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Abstract—Industry 4.0, driven by enhanced connectivity by
wireless technologies such as 5G and Wi-Fi 6, fosters flexible
industrial scenarios for high-yield production and services. Pri-
vate 5G networks and 802.11ax networks in unlicensed spectrum
offer very unique opportunities, however existing techniques
limit the flexibility needed to serve diverse industrial use cases.
In order to address a subset of these challenges, this paper
offers a solution for time-sensitive application use cases. A
new technique is proposed to enable data-driven operations
through Machine Learning for technologies sharing unlicensed
bands. This enables proportionate spectrum sharing informed by
data to improve critical applications performance metrics. The
results presented reveal improved performance to serve critical
industrial operations, without degrading spectrum utilization.

Index Terms—5G, 802.11ax, Spectrum Sharing, Contention
Window, Time-Sensitive Applications

I. INTRODUCTION

The ongoing industrial revolution, known as ”Industry 4.0,”
is driven by digital transformation, enabled by advanced con-
nectivity, artificial intelligence, and robust computing power.
Wireless communication in smart industrial processes fosters
flexibility, enabled by technologies such as 5G and Wi-Fi 6,
enhancing system performance for high-yield manufacturing.
To drive the needed digital transformation for Industry 4.0,
private 5G networks are increasingly being deployed offering
enhanced reliable connectivity, improved security, and better
control of network management and automation. Similarly,
recent amendments to the IEEE 802.11 standard have re-
ceived wide acceptance and deployment in industrial settings.
However, to leverage the return on investments, particularly
from private 5G networks, unlicensed spectrum offers free-to-
use spectrum which makes deploying these networks a cost
effective option.

Despite the benefits these technologies bring to smart in-
dustrial processes while operating over the unlicensed spec-
trum, some fundamental challenges are raised [1]. One of
the challenges is, that the spectrum channel needs to be
shared by multiple wireless devices operating different radio
access technologies (RATs). Specifications have been defined
to support different spectrum sharing schemes to promote
fair coexistence between RATs [2]. While some concerns
still remain regarding the potential impact on each tech-
nology’s performance, novel approaches and techniques are

still required to enable data driven operations of coexisting
technologies in unlicensed bands. Based on this need, we
present a technique which enables intelligent spectrum sharing
for efficient operations in industrial scenarios, where critical
and time-sensitive equipment, are granted sufficient spectrum
resources over less critical devices. The aim is to meet the
functional requirements for critical applications while provid-
ing relatively better performance for less-critical applications.
We propose applying the Uniform Difference Distribution
(UDD) function to establish the distribution of the idle-time
interval between transmissions for coexisting nodes over the
channel. This distribution enables the determination of per
node and system data-rates and transmission delay based on
the number of contending nodes over the channel. Leveraging
this distribution, we propose the machine learning models to
decide the optimal contention window (CW) to support the
time-senstive applications.

Several studies have applied artificial intelligence to spec-
trum sharing problems in coexisting scenarios, which ad-
dresses different issues. The work presented in [3] focused
on establishing the number of Wi-Fi BSS contending over
a channel. This is crucial for implementing any practical
fair spectrum sharing scheme. Tested using 3 different deep
learning models, a very high accuracy was achieved. In [4] and
[5] reinforcement learning and deep reinforcement learning
techniques were applied to establish fair opportunistic access
and improve channel assignment for better throughput and
resource utilization respectively. While other works only focus
on fair opportunistic access, our work distinguishes itself by
emphasizing efficient spectrum sharing with a consideration
for service priority.

II. SCENARIO AND SYSTEM MODEL

In this section, we describe the industrial scenario adopted,
time-sensitive and delay tolerant applications considered for
critical operations and system monitoring respectively. A
system model that elucidates key network parameters and
protocols for 5G NR-U and IEEE 802.11ax are also given.

