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Abstract
To increase industrial adoption, part qualification and certification of the additive manufacturing (AM) process are crucial 
through geometric benchmarking as well as optimising the properties and process parameters. However, an extensive research 
gap remains concerning the geometric dimensioning and tolerancing (GD&T) of AM parts. This paper presents a review 
on the state-of-art GD&T benchmarking of powder bed fusion techniques enabling complex geometrical features like lat-
tices. The study found a lack of design guidelines and standardised measurement techniques for lattice features and profiles.

Keywords  Geometric dimensioning and tolerancing · Additive manufacturing · Powder bed fusion · Benchmarking test 
artefacts · Lattice structure

1  Introduction

In manufacturing and product design, geometric dimen-
sioning and tolerancing (GD&T) plays an important role 
to describe the product and to facilitate communication 
between stakeholders involved in the process from concep-
tual development to manufacture. GD&T is a set of stand-
ardized symbols and rules used to communicate the design 
process and product description [1]. GD&T describes the 
nominal geometry of the product and the allowable variation 
of the geometric features. Realizing the functional nature of 
the geometrical measurements, Stanley Parker was credited 
being one of the first to develop the foundations of GD&T 
in 1938, at the beginning of World War II by developing 
the concept of “True Position” while working in a muni-
tion facility referring to the tolerances for the first time [2]. 
The first standard document related to GD&T was published 
by the British Standards Institution (BSI) as BS 308:1943, 
Engineering drawing office practice [3], followed by the US 

Army 30-1-7:1946, Mil-Std-8:1949 and American Society 
of Mechanical Engineers (ASME) Y14.5-1957. The latest 
version of ASME standards for general GD&T is Y14.5-
2018 which includes stakeholder groups such as the Ameri-
can Standards Association (ASA), United States of America 
Standards Institute (USASI) and American National Stand-
ards Institute (ANSI) [2]. The International Organization 
for Standardization (ISO) also developed a set of standards 
including ISO 1101:2017, ISO 14405-1:2016, ISO/TS 
17863:2013, and ISO 16792:2021 for GD&T and design 
specifications, covering conventional product design to 
Computer-Aided-Design (CAD) systems for additive manu-
facturing (AM) [4]. ISO 17296:2014 and ISO 52902:2019 
refer to the test methods of geometrical characteristics and 
test artifacts of the parts made by AM. ASME published and 
updated Y14.41-2019 and Y14.46-2017 standards for digital 
product description data sets and drawing requirement in 
digital format for AM [5]. A list of existing standard docu-
ments for GD&T is presented in Table 1.

The ability to achieve predictable and repeatable shapes 
via AM is critical. To optimize the design of an additive 
manufactured product, tolerancing is a key issue [8] for 
defining, communicating, and assessing the dimensional 
and geometric accuracy of parts [9]. Although GD&T is 
a mature field in conventional manufacturing industries, 
digital and smart manufacturing processes have created 
a profound need for standardisation [10]. For this study, 
the underlined issues in GD&T benchmarking for PBF 
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techniques have been presented from a critical review of 
current literature of general GD&T for AM, and the GD&T 
benchmarking approach of using artifacts.

2 � GD&T for additive manufacturing

The layer-by-layer bottom-up approach of AM causes rough 
surfaces known as stair-stepping that may potentially lead 
to geometrical inaccuracy. These geometrical errors also 
depend on factors such as part shrinkage, material prop-
erties, process parameters, support structures and surface 
approximation errors due to slicing techniques. Another 
important factor is the difference between the CAD and 
the toolpath model that creates a geometrical mismatch of 
the printed parts. The reason is that the printed part is not 
solely replicated from the original CAD model due to data 
adjustments made during the slicing stage to create a tool-
path model that is dependent on various slicing parameters. 
Rupal et al. [11] addressed this issue and proposed a novel 
reverse CAD model algorithm that can convert the sliced file 
back to a CAD model. The reverse CAD model approach 
was able to assess the geometric and mechanical behav-
iours of the printed part while incorporating the effect of the 

slicing parameters. Some research works [12, 13] addressed 
the variation in printed part, especially for metal AM, that 
influences the part quality. Moges et al. [14] identified the 
sources of uncertainties of laser powder bed fusion (L-PBF) 
process chain that includes modelling uncertainty, parameter 
uncertainty, numerical uncertainty, and measurement uncer-
tainty. They developed a methodology of quantifying uncer-
tainties by case studies of semi-analytical and FEM-based 
L-PBF melt pool models. Another quantification approach 
using Isotherm Migration Method (IMM) model [15] by 
choosing melt pool width as the output quantity of interest 
was proposed by Lopez et al. [16], considering four sources 
of uncertainties corresponding to modelling, simulation, and 
measurement processes of L-PBF.

