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Abstract. A real-time transport protocol must trade delay against loss. Here we
consider the problem of minimizing the mean transport delay subject to a given maximum
acceptable loss rate. This form of the trade-off is appropriate for many voice, video and
graphics applications.

Yechiam Yemini has shown that for this problem, and for a particular model of the
transport mechanism, the optimal protocol is a combination of send and wait for ack with
send and discard, where the decision to wait for ack or to discard is made by comparing the
number of packets currently awaiting ack with a threshold value, which is itself calculated
from the arrival and permitted loss rates. In this paper we generalize Yemini’s result, and
give an elementary proof.

1. The Transport Model. In our model, we assume that time is continuous. (A
discrete time model is considered in [3]. Our arguments can readily be specialized to
the discrete case.) Packets are assumed to have identical handling characteristics for the
transport mechanism, and are distinguished only by their identity number.

The state of the transport mechanism is represented by a whole number n, which
corresponds to the number of unacknowleged packets at the sender. |

Events (state transitions) may occur at any time. Two events may occur arbitrarily
closely in time but (we assume) cannot be simultaneous. , There are two types of event,
arrival events and departure events.

During any period of time, packets may arrive at the sender. Packet arrival occurs with
rate A (ie with mean frequency A per unit elapsed time.) We assume that the arrival rate
A is known and fixed (in particular, is independent of the‘tra,nsport‘ state.)

A packet which arrives when the transport state is n is discarded with probability p,
(where 0 < p, < 1) and queued for transmission with probability p, = 1 — p,. In the
latter case the transport state is incremented by one. Discarded packets contribute to the
loss rate.

Also, during any period of time for which the transport state is non-zero, acknowlege-
ments may be received for packets. This occurs with rate u. At present, we suppose p
to be independent of the transport state (but see section 5.) When an acknowlegement is
received, a packet is discarded (successfully) from the transport system, ie the transport
state is decremented by one.

Packets awaiting acknowlegement may also be purged, ie dropped from the transport
mechanism without an acknowlegement having been received. During the time for which

1




the transport state is n where n > 0, packets are dropped at rate v,, where v, > 0. Discards
of this type also contribute to the loss rate.

We assume that we are able to modify the protocol in such a way as to vary the p, and
vy, without affecting p (which we regard as fixed.)

This model of the transport system as a delay and loss mechanism is appropriate to
ALOHA and TDMA networks, and to some token based ring protocols.

We have abstracted from the details of the transport protocol (re-transmission regime,
timeout period etc) and regard the protocol as completely described for our purposes
by specifying the numbers p, (pp)n>0 and (¥5)n»1 corresponding to the behaviour of the
protocol for (at least) the given .

Our task is to determine the choice of (p,),(¥,) which minimizes the mean packet
transit delay T' subject to a maximum acceptable loss rate L (where L may in practice be
specified as a fixed fraction of \.)

To do this, we first characterize the variables L and T in terms of p,, v, s and A.

2. The Flow-Balance Equations. In this paper we adopt an operational approach
to the transport model, rather than the more usual stochastic approach adopted in [3]. Al-
though this simplifies our analysis, all our equations could be re-interpreted stochastically.
Stochastic analysis generally requires introducing more assumptions of a type which is
relatively difficult to verify. Our calculations concern actual observation sequences, rather
than means over a number of sample paths. For a full discussion of the relative merits of
operational analysis see [1].

The number of transitions of the transport state from n to » + 1 and the number
of transitions from n + 1 to n over the same time period can differ by at most one.
Consequently we have (over a sufficiently long period of time)

)‘p_nyn = (ﬂ' + Vn+1)yn+1

where y,,0 < y, <1, is the proportion of time which the transpdrt system spends in state
n.
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with yo being given by the constraint that 3%, y, = 1.
The arrival rate is A and the success rate is (1 — yo)u, since acknowlegements occur
only when the transport state is non-zero. The loss rate is the difference, ie A — (1 — yo)p.

Our constraint that the loss rate be at most L is therefore equivalent to demanding that

L—-X+p
@

Yo < a where a =

Note that p+ a > 1.
It remains to find an expression for the mean transit delay.




3. Little’s Law. Little’s Law has the following operational form. For any system,
and over any period of time, N = X R where X is the mean throughput of the system, R is
the mean residence time of an object in the system, and NV is the mean number of items in
the system. The law holds exactly provided the system is empty at the start ¢o and at the
end t; of the time period At = t; — ¢, and holds approximately provided that the number
of items in the system at #, and at ¢; is small relative to the number of completions C
which occur during the time period At. See [1] for further details.

The law can be simply proved by considering the area A under a graph of system
occupancy N against time ¢.
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In our transport model, Little’s Law implies that
1 o0
T=~— Z n.Yn
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4. The Optimization Problem. We can now re-state the protocol optimization
problem as follows.

Given p,a > 0 with a + p > 1, choose (y,)%2, subject to constraints

o0
yn=1; 0<yw<a; 0<ynp1 <pyn

n=0

so as to minimize the linear function

00
> nyn
n=0

In Functional Analytic terms, the feasible set is a non-empty convex subset of the space
I' of absolutely summable sequences, and is compact under the weak-* topology induced
by the space ¢ of null sequences. Hence by the Krein-Milman Theorem (see for example
[2]) the target function obtains its minimum at an extreme point of the feasible set, which
can then be explicitly calculated. .

However, for this particular problem we do not need such elaborate machinery. It is
intuitively clear that the target function is minimized by spending as much time as possible
in the states corresponding to low numbers of outstanding packets.

Whichever argument is followed, the conclusion is the same. The optimum transport
delay under our constraints is obtained by the protocol for which

Yn =cap" forn<ng; y,=0 forn>ng

where ng is chosen to allow the y, to sum to 1 (always possible even if p < 1 since

of(1-p)>1.)
This corresponds to the regime

pn=0 forn<ng; p,=1forn>ng; v,=0 foralln>1.
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In fact the value of v, for n > ng is irrelevent, since the system never enters such states.
The critical value ng must therefore satisfy

— pho — pno+l
ozl 4 §1<ozL
1—p 1-p

since we have a geometric series, and solving this for ng gives

I log.‘!‘_"%iﬂ _ logz—:’;—f;'_—#-
° logp |~ | logMp

In case p =1 we have no = [1/q].

5. Conclusions. The optimum transport protocol requires only a finite buffer capacity
of length ng. Packets which arrive when all ng buffers are full should be discarded. Once
buffered for transmission, packets should always be retained until acknowleged. This is in
fact a commonly used “dirty” protocol, but the crucial choice of ng is not usually made.

It is worth noting that the parameter 7' which we have minimized is in fact the mean
length of time for which a packet occupies a buffer, which is usually the quantity of interest
for the network manager. This time is (in general) not quite the same as the mean packet
transit delay, which is the quantity of interest for network users.

Allowing the acknowlegement rate ., to depend on the transport state n leads (via a
slightly modified calculation) to the same optimal protocol, provided that we retain the
homogeneity assumption [1] that the u,’s do not depend upon the p,’s or v,’s.

In this more general case, ng is the least n for which we have
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i=1 j=1 Hj

'QI’—‘

Although the value of ng is not now given by an explicit formula, it is still easy to
calculate no numerically for given p,. It would be of interest to discover a generalization
of this result appropriate for modelling a sliding window protocol which allows ., to depend
directly upon the y,, or even upon the detailed state transition regime.
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