A. Scenario Description

A segment of industry experiencing significant advancement
is the recycling industry. Material Recycling Facilities (MRFs)



are opening, equipped with state of the robotics and AI
technologies to sort a wide range of disposed materials. To
sort these materials, video technology and computer vision
techniques are utilized. In this paper, we consider a scenario
where high resolution videos are captured and streamed real-
time to an edge-cloud server for critical processing workloads.
The time-sensitiveness of sorting these materials require timely
transmission of the video to the edge-cloud where object
detection tasks are completed to aid robotic arms in sorting
the materials identified. Having the ML model located on
the edge-cloud, offers the advantage of higher computing
resources and continuous learning to evolving data, enabling
the MRFs capacity to process more diverse waste. The po-
tential to expand its sorting capacity, means the number of
robotic arms sorting materials can increase over time. Also,
situations may arise where the MRFs are running at reduced
capacity, hence a flexible and adaptive technique, informed
by situational awareness and application requirements, ensure
critical operations are not negatively impacted. Given the time
synchronise functions in sorting the waste materials, a data
rate and delay threshold is required in ensuring expected
performance.

B. Network Model

The MRF’s sorting floor considered has a dimension of
120m by 80m. It utilizes a conveyor belt system where the
recycled materials are sent to be processed and sorted by
robotic arms into different categories. The network model
adopted, consists of a private 5G network with two 5G NR-U
gNodeB base-stations and two 802.11ax Access Points (APs).
The performance of the proposed spectrum sharing technique
is evaluated based on number of connected User Equipment
(UE) transmitting video/control data from/to the robotic arms
and Stations (STAs) transmitting system facility data to digital
dashboards distributed across the MRF. The UEs and STAs
located at fixed locations are connected to the gNodeBs and
APs respectively. The robotic arms equipped with ultra high-
definition (UHD) cameras with machine vision capabilities
are connected to the 5G NR-U network to exploit enhanced
network functionalities. Similarly, digital displays and dash-

Fig. 1. Network layout of MRF with 5G NR-U and 802.11ax networks
operating in unlicensed bands

boards distributed across the sorting floor are connected to the
802.11ax based Wi-Fi network. Given the industrial scenario
adopted for our proposed solution, the transmission between
the wireless nodes can be obstructed. Consequently, the 3GPP
InF channel model is utilized in obtaining the received signal.
In [6] the 3GPP InF model was validated within a real
world factory environment. For 802.11ax, the TGn and TGac
spatial channel model were adopted for 802.11ax indoor
channel models according to [7] and applied in [8]. The
pathloss model considered in this paper for the 802.11ax
network are according to channel model E for indoor Large
Office/Warehouse scenarios. Based on both channel models,
the 5G NR-U and 802.11ax networks are designed to achieve a
minimum modulation and coding scheme (MCS) of 256 QAM,
operating over a 40MHz channel, with gNodeB/AP transmit
power at 30dBm and UE/STA at 24dBm. The spectrum sharing
approach in this paper investigates performance of co-channel
coexistence, which requires all nodes to be detectable through
spectrum sensing during the clear channel assessment (CCA).

C. Traffic Model

To enable enhanced sorting capabilities at the MRF, multiple
video resolutions are adopted similar to [9]. It is shown in
[10] that with their technique, 4K video can be down-scaled
to lower resolution videos, and still achieve good Average
Precision (AP). 4K video is adopted with the feature to
downscale or adapt to multiple bitrate for object detection
tasks when necessary. We consider multiple adaptive bitrates
configurations via High Efficiency Video Coder (HEVC)
codec, subject to achievable Average Precision (AP) according
to work done in [9]. Based on their work, we select a bitrate
threshold of 15Mbps, 20Mbps, 25Mbps, 35Mbps and 75Mbps.
These bitrates achieved over 80% AP in object detection
tasks. Adaptive bitrate is crucial to offer varied compression,
influenced by changing spectral resources subject to the num-
ber of robotic arms in operation at a particular period. A
balance must be struck to ensure fast decoding and object
detection at the edge-cloud and achieving high AP to fit the
available spectral resources. Hence, ensuring an optimal data-
rate sufficient to support the highest video encoded bitrate as
much as possible. One 4K camera is attached to the robotic
arm, with video capture at (3840x2160) resolution, 8bit RGB,
15 fps, at an uncompressed bitrate of 373.2 Mbps. Adaptive
bitrate between 15 Mbps to 75 Mbps are considered in the
performance evaluation.