The isotropic layered structures, differential shrinkage of 
the parts, stair-stepping, and effect of support structure result 
into poor surface finish that cause non-conformance of the 
geometry. Many researchers and users of AM technologies 
realised that the GD&T of AM finished part does not fully 
comply with the existing ISO standardised GD&T process 
flow. AM yet not a standalone manufacturing option to pro-
duce higher precision surface finish of the printed part which 
still depends on the post-processing subtractive manufactur-
ing technology such as CNC machining [17]. Rupal [18] 

Table 1   Standards documents for GD&T [4–7]

Standardisation document General GD&T 
process or guide-
lines

GD&T for 
AM pro-
cesses

GD&T 
for arti-
facts

ASME Y14.5-2018-dimensioning and tolerancing X X
ISO 7083:1983—technical drawings—symbols for geometrical tolerancing—proportions and 

dimensions
X

ISO TC 1101:2017—geometrical product specifications (GPS)—geometrical tolerancing—toler-
ances of form, orientation, location and run-out

X

ISO 5459:2011—geometrical tolerancing—datums and datum systems X
ISO 14405-3:2016—geometrical product specifications—dimensional tolerancing—Part 3: angu-

lar sizes
X

ISO 2692:2014—geometrical product specifications (GPS)—geometrical tolerancing—maximum 
material requirement (MMR), least material requirement (LMR) and reciprocity requirement 
(RPR)

X

ISO 5458:2018—geometrical product specifications (GPS)—geometrical tolerancing—pattern and 
combined geometrical specification

X

ISO 8062:2007—geometrical product specifications (GPS)—dimensional and geometrical toler-
ances for moulded parts—Part 1: vocabulary

X

ISO/TS 17863:2013—geometrical product specifications (GPS)—tolerancing of moveable assem-
blies

X

ASME Y14.41-2019—digital product definition data practices X
ASME Y14.46-2017—product definition for additive manufacturing X
ISO 16792:2015—technical product documentation—digital product definition data practices X
ISO 17296-3:2014—additive manufacturing—general principles—Part 3: main characteristics and 

corresponding test methods
X

ISO 52902—additive manufacturing—test artifacts—geometric capability assessment of additive 
manufacturing systems

X X
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mentioned that the two mostly adopted approaches for the 
geometric conformance or tolerance quantification for AM, 
(1) experimental methods based on geometric benchmark 
test artifacts (GBTA) and (2) predictive methods such as 
numerical analysis, are not in compliance with ISO 1101 
standard. His work points that the limitations in GBTA 
design, guidelines in terms of geometric conformance, 
linkage of features to GD&T and their characterisation, 
parametric optimisation GD&T are yet to be addressed to 
fully realised the GD&T for AM assembled parts or moulds. 
Specifically in L-PBF, GD&T based datasets are crucial to 
consider the effect of removal of base plate. A Horizon 2020 
project Computer Aided Technologies for Additive Manu-
facturing (2018) developed a metrology workflow including 
point cloud-based analysis that adds machining allowance 
to AM parts to achieve quality surface finish accomplished 
by post CNC machining [19].

