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2Laboratoire des Ecoulements Géophysiques et Industriels, CNRS/UJF/INPG, Grenoble, France

Received: 22 April 2009 – Revised: 16 March 2010 – Accepted: 18 March 2010 – Published: 8 April 2010

Abstract. Entrainment at the top of the convectively-driven
boundary layer (CBL) is revisited using data from a high-
resolution large-eddy simulation (LES). In the range of val-
ues of the bulk Richardson numberRiB studied here (about
15–25), the entrainment process is mainly driven by the
scouring of the interfacial layer (IL) by convective cells. We
estimate the length and time scales associated with these
convective cells by computing one-dimensional wavenum-
ber and frequency kinetic energy spectra. Using a Taylor
assumption, based upon transport by the convective cells, we
show that the frequency and wavenumber spectra follow the
Kolmogorov law in the inertial range, with the multiplica-
tive constant being in good agreement with previous mea-
surements in the atmosphere. We next focus on the heat flux
at the top of the CBL,Fi , which is parameterized in classical
closure models for the entrainment ratewe at the interface.
We show thatFi can be computed exactly using the method
proposed byWinters et al.(1995), from which the values of
a turbulent diffusivityK across the IL can be inferred. These
values are recovered by tracking particles within the IL us-
ing a Lagrangian stochastic model coupled with the LES.
The relative difference between the Eulerian and Lagrangian
values ofK is found to be lower than 10%. A simple expres-
sion ofwe as a function ofK is also proposed. Our results
are finally used to assess the validity of the classical “first-
order” model forwe. We find that, whenRiB is varied, the
values forwe derived from the “first-order” model with the
exact computation ofFi agree to better than 10% with those
computed directly from the LES (using its definition). The
simple expression we propose appears to provide a reliable
estimate ofwe for the largest values ofRiB only.
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1 Introduction

An interfacial layer (IL) divides the clear convective atmo-
spheric boundary layer (CBL) and the stably-stratified free
atmosphere (FA) above. The IL is forced by turbulent mo-
tions, which are primarily triggered by ground surface heat-
ing. Indeed, the main mechanism of turbulence production
within the well-mixed part of the CBL (referred to as the
mixed layer) is buoyant convection, with a possible wind-
shear contribution. The penetration of rising thermals into
the FA is associated with an entrainment of air down into the
mixed layer (e.g.Sorbjan, 1996). As a result, the CBL deep-
ens or equivalently the IL raises. A mixed layer with similar
structure and dynamics also forms in the upper ocean when
cooling occurs at the surface. As pointed out for instance by
Stevens and Lenschow(2001), the modeling of the entrain-
ment process is an essential issue in any attempt to parame-
terize the CBL in large-scale models, for both atmospheric
and oceanic applications. Indeed, only a few parameteriza-
tion schemes of boundary-layer flow within meso-scale mod-
els represent explicitly the entrainment process (e.g.Hong
et al., 2006). The representation of the entrainment process
is also an issue for air quality prediction. Mean vertical gra-
dients of concentrations of atmospheric constituents are close
to zero within the mixed layer. Hence, the rising rate of the
mixed layer into the FA determines partly the concentrations
at the ground surface (e.g.Cai and Luhar, 2002).

The entrainment process across a buoyancy interface (such
as the IL) due to turbulent motions has been studied exten-
sively in laboratory experiments.Hopfinger(1987) andFer-
nando(1991) gave a thorough review for an IL that is forced
by grid turbulence. In grid turbulence experiments, the en-
trainment process is discussed classically as a function of a
bulk Richardson number at the interface,Ri = 1bl0/(σu)

2
0

(using the notation ofHannoun and List, 1988), where1b
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is the buoyancy jump across the interface, andl0 and(σu)
2
0

are the integral length scale and variance of the turbulence
in the absence of the interface. Entrainment and resulting
mixing of entrained fluid occur roughly for 1<Ri<50. Han-
noun and List(1988) showed that for this range ofRi values,
mixing results from internal gravity wave breaking at the in-
terface. Below this range, mixing occurs as if the fluid were
homogeneous, and above that range, mixing occurs through
pure molecular diffusion. As stressed for instance bySulli-
van et al.(1998), the extension of the results from grid turbu-
lence experiments is actually debatable since the CBL con-
tains large-scale organized structures, which are not present
in such experiments.

The thermally-driven convection tank experiment ofDear-
dorff et al.(1980) was designed to mimic the CBL dynamics.
The stability of the buoyancy interface was also characterized
by a bulk Richardson number at the interface, defined as

RiB = gβ12zi/w
2
∗ , (1)

whereg is the gravitational acceleration,β the coefficient
of thermal expansion,12 the potential temperature1 jump
across the interface,zi the mixing depth, andw∗ the convec-
tive velocity (defined below). The quantitiesβ, 12, zi and
w∗ refer to horizontally averaged quantities. The convective
velocity within the mixed layer is expressed as

w∗ = (gβFszi)
1/3 , (2)

whereFs = w′2′
s is the horizontally averaged heat flux just

above the surface. Typical vertical profiles of potential tem-
perature2 and heat fluxF = w′2′ are depicted in Fig.1a
(and are further discussed in Sect. 4.4). For a broad range of
RiB values (about 2–85), which are usually observed in the
atmosphere, the entrainment rate,we= dtzi (with dt ≡ d/dt),
was found to vary as

we/w∗ =ARi−1
B , (3)

where the dimensionless parameterA is the entrainment ratio
and is close to 0.25. There is actually a wide spread in the
values ofA reported in the literature, though it is often found
to be around 0.2 in the regime of equilibrium entrainment
(i.e. when the mixed layer dynamics has reached a quasi-
steady state). The parameterization ofA, and more generally
of we, is at the heart of the debate on entrainment.

The most common parameterizations ofwe are the so-
called “zero-order” and “first-order” jump models, which
were proposed byLilly (1968) andBetts(1974), respectively.
In the “zero-order” model, the thickness of the IL is assumed
infinitesimal, while the potential temperature profile exhibits
a jump across that interface. In “first-order” models, the fi-
nite thickness of the IL is taken into account (see for instance

12 is actually the virtual potential temperature, namely the po-
tential temperature modified by humidity effects. In the following,
for simplicity, we shall use the denomination potential temperature
for 2 (in place of virtual potential temperature).

Fig. 1b). In both models, the altitude of the IL is the mixing
depthzi and is defined as the level where the heat fluxFi is
minimum (being negative). The main issue in these models
is to derive a closure for this flux.Fedorovich et al.(2004)
presents more general formulations for the entrainment law
and reviewed methods for determining entrainment parame-
ters from large-eddy simulation (LES) outputs.

Sullivan et al.(1998) used LESs to investigate the convec-
tive entrainment process and the structure of the IL over a
wide range ofRiB values (about 15–45). The authors showed
that the finite thickness of the IL needs to be considered in an
entrainment law formulation derived from a jump model. In
other terms, the “zero-order” jump model was found insuf-
ficient, especially at lowRiB. Conversely, the “first-order”
jump model was found to work well.Fedorovich et al.(2004)
also found that the “zero-order” parameterization is insuffi-
cient outside the regime of equilibrium entrainment.