D. IEEE 802.11ax System Model

PHY Abstraction - To evaluate the performance of the
proposed technique, the IEEE 802.11ax standard is utilized.
The PHY and MAC layers are the crucial parts in the WLAN
technology. An abstraction of the PHY layer is adopted, which
has been substantively validated in MATLAB for link-level
and end-to-end simulations [11]. The data rate achievable is
based on the number of transmitted bits across the spectrum
over a given period of time.
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In (1), the data rate S(w) is subject to the number of
data subcarriers χ within the chosen channel bandwidth.
The coded bits per subcarrier b, applied channel coding r,
across spatial streams η, over a given symbol duration τ(κ)
and guard interval τ(γ), altogether give the link-level data
rates. The PHY abstraction applied in this paper, adopts a
basic data transfer unit of 1ms. This is sufficient given the
minimum transmission opportunity (TXOP) applied is (5ms).
In the evaluation undertaken, OFDMA is not used, hence each
transmission opportunity is dedicated to a specific station.
MAC Model - The channel access management is controlled
by the MAC layer. It performs an opportunistic channel arbi-
tration, through a random process via a uniform distribution.
A back-off integer is selected within the contention window
(CW) and is decremented by 1 every slot interval ω (9us)
while the channel is idle, till it reaches zero; at this point a
transmission is attempted over the idle channel. If a collision
is detected, the CW size is doubled till a maximum CWmax

and this continues until a successful transmission is achieved.

ρ(n+1) =

{
0 Wi-Fi Transmission
> 0 Backoff counter decrement

ρ is the back-off integer selected for each arbitration cycle
for transmission. Once ρ reaches zero a transmission is at-
tempted, otherwise the backoff counter decrements while the
channel is idle. An acknowledgement (ACK) frame is trans-
mitted if a transmission is successful after a short interframe
space (SIFS).

E. 5G NR-U System Model

PHY Abstraction - Similarly, to obtain the system data rates
for 5G NR-U a PHY layer abstraction is used to compute the
attained data rate per node, when LBT procedure is applied
for channel contention. Given at least one physical resource
block (PRB) is assigned to a node for transmission, the data
rate for each node is achieved by the following equation:

S(nr) =

∑R
p=1(χ

nr) · (ζ) · (M) · (rnr)
Tslot,ms

(2)

(2) represents the theoretical bit rates that can be achieved
on 5G NR transmission. χnr stands for the subcarriers avail-
able for transmission, ζ is the number of bits per symbol per
carrier, M is the modulation order, rnr is the coding rate and
Tslot,ms are the number of slots transmitted within a given
channel occupancy time (COT) in milliseconds.
LBT Procedure - 5G NR-U release 16 adopts similar channel
access mechanisms to LTE-LAA as a baseline in 5GHz
frequency bands. After sensing the channel to be idle for a
defer time τ(δ), a counter N is decremented to zero while the
channel is idle. Each decrement is done every slot interval
ω (9us). If a collision is detected by HARQ-ACK as null

acknowledgement (NACK), this triggers a doubling of the
CW . Channel access priority class 4 has similar CWs to
802.11ax but different maximum COT when compare with
802.11ax maximum TXOP.

III. ML-BASED SPECTRUM SHARING TECHNIQUE FOR
INDUSTRIAL TIME-SENSITIVE APPLICATIONS

In this section, we present the ML-based technique for time-
sensitive applications. The aim is to facilitate proportional
opportunity for transmissions across the shared spectrum from
nodes conveying time-sensitive information, based on perfor-
mance requirements. This will be contingent on the number
of nodes contending over the channel. The data required to
train the ML model are preprocessed through establishing the
distribution of the idle-time over the channel. This distribution
can be used to enumerate the average data-rate and delay of
coexisting networks. This can further be used to determine the
optimal CW as well as COT for 5G NR-U across the channel.
In a private industrial network scenario, the network can be
designed to fit the specific operational requirements.

A. Uniform Difference Distribution

In order to train the ML model, the distribution of the
idle-time across the channel constitutes part of the data re-
quired. Given the characteristics of the uniform distribution,
the number of nodes contending over the same channel has
a relationship which can be expressed by the uniform dif-
ference distribution (UDD). The UDD is the distribution of
the difference between the uniformly distributed variables. For
example, if two nodes with back-off selection represented as
Xi and Xj , select an integer via uniform distribution, the
difference in the integers selected will be the idle interval
between transmissions over the channel. Each node contending
(irrespective of the CW size) represents a uniformly distributed
random variable (RV) Xi, with P (Xi = x) = 1

CW . Hence the
mean and standard deviations of the UDD of these variables
provide information to estimate the number of contending
nodes. This is crucial for our proposed technique, because
estimating the number of contending nodes is fundamental to
the proposed ML technique.

