aftertreatment systems following the adoption of 

more stringent emission standards are in progress. 
Plasma reforming: 
Plasma-assisted fuel reforming is a technique to generate hydrogen- 

rich gas on-board the vehicle by supplying a small fraction of the main 
fuel stream to a device where fuel and air are converted to a stream 
containing the syngas by POX process, and then mixed with the main 
intake air/fuel charge for SI and HCCI combustion improvements or 
directly applied to exhaust aftertreatment systems for a NOx trap [469] 
or for diesel particulate filter (DPF) regeneration [470], as demonstrated 
in Fig. 48. The device, which was initially developed and tested by 
Bromberg et al. [471,472] at the Plasma Science and Fusion Center 
(PSFC) of Massachusetts Institute of Technology (MIT) and they called it 
“Plasmatron”, can be categorized into thermal and non-thermal plasma 
reformers, depending on how electrical power input transfers from the 
electric field to plasma components including electrons, ions, neutral 
gases to form and maintain plasma [473]. 

In thermal plasma reformers, the plasma energy input supplied by a 
DC source creates a small region with an extremely high temperature (in 
the range of 5000 to 10000K) to heat the electrons and the other plasma 
components, such that temperatures reach thermal equilibrium. While 

Fig. 47. Schematic layout of current on-board fuel reforming strategies.  

Fig. 48. Thermal (left) and low current (non-thermal) (right) Plasmatron fuel converters (Reprinted from [470] with permission of Elsevier).  
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the provided high-temperature environment, along with created plasma 
heating, boost the slow reaction rates associated with POX reactions, 
irrelevant inert species (such as N2) are also heated, meaning that much- 
unused energy is wasted through this non-selective way. On the other 
hand, in non-thermal plasma reformers, only the electrons have very 
high temperatures; however, the other components are relatively cold 
(near room temperature) and capable of absorbing and storing energy to 
efficiently produce locally highly reactive species to perform fuel 
reforming at low temperatures. Due to this behavior acting as a catalyst, 
many researchers believe that non-thermal plasma reforming has 
inherent catalysis effects that are fundamentally yet unknown [84]. 

Rabinovich et al. [474] developed a high current (>10 A), thermal 
compact Plasmatron reformer to convert various fuels, namely biofuels, 
gasoline, and diesel, into H2-rich gas, and also integrated it with an SI 
engine fueled with methane [475] and gasoline [476] to investigate 
engine performance, NOx emissions, and engine-reformer interactions. 
They succeeded to potentially apply the compact Plasmatron to IC en
gine, resulting in substantial NOx emissions reductions but at the 
expense of the high power requirement, the high overall 
engine-reformer efficiency cost, and possibly lower electrode lifetime 
[477]. Besides, as seen in Fig. 49(left), they needed two or more chan
nels in which water flows for electrode cooling prohibit electrodes from 
erosion. 

To overcome thermal compact Plasmatron-related issues, the same 
authors developed a low current (<120 mA) version of that through the 
non-thermal plasma generation mechanism, as indicated in Fig. 52 
(right) [470]. A wide range of fuels such as heavy hydrocarbons, alco
hols [478], and renewable fuels [479] can be used with different types of 
non-thermal plasma reformers. 

It’s worth noting that due to developing an understanding of plasma- 
chemistry interaction mechanisms, the role of plasma, specifically the 
non-equilibrium one, in combustion enhancement by assisting ignition 
and flame stabilization has been drawing more attention than the low- 
temperature fuel reforming application in recent years. For instance, 
microwave non-equilibrium plasma could enhance an ignitor such as the 
spark plug of SI engines to initiate a sufficiently large flame kernel, 
which in turn causes lean limit extensions by maintaining nearly con
stant combustion variability by increasing the air-to-fuel ratio, in addi
tion to the observed improvements in fuel consumption and CO 
emissions. This is beyond the current review’s scope, but in this regard, 
two critical and comprehensive reviews have been published [480,481]. 
Several studies were also conducted to mimic the Plamsatron-generated 
reformate in gasoline engines through simulated gases using bottled gas 
[305,482,483] with a typical reformate composition consisting of 25% 
H2, 26%CO, and 42%N2, which indicated an improvement of about 12% 

in engine efficiency at partial loads. 
In short, plasma-assisted reformers have shown vastly superior 

characteristics compared to traditional catalytic reformers, including 
fast response, rapid startup, fuel flexibility, size requirements, and 
absence of sulfur and soot as bi-products. Nevertheless, they deteriorate 
the vehicle’s overall power output by about 2%, as the engine must 
provide the electrical power. Additionally, they are immature for IC 
engine applications since plasma technology is still being under 
development. 

4.1.2. Exhaust gas fuel reforming 
Since in an IC engine approximately about 30% of the fuel’s energy is 

lost through hot exhaust gases, utilizing a part of these hot gases for 
providing heat and the reactants required, along with a portion of engine 
fuel for an exhaust gas fuel reformer placed inside the EGR loop, can 
result in reformate having higher enthalpy than the base fuel, as seen in 
Fig. 50. Reformate mixed with the rest of the EGR (in total, reformed 
exhaust gas recirculation or R-EGR) is fed back to the intake manifold to 
run the engine similar to a dual-fuel (the base fuel + R-EGR (EGR +
Reformate)) engine. The same concept with varying configurations has 
been investigated by several researchers, as seen in Fig. 50. Because of 
using a catalyst to convert the fuel, it is also called on-board catalytic 
reforming. 

Catalyst considerations: 
The catalyst formulation determines the catalyst activity and resis

tance to deactivation due to carbon deposition, and reformer design 
affects catalyst temperature; therefore, both influence reformer perfor
mance and reformate product. An earlier work [489] on an R-EGR 
reformer with a gasoline SI engine exhibited poor performance at 
moderate temperatures (T=600-650 ◦C) as compared with values pre
dicted by thermodynamic equilibrium, resulting in a low concentration 
of hydrogen (2-5%). This low fuel conversion was mostly attributable to 
the inactivity of the catalyst that was however not specified in that 
study. Recent works by Gomez et al. [490,491] showed that high activity 
of precious metal catalysts, e.g., 1 wt% rhodium (Rh) supported on 
zirconia, can bring yields near equilibrium for a given fuel conversion 
rate by preventing methanation reactions at typical exhaust tempera
tures of a gasoline engine. The study revealed that increased fuel con
version occurred with higher catalyst mass and temperature (see 
Fig. 51). A 10% drop was also observed in hydrogen production when 
increasing pressure from p=1 to 1.3 bar. In a current configuration, the 
exhaust gas reformer is placed after the TWC in the exhaust gas system 
[492], and achievable hydrogen and CO yields were in the range of 
5-10%.; another current (and more complex) layout [487] is that the 
reformer is positioned close to the exhaust manifold, as will be discussed 

Fig. 49. Thermal (left) and low current (non-thermal) (right) Plasmatron fuel converters. (Reprinted from [470] with permission of Elsevier).  
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Fig. 50. Schematic of various integrations of on-board exhaust gas fuel reformer in IC engines adapted from literature. 
R-EGR (University of Birmingham) [484] 
On-board fuel reformer (Nissan Motor Co.) [485] 
Catalytic EGR− loop reforming strategy (ORNL) [486] 
Integrated steam reforming (ISR) reactor (University of Minnesota) [487] 
Shoebox reformer design (Monsanto Company) [488] 
Vehicle hybrid propulsion system with onboard methanol reforming (TIIT) [24] 
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in the following. In general, optimized heat transfer from exhaust gas 
stream to catalyst with minimized heat loss positively affects hydrogen 
and CO yields, and this can be addressed with an appropriate reformer 
design and a fitting place of the reformer relative to the engine. How
ever, before all of these, the engine operating conditions decide what 
will happen inside the reformer. 

Thermochemical recovery: 
The engine provides heat and reactants (oxidizer or steam) for 

evaporating liquid fuel and initiating reactions involved in the reform
ing process. The exhaust gas stream contains CO2 (for dry reforming), 
H2O (for steam reforming), and O2 (for partial or complete oxidation); 
each of them can initially react with the engine fuel with a proper 
catalyst. Thereafter, CO supplied by incomplete combustion from the 
engine or by the product of preceding primary reactions can react with 
steam not yet consumed to perform the water-gas shift (WGS) reforming 
reaction as a means of minimizing CO, which may be considered as a CO 
clean-up strategy for the catalyst [116,493], similar to that for avoiding 
poisoning of fuel cell anodes [494]. Finally, methanation reactions may 
take place to consume available hydrogen in reformate, decreasing the 
potential H2 yield. 

Understanding which of the reactions has a significant share in the 
reforming process depends on the temperature and composition of the 
engine exhaust gas, which directly relies on the engine operating 

conditions. Efficient TCR with a high heating value reformate occurs 
when all reactions are eventually net endothermic; therefore, the target 
is to maximize endothermic reforming reactions, primarily dry and 
steam reforming. Nevertheless, the low temperature of the exhaust at 
low engine loads cannot drive endothermic reactions alone; thus, in this 
case, partial and complete oxidation reactions are useful to provide the 
heat required to achieve the reforming process and the likelihood of 
tailpipe-out emission reduction, with the possibility of heat loss. Hence, 
the exhaust gas fuel reformer may act like an auto-thermal reformer 
(ATR) without needing a separate water tank and air supply system. 
Recently, Tartakovsky and Sheintuch [33] thoroughly reviewed this 
concept and we would recommend to refer to this paper for more 
information. 

