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On the unreasonable reliability of 1 

mathematical inference1 2 

In (Avigad, 2020), Jeremy Avigad makes a novel and insightful argument, which he presents as part 3 

of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs 4 

(that is, the proofs that mathematicians write for each other and publish in mathematics journals, 5 

which may in spite of their ‘informal’ label be rather more formal than other kinds of scientific 6 

communication) and their corresponding formal derivations (‘formal’ in the sense of computer 7 

science and mathematical logic).  His argument considers the various strategies by means of which 8 

mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of 9 

the prodigious length, complexity and conceptual difficulty that some proofs exhibit.  He takes it that 10 

showing that and how such strategies work is a necessary part of any defence of the Standard View. 11 

In this paper, I argue for two claims.  The first is that Avigad’s list of strategies is no threat to critics 12 

of the Standard View.  On the contrary, this observational core of heuristic advice in Avigad’s paper 13 

is agnostic between rival accounts of mathematical correctness.  The second is that that Avigad’s 14 

project of accounting for the relation between formal and informal proofs requires an answer to a 15 

prior question: what sort of thing is an informal proof?  His paper havers between two answers.  One 16 

is that informal proofs are ultimately syntactic items that differ from formal derivations only in 17 

completeness and use of abbreviations.  The other is that informal proofs are not purely syntactic 18 

items, and therefore the translation of an informal proof into a derivation is not a routine procedure 19 

but rather a creative act.  Since the ‘syntactic’ reading of informal proofs reduces the Standard View 20 

to triviality, makes a mystery of the valuable observational core of his paper, and underestimates the 21 

value of the achievements of mathematical logic, he should choose some version of the second 22 

option.     23 

1. Two Views of Proof: history of the question 24 

Avigad’s paper adds to a debate that can be traced to the origins of modern mathematics in the 25 

early twentieth century.  The historic division is between those like Hilbert2 and the Bourbakists3 26 

who wished to drive the modern tendency towards ever more formal and abstract mathematics to 27 

its limit, and those like Poincaré4 and Brouwer5 who thought (in different ways) that mathematics 28 

ineliminably refers to human experience and activity, and therefore judged that complete 29 

formalisation is either unwise or impossible.  This broad contrast developed into a debate over 30 

(what we now call) the Standard View: that full formalisability is not merely a splendid and valuable 31 

feature of mathematical proofs, but is a criterion or norm of rigour.  For example, Saunders Mac 32 

 
1 I am grateful for valuable comments to two anonymous reviewers and to audience members at a conference 
in January 2021 organised by Silvia De Toffoli. 
2 See Hilbert (1927), especially pp. 472-4 of van Heijenoort (ed.) for his polemics against Poincaré and Brouwer.  
Hilbert’s philosophy of mathematics is much richer than here presented, and includes a conception of finitary 
mathematics as contentful, that is, not wholly syntactic.  See Zach (2019).   
3 Bourbaki (1948).  
4 Poincaré (1908).  On his conception of proof, “Verification differs from proof precisely because it is 
analytical,… It leads to nothing because the conclusion is nothing but the premisses translated into another 
language.  A real proof, on the other hand, is fruitful because the conclusion is in a sense more general than 
the premisses.” (1902, p. 396 in Benacerraf & Putnam).  For a nuanced discussion of Poincaré’s views on 
formal logic, see McLarty (1997). 
5 “The question where mathematical exactness does exist, is answered differently by the two sides; the 

intuitionist says: in the human intellect, the formalist says: on paper.” Brouwer (1913) p. 83. 



2 
 

Lane claimed that, “In practice, a proof is a sketch, in sufficient detail to make possible a routine 33 

translation of this sketch into a formal proof” and that, “...the test for the correctness of a proposed 34 

proof is by formal criteria and not by reference to the subject matter at issue” (1986 pp. 377-8).  35 

Here is a looser statement from Thomas Hales,  36 

The ultimate standard of proof is a formal proof, which is nothing other than an unbroken 37 

chain of logical inferences from an explicit set of axioms. While this may be the 38 

mathematical ideal of proof, actual mathematical practice generally deviates significantly 39 

from the ideal. (2012, p. x) 40 

Where Mac Lane describes the informal proof as a ‘sketch’, Hales writes (in the title of his book) of a 41 

‘blueprint’.   Solomon Feferman, at the end of his (2012), sought to specify the relation between an 42 

informal proof and a corresponding formal derivation without using such metaphors:  43 

...the Formalizability Thesis should be given a very strict reading, namely that (i) every good 44 

proof has an underlying logical structure, (ii) that structure is completely analyzed in the 45 

derivation that formalizes the proof, and, finally (iii) that derivation assures the correctness 46 

of the theorem proved on the basis of the background assumptions expressed by the axioms 47 

and rules of the system in which the proof is formalized. 48 

For a more recent expression of the idea that proof is really about syntax, here is Joel D. Hamkins,  49 

Proof and truth… lie on opposite sides of the syntax-semantics divide, for at bottom, a proof 50 

is a kind of argument, a collection of assertations structured syntactically in some way, while 51 

the truth of an assertion is grounded in deeply semantic issues concerning the way things 52 

are… Proof… lies solidly on the syntactic side, since ideally one can verify and analyze a proof 53 

as a purely syntactic object, without a concept of meaning and without ever interpreting the 54 

language in any model.  (2020, pp. 157-8) 55 

In fairness, it should be noted that this quotation comes from an introductory lecture series in which 56 