In this study, we present results from a high-resolution
LES of the convectively-driven boundary layer initialized by
a commonly used sounding of Day 33 of the Wangara ex-
periment (Clarke et al., 1971). Our main purpose is to show
that the heat flux at the interface (i) can be computed exactly,
using the method proposed byWinters et al.(1995), and (ii)
can be expressed in terms of a vertical turbulent diffusivity
K, which we also obtain from Lagrangian particle tracking.
This allows us to assess the validity of the commonly used
“first-order” model to parameterizewe and to provide a sim-
ple expression ofwe in terms ofK.

Several LES studies have been conducted to investigate
the entrainment process in the CBL (see for instanceStevens
and Lenschow, 2001). Sorbjan(1996) carried out LES ex-
periments to analyse the effects, on entrainment, of the ver-
tical potential temperature gradient in the FA, hereafter de-
noted by0FA (see Fig.1). The entrainment rate was found to
depend on0FA but the entrainment ratio varied only slightly
in the range 0.2–0.3 for values of0FA from 1 to 10 K km−1

(which are usually observed in the atmosphere). In addition,
the statistical moments in the lower 90% portion of the mixed
layer were found almost independent of0FA. Lewellen and
Lewellen(1998) also examined the convective entrainment
process and stressed that the entrainment rate is controlled by
the turbulent transport at the scale of the boundary layer and
is relatively insensitive to the smaller scales of mixing near
the IL. This confirms earlier findings byLinden(1975) (for
grid-generated turbulence),Manins and Turner(1978), and
Schmidt and Schumann(1989). Otte and Wyngaard(2001)
focused on the properties of the IL and found that turbulence
there behaves as in stably-stratified flows, consistent with the
work of Hannoun and List(1988).

The outline of the paper is as follows. A description of the
LES and Lagrangian stochastic models is given in Sect. 2.
In Sect. 3, we focus on characteristics of the mixed layer tur-
bulence which forces the IL. We compute one-dimensional
wavenumber as well as frequency spectra and discuss the
length and time scales involved in the entrainment process.
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Fig. 1. (a) Typical vertical profiles of potential temperatureΘ and
heat fluxF for the convectively-driven boundary layer. (b) Same as
(a) for the ‘first-order’ model proposed by Betts (1974) (referred to
as ‘FOM1’ in § 4.4). All parameters are defined in the text.

In § 4, we show that the heat flux at the interface can be
computed exactly and that a turbulent diffusivity across the
interface can be inferred, whose values are recovered from
the tracking of fluid particles within the interface. These re-
sults are finally used to assess the validity of the ‘first-order’
model. Conclusions are given in § 5.

2 Model description and setup

2.1 The LES model

The numerical experiments presented in this paper were
conducted with the Advanced Regional Prediction System
(ARPS), a non-hydrostatic, compressible LES code devoted
to meso-scale and small-scale atmospheric flows. Xue et al.
(2000; 2001) gave an extensive description of the model for-
mulation and applications.

The basic idea of physical LES is the ‘filtering approach’
to separate the small scales from the large scales (see Lesieur
and Métais, 1996, for a review). In this approach, a low-
pass spatial filter (denoted by a tildẽ� hereafter) is applied
to the turbulent fields. In the present study the characteris-
tic width of the filter∆̃ is equal to the geometric average of
the grid size in the three spatial directions. The application
of this filter to the mass- and momentum-conservation equa-
tions, assuming that the filtering operation commutes with
differentiation, results in




∂tũi + ũj ∂j ũi = [∂j (µ∂j ũi) − ∂ip̃] /ρ̃
− ∂jτij + (g − 2Ω × ũ)i

∂tρ̃ + ∂j (ũj ρ̃) = 0
, (4)

whereu, p, andρ are the velocity, the pressure and the den-
sity fields, respectively,µ is the dynamic viscosity, and the
subscripts(i, j) ∈ {1, 2, 3} refer to the geometrical coor-
dinates. For convenience, we will also adopt the follow-
ing notation:(x1, x2, x3) ≡ (x, y, z) and(u1, u2, u3) ≡
(u, v, w). The termsτij = ũiuj − ũiũj and−2Ω× ũ, with
Ω being the Earth’s angular velocity, represent the subgrid-
scale (SGS) turbulent stress and the Coriolis acceleration,
respectively. The SGS term must be parameterized as a
function of the filtered variables. For this purpose, an eddy-
viscosity model is used, namely

τij − δijτkk/3 = −2 νt S̃ij , (5)

where δij is the Kronecker delta symbol and̃Sij =
(∂j ũi + ∂iũj) /2 is the filtered strain-rate tensor.νt is the
SGS turbulent viscosity, which is expressed as a function of
the filtered variables through a mixing length formulation.
This formulation yieldsνt = 0.1 ℓ e1/2, wheree = τkk/2 is
the turbulent kinetic energy of the subgrid scales andℓ is a
typical subgrid length scale, which accounts for the effects of
stratification (Deardorff, 1980). For a grid size with an aspect
ratio in the order of unity,ℓ is equal to∆̃ for unstable or neu-
tral cases and min(∆̃, 0.76

√
e N−1) for stable case, where

N = (g β ∂3Θ̃)1/2 is the buoyancy frequency. Note that for
a larger aspect ratio, we need to set the vertical length scale
apart from the horizontal one.

The prognostic equation fore is

∂te + ∂j (ũje) = 2 νt S̃ij

2

+ (νt/Prt) N2

+ 2 ∂j (ρ̃ νt ∂je) /ρ̃ − ε
, (6)

Fig. 1. (a)Typical vertical profiles of potential temperature2 and
heat fluxF for the convectively-driven boundary layer.(b) Same as
(a) for the “first-order” model proposed by Betts (1974) (referred to
as “FOM1” in Sect. 4.4). All parameters are defined in the text.

In Sect. 4, we show that the heat flux at the interface can be
computed exactly and that a turbulent diffusivity across the
interface can be inferred, whose values are recovered from
the tracking of fluid particles within the interface. These re-
sults are finally used to assess the validity of the “first-order”
model. Conclusions are given in Sect. 5.

2 Model description and setup

2.1 The LES model

The numerical experiments presented in this paper were
conducted with the Advanced Regional Prediction System
(ARPS), a non-hydrostatic, compressible LES code devoted
to meso-scale and small-scale atmospheric flows.Xue et al.
(2000; 2001) gave an extensive description of the model for-
mulation and applications.