IC engine considerations: 
Incorporating the exhaust gas fuel reformer at various engine oper

ating points at different combustion modes, including CI [495–502], SI 
[484,489], HCCI [356,498,503], and partially premixed compression 
ignition (PCCI) [504] to produce R-EGR reformate has been widely 
investigated at the University of Birmingham over the last two decades; 
and more recently with a gasoline direct injection (GDI) engine reported 
in [100,492,505-510]. 

A series of studies on diesel engines integrated with a prototype 
exhaust gas fuel reformer (see Fig. 52 (left)) has been done with precious 
metal catalysts. Tsolakis et al. [496] employed this reformer whereby 
direct catalytic reforming of diesel is performed with the exhaust gas of a 
single-cylinder diesel engine operating at part load. They achieved up to 
16% hydrogen content in the R-EGR products for a reformer inlet tem
perature of T=290◦C. They also indicated that the use of R-EGR shifted 
the traditional NOx-smoke trade-off curve to lower values and lowered 
the incremental slope of smoke as compared to conventional EGR, as 
depicted in Fig. 52 (right). The same author [499] externally heated a 
diesel oxidation catalyst (DOC) Pt/AL2O3 at the temperature of 
T=250◦C (same condition as the engine running at 1800 rpm and 25% 
load) and then added R-EGR products to the engine intake manifold with 
reduced diesel fuel injected in order to maintain the engine condition 
constant at low load. They found that poor use of gaseous fuel (diesel 
combustion was still predominant) occurred with 20% R-EGR addition 
due to increased fuel consumption (i.e., a higher BSFC in g/kWh); while 
improving gaseous fuel oxidation with 30% R-EGR addition lowered 
BSFC due to approaching the stoichiometric air-fuel mixture by reducing 
O2 concentration in the cylinder and the higher intake temperature. 
Note that all these engine tests were achieved with simulated R-EGR 
bottled gas replaced with a part (or entire) of EGR. 

Fig. 51. Thermodynamic and experimental product yields as a function of 
temperature for iso-octane fuel and REGR conditions; experimental data were 
obtained during an increase of 10 ◦C/min and at p = 1.3 bar. (Reprinted from 
[490] with permission of Elsevier). 

Fig. 52. Schematic of liquid fuel reforming system (left) and effects of EGR (0–20%) and R-EGR (0–20%) on the NOx and Bosch smoke number (BSN), both upper 
and both lower curves pertain to 6.1 and 4.6 bar IMEP, respectively, and 1500 rpm (right) (Reprinted from [495,496] with permission of Elsevier). 

A. Paykani et al.                                                                                                                                                                                                                                



Progress in Energy and Combustion Science 90 (2022) 100995

46

Yap et al. [356] introduced a closed reforming loop system in the 
inlet of the exhaust manifold of a natural gas HCCI engine to perform 
methane (base fuel) reforming at low temperatures (~ 300◦C) corre
sponding to lean operation. Since hydrogen yield varies with engine 
operating load (see Fig. 53 (left)), they suggested that a part of the 
exhaust gas can be displaced by extra O2 content from the incoming 
fresh air (see Fig. 53 (right)) to maintain the hydrogen production target 
of 10% (by vol.) from 1 to 3 bar IMEP. Recently, another study [511] 
also reported that the adverse effect of highly endothermic conditions 
(ϕcatalyst >7) on the suppression of high reformate yields could be 
counteracted by adding a small quantity of O2, reaching 15% H2 (by 
vol.). 

In general, if the steam reforming process reduces the reformer 
temperature sufficiently, the possibility of inactivating the entire 
reforming process must be considered. Therefore, the addition of O2 
contained in the incoming fresh air as an option affords partial oxidation 
reforming to prevent inactivity of reforming process at low temperature 
and high reformer equivalence ratio (near to stoichiometric and higher 
engine loads) conditions. Interestingly, despite stressing on pure O2 to 
provide a large amount of H2 in fuel cells [512], just fresh air is sufficient 
due to the need for a small amount of H2 for IC engine applications. 

The effects of water added into the exhaust gas fuel reformer on 
hydrogen yield and conversion efficiency of catalytically diesel 
reforming were also investigated by Tsolakis et al. [497]; at T=290◦C 
reformer inlet temperature, H2 in the reformer product was obtained up 
to 15% more than with reformer operating without supplying water, due 
to presence of WGS reactions and then CO consumption in the reforming 
process. While heat losses from oxidative reactions can be mitigated by 
water addition, however, endothermic nature of WGS can lead to a 
reduction in overall engine-reactor efficiency. 

Full scale engine-reformer integration: 
A problem with aforementioned works was that the reformer and IC 

engine was not considered as a fully integrated system. As described in 
Fennel et al. [100,492], for the first time, a full-scale prototype gasoline 
reformer consists of a stack of five metallic catalyst plates loaded by 
3.3% Pt/ 1.7% Rd was integrated with a modern TC, multi-cylinder GDI 
engine, by installing the reformer after TWC. A high pressure EGR loop 
was used to introduce a fraction of engine exhaust gas as the feed gas 
into the reformer and then the produced reformate was inducted into the 
intake manifold of the engine. Initially, they showed R-EGR benefits 
over the baseline and conventional EGR in GDI engine, in terms of en
gine efficiency, NOx and PM emissions, due to extension of the dilution 
limit [505,506]. Secondly, it was shown that temperature distribution 
and generally performance of the reformer have a great dependency on 
the exhaust temperature and mass flow rate of the feed gas. At high 
temperature conditions (> 650◦C), both efficiencies of engine and 
reformer process were improved up to 8% and being more than 100%, 
respectively, indicating an improvement in the base fuel enthalpy. At 
lower temperatures (~ 600◦C), engine efficiency increased up to 4%; but 

in contrast, reformer efficiency was less than 100%, meaning some en
ergy is lost in the base fuel (gasoline) during the reforming process 
[507]. Finally, they offered that the downsizing strategy and using a 
boost device with GDI engine would be favorable for exhaust gas fuel 
reforming because operating IMEPs of engine will be shifted to the 
higher loads, resulting in increasing the exhaust gas temperature. 

Ashida et al. [485,513] used a 4 wt% Rh/Al2O3 catalyst reformer 
installed in the external EGR line of a SI engine (see Fig. 50, under the 
label of ‘On-board fuel reformer’) for catalytic steam reforming of 
injected gasoline in the presence of high-temperature EGR gas, without 
any additional O2. They initially observed an H2 production close to the 
calculated equilibrium concentration, but later catalyst deactivation 
almost started appearing within 5 hours, affecting the catalyst’s dura
bility [514]. Thus, steam reforming only will potentially face the chal
lenges of catalyst activity and durability in R-EGR strategy. Similarly, 
Brookshear et al. [515] at Oak Ridge National Laboratory (ORNL) 
incorporated a 2 wt% Rh/Al2O3 catalyst into the EGR loop of a 
multi-cylinder, stoichiometric SI engine. That work was followed by 
Chang et al. [511] to characterize the catalytic reforming performance 
using equilibrium modeling and experiments with iso-octane fueling. 
They firstly showed that reformer temperature, O2 mole concentration, 
H/C ratio of the fuel, and equivalence ratio of the catalyst are all key 
factors for determining the reformate products. Findings at a 
quasi-state-state condition revealed that the highest H2 yield (15% vol.) 
(Fig. 54-A) for O2 catalyst flow rate of 12 g/min (and higher) has 
coincided with maximum water consumption (Fig. 54-D) in the range 
of4 < φcatalyst < 7, suggesting the strong presence of SR or WGS re
actions. Moreover, forφcatalyst > 5, CO began being consumed 
(Fig. 54-B), and then H2/CO captured higher values, meaning that the 
WGS would predominate at lower catalyst temperatures (Fig. 54-C). 

Hwang et al. [516] were the first researchers who introduced a 
thermally integrated Rh/Pt catalyst reformer with a diesel engine to 
mitigate heat losses to the environment by mounting the reformer inside 
the exhaust manifold system. In this way, much more heat is readily 
accessible to the exhaust fuel reformer; thus, the primary candidate for 
catalytic reactions will be steam reforming. While the study showed the 
capability of producing high concentrations of hydrogen (as much as 
10% indicating high conversion efficiency), the on-board reforming 
system indicated a decrease in overall engine efficiency due to a fuel 
energy penalty for diesel at conditions with low reformer equivalence 
ratio (φreformer~1.5). Hence, a thermally integrated reforming system 
with a high reformer equivalence ratio (lower dependency on POX re
actions) demonstrated improvement in both engine and reformer con
version efficacies. Completely eliminating POX in the reformer along 
with using water contained in the fuel, like hydrous ethanol as the 
secondary fuel to provide a source of water for SR, is a solution to boost 
TCR effect; in this regard, the same authors [487] developed their pro
posed reformer and called it integrated steam reforming (ISR) (see 
Fig. 50, under the label of ‘Integrated steam reforming (ISR) reactor’) to 

Fig. 53. Variation of oxygen and water contents of exhaust gas with IMEP (left) and reformer inlet composition for production of a 10.4% (vol.) H2 in R-EGR (right). 
(Reprinted from [356] with permission of Elsevier). 
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enable diesel engine dual-fuel (diesel/syngas) operation. It was shown 
that the heating value of the fuel increased by 23% at 100% conversion. 