In terms of GD&T for material extrusion (ME), Huang 
et al. [20] proposed a new method of identifying and predict-
ing geometrical variation of ME parts using a “Skin Shape 
Model” to improve the geometrical quality of printed parts 
in the design phase, and validated by experiments with a 
Coordinate Measuring Machine (CMM) of a cylindrical 
test piece. Other researchers proposed steps to evaluate the 
geometrical accuracy based on conventional GD&T charac-
teristics and test methods [21, 22], using Taguchi’s design 
of experiment (DOE) statistical approach to establish the 
relationship of the GD&T characteristics with 13 important 
process parameters of ME process which helped optimize 
the ideal parameters to improve the geometrical accuracy. 
The study extended a previous attempt [23] that proposing 
a design framework to build a test coupon with standard 
tolerance characteristics following ISO 1101:2005. They 
reported that four process parameters including component 
size, extruder temperature, print orientation and layer thick-
ness are linked to the dimensional accuracy and geometri-
cal tolerance. In terms of Vat Photopolymerisation (VP), a 
study was carried out to understand the effect of the slic-
ing parameters on dimensional variation of a VP-printed 
part that could manipulate the horizontal dimensions of the 
unit printed-volume, known as a voxel [24]. The process 
resulted in printing with voxel dimensions below the size of 
the micromirrors in the VP process, thereby improving the 
GD&T of the printed parts. Powder bed fusion (PBF) has 
been widely used in tooling and biomedical sectors and the 
process uses a diverse range of materials especially met-
als, alloys, high strength polymers and ceramic. Based on 
the types of processing materials, fusion mechanism and 
heating source, PBF comprises a range of similar technolo-
gies including selective laser sintering (SLS), selective 
laser melting (SLM), electron beam melting (EBM), and 
high speed sintering (HSS). However, one of the biggest 
constraints towards industrial adoption of the PBF family 

is limited knowledge of the GD&T processes, as well as 
the lack of understanding of the functional relationships 
between materials, process parameters, support structure, 
part size and geometry. In the GD&T research for metal AM, 
laser-based powder bed fusion (L-PBF) process, especially 
SLM, paid more attention possibly because, it is easy and 
comparatively affordable to improvise and well-adopted by 
the industries. Zongo et al. [25] conducted a comparative 
study of GD&T calculations carried out both experimentally 
by CMM and using micro-computed tomography (µ-CT) 
and theoretically using ANSYS Additive Print software for 
a L-PBF process. The geometrical distortion of a topologi-
cally optimized part printed with an EOSINT M280 printer 
and AlSi10Mg alloy powder was measured with different 
support structures. The results found that the AP software 
predicted similar trend of distortion gained experimentally 
and the CMM technique showed higher accuracy in data 
acquisition than CT scans. Importantly, higher density of 
support structures influenced global geometrical distor-
tion but unaffected the local deviation of highly strained 
zones. Other studies of L-PBF focused on developing a 
design framework of suitable Geometric Benchmark Test 
Artifacts (GBTA) for evaluating the geometric behaviours 
and features. Rupal et al. proposed a methodology based 
on features, that is a classification system based on geo-
metric reasoning for designing the printed part [26]. The 
study was further extended for complex metal parts includ-
ing assemblies, known as an Assembly Benchmark Test 
Artefact (ABTA) that include mating features to identify 
the assembly capacity and dependencies of the geometric 
tolerancing quantifiers [27]. The framework was proposed 
to estimate geometric tolerances based on the Skin Shape 
Model considering material shrinkage and validated through 
a case study [28], shown in Fig. 1.

3 � Geometric benchmark test artifacts

To measure AM capabilities and qualify machines for main-
taining geometrical accuracy and tolerancing, a 3D CAD 
model comprising of different shapes and features, called a 
Geometric Benchmark Test Artifact (GBTA) is used. Several 
studies have focused on designing test artifacts for evalu-
ating the geometrical performance of AM processes [21], 
proposing a framework, design criteria [29], manufactur-
ing methodologies [30] and guidelines towards developing 
standardised test artifacts [31]. The first GBTA for evaluat-
ing accuracy of AM process performance was proposed by 
Kruth in 1991 [32]. Rebaioli et al. [21] reviewed almost 60 
types of such artifacts utilised in geometric benchmarking 
process of AM techniques. The artifacts created mainly for 
PBF is listed in Table 2 with corresponding GD&T char-
acteristics for specific processes and materials. Aspects of 
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linear accuracy, cylindricity and position were the most 
common features to be evaluated as compared to the level 
of assemblability and lattice structures that is not shown in 
a GBTA.