Hamkins outlines a range of perspectives and leaves the deeper questions that they raise for 57 

students to discuss.  Nonetheless, these examples are enough to show why this is called ‘the 58 

Standard View’.  It occurs in mathematicians’ discussions of proof, often with little or no supporting 59 

argument, as if it were an unobjectionable statement of what all mathematicians mean by ‘proof’.   60 

It is almost always joined with a recognition that reality rarely approaches this ideal (as in Mac Lane 61 

and Hales, just quoted).  Here is Hamkins, a few pages on: “Most contemporary mathematical proofs 62 

are written in prose, essay-style… In mathematical practice, a proof is any sufficiently detailed 63 

convincing mathematical argument that logically establishes the truth of a theorem from its 64 

premises.” (p. 160).  Students might wonder how prose, even mathematical prose, can ‘lie solidly on 65 

the syntactic side’.  In most of these presentations, the tension between the ideal of a purely 66 

syntactic object and the reality of proofs written in semantically rich prose is either shrugged off or 67 

set aside with a claim (as in Mac Lane) that the translation between informal proof and formal 68 

derivation is ‘routine’ or otherwise unproblematic.  Of course, some aspects of mathematical 69 

argumentation are perfectly well modelled by formal logic.  Every proof by contradiction, for 70 

example, is a clear, undisguised case of reductio ad absurdum. 71 
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Some mathematicians do worry about in the relation between an informal proof and its 72 

corresponding derivations,6 such as Reuben Hersh (1997) and most notably Yehuda Rav (1999).  Rav 73 

asked why we prove theorems, and his answers all turned on a claim that proofs include ‘topic-74 

specific moves’ (p. 26) that cannot be re-cast in formal logic without loss or violence.  This is also a 75 

central point for Hersh, “The passage from informal to formalized theory must entail loss of meaning 76 

or change of meaning” (1997, p. 160).  Mac Lane, in contrast, claims that if an informal proof is 77 

rigorous, this translation must be ‘routine’ and that the test for correctness should made no 78 

reference to the subject matter, that is, should not be topic-specific (quoted above).   79 

Thus, we have some mathematicians (Hersh, Rav) insisting that informal proofs are often so 80 

different from formal derivations that the latter have little relevance to the business of writing and 81 

checking the former.  Other mathematicians (Mac Lane, Feferman, perhaps Hales and Hamkins) sail 82 

close to claiming that a rigorous informal proof in some sense is a formal derivation (‘at bottom’, 83 

under ‘complete analysis’ or up to ‘routine’ translation).  What, in this circumstance, is a philosopher 84 

to do?  One of the most widely discussed accounts of the matter is Jody Azzouni’s (2004)7 85 

‘derivation-indicator’ view.  86 

Azzouni, seeking to specify a role for formal derivations while doing justice to the rich descriptions of 87 

proof-practice that he found in Rav and others, argued that an informal proof is not a formal 88 

derivation somehow abbreviated or disguised.  Rather, a valid informal proof indicates the existence 89 

of a formal derivation and in this way meets the norm of formal correctness.  Azzouni later modified 90 

this view (2009), giving up the phrase ‘derivation-indicator’ in favour of talk of topic-specific 91 

inference packages that sound rather like Rav’s topic-specific moves.  In spite of this partial 92 

rapprochement, there are some important differences between Azzouni’s eventual position and 93 

Rav’s outlook.  Azzouni works hard in his (2009) paper to identify the role that formal logic has in 94 

informal proof practice (see his discussion of ‘content containment’), and he ties his account to 95 

human cognitive processes and capacities, whereas Rav talks about topic-specific mathematical 96 

moves that might in principle be carried out by a cephalopod or an alien. 97 

Azzouni’s chief motive for giving up the derivation-indicator view seems to be that he found himself 98 

explaining observable, measurable social facts—the reliability and stability of mathematical 99 

knowledge, the confidence of mathematicians in their results and the high degree of consensus in 100 

the mathematical research community—by reference to something that in almost all cases is non-101 

existent:  102 

I kept falling (against my will) into a view that mathematicians had to be engaged in 103 

something like sophisticated syntactic pattern-recognition while perusing informal 104 

mathematical proofs, so that they would be sensitive (without realizing it) to a background 105 

of nonexistent formal derivations.8 106 

Philosophers of the Rav tendency often rely on some version of this point.  Formal derivations 107 

corresponding to informal proofs almost never exist in material reality.  They might be posited in 108 

principle, and sometimes the structure of the informal proof might suggest a map of how a 109 