Reforming fuel type: 
It has been reported that the reformer and catalyst designs should be 

optimized exclusively for each type of reforming fuel in the REGR- 
assisted IC engine application. For instance, Tsolakis et al. [517] 
compared the reforming of ultra-low sulfur diesel (ULSD) with 
ultra-clean gas-to-liquid (GTL) fuels for a single-cylinder diesel engine. 
They showed decreased methanation reactions, which ends with CH4 
present in the reformed products with GTL fueling. Thus, results in 
higher hydrogen generation and fuel conversion compared to ULSD 
reforming. These advantages of such fueling can result in reformer 
compactness improvement and catalyst cost-benefit. 

The feasibility of R-EGR with renewable fuels such as biodiesel was 
shown in the earlier stages of research in a CI engine [495], and later 
with renewable oxygenated fuels like bioethanol and rapeseed methyl 
ester (RME) in both CI and HCCI engines [356,503,504,518]. Tsolakis 
et al. [519] indicated that both of them have higher reforming efficiency 
(as defined by low heating values of products over the fuel input) and H2 

production compared to ULSD, especially at lower reformer inlet tem
peratures (~290◦C). Thus, reforming process efficiency has a strong 
reliance on reforming fuel type. For CI engines, other fuels such as 
biogas [501,520,521] are also used to upgrade into reformate through 
exhaust gas reforming. 

SI engine fueled with bioethanol was investigated for the first time by 
Leung et al. [484] for R-EGR; the activity of a precious-metal catalyst 
containing 1%Rh – 2%Pt (by mass) on 30% (by mass) ceria-zirconia for 
all expected reaction routes of bioethanol reforming during exhaust gas 
reforming were observed, except for the WGS reaction. Their results 
predicted that the overall reforming process is oxidative, increasing fuel 
heating value by 6% while increasing it up to 20% with less O2 present in 
the exhaust. Researchers at AVL and Monsanto Co. [488,522,523] 
designed a compact lightweight, exhaust gas ethanol reformer, called 
"shoebox", with a copper-nickel powder catalyst to combine with a 
multi-cylinder SI engine fueled with ethanol or E85 (see Fig. 50, under 
the label of ‘Shoebox reformer design’), with the objectives of reducing 
HC emissions during cold start and improving part-load dilution. They 
initially observed that mixing 50% of (simulated) reformate, known as 

Fig. 54. Concentration of H2 (A), CO (B), and H2O (C) as function of Φcatalyst and O2 catalyst flow rate at the outlet of the catalyst, and correlation of H2/CO ratio and 
the catalyst-out temperature (D) [511]. 
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the “low-temperature ethanol reformate” due to low temperatures 
requirement (300-350◦C), with E85 enables diluted engine operation, 
leading to a 10-17% and 20-25% rise in brake thermal efficiency as 
compared to stoichiometric E85 and gasoline baselines, respectively 
[522]; mixing 25-40% of real ethanol reformate in E85 increased the 
efficiency by 10-12.3% at part load and idle conditions, as well as HC 
emission reduction [523]. Ji et al. [524] placed an ethanol steam 
reformer loaded with the copper catalyst inside a multi-cylinder SI en
gine fueled gasoline. Note that deionized water and ethanol were the 
feedstock of SR, meaning that the engine exhaust was just the source of 
heat, not reactants. They reported around 4.5% improvement in indi
cated thermal efficiency with 2.43% of reformate (by vol.) in the total 
intake gas. Also, the exploration of suitable catalyst formulation for 
exhaust gas-driven ethanol steam reforming (ESR) of a single-cylinder SI 
engine is discussed in [525]. Unlike the TCR goal, catalytic partial 
oxidation (CPOX) of ethanol over Pt, Pt-Palladium (Pd), and Pt-Rh cat
alysts at typical diesel exhaust temperatures up to 400◦C have been 
experimentally carried out as a viable pathway of producing reformate 
for the automotive exhaust gas aftertreatment systems [526,527]. For 
instance, it has been reported that for the CPOX of ethanol over a Pt-Rh 
on alumina at a constant reformer inlet temperature of 300◦C, that 
oxygen/ethanol (O/E) molar ratio has a key role in the determination of 
ethanol conversion, reaction temperature, H2 generation, and selectivity 
towardH2, such that the maximum H2 would be produced at a higher 
O/E ratio than that predicted by equilibrium, for a given ethanol 
concentration. 

Hydrous ethanol (HE) or wet ethanol has considerable saving energy 
rather than anhydrous ethanol, (as typical alcoholic engine fuel) in 
terms of not only eliminating the water removal requirement, but use of 
water content for assisting steam reforming. It has been claimed that HE 
distillation and dehydration account for about 50% consumption of total 
base ethanol energy [484]; thus, HE has higher overall energy cycle than 
anhydrous ethanol. HE as standalone fuel for IC engines may result in 
poor performance due to incomplete combustion and severe charge 
cooling effect of water [528]. Li [529] indicated the feasibility of 150 
proof HE (i.e., 75% ethanol with 25% water volume content) as exhaust 
reformer fuel of SI engine fueled with gasoline; the HE conversion 
peaked at approximately 675 K using a copper-based catalyst. Also, 
Hwang et al. [487] catalytically converted a 150 proof HE over a Pt-Rh 
catalyst into a secondary fuel (with a 23% increase in heating value) for 
a diesel engine coupled to an exhaust reformer. Nevertheless, ethanol 
production is confined to certain regions such as Brazil and North 
America. 

Methanol has been the primary fuel in reforming applications for 
many years because it requires a slightly lower reforming temperature 
than ethanol due to having no C-C bonds. This makes it candidates for 
100% reforming such that its resultant reformate would be as standalone 
fuel for the IC engines [33]. In this regard, Tartakovsky et al. [530–535] 
conducted a series of studies on on-board methanol steam reforming 
(MSR) with a high-pressure TCR system and then introducing it with 
direct injection into the IC engine. Results from a DISI engine fed with 
100% methanol SR products as engine fuel showed an 18-39% 
improvement in the indicated efficiency and a reduction of 73-94%, 
90-95%, 85-97%, and 10-25% in NOx, CO, HC, and CO2 emissions, 
respectively compared to gasoline within a wide range of engine loads. 
Lia and Horng [536] employed the exhaust heat of a 4-cylinder SI engine 
to drive MSR reactions over a CuO–ZnO/Al2O3 catalyst at a controlled 
reforming temperature of 300◦C; a maximal methanol conversion of 
93% and the molar flow rate of produced H2 by about 1.34 mole/min for 
a steam to carbon (S/C) ratio of 1.2 were reported. More recently, 
Nguyen et al. [537] numerically examined the efficiency of a 
REGR-assisted SI engine fueled with methanol and then compared it 
with ethanol counterpart, considering only steam and dry reforming 
reactions for both fuels. As illustrated in Fig. 55, steam reforming of 
ethanol with H2/CO products (EtOH-CO) and with H2/CO2 products 
(EtOH-CO2) have higher engine-cycle efficiency than methanol steam 

reforming (MSR), at a higher reforming fraction. On the figure’s y-axis, 
two lower cases indicate no EGR and no reforming usage, and the top of 
those relate to an EGR limit of 25% without reforming. 

As another renewable fuel, ammonia, an affordable hydrogen carrier 
[538], can be converted into reformate which is free of COx. Earlier, 
ammonia in the form of urea was applied on catalytic after-treatment 
systems of heavy-duty diesel engines to reduce NOx [539]. Then, 
exhaust reforming of ammonia, which needs ~ 500◦C for decomposing 
[540], with a diesel engine that provided 100-400◦C was investigated 
through the auto-thermal (i.e., NH3-ATR) process and using a ruthenium 
(Ru)-Al2O3 catalyst [541]. It was observed that the H2 production was in 
the range of 2.5-3.2 l/min with the O2/NH3 ratio from 0.03 to 0.175 
with a fixed NH3 feed flow of 3 l/min; and when the small amount of 
produced reformate was added to the intake air (representing as 5% 
replacement of diesel fuel), a substantial reduction was obtained in CO, 
CO2, and THC emissions. In a more recent study [542], exhaust 
reforming of ammonia at higher exhaust temperatures of a GDI engine 
(450-550◦C) over an Rh-Pt/Al2O3 catalyst was evaluated by two cases of 
direct catalytic conversion of ammonia (a portion of exhaust used) and 
ammonia decomposition (only exhaust heat used) to produce H2-N2 
products. They showed that 30 and 32% improvements were achieved in 
the case of extracting exhaust heat and using exhaust gas, respectively. 

In summary, ethanol and methanol as suitable reforming feedstocks 
can facilitate catalyst reforming at lower temperatures, mainly due to 
having a simpler structure than the complex long-chain hydrocarbons. 
Another advantage is that they are soluble in water and can be premixed 
to contain appropriate molar steam-to-carbon ratio for reforming. Pure 
steam reforming of alcohols can be accomplished using waste heat in a 
TCR reactor due to their ability to be reformed at engine exhaust- 
relevant temperatures. The temperature needed for reforming HC fuels 
is at least about 550◦C while for methanol and ethanol is typically in the 
range of 250-300◦C. However, because of methanol’s toxicity, it is less 
desirable than ethanol for reforming. 