3.1 � Lattice structures

The meaning of “Lattice” comes from a Germanic origin 
as a crossed-woven structure using metal or wooden strips 
with square or diamond-shape voids. Lattices can be found 
around us in nature, in various patterns with diverse shapes 

and sizes [33]. Lattice structures emerged in engineering 
applications from the late nineteenth century due to its 
extraordinary high strength-weight ratio. A remarkable 
example is the Bennerley Viaduct (see Fig. 2a) that is a rail-
way bridge with a truss-like lattice structure in England used 
to carry trains between 1876–1877 [34]. In today’s modern 
world, lattice structures, like shown in Fig. 2b, are used in 
biomedical, transportation, tooling and microelectronics due 
to the extreme lightweight nature with scalability and real-
ised through use of AM [35, 36].

There are different taxonomies for lattice structures pro-
posed in various studies. However, this paper will only focus 
on periodic lattices, rather than stochastic cellular structures 
such as foam or honeycomb cells, due to their comparatively 
superior structural integrity [37]. Following a review of cur-
rent literature, we present a classification system of lattices, 
considering the periodicity, size, material, orientation, and 
geometric constituent of the unit cell that form the lattice. 
As shown in Fig. 3, the first class is based on the degree of 
order or periodicity, consisting of three variants including 
disordered/random lattices, periodic lattices and pseudoperi-
odic lattices. Both periodic and pseudoperiodic lattices can 
be further classified into homogeneous and heterogeneous 
lattices based on the strut thickness, cell density and material 
type in terms of functionality. The pseudoperiodic lattice 
is also known as a conformal lattice [37] in relation to the 
conformity of the lattice orientation and the surface normal 
of the boundary. For the same reason, periodic lattices are 
also known as non-conformal lattices as it is trimmed at 
the boundary edges. This classification is further elaborated 
for periodic, pseudoperiodic and random lattices in terms 
of topology or the geometric constituents of the unit cell 
including beam, shell-based elements, and Triply Periodic 
Minimal Surfaces (TPMS) cells that are created following 
3D trigonometric functions. This classification will be used 
to help identify the fundamental design of lattices in terms 
of size, shapes, orientation, and geometric profiles and with 
a view of applying relevant GD&T approaches.

Nazir et al. [33] conducted an extensive review on the 
forms, designs and performance of lattice structures manu-
factured by AM, where the capabilities and issues of DfAM 
for lattices using existing CAD software was highlighted. 
They showed different approaches of designing and opti-
mizing the cellular structure through analytical and digital 
modelling techniques. There are several CAD-FEM software 
packages commercially available for designing and opti-
mizing beam or shell structures, such as Catia, Creo, Solid-
works, Mimics, SpaceClaim and Netfabb listed in Table 3 
and current capabilities of lattice design vary among com-
mercially available software with some requiring different 
levels of programming and mathematical skills of users. For 
example, nTopology has a comprehensive library of vari-
ous lattice design including volume, surface and conformal 

Fig. 1   The GBTA is simulated in Autodesk Netfabb Ultimate 2019 to 
observe the deviation caused by shrinkage to considered in the devi-
ated point cloud of the skin shape model (repurposed from [28] with 
a copyright license no. 5247730280487)
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lattices with beam, shell and TPMS unit cells. Autodesk Net-
fabb and Ansys SpaceClaim have limited options and mainly 
include common beam and shell elements. It was also found 
that the terms used to describe the lattices vary. For exam-
ple, Netfabb describes the shell feature as a surface element. 
Moreover, almost all software do not have the capabilities 

of assessing the dimension and tolerance of the modelled 
part, especially for lattice structures. Creaform [39], GOM 
Inspect Suite [40], Hexagon PC-DMIS [41] are commonly 
used as quality inspection tools with GD&T capabilities.