 
6 Typically, there are lots of derivations that might formalise a given proof, and sometimes they vary 
sufficiently to make trouble for Feferman’s claim that the corresponding derivation captures the logical 
structure of the informal proof.  See Tanswell (2015) for cases.   
7 Azzouni modified his view considerably in his (2009) and (2017).  Nevertheless, his phrase ‘derivation-
indicator’ has taken on a life beyond his writing.  Since Avigad’s most recent work is the focus of the present 
paper, it is worth noting that Azzouni lists Avigad among the acknowledgements of his (2009) paper.   
8 Azzouni, 2009, p. 25.  Italics in original. 
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derivation could be worked up.  Nevertheless, the posited formal derivations almost always remain 110 

materially non-existent and therefore ineligible to be elements in the causal history of a 111 

psychological or social fact.  Whatever job it is that formal derivations are supposed to do in 112 

mathematical practice, they somehow must be able to do it without existing.9 113 

There are two more points to make about this debate before turning to Avigad’s recent paper.  First, 114 

practicing mathematicians supply the contending philosophical positions.  The fact that 115 

mathematicians feel moved to say what they do is part of the data for philosophers of mathematical 116 

practice.  In particular, philosophers who favour Rav’s outlook need to explain why mathematicians 117 

so often announce some version of the Standard View.  It matters, even if it is strictly false.10  The 118 

philosopher’s work would not yet be complete if one side of this debate triumphed over the other, 119 

because (whichever way it went), all the data must be accounted for, including the reflections of 120 

mathematicians committed to the defeated view.   121 

Second, notice how Azzouni got drawn (against his will) into making a claim in philosophy of mind.  122 

The thought that informal proofs are really (‘at bottom’, after ‘routine’ translation) syntactic items 123 

leads naturally to the idea that in reading them, mathematicians are doing some sort of syntactic 124 

processing.  This is a special case of the idea that all human thinking is syntactic processing, in spite 125 

of appearances.  That general idea owes some of its grip on the contemporary philosophical 126 

imagination to the omnipresence of digital devices, which now carry out tasks that look as if they 127 

belong solidly on the semantic side, but which are at bottom (at the level of machine-code), 128 

syntactic processes.  In addition, the brain-as-computer idea has a role in cognitive science because 129 

it helps researchers to ask precise questions (about, for example, memory size and structure).  It 130 

may be also true, but results in experimental psychology suggest otherwise (Kahneman, 2012).  131 

None of the authors cited in this paper have committed themselves to computationalism in the 132 

philosophy of mind.  Nevertheless, that is the direction in which these arguments point.   133 

 
9 Of course, beliefs about non-existent formal derivations can be causally effective, and Azzouni makes moves 
in that direction in his (2017).  There, he attempts to rescue his claim—that in reading an informal proof, 
mathematicians are unconsciously recognising algorithmic processes—by suggesting that the objects of the 
algorithms need not be linguistic strings.  This thought is already in the literature, e.g., De Toffoli (2017), 
Giardino (2017), Larvor (2012), and Manders (2008) except that Azzouni re-presents manipulations as 
algorithmic processes.  That may work for Azzouni, but it comes at the cost of separating his thesis (reading 
mathematical proofs is algorithm-recognition) from the idea that informal proofs are always-already formed in 
something like first-order logic with ZFC.  He knows this, and makes moves to reconnect the two claims in the 
later sections of his paper.   
10 This point has been raised in a helpfully clear way by Zoe Ashton (PhD thesis, forthcoming).  It is not a topic 
of the present paper, but it is easy to see where one might start.  Formalisation does all sorts of work in 
mathematics aside from securing proofs, such as sharpening and deepening ideas and preparing them for 
communication (see Hamkins pp. 162-3).  It is distinctive of modern mathematics (roughly, Hilbert and after).  
Moreover, proof theory (the branch of formal logic) supplies mathematical models of mathematical reasoning.  
One might say that proof theory is what mathematics has to say about proof.  It is not then surprising that it is 
also what many mathematicians have to say about proof.  This is Hersh’s line (1997 p. 154): the mathematician 
who insists on the Standard View is like the economist who forgets that his model of the economy is only a 
model.  Hersh calls for the model to be tested.  Perhaps current work on digital proof assistants is an answer to 
that call.   
A philosopher in the Rav tendency might argue thus: mathematicians formalise, but the art of it is tacit 
knowledge.  It is not a summatively assessed part of mathematical training (see Tatton-Brown (2020) for an 
account of how it is learned).  Mathematicians who have entirely internalised the art of formalisation may feel 
that they’re doing almost nothing, something ‘routine’, rather as a virtuoso jazz musician might insist that 
they’re not thinking about music theory or technique while improvising.   
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To summarise: there is a tension in the Standard View arising from the differences between the ideal 134 

of a wholly syntactic proof and the reality of informal proofs written essay-style in prose.  Attempts 135 

to resolve this tension pull philosophers and mathematicians towards claiming that informal proofs 136 

are, in spite of appearances, not really informal.  To a philosopher feeling this tension, informal 137 

proofs can come to look like formal derivations in disguise, their underlying syntactic nature waiting 138 

to be revealed by translation or analysis.  From here, it is a short step to claiming that when 139 

mathematicians read informal proofs they are really engaging in syntactic processing.  With that step 140 

taken, the philosopher of mathematics who began by trying to articulate the Standard View then 141 

stands on the brink of making a commitment in the long-standing debate about whether the human 142 

brain works like a digital computer.  There may be an independent argument for the brain-as-143 

computer thesis, but it lies outside the philosophy of mathematical practice.  144 