Conclusion: 
With the assumption of a proper catalyst reformer choice and 

appropriate integration with the IC engine:  

• At close to stoichiometric conditions and high engine loads: more 
provided heat and steam to drive predominantly endothermic re
actions (steam and dry reforming) increase the heating value of the 
base fuel and afford a high TCR effect. In the case of low tempera
tures (<700◦C), fresh air addition is an option to maintain catalyst 
activity by providing more heat from POX or combustion reactions 

Fig. 55. The maximum Otto cycle efficiency of methanol, ethanol-CO2 and 
ethanol-CO at the same combustion stability limit (Reprinted from [537] with 
permission of Elsevier). 
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within the reformer. The overall process can be either exothermic or 
endothermic; depending upon catalyst temperature and reforming 
fuel type. 

• At lean conditions and low engine loads: higher oxygen concentra
tions in the engine exhaust stream are accessible to the reformer but 
at lower temperatures. A high achievable conversion efficiency, 
which yields high reformate concentrations in the range of 10-15% 
for both H2 and CO, can be demonstrated. In this case, the risk of 
combustion occurrence exists due to the possibility of complete fuel 
oxidation. POX reactions may increase the reformer temperature 
exceedingly until the catalyst burns out or deactivation takes place.  

• Moreover, in an engine operating map, transients from low to high 
loads impose controllability issues due to variations in local reformer 
equivalence ratio (O2 availability). Hence, there is a continuous 
balance to manage between high fuel enthalpy achievement and high 
reformate production (high fuel conversion) across all engine speed/ 
load conditions. 

According to the literature, stoichiometric exhaust at higher tem
peratures (i.e., modern SI engines) is the priority to fully take advantage 
of exhaust gas reforming in terms of heat recovery benefits; and for 
overall lower exhaust temperature, and proven feasibility of renewable 
oxygenated fuels such as methanol and ethanol with R-EGR suggest the 
need for more research in this area, despite having more cost relative to 
in-cylinder reforming strategies. 

4.2. In-cylinder fuel reforming 

4.2.1. Negative valve overlap (NVO) reforming 
Negative valve overlap fuel injection or NVO fuel injection (initially 

referred to as activation injection) was suggested [543] as a chemical 
extender for homogenous combustion by injecting fuel into the 
remaining exhaust gas (called residuals, iEGR or residual gas fraction) 
between two timings of early exhaust valve closing and late intake valve 
opening. This technique offers control of the activation energy of the 
main combustion reactions by potentially providing an in-cylinder 
environment prone to ignite, as shown in Fig 56. 

On the other hand, the absence of any direct control of in-cylinder 
fuel processing in a typical HCCI engine will lead to a narrower en
gine operating range due to the possibility of misfiring at low-load and 
severe high-pressure rise rates at high load. Urushihara et al. [545] 
recognized the concept of shifting the chemical composition of the fuel 
in the high-temperature residual gases and then recompressing during 
the exhaust stroke, and called it the fuel reforming process. They tested 
various patterns of direct fuel injection to explore the effect on 
expanding the operating range of a gasoline-fueled HCCI engine at low 
load. They represented an optimal direct fuel injection strategy in which 
a small amount of the fuel is injected during the NVO exhaust stroke 
while the rest is injected during the intake stroke, representing a split 
injection ratio. HCCI with NVO fuel reforming has been drawing a great 
deal of attention for several years [546–548]. The usefulness of this 
technique was also investigated in other low temperature combustion 

(LTC) modes, such as in partially premixed combustion (PPC) [549]. 
In the case of the SI engine, low-temperature combustion modes such 

as HCCI and spark assisted compression ignition (SACI) have been used 
to switch the stoichiometric mode of a traditional SI engine to an 
effective dilution mode, presenting a higher fuel economy than before; 
however, they encounter a narrower load range for the HCCI engine 
along with TWC deficiency. As a solution, employing NVO fuel 
reforming in stoichiometric SI engines has recently drawn attention, 
resulting in extending the dilution limit at low and maybe part engine 
loads. For instance, Chang et al. [550] explored the effects of sweeping 
the start of injection (SOI) timing, from 300 to 420 CAD BTDCfiring, 
during a fixed NVO period of 80 CAD and varying the NVO periods 
dilution limit in a stoichiometric SI engine fueled with E10 (baseline 
engine fuel) at BMEP=3 bar and engine speed of1800 rpm. At a fixed 
NVO period of 80 CAD, while the maximum peak heat release rate with 
lowest CoV of IMEP belonged to the SOI=380 CAD BTDCfiring case, the 
volumetric efficiency remained unaffected by the swept NVO SOI, which 
means that no variation was seen in BMEP. Also, an extended dilution 
limit was seen with a total EGR rate of 32%, and a 22% reduction in 
BSFC as compared to the reference engine version, in the case of TDC 
injection (SOI=360 CADBTDCfiring) and 80 CAD NVO. 

A comparison between symmetric NVO and PVO strategies has been 
conducted by Rodriguez and Cheng [551], which resulted in NVO 
benefits at low load by 7% improvement in fuel consumption due to 
reduced pumping losses. At part load, IMEP can increase up to 6 bar by 
combining symmetric NVO with optimized EVO timing to minimize 
losses of the blowdown process; which means that the PVO strategy is 
superior to the NVO strategy at part-load of a SI engine. More recently, 
the possibility of using NVO fuel reforming in a gasoline/diesel dual fuel 
engine [552] and RCCI engine fueled with natural gas(NG)/diesel has 
been proposed and evaluated through the simulation based on a 
developed in-house code [553]. The low-load efficiency of NG/diesel 
RCCI with NVO reforming was better than a lean strategy and EGR 
baselines by 5.5% and 3%, respectively, due to increased combustion 
efficiency and despite NVO’s increased pumping losses. 

NVO fuel reforming effects: 
Thermal and chemical effects corresponding to the NVO fuel 

reforming process directly influence the main combustion; hence, these 
effects must be identified individually. Retained and recompressed 
exhaust enthalpy during the NVO period can raise the overall charge 
temperature and this increases the specific heat ratio (γ) of the charge. 
Moreover, NVO fuel injection, and the corresponding reactions and heat 
release, produce reformate, which itself has a high specific heat ratio 
(~1.40), which further enhances the overall γ of the charge prior to the 
subsequent main-combustion event. As an outcome, increased thermal 
efficiency can be expected. On the other hand, NVO-reformate products 
can reduce the mixture’s overall ignition delay and expedite the mix
ture’s chemical kinetics (i.e., a mixture with higher reactivity than the 
base fuel), which leads to improved stabilization of the main combustion 
and low-load limit of the engine. Here, temperature and available oxy
gen in the residuals during NVO link both effects together. 

Song et al. [554] noticed that there is a competing effect between 
thermal and chemical effects by performing simulations on a gasoline 
HCCI engine operating at various equivalence ratios from 0.6 to 1 with 
NVO pilot injection, which resulted in optimum oxygen availability 
(equivalence ratio) for successfully reducing ignition delay. At lean 
conditions (high oxygen concentration) and near-stoichiometric (low-
oxygen concentration), exothermic reactions and endothermic reactions 
(from fuel pyrolysis) will become dominant, respectively. Szybist et al. 
[555] pointed out that a large amount of reformate and other 
short-chain hydrocarbons could be obtained in the low-O2 environment. 
Reported oxygen concentrations from documents are in a range of 2–4 % 
during the NVO period. 

Due to the complexity of measuring in-cylinder temperature, espe
cially at the IVC of an engine cycle with NVO fuel reforming, several 
thermodynamic-based predictor models have been developed, relying 

Fig. 56. Cylinder pressure versus crank angle degrees for NVO fuel injection 
and LTGC combustion, including valve events [544]. 
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on temperature measurements at the exhaust port during the exhaust 
event (blowdown and recompressing). For instance, Fitzgerald et al. 
[556] developed an algorithm to isolate the thermal effect of NVO fuel 
reforming on iso-octane HCCI combustion from the chemical effect 
through calculating cycle temperature. In a later work they found [557] 
that chemical effects are dominant in late NVO fueling, because the early 
exothermic reactions due to the presence of ethylene and formaldehyde 
(reformed NVO species) offsets the cooler charge at IVC (thermal effect), 
and the main combustion remains advanced similar to the early fueling 
case. But, thermal effects have prominent role in early NVO fueling, with 
higher fuel conversion efficiency (~ 80-90%) as compared with the late 
fueling case. As an overall conclusion, NVO heat release depends on the 
mass and injection timings of the NVO fuel and oxygen availability. 