Y = Xi −Xj − · · · −Xn (3)

Y is the UDD of RV Xi, Xj , ..... ,Xn. The UDD was
used in [12] to estimate number of nodes in coexisting multi-
RATs scenarios. Furthermore, the UDD can provide informa-
tion about the delay profile based on the number of nodes
contending over the channel. For instance, it can provide the
average delay, based on the distribution of changing CW size
associated with the back-off procedure by each node whenever
a collision occurs. The expected value (mean) of a uniform RV
can be expressed by its probability mass function (pmf).

µ = E(Xi) =
∑

x∈CW

xfXi(x) (4)

where Xi is the RV, x are the elements of the CW and
fXi(x) is the pmf of each element x. To obtain the expected



value of the UDD of two uniformly distributed RVs, we have
the expression as:

Y = Xi −Xj , x ∈ CW (5)

(5) represents the UDD Y when the CW is the same
for two contending nodes. Considering the discrete case, the
cumulative distribution function (cdf) of Y is:

FY (y) = P{Y ≤ y} = P{Xi −Xj ≤ x} (6)

Given, the joint pmf of the two RVs is fXiXj
(xixj). Where

xi and xj have the same support SXn
when contending in the

same CW . Hence, the cdf of Y can be obtained as:

FY (y) = P{Y ≤ y} = P{Xi −Xj ≤ y} (7)

We can rewrite (7) as P{Xi ≤ Y +Xj}. FY (y) is computed
as:

xj∑
0

Y+Xj∑
0

fXiXj
(xi, xj). (8)

In order to obtain the pmf of the distribution we obtain the
derivative of the cdf which is:

d

dy
FY (y) =

xj∑
0

d

dy

Y+Xj∑
0

fXiXj (xi, xj) (9)

When Xi and Xj are independent, which is the case in our
model we have the pmf fY (y) as:

xj∑
0

fXi
(Y +Xj)fXj

(xj) (10)

(10) is the convolution of the pmf of both RVs Xi & Xj .
To obtain the uniform difference distribution for three nodes,
the convolution of the pmf of Y and Xk will apply, and so on
as the number of nodes increases. The mean of the uniform
difference distribution is therefore:

µ = E(Y ) =
∑

x∈Xi−Xj

xfY (x) (11)

In a more realistic scenario where nodes contending for
the channel operate across different CWs due to collision,
the binary exponential sequence follows 2sCW where s ∈
{0, 1, 2, ...6} the backoff stage.

fs
xi

= P (Xi = x) =
1

2sCWs
(12)

Equation (12) shows the pmf subject to the backoff stage
experienced by a node. The expected value and the cdf of a
node contending within a specific CW (represented as a RV)
can be similarly written as:

Es(Xi) =
∑

x∈CWs

xfs
xi
(x) (13)

F s
Xi

(x) = P (Xi ≤ x), 0 ≤ x ≤ CWs − 1 (14)

The uniform difference distribution of two uniform RVs
where Xs

i and Xs
j have a joint pmf as fXs

i X
s
j (xixj) with

different support.
The cdf of the uniform difference distribution denoted as Y

is given as:

FY (y) = P{Y ≤ y} = P{Xs
i −Xs

j ≤ y} (15)

Rewriting (15) we have P{Xs
i ≤ y+Xs

j }. The cdf FY (y)
is then computed as:

xj∑
0

Y+Xs
j∑

0

fXs
i X

s
j
(xixj) (16)

When the derivative is obtained for (16), the expected values
of the uniform difference distribution is:

E(Y ) =
∑

y∈CWm

y
d

dy
FY (y) (17)

E(Y ) and standard deviation (σY ) of the UDD constitute
the data required for the node number NT estimation and
computing the mean individual node data-rates and delay.

B. Spectrum Sharing Algorithm

The spectrum sharing technique is designed to offer pri-
ority transmission opportunity based on transmission activity
data obtained from the system model described above. The
algorithm is given below in Algorithm 1.