2. Avigad, J. [2020] Reliability of Mathematical Inference 145 

The abstract of Avigad’s paper reads as follows:  146 

Of all the demands that mathematics imposes on its practitioners, one of the most 147 

fundamental is that proofs ought to be correct. It has been common since the turn of the 148 

twentieth century to take correctness to be underwritten by the existence of formal 149 

derivations in a suitable axiomatic foundation, but then it is hard to see how this normative 150 

standard can be met, given the differences between informal proofs and formal derivations, 151 

and given the inherent fragility and complexity of the latter. This essay describes some of the 152 

ways that mathematical practice makes it possible to reliably and robustly meet the formal 153 

standard, preserving the standard normative account while doing justice to epistemically 154 

important features of informal mathematical justification. 155 

The first thing to note is that what we might call the ‘observational core’ of his argument—his partial 156 

natural history of strategies for constructing sound informal proofs (sections 3 and 4 of his paper)—157 

is a significant and insightful contribution to the philosophy of mathematical practice, and will 158 

remain so regardless of the fate of his larger argument.   159 

To begin, consider Avigad’s gloss on the Standard View:  160 

According to the standard view, a mathematical statement is a theorem if and only if there is 161 

a formal derivation of that statement, or, more precisely, a suitable formal rendering 162 

thereof.  When a mathematical referee certifies a mathematical result, then, whether or not 163 

the referee recognizes it, the correctness of the judgement stands or falls with the existence 164 

of such a formal derivation. (2020, p. 4) 165 

It matters to what follows to get the modalities of this statement right.  Avigad is not simply saying 166 

that wherever there is a sound informal proof, there is as a matter of fact the possibility-in-principle 167 

of writing a corresponding formal derivation.  If that were the whole of the Standard View, there 168 

would be little discussion because, as he points out, long-running programmes in the foundations of 169 

mathematics give us compelling reasons to think that every sound informal proof can in principle be 170 

supplied with a correct formal correlate, and what is more there is a growing library of formal 171 

derivations of significant theorems.  Avigad’s claim is something stronger: correspondence with a 172 

formal derivation is the very meaning of correctness for an informal proof.  Throughout his paper, he 173 

uses Azzouni’s formulation that the existence of a derivation is the ‘normative standard’ for the 174 

correctness of an informal proof.  He rejects Detlefsen’s suggestion that ‘[informal] rigor and 175 

formalization are independent concerns’, on the grounds that it ‘requires us to provide an 176 

independent characterization of rigor and provide some other explanation of what it means for an 177 
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informal proof to be correct.’ (2020, p. 6).  It is evident from the dialectical context that he does not 178 

expect this challenge to be met.  On the other hand, he says nothing here about the relation 179 

between the informal proof and its corresponding derivations (unlike Mac Lane’s insistence that the 180 

translation between them must be ‘routine’ or Feferman’s requirement that the derivation is the 181 

logical analysis of the informal proof). 182 

The chief obstacle for the Standard View, according to Avigad, is to explain how informal proofs—183 

long, complex and difficult as they may be—can be the sort of things that entail the existence of 184 

formal derivations.  To meet this challenge, he deploys the observational core of his argument.  Part 185 

of his answer is that informal proofs (unlike formal derivations) do not have to be wholly error-186 

free—an informal proof can play its epistemic and logical roles even if it has small, easily fixed errors, 187 

mistakes in book-keeping, mislabelling and the like (2020, p. 7).  This robustness is in part due to the 188 

stabilising role of the skilled mathematical reader, who can see the mistakes and figure out what 189 

ought to have been printed.  Avigad proceeds to develop the beginnings of a natural history of 190 

desirable proof-features.  He observes that proofs are modular—they divide into chunks that prove 191 

lemmas, and the chunks can be passed around from proof to proof, so a new proof may rely on 192 

some previously established modular parts that have already shown their reliability, and new 193 

modular parts can be checked in isolation from the rest of the proof.  Inferences in proofs are 194 

motivated—a move in a proof is intelligible because it plays some part in the overall proof strategy, 195 

which makes them easier for the reader to grasp.  Avigad suggests three general strategies for 196 

writing robust proofs: 197 

• Isolate and minimize critical information  198 

• Maximize exposure to error detection  199 

• Leverage redundancy.   200 

The working-through of a proof may involve a lot of standard moves, and a proof written for 201 

robustness will downplay this familiar material in order to foreground whatever is novel or unique, 202 

so that readers can focus on it and interrogate it.  The second point means building in checks so that 203 

an error will show up vividly.  Finally, the robustness of informal proofs depends in part on the fact 204 

that there are often many different ways of proving the same lemma or result.  Avigad then suggests 205 

a non-exhaustive list of some more specific heuristics:  206 

1. Reason by analogy 207 

2. Modularize 208 

3. Generalize 209 

4. Use algebraic abstraction 210 

5. Collect examples 211 

6. Classify 212 

7. Develop complementary approaches 213 

8. Visualize 214 

The analogies Avigad has in mind can be between structures (say between the integers and the 215 