For better understanding of fuel reforming chemistry, kinetics, and 
the evolving reactive species, various sampling approaches in conjunc
tion with gas analyzers have been implemented experimentally to 
characterize the NVO-period reformate [558,559]. In this regard, re
searchers at the Sandia National Laboratories (SNL), Oak Ridge National 
Laboratories (ORNL), and the University of Minnesota had valuable 
relevant contributions [544,560-568]. Through these studies the effect 
of molecular structure of the NVO-fuel [565] on NVO fuel reforming 
were explored for various fuels. The related ensemble-averaged in-cy
linder pressure and heat release rate profiles during the NVO period are 
shown in Fig. 57. For ethanol fueling, the exothermic heat release 
resulted in the highest peak bulk-averaged in-cylinder temperature 
among the fuels. As shown, for most fuels the lack of sufficient heat 
release reveals that the fuel-injected was mainly converted into refor
mate. Later modeling work by the same authors [567] used a detailed 
kinetic mechanism for iso-octane in a stochastic reactor model (SRM) 
that examined the NVO reforming process. This work found that endo
thermic and exothermic reactions are mainly balanced for most fuels, 
limiting obvious heat release as found using in-cylinder pressure anal
ysis. The modeling work also suggested that the in-cylinder mixture 
gradient during NVO reforming was responsible for producing reactive 
species, in addition to the main syngas components, such as allene, 
acetaldehyde, and acetylene, which were partially responsible for 
improved reactivity in the main low-temperature gasoline combustion 
(LTGC) ignition event. The significance of the NVO-fuel type also was 
reported by another work [560], in which hydrogen fraction of 
NVO-reformate was less than 1.5% with iso-octane and more than 8% 
with methanol fueling. 

Moreover, pathways to get more fuel decomposition (more reac
tivity) during NVO [566], and the impacts of NVO-reformate on engine 

performance [544] have been discussed. For instance, it was reported 
that more fuel decomposition was achievable with longer chemistry 
residence times and lower spray impingement on piston surface (i.e., an 
advanced NVO SOI). 

As an energy recovery method: 
NVO fuel reforming can be regarded as a thermochemical recuper

ation process in which waste exhaust thermal energy converts to more 
accessible chemical energy for the main combustion; the injected fuel 
during the NVO period uses the heating provided from trapped and 
recompressed exhaust residuals left from the previous cycle to drive 
endothermic reactions, resulting in the reformate having higher overall 
energy content. However, heat transfer and pumping losses are two 
main source of losses which come from the trapped and recompressed 
NVO-gasses, and mixing of the NVO-period charge with the cooler 
intake charge, respectively. Adjusting a combination of fueling rate, fuel 
injection timing, and available oxygen concentration during NVO 
period, such that the recovered energy compensates for the losses, and 
the reformate species maximize at that combination is an important 
topic. Ekoto et al. [563] modeled a single-cylinder, LTGC engine with a 
NVO fuel reforming technique as a closed system (from EVC to IVC) 
undergoing thermodynamic processes to perform energy analysis for 
two fuels of ethanol and iso-octane. In comparison with iso-octane 
fueling, ethanol produced higher NVO-apparent heat release (AHR) 
despite its higher evaporative cooling effect, but with lower recovered 
energy due to its fast ignition chemistry. Among the findings, it has been 
reported that approximately 70% of usable energy recovery, which was 
defined as the sum of AHR and recovered fuel energy, is achievable in 
NVO in-cylinder fuel reforming for gasoline-like fuels with low (or zero) 
toluene content. As a result, a higher NVO global equivalence ratio by 
either reducing the NVO-period oxygen concentration or increasing 
fueling rates leads to a larger fraction of recovered fuel energy. Addi
tionally, large NVO fuel injection and NVO-SOI advancement resulted in 
the highest overall-cycle thermodynamic efficiencies, all of which 
depended on NVO-fuel type (fuel chosen for the NVO reforming 
process). 

Conclusions: 
To sum up, NVO fuel reforming is a direct-injection fuel method that 

assists the NVO technique (a valving strategy) to address problems of 
undesirable combustion in the SI engine and misfiring at low load in the 
HCCI engine fueled with low reactivity fuels by changing the chemical 
and thermal effects, and consequently, the reactivity of the in-cylinder 
combustible mixture by reforming the base fuel. Application of NVO 
fuel reforming to control combustion phasing and as an extender of the 
low-load HCCI/LTGC and stoichiometric SI engines by providing more 
stabilized combustion has been successfully proved. However, the 
resultant NVO-reformate has shown great sensitivity not only to in- 
cylinder conditions, but also heavily to the NVO-injection strategy, 
which is varied by the selected fuel. Therefore, this sensitivity leads to 
complex interactions that must be considered to result in an overall 
optimum charge to favor the main combustion. Demonstrating this on- 
board fuel reforming technique with a combustion mode like RCCI, 
developing suitable kinetic mechanisms, and achieving the best fuel 
energy recovery in terms of appropriate in-cylinder thermal manage
ment might be attractive research topics for the future. 

4.2.2. Dedicated exhaust gas recirculation (D-EGR) 
Exhaust gas recirculation (EGR) is well-known as an effective tech

nique of SI engine efficiency improver and NOx reducer; however, there 
are some severe impediments for EGR, including limited dilution and 
combustion instability at a higher EGR rate (10-20%). Developing 
concepts aiming at higher engine efficiency led to the idea of combining 
the EGR with the fuel reformation through dedicated cylinder(s) to 
perform in-cylinder partial oxidation reactions associated with rich 
combustion. 

The idea of using one or some of the cylinders of a multi-cylinder 
engine as a fuel reformer (or a reactor) to perform the fuel reforming 

Fig. 57. In-cylinder pressure and heat release rate versus crank angle during 
the NVO period for various fuels (Reprinted from [544] with permission 
of Elsevier). 
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process was first introduced by Meyers and Kubesh [569] at the 
Southwest Research Institute (SwRI), where they studied a lean natural 
gas-fueled SI engine with an assigned rich-burn cylinder to produce the 
EGR, primarily consisting of hydrogen and carbon monoxide. The work 
resulted in an efficient lean-burn SI engine with more combustion sta
bility and thermal efficiency, called the “hybrid rich-burn/lean-burn 
engine.” The idea was then further developed into forming an engine 
technology termed dedicated exhaust gas recirculation or D-EGR [570] 
from the sequential works at SwRI. In this technology, while the dedi
cated cylinder(s) runs beyond stoichiometric (i.e., rich combustion), the 
rest of the cylinders can operate at nearly stoichiometric conditions to 
properly comply with the three-way catalyst after-treatment system in SI 
engines. The dedicated cylinder’s exhaust stream, containing not only 
the inert species (i.e., typical EGR products) but also the reactive con
stituents (i.e., reformate), is entirely separated from the exhaust mani
fold and redirected to the intake manifold to serve as the only EGR for 
the entire engine, as demonstrated in Fig. 58. The D-EGR concept from 
various aspects to its demonstration in modern engine technology will 
be discussed in the following. 

D-EGR / TFR concept: 
In the first practical attempt, Alger and Mangold [572] reconfigured 

a 2.4 L gasoline engine to dedicate one of its four cylinders for only EGR 
production of the entire engine by a fixed rate of 25% (by vol.). Prior to 
metal engine experiments, they calculated the concentration of refor
mate relative to the air-to-fuel (A/F) ratio variations from stoichiometric 
to rich, by measuring the gasses in the D-EGR cylinder exhaust (see 
Fig. 59). Then, they investigated the effects of the D-EGR products on the 
engine performance for the various engine speed/load combinations. 
The results obtained showed substantial improvements in thermal effi
ciency and emissions at both high and, in particular, low loads when the 
D-EGR cylinder steadily undergoes rich combustion up to about an 
equivalence ratio of 1.2 (φD − EGRcylinder = 1.2) and the other cylinders 
run at fixed stoichiometric conditions(φothercylinders = 1). Fig. 60 shows 
the low-load results in which fuel consumption, stability in terms of CoV 
IMEP, and emissions have been improved over the baseline case. Also, it 
was observed that the total burn duration decreased significantly by 
reducing the early stages of kernel formation near the spark plug (i.e., 
0-2% MFB duration), resulting in increased in-cylinder temperature and 
elevated NOx emissions, but still lower than the baseline. 

Later, Zhu et al. [573] from Shanghai Jiao Tong University employed 
the analogous concept to D-EGR, named the thermochemical fuel 

reforming (TFR) concept (see Fig. 61 right). Initially, they applied it to a 
turbocharged, 4-cylinder SI engine specifically designed for natural gas 
fueling with stoichiometric operation to exhibit the potential benefits of 
the TFR concept over conventional EGR. Moreover, they defined the 
term in-cylinder TFR to evaluate the in-cylinder thermochemical pro
cess, in which a higher in-cylinder TFR would result in a greater amount 
of H2 and CO and lower unreformed CH4 fraction in the exhaust gas of 
the TFR cylinder (the cylinder dedicated to the TFR process). At a fixed 
speed of 1500 rpm and the same ignition timing of 20◦ BTDC applied to 
all cylinders, they performed a line of experimental works coupled with 
laminar flame calculations using CHEMKIN to evaluate in-cylinder TFR 

Fig. 58. Schematic of a turbocharged engine in a D-EGR configuration [571].  