Algorithm 1 Spectrum Sharing Technique
1: Initialize idle-time interval counter to zeroes
2: Begin idle-time counting through channel sensing
3: Compute E(Y ) and σY of idle-time distribution Y
4: Get the total node numbers NT from E(Y ) and σY

5: Define Si
nr, Si

w per node for 5G and 802.11ax data-rates
6: Define Di

nr, Di
w per node for 5G and 802.11ax delay

7: for Time t = 1, . . . ,∞ do
8: while NT is not zero do
9: Si

nr ← Data-rate for N i
nr

10: Si
w ← Data-rate for N i

w

11: if Si
nr, D

i
nr ≪ AppNT

then
12: CW ← ML Optimal CW Prediction
13: else if Si

nr, D
i
nr ≥ AppNT

then
14: CW ← 5G NR-U LBT Procedure
15: end if
16: end while
17: end for=0



C. Dataset

The dataset used to train the ML models for numerical anal-
ysis and evaluating the ML performance were generated with
MATLAB. In order to extract the idle-time interval between
transmissions, a MAC layer channel contention model was
developed in MATLAB for 5G NR-U and 802.11ax coexisting
scenarios. As shown in the algorithm above, the idle-time
interval provides the dataset to estimate the number of nodes.
The idle-time interval and COT/TXOP also enable computing
the mean data-rates and delay for each node using the PHY
model. This was done for a set of carefully selected CW sizes
for 5G NR-U nodes to choose from, to minimize transmission
collision and achieve optimal data-rates and delay.

D. ML Models

Various ML models are employed in this study based on
their effectiveness in spectrum-sharing applications. Support
Vector Machine (SVM) is utilized due to its ability to handle
non-linear decision boundaries, making it suitable for indus-
trial settings where spectrum usage patterns may not be lin-
early separable. Linear Discriminant Analysis (LDA) is chosen
for its capacity to simplify classification by projecting data
onto a lower-dimensional space with well-separated classes,
particularly useful in complex industrial environments. K-
Nearest Neighbors (KNN) is applied for its flexibility and
adaptability, providing localized spectrum allocation decisions
based on neighbouring devices’ usage patterns, especially in
dynamic industrial settings. Random Forest (RF) is relied
upon for its reliability in dynamic industrial environments,
robustness against overfitting, and capability to manage large
volumes of data with high dimensionality. Decision Trees (DT)
are preferred for their simplicity and transparency, offering in-
sights into spectrum allocation decisions in industrial settings
and adaptability to various spectrum consumption features.
Artificial Neural Networks (ANN) can efficiently learn and
adapt to complicated radio frequency data patterns, improv-
ing spectrum efficiency and resource allocation in dynamic
wireless environments. In addition, lightGBM (LGBM) is
considered for its efficiency and high performance in handling
large datasets with complex features, enhancing the spectrum-
sharing analysis in this study.

IV. RESULTS

The result of this study is presented in this section covering
ML model and system performance.

A. Spectrum Sharing

Several machine learning algorithms were evaluated for
their performance in classifying the optimal CW to enable
optimal performance in achieving better video compression
bitrate for better object detection. The results, as outlined
in Table I, shed light on the strengths and weaknesses of
each algorithm. SVM and RF exhibit the highest classifica-
tion accuracies, both achieving a significant rate of 92%. In
sectors characterized by stringent temporal constraints such as
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Fig. 2. Data-rates results with video compression bitrate thresholds showing
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Fig. 3. Transmission delay results showing baseline and proposed ML
technique performance

industrial environments, precision assumes paramount impor-
tance to ensure optimal allocation and utilization of spectrum
resources for mission-critical operations. KNN and LDA at-
tain slightly lower accuracies, at 86% and 80% respectively,
owing to the inherent complexity of the data they encounter.
Nonetheless, their proficiency in discerning intricate patterns
within non-linearly separable datasets endows them with the
ability to effectively classify instances based on their feature
representations. This adaptability to diverse data distributions
renders them particularly adept at reliably categorizing time-
sensitive data amidst the multifaceted and dynamic spectrum
environments prevalent in industrial settings. DT, ANN, and
LGBM achieve accuracies hovering around the 90% mark,
positioning them slightly below SVM and RF in performance
but ahead of LDA and KNN.