Gaussian integers), or arguments, or construction heuristics like embedding a class of objects into a 216 

bigger structure with more tractable properties.  By ‘algebraic abstraction’, Avigad means capturing 217 

the mathematically important features of a structure in axioms, such as the group axioms.  These 218 

heuristics can support each other.  For example, collecting examples is an obvious precursor to 219 

classification, but a classification can be more powerful if it is ordered according to some structural 220 

feature, and this feature may be a candidate for capture in axioms, and so become a case of 221 
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algebraic abstraction.11  Avigad supplies examples and discussion that I will not reproduce here 222 

because I have nothing critical or novel to say about the detail of what I am calling the ‘observational 223 

core’ of his paper.12  Note, though, that these strategies all depend to some degree on the 224 

mathematics being meaningful to human mathematicians.  Some (such as 2 and 4) carry over to 225 

formal derivations relatively smoothly.  Others, such as 8, do not.  Curiously, Avigad does not explore 226 

the extent to which these strategies for informal proofs do or do not tend to produce proofs that 227 

map easily (‘routinely’) across to formal derivations.  On the contrary, he presents these strategies as 228 

means for managing logical relations internal to the informal proof.  They are not about building 229 

connections between the informal proof and a corresponding formal derivation.13  They are about 230 

making sure that the informal proof works in its own terms. 231 

This is why the observational core of Avigad’s paper could just as well have been written by 232 

someone building on the views of Yehuda Rav or Michael Detlefsen, that is to say, the claim that the 233 

rigour of informal proofs can (on the whole, in most cases) be accounted for without reference to 234 

formal derivations.  Avigad’s analysis does not directly explain how informal proofs meet the 235 

standard of correctness set out in the Standard View.  His analysis cannot do that because it does 236 

not mention formal derivations at all.  Rather, it explains (or at least, begins to explain) how it is that 237 

informal proofs can be truth-preserving.  In doing so, it indirectly helps us to understand how they 238 

meet the formalisability norm set out in Avigad’s reading of the Standard View—but only because 239 

results in the foundations of mathematics tell us that a sound informal proof will be formalisable.  240 

Informal mathematical proofs are highly truth-preserving in part because they isolate critical 241 

information, expose themselves to error detection, leverage redundancy, and so on through the rest 242 

of Avigad’s good heuristic advice.  The observational core of Avigad’s paper can be adopted 243 

wholesale by critics of the Standard View, because it says nothing about the alleged relation 244 

between informal proofs and formal derivations.  Apart from a few references to a paper by Hamami 245 

(2019), Avigad’s heuristic observations are entirely about informal proofs alone, not about their 246 

relation to derivations.  The indifference of Avigad’s heuristics to formal derivations rather supports 247 

the thought that the practically effective norm for mathematical proofs is that they should be sound.  248 

That said, the challenge that Avigad presents to the Rav tendency remains, namely, to provide some 249 

alternative account of the correctness of informal proofs.  After all, most of Avigad’s heuristics would 250 

be good advice for legal or historical argument (slot in sub-arguments that have already been well 251 

tested, find multiple arguments for the same conclusion, etc.) and almost all of it is good advice for 252 

philosophers (collect examples, classify, identify abstract principles, etc.).  The challenge for the Rav 253 

tendency is to explain how informal proofs attain mathematical levels of reliability, and this cannot 254 

be achieved by only pointing to general heuristics of this sort.  Some in the Rav tendency have 255 

proposals, but testing them is not the aim of the present paper.14  Proponents of the strongest 256 

version of the Standard View—that sound informal proofs are formal derivations in disguise—can 257 

turn to formal logic to explain how proofs work, but do have to make their core thesis plausible in 258 

the face of Avigad’s worry about fragility, Azzouni’s worry about how mathematicians engage with 259 

 
11 Some anecdotal corroboration for some of these points may be found here: 
https://mathoverflow.net/questions/338607/why-doesnt-mathematics-collapse-even-though-humans-quite-
often-make-mistakes-in  
12 I will indulge in a joke about the creative tension between 3 and 5.  There are two sorts of mathematicians: 
the ones who, when presented with a new mathematical structure ask, ‘What is an example of this?’ and the 
ones who ask, ‘What is this an example of?’   
13 I owe this observation to a comment by Dirk Schlimm at the 2020 meeting of the Association for the 
Philosophy of Mathematical Practice, during the Q&A of Avigad’s presentation of his paper.  
14 See Larvor (2012, 2019). 

https://mathoverflow.net/questions/338607/why-doesnt-mathematics-collapse-even-though-humans-quite-often-make-mistakes-in
https://mathoverflow.net/questions/338607/why-doesnt-mathematics-collapse-even-though-humans-quite-often-make-mistakes-in
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derivations and fact that informal proofs and derivations look different and seem to work differently.  260 

Someone who wishes to defend the Standard View without claiming that informal proofs are only 261 

superficially informal would face the same challenge as the Rav tendency.  If we allow that informal 262 

proofs are not merely syntactic objects disguised in human language, then the challenge that Avigad 263 

presents to the Rav tendency is the very problem that he addresses in his paper.  I will argue in the 264 

next section that Avigad equivocates between these two versions of the Standard View.   265 

This completes the case for the first claim of this paper: that the observational core of heuristic 266 

advice in Avigad’s paper is entirely agnostic between rival accounts of mathematical correctness.   267 