Fig. 2   a Large lattice structure used in transport engineering in late nineteenth century in the UK (repurposed from Adam Foster in Fickr.com 
with sharable licence [17]); b lattice cubes (2 × 2 × 2 cm3) printed in Vat-photopolymerisation AM technique

Fig. 3   Classification of lattice structure [33, 36–38] (images created using nTopology)
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3.2 � GD&T methods for lattices

Ameta et al. [43, 44] claimed that conventional GD&T tech-
niques are inadequate to tolerance lattice structures for AM 
including non-uniform thickness lattices, conformal lattices, 
and unstructured lattices and to verify the design against 
a functionality. The tolerancing of a lattice structure com-
prises of a) size tolerance for strut thickness and unit cell 
dimensions, (b) form tolerances for strut shape and unit cell 
shape, (c) orientation tolerances for individual strut and unit 
cell, and (d) position tolerance for unit cells and the lattice 
as a pattern. To address this gap, they introduced a Total 
Supplemental Surface (TSS) concept for the ASME Y14.46 
standard, mitigating the tolerancing challenges for lattice 
structures which is shown in Fig. 4. The successful outcome 
of the TSS process lies in the selection of the measurement 
techniques and control algorithms for the TSS profile. Rupal 
et al. [27] also utilised a similar TSS technique to tolerance 
their proposed artifact called an Assembly Benchmark Test 
Artifact (ABTA), including mating features and lattice struc-
tures to characterise fit to form of the features and geometric 
tolerance of the lattice feature. The deviation of the sample 

is predicted by a theoretical point cloud model called skin 
model shapes in MATLAB, verified using finite element 
analysis and experimental validation of the part.

4 � Summary

GD&T is a mature field for the manufacturing sector. How-
ever, for companies utilising AM, the geometric quality and 
structural integrity of the built part not only depends on the 
machine set-up, process parameters, built environment, but 
also the quality of the CAD model and the slicing techniques 
to convert the digital model into a toolpath planning and 
printing. In addition, the built position, orientation, support 
structure and materials influence the geometric quality of the 
built part [25]. Previous studies focused on optimising the 
mechanical properties of the built part and corresponding 
process parameters [45–47]. Other studies [11, 21, 28, 48] 
only relate to geometric part qualification using common 
geometric features such as rectangles, squares, cylinders, 
holes, cubes, walls and slopes. They benchmarked GD&T 
characteristics of various artifacts produced from different 
AM technologies. The common GD&T characteristics such 
as flatness, cylindricity, parallelism, circularity were inves-
tigated, including the spatial repeatability of the features, 
surface finish and the minimum feature size [30]. Most 
GD&T work has focused on PBF techniques because of the 
excellent capability of the process to build various shapes, 
forms and complex features, including thin internal chan-
nels, infills, lattices and consolidated assembled parts [49]. 
However, there is a significant gap in the GD&T for complex 
features, especially for internal channels, lattice structures 
and consolidated parts. Handful studies developed toleranc-
ing methods for lattice structures except for Ameta et al. 
[43, 44, 50], who proposed using a transition region known 
as TSS to represent the allowable variation in materials 
and geometry of a part with lattice structures and verifying 
the data using experimental metrology by CMM, XCT and 
FVM. However, their work is not fully applicable to different 
lattice structures shown in Fig. 3.

In summary, a literature review has been conducted on 
GD&T benchmarking for AM, and there is an extensive 
research gap requiring the need for GD&T benchmarking 
of PBF parts with complex features such as lattice struc-
tures. There is an urgent need for a standardised approach for 

Table 3   CAD-FEM packages for designing cellular structures using 
AM [33, 42]

Massachusetts Institute of Technology (MIT)

Company/software Lattice 
structure 
modelling

FEM analysis Topology 
optimisa-
tion

ANSYS SpaceClaim X X X
Dassault Systems CATIA X X X
PTC Creo X X
Dassault Systems Solid-

works
X X X

Materialise Mimics X X
*MIT Abaqus X X
nTopology X X X
Autodesk Within X X
Altair Optistruct X X
Autodesk Netfabb X X X
Materialise 3-matic STL X
Paramount Conformal 

lattice structure (CLS)
X

ParaMatters CogniCAD X X

Fig. 4   The workflow of the TSS 
mechanism for tolerancing lat-
tice structure [43, 44]



	 Progress in Additive Manufacturing

1 3

GD&T artifacts encompassing lattice features and other free-
form structures. Future work should also propose a GD&T 
workflow for designing artifacts with lattices structures.
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