However accuracy could be insufficient to fully capture the
performance demands of time-sensitive applications. Recall,
F1 score, precision, and other metrics are important indicators
of the effectiveness that classifies positive cases while reducing
false positives and false negatives. RF, SVM and ANN perform
well in these parameters, achieving a precision of 97%, 94%



TABLE I
ML RESULTS OF THE SPECTRUM SHARING TECHNIQUE FOR

TIME-SENSITIVE APPLICATIONS IN INDUSTRIAL SCENARIOS.

Alg. Accuracy Precision Recall F1score time (sec)
SVM 92% 94% 92% 93% 0.002061367034
LDA 80% 82% 80% 78% 0.002042770385
KNN 86% 81% 82% 80% 0.12220454216
RF 92% 97% 92% 93% 0.39560770988
DT 90% 93% 90% 91% 0.00201344490

ANN 90% 93% 90% 91% 0.18818640708
LGBM 89% 91% 89% 89% 0.7498244312

and 93%, recall of 92%, 92% and 90%, and F1 score of
93%, 93% and 91%, respectively. Recall ensures that all
relevant cases are correctly identified, while precision takes
on greater importance in time-sensitive industrial scenarios,
guaranteeing that the proportion of spectrum resources are
properly utilized for vital activities. RF’s performance in
terms of precision, recall, and F1 score is in close accor-
dance with the requirements of industrial applications that
require quick selection. Furthermore, the efficacy of real-
time spectrum sharing in industrial scenarios, where prompt
decision-making is imperative, hinges on the computational
efficiency of the algorithms employed. SVM, with a training
time of 0.002 seconds, and RF, with a training time of 0.396
seconds, emerge as apt choices for applications necessitating
rapid spectrum sharing decisions. Their effectiveness in high-
dimensional spaces facilitates prompt adaptation to dynamic
spectrum environments prevalent in industrial settings, where
spectrum conditions may undergo rapid changes, ensuring the
seamless operation of time-sensitive applications. Conversely,
DT demonstrates a longer processing time at 0.021 seconds.
The complexity inherent in DT may account for this increased
computational overhead, albeit without imparting significant
differences for systems with lower computational demands.

B. System Performance

A comparative evaluation of both RATs is carried out to
ascertain the performance of the proposed spectrum sharing
approach over the 802.11ax and 5G NR-U standard. The
philosophy behind the approach in industrial scenarios aims
to facilitate proportionate and application-driven spectrum
sharing in a pragmatic way. In Fig. 2, the data-rates results
of the proposed technique consistently improves the video
compression bitrate above the threshold for 5G NR-U network
through which the video traffic for material sorting is transmit-
ted. This performance is crucial to improve the AP for object
detection tasks. For 8 nodes, an average data-rate improvement
from 55.84 Mbps to 75.27 Mbps is attained improving the
video compression bitrate by 36%. Consequently, the 802.11ax
network experiences a reduction in data-rates from an average
of 53.98 Mbps to 36.42 Mbps. This is a nominal reduction and
is able to adequately support system monitoring applications
on digital dashboards. This trend is sustained to 40 nodes
where an impressive video compression bitrate of 18.44 Mbps
is achieved from a baseline of 10.41Mbps. Equally interesting
is the slight improvement in combined data-rates of 5G NR-U

and 802.11ax from 109.83 Mbps to 111.69 Mbps for 8 nodes
and from 20.4 Mbps to 21.77 Mbps for 40 nodes. This reveals,
a balance can be achieved with the CW to offer proportionate
contention without degrading the spectral utilization over the
channel. In Fig. 3, the transmission delay similarly main-
tains good performance to 24 nodes at < 150ms. However,
802.11ax delay increases as the number of nodes increase
substantially. Its important to note with substantial number of
nodes contending over the channel, a good balance between
spectral efficiency and transmission delay must be determined.

V. CONCLUSION

In this paper, a ML-based technique is proposed applying
the UDD to establish the distribution of the idle-time interval.
This enables computing the data-rates and delay of both 5G
NR-U and 802.11ax nodes. Furthermore, it enables obtaining
the optimal CW to improve data-rates proportionately to
networks supporting critical operations but also improving
system performance for critical industrial applications.
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