The basic idea of physical LES is the “filtering approach”
to separate the small scales from the large scales (seeLesieur
and Métais, 1996, for a review). In this approach, a low-
pass spatial filter (denoted by a tildẽ� hereafter) is applied
to the turbulent fields. In the present study the characteris-
tic width of the filter1̃ is equal to the geometric average of
the grid size in the three spatial directions. The application
of this filter to the mass- and momentum-conservation equa-
tions, assuming that the filtering operation commutes with
differentiation, results in

∂t ũi + ũj ∂j ũi =
[
∂j

(
µ∂j ũi

)
−∂i p̃

]
/ρ̃

− ∂j τij +(g−2�× ũ)i

∂t ρ̃ +∂j

(
ũj ρ̃

)
= 0

, (4)

where u, p, and ρ are the velocity, the pressure and the
density fields, respectively,µ is the dynamic viscosity, and
the subscripts(i,j) ∈ {1,2,3} refer to the geometrical coor-
dinates. For convenience, we will also adopt the following
notation:(x1,x2,x3) ≡ (x,y,z) and(u1,u2,u3) ≡ (u,v,w).
The termsτij = ũiuj − ũi ũj and−2�× ũ, with � being the
Earth’s angular velocity, represent the subgrid-scale (SGS)
turbulent stress and the Coriolis acceleration, respectively.
The SGS term must be parameterized as a function of the
filtered variables. For this purpose, an eddy-viscosity model
is used, namely

τij −δij τkk/3= −2νt S̃ij , (5)

where δij is the Kronecker delta symbol and̃Sij =(
∂j ũi +∂i ũj

)
/2 is the filtered strain-rate tensor.νt is the

SGS turbulent viscosity, which is expressed as a function
of the filtered variables through a mixing length formulation.
This formulation yieldsνt = 0.1`e1/2, wheree = τkk/2 is the
turbulent kinetic energy of the subgrid scales and` is a typ-
ical subgrid length scale, which accounts for the effects of
stratification (Deardorff, 1980). For a grid size with an aspect
ratio in the order of unity,̀ is equal tõ1 for unstable or neu-
tral cases and min

(
1̃,0.76

√
eN−1

)
for stable case, where

N =
(
gβ∂32̃

)1/2
is the buoyancy frequency. Note that for

a larger aspect ratio, we need to set the vertical length scale
apart from the horizontal one.
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The prognostic equation fore is

∂te+∂j

(
ũj e

)
= 2νt S̃ij

2
+(νt/Prt )N2

+ 2∂j

(
ρ̃ νt ∂j e

)
/ρ̃ −ε

, (6)

whereε = Cεe
3/2/` is the dissipation rate of turbulent kinetic

energy and the coefficientCε has the value 3.9 at the lowest
vertical level and 0.93 otherwise. The turbulent Prandtl num-
ber is parameterized as Prt=1/

[
1+

(
2`/1̃

)]
, from where the

SGS turbulent thermal diffusivityκt=νt /Prt can be inferred.
The energy-conservation equation for2̃ is written as

∂t2̃+∂j

(
ũj 2̃

)
= ∂j

(
λ∂j 2̃

)
/
(
ρ̃ cp

)
−∂jϕj , (7)

whereλ is the thermal conductivity,cp is the specific heat
at constant pressure, andϕj = 2̃uj −2̃ũj is the SGS turbu-
lent heat flux, which is expressed as a function of the filtered
potential temperature gradient∂j 2̃, namely

−ϕj = κt ∂j 2̃. (8)

2.2 Model setup

The model is initialized using vertical profiles of potential
temperature, horizontal wind, and vapor mixing ratio taken
at 09:00 EST during Day 33 of the Wangara experiment held
in Hay, Australia (Clarke et al., 1971). The wind profile is
almost shear-free up to the top of the domain and the ver-
tical potential temperature gradient in the FA,0FA, is about
10 K km−1. The ground surface is heated through the ab-
sorption of solar radiation. This results in a diurnal variation
in the ground surface temperature and turbulent heat fluxes,
which trigger convective motions.

A good representation of land surface characteristics was
found necessary to reproduce realistically the atmospheric
boundary-layer structure and its evolution. The land-surface
energy budget was calculated by a simplified soil-vegetation
model (Noilhan and Planton, 1989; Pleim and Xiu, 1995).
The soil type was loam and the vegetation type was desert.
The roughness length was 0.24 m, the leaf area index was 0.1
and the fractional vegetation coverage was 5%. The ground
surface temperature was initialized to its observed value at
09:00 EST (278.7 K). There was no direct measurement of
the deep surface temperature, so that its initial value was
evaluated from the ground surface temperature and soil heat
flux. This flux was about zero at 08:00 EST (Clarke et al.,
1971) indicating that the deep soil temperature was approx-
imately the same as the ground surface temperature at that
time (274.0 K). Assuming that the deep soil temperature did
not vary from 08:00 EST to 09:00 EST, it was initialized to
274.0 K. Both ground surface and deep soil moisture were
set to the wilting point as suggested byClarke et al.(1971)
since it had not rained for many days.

In the numerical code, periodic lateral boundary condi-
tions are prescribed and a rigid wall condition is applied

at the bottom and top of the domain (with a Rayleigh
sponge close to the top boundary). The computations are
performed on a 5.12 km×5.12 km×4.535 km domain with
256 grid points in each direction. The vertical resolution is
20 m over the bulk of the boundary layer, 5 m within the IL
and 50 m far above. A gradually-varying mesh size is em-
ployed near the transition zones. Such a rather fine grid has
been selected to let turbulence develop with minimal bias due
to the aspect ratio of the grid size and to have a fair represen-
tation of the IL. Indeed, earlier LES investigations show that
only high-resolution LESs would provide reliable estimates
of the entrainment rate (see for instanceBretherton et al.,
1999; Stevens and Lenschow, 2001).

2.3 The Lagrangian stochastic model

A Lagrangian particle dispersion model has been imple-
mented in the ARPS code to track a large number of parti-
cles, followingWeil et al.(2004) andVinkovic et al.(2006).
Let xp0 be the particle position at initial time andxp

(
xp0,t

)
its position at timet . The trajectory of the fluid particles is
computed by integrating the equation

dtxp = v, (9)

wherev is the Lagrangian velocity of the particles. This ve-
locity is decomposed into (Lamb, 1978)

v
(
xp0,t

)
= ũ

(
xp,t

)
+v′

(
xp,t

)
. (10)

It involves an Eulerian filtered part̃u
(
xp,t

)
and a fluctuating

SGS contributionv′
(
xp,t

)
, which is modeled by a modified

three-dimensional Langevin model. Theith component of
the Lagrangian velocityv is given by the stochastic differen-
tial equation (Thomson, 1987)

dtvi = γ̃i

(
xp,v,t

)
+αij

(
xp,t

)(
vj − ũj

)
+ βij

(
xp,t

)
dtηj (t)

, (11)

where γ̃i

(
xp,v,t

)
+ αij

(
xp,t

)(
vj − ũj

)
is a determinis-

tic forcing function composed of a filtered contri-
bution γ̃i

(
xp,v,t

)
and a fluctuating SGS contribution

αij

(
xp,t

)(
vj − ũj

)
. The last term in Eq. (11) is a random

forcing with dηj (t) being an isotropic Gaussian white noise
with variance dt (namelybdηi

(
t ′
)
dηj

(
t ′′

)
e = δij δ

(
t ′ − t ′′

)
dt

whereb�e stands for time correlation). In the present study,
the SGS turbulence is assumed homogeneous and isotropic,
so that these terms are given by (seeWeil et al., 2004;
Vinkovic et al., 2006, for details)

γi = ∂t ũi +∂j

(
ũi ũj

)
+∂j τij

αij = (3/2)(dte/3−C0ε/2)δij/e

βij =
√

C0εδij

, (12)
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where C0 is the Lagrangian constant (Thomson, 1987).
It follows that the Lagrangian velocity is obtained by inte-
grating the equation

dtvi = ∂t ũi +∂j

(
ũi ũj

)
+∂j τij

+ (3/2)(dte/3−C0ε/2)(vi − ũi)/e

+
√

C0εdtηi (t)

. (13)

The filtered velocitỹu at the position of the particle was
obtained from the gridded computed Eulerian velocity by a
cubic spline interpolation procedure. The time integration
was performed using a fourth-order Runge-Kutta scheme. At
the boundaries, particles that moved out of the domain were
forgotten.