3. The syntactic side of the tension  268 

I now move to the second claim of this paper, that the tension at the heart of the Standard View is 269 

still there in Avigad’s version and sometimes pushes him towards radical theses in philosophy of 270 

mind.  Recall how that temptation goes: informal proofs and formal derivations often look quite 271 

different, and in any case the formal derivation corresponding to a proof is almost never produced.  272 

Nevertheless, according to the Standard View, the existence of formal derivations is somehow 273 

normative for informal proofs.  A tempting resolution is to argue that in spite of appearances, the 274 

informal proof is really a derivation in disguise.  Then, two problems for the Standard View—the 275 

non-existence of derivations and their apparent difference in kind from informal proofs—both 276 

disappear.  In that case, ‘routine’  translation and faithful logical analysis do not transform a proof 277 

but merely reveal its essence.  Once this line has been taken, it is natural to adopt a computational 278 

view of the mathematical mind.  Since mathematicians are humans, a general computationalism in 279 

the philosophy of mind beckons.  280 

 As we saw, Avigad’s characterisation of the Standard View does not describe the relation between 281 

informal proofs and formal derivations, but he does offer some clues in the body of his paper.  Near 282 

the start of his paper, Avigad adopts the familiar image of informal proofs as sketches, and Azzouni’s 283 

language of derivation indication:  284 

On the standard view, [informal proofs] are only high-level sketches that are intended to 285 
indicate the existence of formal derivations. But providing less information only exacerbates 286 
the problem… (2020, p. 4) 287 

Avigad does not unpack the sketch analogy, but he does recommend Yacin Hamami’s (2019) which 288 

does exactly that.15  Echoing Mac Lane, Hamami writes: ‘a mathematical proof is rigorous if and only 289 

if it can be routinely translated into a formal proof.’16  The central part of Hamami’s paper is a careful 290 

specification what he thinks ‘routine translation’ has to mean for the Standard View to be cogent: 291 

…the notion of translation in the standard view is quite different from the one of linguistic 292 

translation. …a better analogy would be with the process of compilation, that is, with the 293 

‘translation’ of a computer program written in a high-level programming language into 294 

machine language.17  295 

Hamami distinguishes four levels of ‘code’ linked by three stages of ‘compilation’.  The essential 296 

point is that on his view (which Avigad sometimes suggests he shares), the ‘routine translation’ of 297 

informal proof into formal derivation that the Standard View requires is not like translating a 298 

meaningful text from one human language to another.  It is, rather, like the use of syntactic 299 

 
15 Avigad says that, ‘Hamami’s model is essentially correct…’ (2020, p. 15).  ‘Essentially’ here warns us not to 
hold Avigad responsible for every nuance of Hamami’s elaboration of the Standard View. 
16 From the abstract.  Italics in original.   
17 Hamami credits this analogy to Gil Kalai (Kalai 2008).  (Hamami 2019, p. 30). 
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substitutions to move from a high-level computer language where a programmer can call an 300 

arbitrarily large and complex subroutine with a single command down to the level just above the 301 

firmware.  ‘Routine’ here does not mean ‘easy for humans’ or even ‘feasible for humans’.  It means 302 

that a digital machine could do it.  It also means that, layers of compilation and syntactic 303 

abbreviation notwithstanding, informal proofs and formal derivations are essentially the same sort 304 

of thing.  In other words, in Hamami (though not directly in Avigad), we find the strong version of the 305 

Standard View, that sound informal proofs are syntactic items in disguise. 306 

Avigad offers some other analogies in the same vein:  307 

…an informal proof is a form of data compression. Coding schemes for data represent the 308 

most common patterns concisely, reserving extra bits for those that are unusual and 309 

unexpected. To invoke another analogy, software developers use version control software to 310 

store a project’s history in a shared repository. To save space, the repository only has to 311 

store the difference between successive versions, rather than a new copy. 312 

As in Hamami, the difference between the informal proof and the formal derivation is really just a 313 

process of selective abbreviation.  They are both syntactic objects—it’s just that the formal 314 

derivation is much longer because it is expressed in a foundational system (usually taken to be a 315 

combination of set theory and classical logic).  In these data compression and software development 316 

analogies, Avigad seems to commit himself to the strong version of the Standard View, that informal 317 

proofs are syntactic objects in disguise.  However, Avigad does not always follow this line. 318 

4. The Semantic Side of the Tension  319 

The claim of the present paper is that the tension in the Standard View is there in Avigad’s article as 320 

it was in Mac Lane, Azzouni,  and the other authors we canvassed above.  The Standard View looks 321 

implausible because most informal proofs do not seem to work like purely syntactic objects, even 322 

though mathematical notation may make them look like syntactic objects.  Like other kinds of 323 

reason-giving and argument-making, informal mathematical proofs depend on communities of 324 

practitioners sharing a common understanding of what moves are permitted within the practice, in 325 

virtue of their grasp of the nature of the subject-matter.  Mathematicians have some advantages 326 

over other communities of reasoners.  They can offload some of their thinking to highly efficient 327 

notational systems that partially encode the rigour of the practice.  Ordinary high-school algebraic 328 

notation can serve an example of this: its introduction in the early seventeenth century massively 329 

extended the range, depth and reliability of mathematics.  Following the implicit rules for forming 330 