Fig. 59. Calculated exhaust species (mass and mole fractions) for different 
levels of enrichment by performing a chemical balance in the D-EGR cylinder 
exhaust [570]. 
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and engine uniformity by sweeping the equivalence ratio (ϕ) of the TFR 
cylinder from 1 to 1.4. At ϕ=1.2, where the maximum CO and H2 con
centrations were achieved, an upper limit for stability of the 
rich-combustion with natural gas fueling in the TFR cylinder was found 
over a range of low-to-high loads. Therefore, φTFR = 1 indicated a 
constant EGR rate of 25%, and φTFR = 1.2 is representative of the same 
rate but containing reformate gas. Early results indicated that the CoV of 
IMEP improved by about 65% for low engine loads and engine perfor
mance and emissions except that NOx was elevated over the entire load 
range tested in the case of φTFR = 1.2 compared to φTFR = 1 (conven
tional EGR). 

New term definition: 
From the literature reviewed here cylinder(s) dedicated to run under 

on-board fuel reforming conditions and rich combustion can be marked 
as the D-EGR/TFR or rich cylinder(s) and the rest referred to as normal 
or stoichiometric cylinders. Additional fuel required for performing fuel- 
rich combustion in the D-EGR cylinder(s) can also be referred to by the 
over-fueling or reformation ratio, e.g., 30% over-fueling/reformation 

ratio that means φDEGR=1.3. The produced reformate is also called D- 
EGR/TFR gas. Some new terms have also been extracted from the 
comparison between traditional EGR (inert gases) and D-EGR (EGR +
reformate) that are explained in the following. 

In this concept, when routing the reformate-enriched EGR (or EGR in 
D-EGR engine) back to the intake manifold, it is vital to characterize the 
intake concentrations, since highly reactive species like H2 in the intake 
charge could promote backfiring, which can damage the intake system. 
Moreover, the contributions of isolated reactive species and inert gases 
from D-EGR in the intake charge are not well-known, and eventually, 
affect the main combustion. Thus, a new parameter of total inert dilution 
ratio (TIDR) was empirically defined by Alger et al. [574] as a common 
basis for comparison EGR and D-EGR. The definition is: 

TIDR =
XN2 in + XCO2 in + XH2O in

XN2 in + XCO2 in + XH2O in + XO2 in
(7)  

where the X is mole fraction of intake constituents. 
Based on the TIDR definition, a decrease of nearly 2% in the con

Fig. 60. Engine-out emissions, engine-average CoV (left) and fuel consumption (right) of an engine running 25 % D-EGR at 2000 rpm / 2 bar BMEP [570].  

Fig. 61. Schematic of D-EGR [570] (left) and TFR [573] (right) experimental setups.  
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ventional EGR rate (calculated by the ratio of CO2 at the intake and 
exhaust manifold) has been shown when the air-fuel mixture’s equiva
lence ratio in the D-EGR cylinder was swept from 1 to about 1.5. 
Therefore, this term shows the discrepancy between conventional EGR 
(i.e., stoichiometric EGR with 100% diluents) and D-EGR (i.e., rich EGR 
with a mixture of diluents and reactive species). Nevertheless, since 
TIDR has a slight variation range (0% and 30% EGR rate = 0.77 and 0.83 
of TIDR, respectively) and the largest constituent of diluents is N2, a 
substitute term named EGR* [575] also is defined to show sufficiently 
the differences between the nominal rate of conventional EGR (e.g., 
low-pressure loop EGR) and D-EGR, as shown in Fig. 62, and: 

EGR∗ [0 − 1] =
ṁEGR ∗

(
minert
mEGRt

)

ṁEGR ∗

(
minert
mEGRt

)

+ ṁair

,
minert

mEGRt

= 1 ∗ ϕD− EGR
− 0.2501 (8)  

where ṁEGR and ṁair are the mass flow rate of EGR and air; minert and 
mEGRt are inert mass and total EGR (inert + reactive species) mass, 
respectively, andφD − EGR denotes the fuel/air equivalence ratio of the 
dedicated cylinder. 

Comparison with conventional EGR: 
The D-EGR concept was introduced to overcome conventional EGR 

shortcomings, such as combustion instability and misfiring at a high 
rate, and inappropriate flow control. Therefore, in most earlier studies, 
the D-EGR concept was compared to conventional EGR. 

In a direct comparison study, Gukelberger et al. [576,577] compared 
D-EGR with low-pressure loop (LPL) cooled EGR at part- and high-load 
operation in a turbocharged, 2L PFI SI engine. They found that at low 
engine load, combustion stability of φD − EGR= 1.45 is comparable with 
almost 13-14% LPL cooled EGR. Both HC and CO emissions were 
reduced; however, NOx emissions were increased slightly with D-EGR 
operation. Generally, at low loads, the findings indicated that the D-EGR 
engine could withstand higher levels of EGR dilution, allow faster 
burning speeds, and afford a further improvement in efficiency, and at 
high loads, provides superior knock tolerance and stability over the LPL 

EGR system. It is noteworthy that the D-EGR engine was allowed to 
operate with higher compression ratios (12.5:1 and 13.5:1 at high load) 
than the baseline case (9:1). The engine operation map for 25% LPL EGR 
is demonstrated in Fig. 63. It can be seen that only 25% EGR has com
parable performance with D-EGR (with the same nominal EGR rate, i.e., 
25%) in the green region. The yellow region could be covered with EGR 
but at a lower rate of 25% and approximately a 5% increase in BSFC. The 
region colored red could be covered with D-EGR and an adequate 
boosting system, but cannot be accessed with the LPL EGR setup due to 
knocking propensity. 

Overall, the D-EGR concept is a revision of conventional EGR (cooled 
EGR) concepts, and has advantages over those, including eliminating 
any uncertainty in EGR production and the need for the EGR valve, 

Fig. 62. Total Inert Dilution Ratio (TIDR) comparison between LPL EGR and D-EGR, (a) from simulations and; (b) from engine tests along with measured intake CO2 
and EGR*rate [574]. 

Fig. 63. Engine operating map with 25% LPL EGR [577].  
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providing an easy way for transient control, and increasing the EGR 
quality by the reformate from in-cylinder fuel reforming. Interestingly, 
the potential of more than 25% nominal EGR has numerically been 
explored for a V6 engine modified to run at 50% D-EGR using three of 
the six cylinders in D-EGR mode [578,579]. 

Fuel type effects: 
The main research related to D-EGR have been carried out on gaso

line or natural gas fueled SI engines. Gasoline with various research 
octane number (RON) or anti-knock indices (RON+MON/2) and with 
different ethanol blended (E0:100% gasoline [by vol.] and E47: 47% 
ethanol [by vol.]) [580,581], and natural gas [573] blended with 
alcohol fuels like ethanol [582], methanol [583–585], propanol isomers 
[585,586], n-heptane [587,588], iso-octane [588] and propane [589] 
fuels have been studied so far. 

Gasoline fuels with various anti-knock indices (AKI) were selected to 
examine the relationship between the reformation rate (over-fueling) 
and octane fuel number [580]. It was shown that a 1.8 AKI increase 
corresponds to a 10% increase in the reformation rate. As shown in 
Fig. 64, higher octane fuel would be the same as lower octane fuel at a 
reformation ratio of 30%. Additionally, more than 30% over-fueling 
could worsen the IMEP balance between the dedicated cylinder and 
normal cylinders, resulting in degenerating engine uniformity. Also, it 
was shown that higher ethanol content in gasoline fuel (e.g., E-47) leads 
to an apparent increase in hydrogen production through the D-EGR 
in-cylinder fuel reforming having a higher H/C ratio, but the brake 
thermal efficiency is virtually independent of that [581] (see Fig. 64 
right). 

A small amount of alcohol as an enriching fuel can improve fuel 
reforming due to higher radical production to ease the partial oxidation 
reactions participating in the in-cylinder fuel reforming process. He et al. 
[582] experimentally compared natural gas and ethanol enrichment at 
φTFR=1.25 and a fixed spark timing of 20○ BTDC for a natural gas SI 
engine. Their results indicated more stable engine operation (i.e., lower 
cyclic variability, see Fig. 65 (c)), higher engine uniformity (i.e., less 
IMEP disparity between the TFR cylinder and a normal cylinder, as 
shown by cylinder2, see Fig. 65 (d)), higher rates of produced H2 and CO 
concentrations and also lower unburnt CH4 fraction in the reformate (i. 
e., complete in-cylinder TRF, see Fig. 65 (a)), and significantly lower 
NOx with the case of ethanol enrichment. More reactive species are due 
to presence of hydroxyl in the structure of ethanol that might potentially 
lead to higher O, H, OH radicals (see Fig. 65 (a)) and improved fuel 
oxidation. 

Zhu et al. [585] numerically and experimentally showed that 
methanol enrichment has a great contribution to methane oxidation as 

compared with ethanol, propanol, ethylene glycol, aiding to the higher 
formation of H2 and CO, due to the presence of OH. Thus, methanol is 
the optimal enrichment fuel for the TFR-cylinder operating on natural 
gas. 

Reformate analysis: 
D-EGR reformate gas provided by running fuel-rich combustion de

pends on how the fuel-air mixture’s rich limit behaves under engine- 
relevant conditions, which itself depends upon the fuel type used. 
Alger et al. [590] reported that only 0.2% and about 0.4% hydrogen by 
volume is needed in the intake stream of a SI engine fueled with gasoline 
and natural gas, respectively, to enhance engine stability significantly. 
For instance, Fig. 59 and Fig. 65(b) represent the reactive species 
generated in the D-EGR and TRF concepts, respectively, based on the 
fuel used. 