3 Characteristics of the mixed layer

3.1 Boundary-layer structures

The development of the clear and shear-free CBL in a stably-
stratified atmosphere has been studied in several papers (see
Fedorovich et al., 2004, for a review). In this situation the
warm underlying surface is the unique source that triggers
convection. Therefore convective cells do not oscillate as
Rayleigh-Benard cells do (Matthews and Cox, 2000). These
cells initiate from the heated ground surface, grow and decay
after a finite lifetime. Though the spatial distribution of the
cells is determined by interactions with the surrounding cells,
their location is unpredictable. However, all the key length
scales (e.g. horizontal extension and distance between cells)
must be related to the height of the CBL, since it is the only
length scale in this problem.

An overview of the boundary-layer structure is shown
in Fig. 2, where contours of thẽ2 field in the range
285.7<2̃<287.7 K are displayed in a(x,z) plane located
near an updraft at 15:00 EST. The mixed layer as well as
the IL are strongly turbulent, implying that the thickness of
the IL has a high variability. Fast-rising localized updrafts
impact the IL (which leads to a folding of the interface) or
erode the interface by a scouring mechanism. Similar down-
ward plumes transport heat from the cooled sea surface to-
ward the bottom of the oceanic mixed layer (D’Asaro et al.,
2002). These entrainment events are localized and turbulent
motions mix the entrained air downwards. The typical hori-
zontal size of the convective cells atz/zi=0.25 is found to be
in the range 1500–2000 m, which is in good agreement with
that found in previous studies (e.g.Schmidt and Schumann,
1989), and is in the order of the mixing depthzi .

To identify the instantaneous structure of these cells, we
use theQ-criterion (Hunt et al., 1988). This criterion is de-
rived from the second invariant of the fluctuating velocity
gradient tensor∇ũ, denotedQ, which is expressed as

Q =
1

2

(
R̃ij R̃ij − S̃ij S̃ij

)
, (14)

Fig. 2. Visualization of the structure of the boundary layer using
potential temperaturẽ2 contours in a(x,z) plane located in the
vicinity of an updraft at 15:00 EST. The distances alongx andz are
scaled by the domain lengthL and the mixed layer depthzi , re-
spectively. The grayscale color table indicates2̃ variations at the
interface (lower and higher̃2 appear white). Thẽ2 profiles, mea-
sured during the Wangara experiment (◦) and computed from the
LES results as a horizontally-averaged profile over the computa-
tional domain (—), are also included for comparison.

whereR̃ij = (1/2)
(
∂j ũi −∂i ũj

)
andS̃ij are the antisymmet-

ric and symmetric parts of∇ũ, respectively. TheQ-criterion
may be regarded as the competition between the rotation rate
R̃2

= R̃ij R̃ij and the strain ratẽS2
= S̃ij S̃ij . Thus, positive

Q isosurfaces highlight areas where the rotation rate over-
comes the strain rate, which are therefore eligible as vortex
envelopes.

An isosurface ofQ of positive value is displayed for an
isolated convective cell pattern at 15:00 EST in Fig.3a. The
highlighted structures are traces of the fast rising updrafts,
which are characterized by strong vorticity components. A
horizontal cross-section of these updrafts is visible in Fig.3b,
where the vertical velocity scaled byw∗ is plotted at the same
time. It is then possible to discuss the degree of organiza-
tion of the convective cells. They consist of well organized
updrafts, which vanish and diffuse at the interface creating
broad ring-shaped patterns. The air mass is gradually mixed
downwards in the center of the pattern. Downdrafts are not
organized compared to updrafts, and lead to downward mix-
ing associated with small-scale turbulent structures. The fast
rising updrafts occupy a smaller fraction (about 40%) of the
CBL horizontal cross-sectional area than the slowly broader
downdrafts (see Fig.4), due to the vanishing of the verti-
cal mass flux averaged over a horizontal surface. The val-
ues of this fraction are consistent with observational data
(Lenschow, 1998).

3.2 Mixed-layer statistics

The statistical properties of the mixed layer have been stud-
ied in several papers (e.g.Moeng and Wyngaard, 1988;
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Fig. 3. (a)Iso-surfaceQ=0.0015 s−2 for an isolated convective cell
at 15:00 EST. The displayed view encompasses a horizontal domain
of about 1.5 km×1.5 km, the height ranging fromz=0 to zi . (b)
Contour plot of the dimensionless vertical velocitỹw/w∗ at the
same time in the horizontal planez=zi/2. At the displayed time,
w∗=1.70 m s−1 and zi=1300 m. The contour lines correspond to
w̃/w∗=±1, ±2, ... Solid and dashed lines represent positive and
negative contour values, respectively, with darkest zones being as-
sociated with updrafts and lightest with downdrafts. The distances
alongx andy are normalized by the domain lengthL. The structure
visible in Fig.3a has a horseshoe shape, which is clearly visible in
Fig. 3b for approximately 0.2≤y≤0.6 and 0.2≤(−x/L+1)≤0.6.

Peltier et al., 1996; Kelly and Wyngaard, 2006), lead-
ing to the conclusions that the kinetic energy density and
temperature variance spectra obey Kolmogoroff and Corrsin-
Oboukhov laws, respectively, the universal constants in these
spectra being also recovered.

Our interest in this section is to show that the frequency
spectrum for the horizontal velocity matches precisely the
spatial one-dimensional longitudinal spectrum when a Tay-
lor assumption, based upon transport of fluctuations by the
convective cells, is made. The computation of the spatial and
frequency spectra also provides the typical length and time
scales, respectively, of the mixed layer.

Fig. 4. Relative spatial coverage of updrafts as a function ofz/zi ,
as computed from the surface occupied by positive values of the
vertical velocity.

The one-dimensional longitudinal spectra of kinetic en-
ergy density for ũ and ṽ, denoted byExx (kx,t) and
Eyy

(
ky,t

)
, respectively, are displayed in Fig.5a. For homo-

geneous and isotropic turbulence, the spectra should behave
as

Enn(kn,t) = C1ε2/3k
−5/3
n , (15)

wherekn is the wavenumber, the subscriptn denotingx or y,
andC1=(18/55)CK ≈ 0.49 for CK = 1.5 (e.g.Champagne
et al., 1977; Moeng and Wyngaard, 1988). The computed
constantC1 averaged for thẽu andṽ compensated spectra is
displayed versuskn in Fig. 5b. The value ofC1 thus obtained
agrees well with the theoretical prediction of 0.49 for the
smallest scales of the inertial range. We also note that these
spectra are nearly the same, as expected from local isotropy.