and manipulating algebraic expressions makes it much easier to avoid making a mistake—but it’s still 331 

easy to divide by zero without noticing, unless you pay attention to the meaning of what you’re 332 

doing as well as the syntax.  Mathematicians can gain clarity and rigour by exploiting the human 333 

capacity for visual and kinetic imagination, either by inward imagining or by using diagrams or 334 

physical models (this is Avigad’s eighth heuristic).  They can exploit Peircean iconicity, because 335 

mathematics is about structure, so we can use representations that share structure with the objects 336 

under investigation.18  Increasingly, as the variety of mathematical domains grows, mathematicians 337 

can create arguments by moving between different parts of mathematics.  Ken Manders calls this 338 

the ‘conceptual agility’ of contemporary mathematics:  339 

…hopping a functor to another category any time superfluous details are sensed (homology 340 

groups in topology); bringing in details seemingly extraneous to one’s question by a 341 

representing functor (group representations in the theory of abstract groups); explaining 342 

 
18 See, e.g., De Toffoli (2017), Giardino (2017), and Manders (2008). 
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families of simple number-theoretic facts anyone can see one-by-one, by some hard to 343 

master ‘underlying’ abstract structure (Fermat’s problem).19 344 

Here Kevin Buzzard, a mathematician at the heart of the Lean proof formalisation project, makes a 345 

similar point: 346 

Mathematicians [are] so good at instantly switching between the various ‘obviously 347 

equivalent’ ways that a mathematician looks at a complicated algebraic object (‘It’s an 348 

equivalence relation! Now it’s a partition! Now it’s an equivalence relation again! Let your 349 

mental model jump freely to the point of view which makes what I’m saying in this particular 350 

paragraph obvious!’, or ‘Matrices are obviously associative under multiplication because 351 

functions are associative under composition.’... Some of the proofs we’re writing [in Lean] 352 

are simply proofs that humans are behaving correctly when using mathematical objects.   353 

(Buzzard 2020) 354 

Proving that the moves mathematicians make are correct is not the same activity as making those 355 

same moves more slowly in a less rich notation.   356 

These jumps are helpful precisely because they allow us to bring domain-specific techniques from 357 

one area to bear on a problem first found in another.  A detour through complex analysis in order to 358 

solve a problem in real analysis, or a visit to real analysis to help prove a result in number theory, 359 

does not look much like re-coding of syntactic data.  It is more like moving from one natural 360 

language to another in search of the mot juste or looking for legal arguments in a different area of 361 

law from the case in hand.  Mathematicians translate problems and proof-ideas between different 362 

parts of mathematics all the time, and translation of a proof into a foundational idiom is just a 363 

special case of this.  Rather than choosing a metaphor to describe translation between informal 364 

proofs and formal derivations with the aim of preserving the Standard View, it might be less 365 

question-begging to work up a general account of intra-mathematical translation on a broad 366 

evidence-base, and then see what it says about the special case of translations of proofs into formal 367 

derivations.    368 

This view of mathematics as a meaningful human reason-giving activity appears in places in Avigad’s 369 

article.  He notes that mathematical proofs written for human use are robust in the sense that that 370 

they can survive errors of syntax and abuses of notation—in fact, abusing notation tactically is an 371 

important mathematical skill, but this thought makes no sense if proofs are syntactic items.  They’re 372 

also insensitive to minor mistakes in calculations or localised reasoning, because readers can correct 373 

the errors (as Avigad observes).  This can only be because readers understand what the inferences 374 

are about and are not simply processing symbol strings syntactically.   Some of Avigad’s heuristics—375 

analogy, generalisation, abstraction, exemplification, classification and visualisation—only make 376 

sense as strategies for handling meaningful mathematical content.  An analogy is not, at the point 377 

where it is useful, a syntactic relation.  Strategic generalisation is not something a machine can do, 378 

not least because very often more than one generalisation is available (for example, if you know 379 

something about equilateral triangles, you might generalise to other planar regular polygons or you 380 

might generalise to simplexes in higher dimensions).  Similarly, noticing that there is a structure in 381 

common that is open to axiomatisation, identifying examples that will be both tractable and 382 

informative, and classifying in a way that carves the domain at the joints all depend on familiarity 383 

with and understanding of mathematical content.  It’s true that these activities are preparations for 384 

 
19 Unpublished paper.  Though this paper is unpublished, it is a developed piece of work and benefits from two 
decades of refinement.  We may therefore treat it as a reasonably reliable expression of Manders’ view.    



