
Dynamic Row Activation Mechanism for Multi-Core Systems
Tareq A. Alawneh

Department of Computer Science
University of Hertfordshire
Hatfield, United Kingdom
t.alawneh@herts.ac.uk

Raimund Kirner
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

r.kirner@herts.ac.uk

Catherine Menon
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom
c.menon@herts.ac.uk

ABSTRACT
The power that stems from modern DRAM devices represents a sig-
nificant portion of the overall system power in modern computing
systems. In multi-core systems, the competing cores share the same
memory banks. The memory contention between these cores may
lead to activate a large DRAM row only to access a small portion of
data. This row over-fetching problem wastes a significant DRAM
activation power with a slight performance gain.

In this paper, we propose a dynamic row activation mechanism,
in which the optimal size of DRAM rows is detected at run-time
based on monitoring the behavioural changes of the memory re-
quests in accessing sub-rows. The proposed mechanism aims at
providing significant memory power savings, reducing the average
memory access latency, and maintaining the full DRAM bandwidth.
Our experimental results using four-core multi-programming work-
loads revealed that the proposed mechanism in this study can
achieve both significant memory power reduction and average
DRAM memory access latency improvement with negligible area
overhead.

CCS CONCEPTS
• Hardware→ Dynamic memory.

KEYWORDS
DRAM, Main Memory, Energy-Efficiency, Over-Fetching
ACM Reference Format:
Tareq A. Alawneh, Raimund Kirner, and Catherine Menon. 2021. Dynamic
Row Activation Mechanism for Multi-Core Systems. In CF ’21: Computing
Frontiers Conference, May 11–13, 2021, Catania, Sicily, Italy. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Dynamic Random Access Memory (DRAM) is the primary memory
technology used inmodern computing systems.With the increasing
appetite for more DRAM capacity and bandwidth as a natural con-
sequence of integrating more processing cores on a chip, the power
and performance of the main memory have become a growing con-
cern, especially when running memory-intensive applications on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’21, May 11–13, 2021, Catania, Sicily, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

these cores. Several studies have revealed that the main memory
power has become a significant portion of the system’s total power,
exceeding 50% in some computer systems [15].

In multi-core systems, the processing cores share the same banks
of the main memory [11]. A memory contention, also referred to
as a memory interference, arises when two or more cores attempt
to simultaneously access the shared banks. When these accesses
are mapped to different DRAM rows in the same bank, a row-buffer
conflict occurs. In this case, the entire content of row is written back
to DRAM arrays (bank precharge), a new row is transferred into the
corresponding bank’s row-buffer (row activation), and finally the
column access (read or write operation) is performed. Activating
a large DRAM row size (1KB or 2KB) to read or write only a small
portion of data (usually 64B) is known as the row over-fetching
problem [10, 15]. Row activation (ACT) and bank precharge (PRE)
are expensive memory commands in terms of power and delay [1, 3,
23]. The portion ofDRAM power consumed during these commands
is known as activation power. This power category contributes a
high fraction of total DRAM power. When ACT and PRE commands
are performed on a fewer number of bitlines (i.e. small DRAM row
size), significant activation power savings are obtained [23]. On the
other hand, the increased interference between memory accesses
issued from different cores can potentially degrade the available
row-buffer locality as more cores are integrated on a chip [9]. This,
in turn, increases the number of row-buffer conflicts. Due to the
row over-fetching problem, this has a serious negative impact on
memory power and performance [12].

Several Fine-Grained Activation (FGA) mechanisms [4, 7, 9, 13,
15, 18, 20, 22, 23] have been previously suggested to reduce the
negative impact of the DRAM row over-fetching problem on the
DRAM power consumption and performance. However, some of
these mechanisms [4, 20] lead to a significant bandwidth loss and,
in turn, performance degradation. Additionally, these methods do
not take into account the dynamic nature of applications executing
concurrently by making use of DRAM rows with various sizes
determined at run-time. As a result, they do not achieve optimum
performance and power efficiency.

In this paper, we address this deficiency by proposing a dynamic
row (wordline) activation mechanism, in which the optimal size of
DRAM row being accessed during a row activation is detected at run-
time. Our proposed dynamic wordline activation technique gives
full consideration to the access behaviour of the memory requests
across the DRAM sub-rows (wordline segments) at run-time. In
this way, it delivers significant activation power and performance
improvements.