Two wavenumbers are indicated in Fig.5a and b, denoted
by ki andkv. The former,ki , is the wavenumber at which
the two-dimensional spectra ofũ and ṽ peak (not shown).
Therefore`i = 2π/ki is the integral scale of turbulent mo-
tions. The latter,kv, is defined as 2π/`v, where`v is the ef-

fective dissipative scale, namely`v =
(
νt

3/ε
)1/4

, with ε and
νt being inferred from the SGS model. The computed in-
tegral scalè i is close to 1900 m, which corresponds to the
typical size of the convective cells. In the present LES, the
dissipative scalèv is in the order of 5 m.

Since the large-scale flow within the mixed layer con-
sists of convective cells, the scales contributing to the inertial
range may be assumed to be advected by those cells. In other
terms, theTaylor’s (1938) frozen turbulence hypothesis may
be assumed to hold. This reasoning also requires the mag-
nitude of the velocity fluctuations to be much smaller than
the convective velocity (seePeltier et al., 1996, p. 55, for a
discussion of this point). Under these assumptions, af −5/3
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power law, withf being the frequency of the motions, is ex-
pected in the inertial range for the velocity components. The
frequency spectrum of̃u, denoted bySu(f ), computed from
12:00 EST to 15:00 EST atz=500 m in the center of the(x,y)

plane, is displayed versusf in Fig.5c. A f −5/3 power law is
obtained over almost a decade in the inertial range. Beyond
f =0.03 s−1, turbulence is significantly damped by the SGS
turbulent viscosity. This frequency corresponds to a charac-
teristic time scale of 30 s, which is approximately the time
for disturbances to travel across a grid element in the mesh.

The eddy-turnover timeτi associated with the integral
scale`i may be estimated byτi = `i/ũrms, wherẽurms is the
root-mean-square of̃u. This yields a time of 15 min, which
is the typical time for air to circulate between the ground sur-
face and the top of the mixed layer, namely roughlyzi/w∗,
as we checked it. The corresponding frequencyfi = 2π/τi

is indicated in Fig.5c.
Using theTaylor’s hypothesis, frequency spectra can be

converted to one-dimensional wavenumber spectra by sub-
stituting the frequencyf for kx |̃u|. The one-dimensional
wavenumber spectrum thus obtained is superimposed upon
Enn in Fig. 5a. Both spectra remarkably coincide over the
inertial range. This demonstrates the reliability of theTay-
lor’s hypothesis within the mixed layer.

Thus, the turbulence within the mixed layer may be as-
sumed to be locally homogeneous and isotropic over a broad
range of scales in the inertial range. We checked that the IL
is forced by the largest scales of the mixed layer by inves-
tigating the vertical evolution of the two-dimensional heat
flux spectrum, as done bySchmidt and Schumann(1989)
from LES results and byKaiser and Fedorovich(1998) from
wind tunnel measurements. In agreement with these authors,
we found that the heat flux spectrum becomes negative at
the largest scales as the IL is approached from below (not
shown). This implies that heat is transferred down from the
IL and that the largest scales of the mixed layer are involved
in this process.

4 Entrainment rate formulation

In this section, the focus is directed onto the IL where en-
trainment events take place. As recalled in the introduction,
the parameterization of the entrainment rate at the top of the
CBL, we, involves the (unknown) heat fluxFi at the inter-
face and hence a closure for this flux. In this section, we
show thatFi can be computed exactly from the method of
Winters et al.(1995). Then we introduce a turbulent ther-
mal diffusivity fromFi , which we also compute by tracking
Lagrangian fluid particles within the interface. This analysis
is finally applied to the “first-order” model discussed in the
introduction.

We first compute the characteristics of the IL from our
LES, which are needed in the analysis of entrainment.

Fig. 5. (a) One-dimensional longitudinal velocity spectraEii (ki)

of ũ and ṽ computed for the 2563 resolution run (–) at 15:00 EST
and averaged over the range 0.4<z/zi<0.6. The spectra computed
for a 1283 resolution run (- - -) are superimposed for comparison.
The dotted line (· · ·) represents the spectrum deduced from the fre-
quency velocity spectrumSu(f ) of ũ, displayed in plot(c)and com-
puted for the 2563 resolution run, from 12:00 EST to 15:00 EST
at z=500 m in the center of the(x,y) plane. (b) ConstantC1 in
Eq. (15) computed for the 2563 resolution run and averaged for the
ũ andṽ spectra as a function ofki .
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Table 1. Characteristics of the convective boundary layer for the 2563 resolution run.

Time gβ zi 12 δ1 Fs w∗ RiB we σw KL
[EST] [×10−2 [m] [K] [m] [ ×10−2 [m s−1] [×10−2 [m s−1] [m2 s−1]

m s−2 K−1] m s−1 K] m s−1]

1130 3.46 995 1.55 120 17.4 1.82 16.1 2.92 0.62 –
1200 3.45 1080 2.15 255 18.5 1.90 22.2 1.94 0.43 3.79
1230 3.45 1095 1.74 225 18.1 1.86 19.0 2.36 0.50 3.83
1300 3.44 1145 1.66 225 18.5 1.94 17.4 2.60 0.58 3.69
1330 3.44 1180 1.28 230 18.1 1.94 13.8 3.19 0.79 4.92
1400 3.44 1220 1.48 250 16.1 1.89 17.4 2.77 0.73 –
1430 3.43 1260 1.82 240 13.8 1.81 24.0 1.94 0.63 –
1500 3.43 1300 1.34 210 11.1 1.70 20.7 2.08 0.70 –
1530 3.43 1335 1.27 230 8.79 1.59 22.1 1.67 0.80 –

4.1 Characteristics of theIL

Characteristics of the CBL are displayed in Table1 for the
2563 resolution run, at successive times during the mixed
layer growth. The mixing depthzi is defined as the level
where the heat flux is minimum as in the standard flux
method (e.g.Fedorovich and Mironov, 1995; Sullivan et al.,
1998). The values ofzi obtained in this way were compared
with those computed from the gradient method, described for
instance bySullivan et al.(1998), for whichzi corresponds to
the height above ground level where∂32̃ is maximum. Rela-
tive differences were found to be lower than 10%. The lower
and upper limits of the IL were more difficult to determine.
First, we have used computed values of the second deriva-
tive ∂2

32̃. Indeed,∂2
32̃ is expected to reach a maximum and

a minimum at the lower and upper limits of the IL, respec-
tively. Since large∂2

32̃ values often occur close to the ground
surface, it was computed fromzi upward and downward to
search the first minimum and maximum values, respectively.
Nonetheless, this method was found to be not so accurate be-
cause of non representative local extrema of∂2

32̃. Thus, the
thickness of the IL,δ1, was computed asz2−z1, wherez1 co-
incides with the zero-crossing height of the heat flux profile
andz2 is the vertical position where the heat flux first goes to
zero abovezi , as illustrated in Fig.1a. Note that, consistent
with the convection tank measurements ofDeardorff et al.
(1980), δ1/zi is close to 0.2 for strong enough stratification
of the interface (see Table1). The potential temperature jump
12 was calculated as̃2(z2)− 2̃(z1). The entrainment ve-
locity was computed from the time derivative ofzi using a
centered difference scheme.