11 
 

proving rather than parts of proofs.  However, it is implausible to suppose that the same 385 

mathematical content suddenly switches from being richly significant to become a series of syntactic 386 

operations when it is tidied up and arranged into a proof.20  One of Avigad’s metaphors makes the 387 

very point:  388 

Comparing proof to a narrative allows us to draw on intuitions regarding the distinction 389 

between the plot and its syntactic presentation. After reading Pride and Prejudice, we can 390 

reliably make the claims about the characters and their motives, but we cannot reliably 391 

make claims about the number of occurrences of the letter ‘p.’ If the judgment as to the 392 

correctness of a proof is more like the former, we have a chance; if it is more like the latter, 393 

it is hopeless.  (2020, p. 8) 394 

Evidently, Avigad favours the former option: thinking about the correctness of a proof is more like 395 

making judgments about the plot and characters of a novel, than it is like guessing how many times a 396 

letter occurs in the manuscript.  This thought, however, undermines the metaphors in his paper that 397 

encourage syntactic readings of informal proofs.  The relation between the plot of a novel and the 398 

typescript is not like data-compression or code-compiling.  Turning a plot-and-character idea into a 399 

fully written out novel is not a routine translation, in any sense of ‘routine’, let alone in the sense 400 

that Hamami develops in his paper.   401 

To fix ideas, consider this example: prove that given any two potatoes, there is a closed loop of the 402 

same size and shape on both skins.  Like many mathematical proofs in philosophy articles, this is very 403 

short and untechnical.  It is in these respects quite unlike typical proofs in research mathematics, but 404 

it is nevertheless a mathematical proof so whatever we say about mathematical proofs in general 405 

must be true of it.  The solution is in this21 footnote.  It is, of course, possible to translate this proof 406 

into the language of contemporary geometry and thence into a suitable foundational language, so 407 

that it no longer relies on spatial intuition and the inferences are all applications of inferential rules 408 

of the general logic of the chosen foundational idiom.  The issue is the nature of this translation.  409 

According to Hamami, and to Avigad when he follows Hamami, the relation between the proof as 410 

offered here and its corresponding derivation is one of data-compression.  For this to be true, the 411 

proof as written here must already be a syntactic object, and the reasoning in it must be the 412 

application of wholly general syntactic rules.  It is, of course, possible to conceive of it thus, but in 413 

doing so, we would be re-reading it in order to save a philosophical theory from refutation.  414 

Alternatively, we could take it to be what it seems to be, namely, a piece of spatial reasoning that 415 

works not by manipulating meaningless symbol strings but rather by manipulating imagined potato 416 

surfaces.   417 

This brings me to another difficulty Hamami’s computational picture of the translation between 418 

informal proof and formal derivation: it undersells the achievement of the foundational programmes 419 

in mathematics.  Avigad sometimes wonders aloud22 why critics of the Standard View seem to want 420 

 
20 Though it can sometimes feel that way.  Here is Alain Connes, ‘…when a mathematician works, he is in fact 
reflecting up on a certain field, in which he encounters mathematical beings, and ends up playing with them, 
until they become familiar to him… After a time… either we get nowhere,… or else we manage to get hold of 
some result.  Then begins the onerous task—the obligation to write up for the benefit of the mathematical 
community a polished article that is as compelling as possible.’ (Connes, Lichnerowicz, & Schützenberger, 
2001, p. 24f).  Connes insists that these are two wholly distinct types of activity.  Nevertheless, one supplies 
materials for the other—untranslated.   
21 Imagine pushing one potato surface into the other, so that they intersect.  The intersection is the required 
common loop.  Proof taken from Tim Gowers’ Twitterfeed.   
22 Personal communication at the APMP conference in Zurich, 2020.  
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to disregard the great advances in rigour achieved by twentieth-century mathematics.  It is 421 

wonderful that it is now possible in principle to check any piece of mathematical reasoning 422 

mechanically, that mathematicians can pursue piecemeal formalisation as far as they need to in any 423 

given case, and that there is a growing library of fully formal proofs of significant theorems.23  424 

However, if we think of mathematics as carried out by humans as syntactic processing, as the data-425 

compression and code-compilation metaphors require, then this becomes less of an achievement.  If 426 

all mathematical thinking is and always was syntactic processing, then the great foundational 427 

programmes did nothing more than set up the compilation tables.  The real wonder, the deeply 428 

significant achievement, is that it is now possible, with enough work, to check even the most richly 429 

human mathematics by machine.  It is as if we could judge the coherence of the plot of a novel by 430 

asking a computer to count the ‘p’s in the manuscript.  Hamami’s view of translation undervalues 431 

this achievement and misdescribes the work involved in preparing a proof for mechanical checking.  432 

In Avigad’s paper, there is already a hint about how the formalisation of meaningful human 433 

mathematics is possible: many of the heuristics described in the observational core of Avigad’s paper 434 

simultaneously support the rigour of the informal proof and prepare it for translation into a more 435 

formal idiom.  Following this clue may help us to understand how machine proof assistants are 436 

useful to mathematicians, but only if we resist any temptation to begin by positing that human 437 

mathematicians were machines all along.    438 

5. Conclusion  439 

I have argued for two claims in this paper.  The first is that the observational core of Avigad (2020) is 440 

independent of the Standard View that formalisability is the criterion of correctness for 441 

mathematical proofs.  In doing so, I distinguished between ‘strong’ versions of the Standard View 442 

that claim that sound informal proofs are, in spite of appearances, really syntactic objects and that 443 

when mathematicians read them, they’re doing some sort of syntactic processing, and ‘weaker’ 444 

versions that don’t have that commitment.  My second claim is that Avigad, in his (2020), havers 445 

between these two versions of the Standard View.  He is not alone in this—the tension between 446 

these two options is present in the debate from Mac Lane onwards.  For the discussion to advance, 447 

proponents of the Standard View need to specify which version they endorse.   448 
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