Liu et al. [591] ran a single-cylinder, natural gas SI engine, retro
fitted from a diesel engine, in a fuel-rich combustion mode (as a D-EGR 
cylinder) to characterize the generated reformate quantitatively by gas 
chromatography. They found that both H2 and CO mole fractions were 
increased linearly from ϕ=1 to ϕ=1.4 by about 8% with a nearly con
stant H2/CO ratio (1:1 by vol.). They also employed rapid compression 
machine (RCM) experiments [592] for the CH4 ignition at similar con
ditions. They also examined the effect of 1% (φD − EGR= 1.2) and 2% (φD 

− EGR= 1.4) H2/CO ratio (by vol.) on stoichiometric natural gas com
bustion at a part load condition of ~ 6 bar IMEP at two nominal EGR 
rates of 15% and 20%. 

From the literature, φD − EGR between 1.2-1.4 is a decent range in 
terms of stability while φD − EGR>1.4 imposes a rich limit for fuels used. 
The possibility of φD − EGR up to 3 and its effects on reformate generation 
were investigated numerically [579]. Although D-EGR is indeed a 
non-catalyst fuel reforming technique, catalyst formulation such as the 
WGS catalyst with Rhodium and Barium was employed in the exhaust 
stream of the D-EGR cylinder to further boost H2 generation [593]; it 
was shown that H2 generation reaches 7% (by volume) through opti
mizing the catalyst formulation, though an activity loss was seen after 
about 12 hours. This imposes durability challenges. 

Demonstration of D-EGR vehicle: 
As mentioned before, the constraints of a downsized boosted SI en

gine operating stoichiometric with traditional (cooled or uncooled) EGR 
pertain to knock limitations, EGR tolerance, and combustion instability, 
which can be improved using reformate along with EGR. Therefore, the 
D-EGR concept provides the pathways of achieving high-efficiency SI 
engines. To better demonstrate an actual D-EGR vehicle, several in
struments, including an advanced high-energy dual coil offset (DCO) 
ignition system [594] for facilitating ignition of dilute mixtures and a 

Fig. 64. Engine stability as a function of φD − EGR in D-EGR cylinder with varying AKI – solid line related to a normal cylinder [580] (left), H2 concentration and BTE 
for a specific designed high energy ignition system (DCO) [581] (right), at 2 bar BMEP / 2000 rpm. 
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Fig. 65. Comparison natural gas with ethanol enrichment [582], in terms of laminar flame speed from calculation of CH4-air and C2H5OH-air mixtures (a), and 
reformate production (b), IMEP cyclic variability (c) and IMEP discrepancy (c), from experiment. (With permission of Elsevier). 

Fig. 66. New designed air handling system for D-EGR engine (left) and D-EGR and LEA power and torque comparisons (right) [571,599].  
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D-EGR mixer [595] for promoting reformate distribution to suppress 
sudden imbalances in CoV of IMEP of the normal cylinders, have been 
developed together with applying improvements in order to increase the 
reformate yield such as improved injection strategies (more effective 
with split and late DI than PFI, except at low speed) [596], valve timing 
(more sensitive to retardation of exhaust valve compared to advance 
intake valve) [596] and ignition timing based on transient control [597, 
598]. 

Chadwell et al. [571] first successfully replaced a 2.4 L, NA PFI SI 
engine (LEA, engine produced by GM) with a converted D-EGR, 2 L, TC 
DISI engine (LHU, engine produced by GM) fueling with Haltermann 
EEE certification gasoline with an anti-knock index of 92 on a produc
tion vehicle (2012 Buick Regal) with a designed air handling system 
consisting of EGR control, boosting and D-EGR mixing systems, as seen 
in Fig. 66 (left), and with an increased compression ratio of OEM LHU 
from 9.3:1 to 11.7:1. The target operating points of torque and power for 
vehicle-based D-EGR with a nominal EGR ratio of 25% were designed 
beyond the reference vehicle with GM LEA (see Fig. 66 (right)). It was 
observed that BSFC is reduced by an average of 10% across most oper
ating points relative to the reference engine. The most considerable 
reduction occurred at high speeds and high engine loads due to 
completely removing the over-fueling in the D-EGR cylinder. This fuel 
economy improvement was attributed primarily to increased compres
sion ratio due to enhanced knock tolerance resulting from the reformate 
existing in the charge and stoichiometric operation. Also, it was reported 
that the sufficient hydrogen concentration to stabilize the combustion at 
low loads was about just 1% by volume. Robertson et al. [599] tested the 
performance of the same converted D-EGR vehicle on the FTP-75 (for the 
city) and HWFET (for the highway); compared to the baseline vehicle, 
they observed that the fuel consumption was reduced by 13% and 9%, 
NOx was reduced by 85%, non-methane organic gases (NMOG) emis
sions remained constant and were reduced by 33%, respectively, for the 
FTP-75 and HWFET. 

Also, potential demonstration of D-EGR system in a moderately large 
displacement (~ 3-4 L) gasoline engine as substitution of a medium-duty 
diesel truck (~ 6-7 L) was shown using GT-Power simulations, and 
comparable thermal efficiency and GHC emissions results were noticed 
[600]. 

The core aim of the concept is to improve the stoichiometric SI en
gine’s efficiency through extension of its dilution-limit without sacri
ficing TWC’s efficiency or increasing the tailpipe-out emissions of the 
vehicle by using reformate (syngas)-enriched EGR. Jung and Lee [601] 
determined computationally the D-EGR potential with a lean SI engine 
fueled with methane. They founded the highest engine thermal effi
ciency (ηth e) of 42.9% resulted from a combination of φD − EGR = 2 with 
φNormal = 0.7 operation, compared to the maximum ηth e of 39.4% for φD 

− EGR = 1.9 and φNormal = 1. Recently, use of an air-assisted pre-chamber 
in a natural gas fueled six-cylinder D-EGR engine has also been shown to 
be highly effective in stabilizing the combustion and extending enrich
ment limits by 11.7% [602]. The leaner mixture permits ignition of the 
mixture and stabilizes combustion. Therefore, the conventional benefits 
of the pre-chamber can be utilized for D-EGR applications. Osaka Gas 
Co. [603] has also considered applying a D-EGR system to a turbo
charged lean HCCI engine as a long-term pathway for a high-efficiency 
small gas engine in power generation applications. 

Conclusion: 
To sum up, in-cylinder on-board fuel reforming with the D-EGR/TFR 

concept has been realized in various production vehicle SI engines 
operating stoichiometric without requiring any external reforming de
vice, while avoiding catalyst-related issues (poisoning and aging) and 
vast internal engine modifications (excluding potential compression 
ratio increase due to enhanced knock resistance). However, some de
vices are required to convert a SI engine to an effective D-EGR one, 
including a mixer, boosting device, charge air cooler, and suitable 
ignition system as well as an over-fueling requirement along with sup
plying injector(s) and delivering the D-EGR loop for the dedicated 

cylinder. Profound consequences include increased engine efficiency 
with reduced emissions and increased EGR quality due to reformate 
presence with reduced/eliminated downside effects of conventional 
EGR, namely, uncertainty in EGR production and difficulty in transient 
control and the need for high EGR levels (>15%). Isolated combustion 
stability of the dedicated cylinder(s) and the balanced IMEP between D- 
EGR (rich) cylinder(s) and normal (stoichiometric) cylinders (engine 
uniformity) represent a new trade-off that must also be considered as 
well as fresh concerns related to fuel selection. D-EGR fueling optimi
zation based on fuel type is of significant importance and has not been 
well addressed until now. Besides, D-EGR experiments with lean SI en
gines might be an interesting topic for the future. 

We would like to refer the readers to Fig. 47, where they can see all 
the on-board reforming techniques reviewed in this chapter in detail. 

5. Summary and outlook 

5.1. Summary 

This paper provides a critical comprehensive review on the use of 
syngas for IC engines over the last few decades, since syngas has become 
more attractive as an alternative and potentially renewable fuel for IC 
engines. Generally, engine configurations studied in the literature are 
considerably different and the results have been rather difficult to 
compare. An overall observation based on the literature is that the se
lection of the base fuel for reforming, the syngas production method, its 
physicochemical properties, engine operating conditions, and the en
gine design parameters play important roles in dictating the potential 
advantages of syngas use in IC engines. Some important conclusions 
from this review are summarized below: 

• Variation of the hydrogen fraction in syngas has been a factor, pro
hibiting its widespread usage. In addition, other gaseous elements 
such as CO2, N2, and CH4 in the syngas can have adverse effects on 
engine combustion characteristics. To address these issues, a better 
understanding of fundamental combustion properties is vital. A large 
set of experimental data is available for the combustion of syngas 
with various H2/CO contents. However, studies related to ignition 
delay times and laminar flame speeds measurements of syngas mixed 
with other gases under engine relevant conditions are still limited. 
Detailed numerical and experimental studies are required to gap the 
bridge. 

• The most important factors that cause power de-rating in an SI en
gine are the low energy density of syngas/air mixtures and reduced 
engine volumetric efficiency due to air replacement. With high H2- 
content syngas addition to the engine as the secondary fuel, com
bustion and performance were better than with low H2-content 
syngas. Using higher compression ratios in syngas-fueled engines led 
to reduced power de-rating without any increase in the knock ten
dency. Power de-rating can also be eliminated by direct injection of 
syngas, which is a promising solution to avoid problems of reduced 
volumetric efficiency and unwanted pre-ignition or surface ignition 
in the intake system.  