4.2 Computing the diffusive heat flux at the interface

Mixing results from a diffusive heat flux. Indeed, a purely
advective heat flux displaces thẽ2 surfaces without mod-
ifying their value. The diffusive heat flux occurs across,

and normal to, the constant̃2 surfaces (since there cannot be
any diffusive flux along those surfaces).

One way to compute the diffusive heat flux is to average
the actual advective heat flux in space or time. The idea in
doing so is that the oscillations due to reversible (wave) mo-
tions are filtered out by the averaging process and the residual
non zero value gives the diffusive flux. However this method
is not very precise because the residual value is usually very
small relative to the maximum advective flux. An alternative
method to access directly this residual diffusive contribution
is provided byWinters et al.(1995). The principle of this
method is to compute the hydrostatic equilibrium tempera-
ture profile associated with the minimum potential energy of
the fluid at a given time. Conceptually this equilibrium state
is reached by moving adiabatically and instantaneously the
fluid particles towards their hydrostatic equilibrium position.
Let 2̃s(z,t) be the temperature profile of this virtual equi-
librium state, which is stable by construction.̃2s evolves
in time because of diffusive processes only and satisfies an
equation of the form:∂t2̃s = −∂3ϕd. The fluxϕd is respon-
sible for the temporal variation iñ2s and is therefore the dif-
fusive heat flux responsible for mixing. Hence, in the present
context of interfacial mixing by convective motions,

ϕd =F , for z1 < z < z2. (16)

In practice, the stable temperature profile2̃s(z,t) at a given
time is computed by a simple adiabatic sorting of the tem-
perature field at that time. More precisely thẽ2s profile is
retrieved from each instantaneous̃2 field as follows. Let
us consider a volumeV, fixed with time, extending on both
sides of the interface, from a level above the ground surface
(at z/zi = 0.5) up to a level far above the upper boundary
of the IL (at z/zi = 1.5). The instantaneous̃2 profiles are
“sorted” overV, so that the fluid elements are moved adia-
batically according to their value of̃2, the lowest element
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being the coldest2. Then, the change in time of the result-
ing sorted profile gives access to the diffusive heat flux. As
shown byWinters et al.(1995), ϕd has the following theoret-
ical expression

ϕd(z,t) = −
〈κt

∥∥∇2̃
∥∥2

〉I

∂32̃s
, (17)

where〈�〉I denotes an average along ã2-surface andκt is
the SGS turbulent diffusivity. Note thatϕd is negative as ex-
pected. If pure laminar diffusion occurs, Eq. (17) reduces to
the standard flux-gradient relationϕd,lam = −κ ∂32̃s, where
κ is the molecular diffusivity. Equation (17) therefore pro-
vides an expression to compute the turbulent diffusive flux
ϕd at any time.

To examine whether the horizontally averaged heat flux of

the resolved scales̃F = w̃′2̃′ is a good approximation of the
diffusive heat flux, we compare its value with that given by
Eq. (17). For consistency with the definition of the interfacial
heat flux, we should comparẽF andϕd at the altitudes where
they each reach a minimum value, namely atz = z∗

i , say, for
ϕd and atz = zi for F̃ . If F̃ is a good approximation forϕd,
these minimum values as well asz∗

i andzi should be very
close.

The vertical profiles of̃F andϕd are compared in Fig.6
at 12:00 EST and 13:30 EST. The fluxϕd is negative, by def-
inition, and is slightly smaller thañF : the minimum value
of ϕd is 5% smaller than that of̃F at 12:00 EST and 16%
smaller at 13:30 EST. The altitudez∗

i whereϕd reaches its
absolute minimum is 20 m lower thanzi , the relative differ-

ence in altitude being less than 2%. This shows thatw̃′2̃′(zi)

is a very good approximation for the diffusive heat flux at the
interface. In the following we takeϕd

(
z∗

i

)
as the reference

value for this flux. In other words, we defineFi by ϕd
(
z∗

i

)
.

We now compare the values of̃w′2̃′(zi) andϕd
(
z∗

i

)
scaled

by the surface heat flux for the times displayed in Table1
(see Fig.7). The constant value –0.2 is also indicated since
a commonly used closure forFi is that it is proportional to
Fs with an empirical –0.2 coefficient. (The heat flux based
upon the Lagrangian turbulent diffusivity, discussed in the
next section, is also displayed in Fig.7.) Figure7 shows that
the good agreement found between the two fluxes in Fig.6
holds at all times, regardless of the value of the Richard-
son number, the relative difference ranging between 3% and

2Incompressibility is assumed in the sorting method and we
checked that this assumption is verified here. Indeed, the vertical
displacements of fluid particles in the sorting process are at most
equal to the thickness of the interfacial layer, that is 250 m or so.
Since the sorting process is adiabatic, the change in the volumeV

of the fluid particles before (state 1) and after (state 2) sorting can
be estimated by writing thatp1.V

γ
1 = p2.V

γ
2 , whereγ = 1.4 is the

heat capacity ratio. If one assumes that the pressure is dominated
by its hydrostatic component, one finds that the change in volume
of the fluid particles during the sorting process is at most 3%.

Fig. 6. Vertical profile of the heat fluxes̃w′2̃′ (–) andϕd ( - - - )
scaled by the surface heat fluxFs at 12:00 EST(a) and at 13:30 EST
(b), as a function of the vertical coordinatez scaled byzi . The filled
area represents the interfacial layer (IL).

20%. Note thatϕd
(
z∗

i

)
/Fs varies by at most 9% during the

4 h of simulation reported here whilẽw′2̃′(zi)/Fs changes
twice more. Hence, not surprisingly, the diffusive heat flux
is much less sensitive to large scale fluctuations than the ad-
vective heat flux. Figure7 also shows that the simple closure
Fs = −0.2Fs is an acceptable lower bound of the diffusive
heat flux at the IL during this period of time.

4.3 Estimate of mixing from the turbulent diffusivity

4.3.1 Computation of the turbulent diffusivity from ϕd

A turbulent diffusivityKϕ can be inferred from the turbulent
diffusive heat fluxϕd, namely

ϕd(z,t) = −Kϕ ∂32̃s. (18)

Note that, using Eq. (17) for ϕd, Kϕ can also be expressed
directly in terms of the temperature field. If the scale of
the vertical gradient of̃2s is much larger than the turbulent
overturning scale, relation (18) is linear i.e.Kϕ is (nearly)
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Fig. 7. The turbulent diffusive heat flux at the interfaceFi (scaled
by Fs) computed by different methods, for the times indicated in

Table1: by ϕd(z∗
i
) (◦); by w̃′2̃′(zi) (�); by Eq. (18) at z = z∗

i
, us-

ing the turbulent diffusivityKL averaged over the interfacial layer
(×); by −0.2Fs (dashed line).

uniform in z (e.g.Gregg, 1987). Under this condition, the
turbulence may be assumed locally homogeneous.

The turbulent overturning scale within the IL is usually
quantified by the buoyancy length scale`b, defined by the
ratio of the rms fluctuating vertical velocityσw and the buoy-
ancy frequency (e.g.Hopfinger, 1987). `b is the largest ver-
tical distance a fluid particle can move in a stably-stratified
fluid against the potential temperature gradient. We com-
puted`b for the times indicated in Table1, using the rms ver-
tical velocity with the mean referring to an average over the
IL (see Table1) and using the buoyancy frequency defined
asNB = (g β 12/δ1)

1/2. We found that̀ b varies between
25 and 58 m, with a mean value of 41 m. This is consistent
with the analysis of the IL dynamics byOtte and Wyngaard
(2001), which yields`b ≈20 m for conditions close to our
LES (see their cases 19 to 22, in which12 is twice stronger
than in the present case, all parameters being otherwise com-
parable). The values of`b that we found have to be compared
with the length scale associated with the mean vertical gradi-
ent of2̃, which isδ1. Sinceδ1≈225 m in our LES (see Ta-
ble1), local homogeneity may be assumed.

We computedKϕ from our LES during the regime of
equilibrium entrainment, which lasts from 12:00 EST to
13:30 EST as the ground surface heat flux is nearly constant
during this period (see the values ofFs in Table 1). Dur-
ing this period, the values ofKϕ obtained from Eq. (18) (and
averaged over the IL) are between 3.52 and 4.17 m2 s−1 de-
pending upon time, and average 3.8 m2 s−1. In terms of SGS
turbulent diffusivity κt , we found thatKϕ is in the range
10–25κt , implying that the IL is turbulent.

4.3.2 Computation of the turbulent diffusivity
from the dispersion of particles

An alternative method, based upon the dispersion of fluid
particles within the IL, can be used to retrieve the turbulent
diffusivity. This diffusivity will be denotedKL hereafter to
make it distinct from that computed fromϕd (though we ex-
pectKL 'Kϕ). By “fluid particles”, as usual, we mean non
buoyant particles, which are advected by the velocity field
(see Eq.9).

Let (δz)ms(t) be the mean square vertical displacement of
fluid particles at timet for a given release of a particle cloud.
(δz)ms(t) is defined by

(δz)ms(t) =
(
1/Np

) Np∑
n=1

[zn(t)−zG(t)]2 , (19)

whereNp is the number of particles of the release,zn(t) is
the vertical position of the particlen andzG(t) the vertical
position of the center of gravity of the particle cloud at time
t . If the turbulence is locally homogeneous and stationary,
and fort ≥ 2TL, with TL being the Lagrangian time scale of
the turbulence,KL can be inferred from the growth rate of
(δz)ms (seeTaylor, 1921; Hunt, 1985, for a review), namely

dt (δz)ms= 2KL . (20)

Since the IL is continuously forced by the quasi-stationary
convective cells, the turbulence within this layer may be as-
sumed stationary. In this case, the Lagrangian time scale
TL is in the same order of magnitude as the Eulerian time
scaleTE (e.g.Hanna, 1981; Yeung, 2002; Dosio et al., 2005).
This result is valid also in the presence of a stable stratifica-
tion (Hunt, 1985). Let us assume thatTE = 2π/NB. Hence,
TE ≈40 s implying that 2TL is in the order of 1 min.

Particles were released forz−zi=±100 m, that is, within
the bulk of the IL. Note that some of the particles were
released below and above the IL since its thickness varies
over a wide range within the computational domain. The re-
leases were made at 4 equally-spaced times from 11:55 EST
to 13:25 EST over 10-min periods and resulted in a total of
57 500 particles per release. As an example, the time evolu-
tion of (δz)ms for the release carried out around 12:00 EST is
displayed in Fig.8. A quasi-linear growth occurs after about
1 min, whose growth rate is 2KL according to Eq. (20). Val-
ues forKL between 3.24 and 3.83 m2 s−1 were obtained de-
pending upon the time of the release and average 3.6 m2 s−1.
This range of values forKL is in very good agreement with
that computed forKϕ from the diffusive heat flux, the rel-
ative differences being lower than 10% on average. This is
attested in Fig.7 where−KL ∂32̃s scaled byFs is displayed
at altitudez∗

i for the times reported in Table1: the relative
difference withϕd

(
z∗

i

)
is at most 5%.

At this point, one may wonder whether the SGS turbu-
lence model included in the Lagrangian stochastic model
plays a significant role in dispersing the particles. Indeed,
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Fig. 8. Time evolution of(δz)ms(t) and resulting turbulent diffu-
sivity KL at 12:00 EST. The dashed line corresponds to the least-
square curve fit of(δz)ms(t), which is used to estimateKL.

SGS turbulence is likely to contribute to dispersion within
the IL where small-scale turbulence dominates andTL is
rather small. Thus, we conducted a simulation with a single
release at 11:55 EST and switched off the SGS contribution
in the Lagrangian stochastic model. In this case,(δz)ms was
found to increase less rapidly during 1−2TL but reached a
quasi-linear regime with the same slope (not shown), giving
the same value ofKL. Therefore the SGS contribution ap-
pears to play a negligible role in dispersing the particles. This
result is consistent with the findings ofGopalakrishnan and
Avissar(2000), andCai et al.(2006) for a passive tracer.

4.4 Application to the “first-order” model

4.4.1 Evaluation of the “first-order” model

Within the framework of the “first-order” jump model pro-
posed byBetts(1974), the entrainment heat flux at the inter-
faceFi is related to the entrainment rate by

−Fi = we12−δi ∂t2
∗ , (21)

whereδi = z2 − zi and2∗
=

[
2̃(zi)+2̃(zi +δ)

]
/2. In the

limit of infinitely small thickness of the IL, i.e. δi→0,
Eq. (21) reduces to the “zero-order” approximation for the
interfacial heat flux derived byLilly (1968), namely−Fi =

we12.
Our purpose in this subsection is to evaluate the first-order

model forwe by comparing the LES computation ofwe from
its definition (namely dtzi) with its prediction by Eq. (21)
usingFi = ϕd

(
z∗

i

)
. In order to compare also with the ex-

perimental data ofDeardorff et al.(1980) we rather consider
the parameterA= (we/w∗)RiB instead ofwe. This param-
eter is plotted in Fig.9 versus time (see Fig.9a) and versus
Ri−1

B (see Fig.9b) for the times reported in Table1. The

convection tank measurements ofDeardorff et al.(1980) are
included in Fig.9b. The two quantitiesw∗ andRiB are com-
puted from the LES.

A very good agreement is obtained between the LES val-
ues ofwe and its prediction by the first-order model, the rel-
ative difference forA ranging between 2% and 18% with a
mean value of 8%. (The relative difference forA with −Fi

computed as̃w′2̃′(zi) averages 11%.) The parameterA is
in the range 0.21–0.26 and averages 0.24, which is in good
agreement with values reported in previous studies. This also
shows that the standard parameterizationwe/w∗ = 0.2Ri−1

B
for the entrainment rate is consistent with the present anal-
ysis of mixing. The coefficientA was shown to be equal to
the efficiency of the mixing process byChemel and Staquet
(2007).