• Among the different types of engines, syngas as the secondary fuel or 
blended with other fuels in dual-fuel engines showed very interesting 
results due to their lower power de-rating capability compared to 
syngas-fueled SI engines, which have problems running the engine 
under near stoichiometric conditions and increased PM emissions 
with 100% syngas. High efficiencies with low emissions can be also 
obtained in the whole operating range with the use of appropriate 
strategies in dual-fuel engines. Recently, efforts have been directed 
towards the optimization of these engines with advanced numerical 
techniques. However, the presence of two distinct fuel supply lines is 
a complexity that points out problems related to the storage and the 
transportation of the fuels. 
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• Fuel reforming combined with dual-fuel combustion is capable of 
increasing the global efficiency of the system over conventional 
diesel combustion. On-board fuel reforming is an attractive method 
to convert a dual-fuel RCCI combustion strategy into a single-fuel 
RCCI concept and thus eliminates the need for two fuel lines and 
fuel tanks, which is one of the important demerits of RCCI combus
tion. On-board catalytic fuel reforming is also a promising technique 
for improving efficiency and reducing pollutant emissions from IC 
engines. Overall, it seems that syngas in a single/dual-fuel engine is a 
promising technique for controlling both NOx and soot emissions in 
existing engines, but with slight engine hardware modifications 
needed.  

• In HCCI engines, 100% reformate at higher intake temperature 
would be a suitable strategy, compared to the 100% reformate, 
which was more favorable for SI engines at conventional operating 
conditions. RG blending was found to be an effective method for 
retarding combustion phasing, since it reduces the heat release at 
low temperatures, followed by a prolongation of the NTC delay 
period and a delay in the high-temperature heat release. RG can act 
like an ignition controller for the main engine fuel and can eliminate 
the need for preheating the intake charge. The levels of exhaust CO 
and UHC emissions increase as the RG concentration increases while 
NOx decreases. The chemical effects of RG on HCCI combustion of 
PRFs were found to be stronger than thermodynamic effects and 
dilution.  

• Exhaust gas reforming systems are currently being considered in 
different configurations. Fuel choice dictates which R-EGR method is 
preferred. Catalytic on-board fuel reforming can be challenging since 
some hydrocarbon fuels like gasoline require high temperatures to 
reform, and the sulfur content in some fuels can poison the catalyst. 
Another drawback of on-board fuel reforming method using the POX 
method is the reduced LHV of the fuels, thus reducing overall engine 
efficiency. Catalytic R-EGR results showed that good hydrogen rates 
could be produced with adequate control of the reaction parameters 
at temperatures typical of the exhaust gas temperatures of diesel 
engines operating at part load without any external heat source or air 
and steam supply requirements. Overall, the use of R-EGR allowed 
the realization of the benefits of both EGR and waste heat. Moreover, 
a mixture diluted by R-EGR can reduce the knock tendency 
compared to EGR dilution cases. With faster laminar burning ve
locities, the R-EGR technology is a promising approach to support 
high levels of EGR dilution in advanced SI engines for increased 
thermal efficiency.  

• In-cylinder fuel reforming techniques like D-EGR/TFR are capable of 
delivering up to 15% more efficient engines than today’s mainstream 
ones, while simultaneously improving engine performance. It allows 
manufacturers to address future, more aggressive fuel economy 
standards and meet LEV III/Tier 3 emissions levels [604] 
cost-effectively. The results reported in this paper indicate that the 
D-EGR engine can tolerate higher levels of EGR dilution at low loads, 
allow faster burn speeds, minimize cycle-to-cycle variations, and can 
further boost performance and emissions. At high loads, the D-EGR 
technique provides superior knock tolerance and stability over the 
LPL EGR. Disadvantages of in-cylinder reforming strategies include 
slow kinetics and limited reforming stoichiometry. Furthermore, 
homogeneous in-cylinder reforming of heavier fuels like diesel can 
potentially lead to excessive carbon formation at rich equivalence 
ratios. 

Overall, syngas combustion technology seems to have reached a 
considerable level of technical development, and the analysis of the 
literature on syngas combustion in IC engines shows the potential for 
widespread research and development work on syngas in the automo
tive industry in future. 

5.2. Outlook 

Syngas-fueled IC engines with technological advancements are 
attractive and economically viable and can serve as a future option for 
power and transportation applications. New measurements of the 
laminar flame speed of syngas diluted with other gaseous compositions 
at elevated pressures would help further understand syngas combustion 
kinetics. The main issue with modelling combustion kinetics is the de
mand for expert knowledge and optimization against experiments, as 
well as the lack of understanding of the associated uncertainties. 
Therefore, data-driven ML approaches that enable efficient discovery 
and calibration of kinetic models can be employed for syngas combus
tion modeling in coming years. The ML model can be a promising 
alternative to time-consuming experimental measurements or numerical 
calculations. 

It is well documented that supplying syngas directly to the intake 
manifold has several limitations, including backfire, pre-ignition, and 
power loss through reduced volumetric efficiency. Transient operation is 
also limited due to the time required for gas to travel through the intake 
system, depending on where it is mixed. Syngas direct injection tech
nology can eliminates these limitations but requires high-pressure 
reforming, which could be an area for future study. Numerical models 
should also account for the intake and exhaust processes, which are 
usually not considered in the simulations of syngas-fueled PFI engines. 
Since a considerable fraction of the power derating is related to the 
decrease of volumetric efficiency, those processes should be included in 
the simulations. Similar to DI technology, stratified lean-burn combus
tion is also an effective way of using syngas in modern engines to address 
problems associated with air-handling at lean stoichiometric air-fuel 
ratios. However, the required injection durations should be taken due 
into account. For better performance and emissions, further investiga
tion of the optimization of injection timing, fuel composition, air-fuel 
ratio, and ignition advance are required. 

Studies have shown that single-fuel RCCI combustion can achieve 
high efficiencies while maintaining low NOx and soot emissions. 
Conversely, the transient performance of the combustion process alone 
(i.e., without the reformer) is assumed to be similar to other gaseous 
dual-fuel engines operating at early direct injection times, which may 
pose additional challenges in combustion control [605,606] if hydrogen 
percentages in the reformed fuel are not kept below those resulting in 
the high-pressure oscillation region. Future work should further analyze 
reformate concentrations and examine fuel reactivity as a function of 
reactor stoichiometry and temperature. In addition, matching reformer 
performance with the engine conditions that enable it to run effectively 
should also be considered. Such studies would provide invaluable in
formation to more optimally control combustion, and further define the 
operability range of thermally integrated reforming reactor systems. 

To minimize HC and CO emissions, the efficiency of syngas-operated 
dual-fuel CI engines must be optimized. Moreover, other engine opera
tional parameters should be tuned in addition to the amount of 
combustible mixture inside the combustion chamber for achieving bet
ter combustion characteristics. Based on the present review, detailed 
numerical and experimental studies with different compositions of the 
syngas and engine parameters are therefore needed. 

Syngas production and combustion research for IC engines have 
mainly focused on steady-state operating conditions, and very few 
transient operation studies have been investigated. It is expected that 
there will be challenges to allow reforming systems to work efficiently 
over the entire operating load and speed range. The long-term viability 
of the reforming catalyst and the reforming reaction’s response to a 
variety of fuels should be examined. In-cylinder reforming processes like 
D-EGR/TFR and NVO are the most promising for on-board syngas pro
duction. The products of these processes should be evaluated for con
trolling combustion phasing and enabling advanced combustion 
strategies. For D-EGR vehicles, the low exhaust temperatures are a 
challenge for meeting future emissions regulations because some 
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catalytic aftertreatment solutions for reducing emissions are not 
currently feasible due to poor low temperature activity. Hydrocarbon 
traps are an area of future work for D-EGR- equipped vehicles. The effect 
of reformate composition on combustion and exhaust emissions can also 
be studied in future work. The stability and efficiency of combustion in 
the D-EGR cylinder may be a major concern for D-EGR natural gas en
gines and optimizing the equivalence ratio of the D-EGR cylinder is 
crucial for D-EGR in order to improve the overall engine combustion 
output. 

The research aimed at improving IC engine start-up and transient 
behavior is needed to broaden the range of possible applications. Ex
amination of heat transfer processes is necessary to illustrate the opti
mum configuration for complex systems, compared to conventional IC 
engines, including multiple fuel heating, evaporation, and reforming 
processes when using exhaust gas heat, and refreshing the reforming 
products before they are delivered to the engine. 

Finally, syngas-fueled engines can be optimally designed for hybrid 
electric vehicle application [607], allowing high efficiency operation at 
target engine speed and loads. For hybrid configuration research, 
investigating low-carbon fuels and optimized engines according to up
coming emissions regulations for CO2 will be of particular interest. In 
addition, since most literature research has focused on light duty vehi
cles, multi-mode hybrid powertrains can be investigated for commercial 
and medium/heavy duty trucks. Thus, there are still numerous issues 
that require further numerical and experimental investigation, particu
larly in the field of on-board fuel reforming and fundamental syngas 
combustion studies in IC engines for transport applications. 
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