As pointed out byFedorovich et al.(2004), the computa-
tion of the different terms in a given model should be con-
sistent with the model order. The “first-order” model re-
lies upon the finite thickness of the IL. ReplacingFi by ϕd,
whose computation involves the depth of the CBL through
the sorting process, may not fulfill this consistency condition.
However, the temperature profile being (quasi-) uniform in
the mixed layer and stable above the IL, this sorting process
involves actually only the thickness of the mixed layer (see
Fig. 6). Hence, estimatingFi by ϕd

(
z∗

i

)
in Eq. (21) is con-

sistent with a “first-order” model.

4.4.2 Expression of the “first-order” model in terms
of the turbulent diffusivity

With Fi = ϕd
(
z∗

i

)
, Eq. (18) becomes

Fi = −Kϕ ∂32̃s
(
z∗

i

)
. (22)

Approximating∂32̃s
(
z∗

i

)
by 12/δ1, the “first-order” model

(21) becomes

we=K/δ1+δi ∂t2
∗/12, (23)

where K = Kϕ or KL. The approximation∂32̃s
(
z∗

i

)
'

12/δ1 should be discussed. The relative differences be-
tween∂32̃s

(
z∗

i

)
and∂32̃(zi) were found to be less that 5%

in our simulation. The relative differences between∂32̃(zi)

and 12/δ1 range from 6% to 27% while those between
∂32̃(zi) and 12/δi range from 14% to more than 100%.
Hence,12/δ1 is a better approximation of∂32̃(zi) than is
12/δi .

It is worth noting that by introducingδ1 in Eq. (23), we
extend the “first-order” model beyond that proposed byBetts
(1974). Equation (23) is actually a mixture between what
Sun and Wang(2008) have called the models “FOM1” and
“FOM2”, which differ only in the definition of the IL thick-
ness (equal toδi and toδ1, respectively). With this expression
for we andK=KL, the parameterA= (we/w∗)RiB is plot-
ted in Fig.10 versusRi−1

B . These values are compared with
those obtained whenwe is computed from the LES by its
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Fig. 9. (a)Dimensionless parameterA= (we/w∗)RiB for the dif-
ferent times displayed in Table1, with we computed by two meth-
ods: from the LES (using its definitiondtzi ) (4); from the first-
order model withFi = ϕd

(
z∗
i

)
(◦). (b) same as (a) except that

(we/w∗) RiB is now plotted as a function ofRi−1
B . Convection

tank measurements ofDeardorff et al.(1980) are included for com-
parison (·). The filled area representsA in the range 0.2–0.3.

definition (we = dtzi). A very good agreement is found, the
relative difference being lower than 10% on average. Also
plotted in Fig.10are the results from a simple expression for
we, namely

we=KL/δ1. (24)

It is well-known (Sullivan et al., 1998) that the term
δi ∂t2

∗/12 in the “first-order” model is not negligible com-
pared to−Fi/12 in the range ofRiB values considered in
our LES, its contribution here being up to 40% for the lowest
RiB values. However, Fig.10shows that, when the stratifica-
tion is strong enough (RiB approximately larger than 15 ac-
cording to our data), the simple expression (24) accounts for
the actual value of the entrainment rate to better than 25%.

Fig. 10. Dimensionless parameterA= (we/w∗)RiB for the differ-
ent times displayed in Table1 as a function ofRi−1

B . we is com-
puted by three methods: from the LES (using its definitiondtzi )
(4); from Eq. (23), withK=KL averaged over the interfacial layer
(×); by the simple model (24) (�). Convection tank measurements
of Deardorff et al.(1980) are included for comparison (·). The filled
area representsA in the range 0.2–0.3.

5 Concluding remarks

In the present paper, the entrainment at the top of the
convectively-driven boundary layer is reexamined using data
from a high-resolution LES initialized by a commonly used
sounding of Day 33 of the Wangara experiment and the anal-
ysis of mixing proposed byWinters et al.(1995). Note than
an analysis along the same lines was conducted byD’Asaro
et al.(2002) for the oceanic convective mixed layer.

The mixed layer turbulence which forces the IL is first
analysed in the present case of a “realistic” initialization. We
found that the turbulence follows precisely the Kolmogorov
spectral law for the velocity field over almost a decade in the
inertial range. The multiplicative constant in this law is found
to be in good agreement with previous measurements in the
atmosphere. The Kolmogorov spectral law also holds for the
frequency spectrum, when theTaylor’s frozen turbulence hy-
pothesis is used. To our knowledge, this is the first time that
this hypothesis is verified properly in the context of the at-
mospheric boundary layer. Hence, the turbulence within the
mixed layer may be assumed to be locally homogeneous and
isotropic over a broad range of scales in the inertial range.

This turbulence forces and mixes the IL at the top of the
convective layer. The parameterization of the heat flux at the
IL, which is responsible for mixing, and of the resulting en-
trainment rate has been the subject of intensive research since
Lilly (1968). We showed that the heat flux at the IL can be
computed exactly from the analysis ofWinters et al.(1995).
The exact expression of this flux is denotedϕd. We defined
the heat flux at the interface, usually referred to asFi , by the
minimum value ofϕd (consistent with entrainment models
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in the atmospheric context) and we denotedz∗

i the altitude
at which this minimum value is reached. This allowed us to
show that the standard closure forFi , namely the minimum
value of the horizontally averaged advective heat flux, agrees
well with ϕd

(
z∗

i

)
, to about 10%.

The exact computation ofFi along with a properly defined
temperature profile within the interface (namely through a
“sorting” process, followingWinters et al., 1995) naturally
yields a turbulent thermal diffusivity. The values of this tur-
bulent diffusivity were recovered from the dispersion of fluid
particles within the IL, which were tracked by a Lagrangian
stochastic model coupled with the LES. The values thus de-
rived agree indeed to better than 10% on average with those
computed fromϕd (whether SGS turbulence is included or
not in the Lagrangian stochastic model).

These different estimates for the interfacial heat fluxFi

were next applied to the parameterization of the entrainment
ratewe within the framework of the “first-order” model. This
model basically relies on the thickness of the IL (as opposed
to the “zero-order” model, where this thickness is infinitely
small) and provides an expression forwe involving bothFi

and the thickness of the IL. We examined different predic-
tions for we from this model, depending upon the estimate
for Fi , which we compared with the LES value ofwe. Over-
all, whetherFi is computed from its exact expressionϕd

(
z∗

i

)
,

from its approximation using the horizontally-averaged ad-
vective heat flux or when the Lagrangian turbulent diffusiv-
ity is introduced, the prediction ofwe by the “first-order”
model agrees to about 10% with that computed from the
LES using its definition (the best agreement being found for
Fi = ϕd

(
z∗

i

)
).

A simple expression was also proposed for the entrainment
rate, for whichwe is equal to the Lagrangian turbulent dif-
fusivity divided by the IL thickness. We showed that the
values thus obtained differ from the LES values by 25% for
strong enough stratification only (this relative difference be-
ing larger otherwise). However, for this expression to be of
any use, one needs to access both the IL thickness and the
turbulent diffusivity. Remote sensing techniques can provide
values of the IL thickness (e.g.Steyn et al., 1999; Cohn and
Angevine, 2000). Measurement of the turbulent diffusivity
is likely to be more difficult but, as discussed byWinters
and D’Asaro(1996), its values can still be retrieved from
finescale-resolving vertical temperature profiles.
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