The contributions of this work can be summarized as follows:
• The mechanism proposed in this paper ensures less power
wastage due to the DRAM row over-fetching problem while

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CF ’21, May 11–13, 2021, Catania, Sicily, Italy Tareq A. Alawneh, Raimund Kirner, and Catherine Menon

simultaneously providing significant performance improve-
ments. This is accomplished by employing a dynamic DRAM
row activation mechanism, in which the optimal number of
the wordline segments being accessed during a row activa-
tion is detected at run-time based on monitoring the access
behaviour of the memory requests on recently targeted sub-
rows.

• Once the optimal size for DRAM row access is determined
further relaxation of the Four Activation Window (TFAW)
timing constraint can be achieved, which in turn leads to
a significant performance improvement. Unlike prior stud-
ies, our proposed mechanism facilitates the efficient iden-
tification of the optimal number of wordline segments to
be activated at run-time based on the behavioural changes
of applications executing concurrently. Additional perfor-
mance benefits are also obtained through the adoption of
an early precharge technique that works in unison with our
proposed mechanism. This early precharge is useful in con-
verting the potential row-buffer conflicts into row-buffer
empties (i.e. mapping to a specific bank with no active row
in the corresponding row-buffer).

• The dynamic row activation proposed in this study sustains
the full bandwidth that is available in conventional DRAM
memory systems.

2 DRAM BACKGROUND
ModernDRAM devices are characterized by a 3D structure; columns,
rows, and banks. The memory bank contains thousands of mem-
ory rows (pages). Each memory row consists of multiple memory
columns. The memory column is built from a group of memory
locations (storage cells). Each DRAM storage cell consists of one
transistor and one capacitor. Modern memory banks are physically
split into sub-arrays. Each sub-array is a horizontal row of smaller
components known as MATs. Each MAT is a 2D cell array, typi-
cally of dimensions 512 × 512 DRAM cells. Each horizontal row
of cells within MAT is connected by a local wordline. All MATs
within a sub-array have the same set of global wordlines [1, 3].
Subsequently, these MATs operate in lockstep when accessing a
specific DRAM row within a sub-array [1, 3]. Every signal driven by
a global wordline must be strengthened before being transmitted to
the local wordline [1, 3]. Therefore, each horizontal row of DRAM
cells insideMAT is linked to a wordline driver [1, 3]. Similarly, each
vertical column of DRAM cells within MAT shares a wire called the
local bitline [1, 3]. A single sense amplifier is attached to each local
bitline to detect and amplify the small charge held by at most one
DRAM cell [1, 3]. The sense amplifiers of the row of consecutive
MATs together form the local row-buffer of a DRAM sub-array. The
entire content of the local row-buffer of at most one sub-array is
transferred to the global row-buffer through shared wires, known
as global bitlines [1, 3].

3 RELATEDWORK
Several recent fine-grained row activation approaches [4, 7, 9, 13,
15, 18, 20, 22, 23] have been suggested to address the DRAM row
over-fetching problem. In these approaches, target memory rows

are partially transferred into the corresponding row-buffer dur-
ing activation for a new row. Thus, a significant activation power
consumption reduction is achieved. However, the design improve-
ments suggested in some mechanisms [4, 20] do not sustain the full
bandwidth of conventional DRAM memory systems. This leads to
significant performance degradation (a detailed description of this
problem is provided in the next section). Several studies [10, 23]
also propose Half−DRAM row activation architectures, in which
half of the target row is accessed during a row activation. In another
work [15], the authors suggested using the partial row activation
policy only in the case of write memory operations.

None of these techniques introduces a full solution to the DRAM
over-fetching problem inmulti-core systems. Rather, these are static
policies that do not take into account the dynamic nature of applica-
tions executing concurrently, or the consequent potential for using
DRAM rows with various sizes determined at run-time. As a result,
the desired overall system performance improvements and power
savings may not be sufficiently realised. In contrast, the mecha-
nism introduced in this paper is a dynamic wordline activation
mechanism taking into account the full consideration of the access
behaviour of the memory requests across the DRAM sub-rows at
run-time.

4 DATA MAPPINGWITHIN DRAMMEMORY
SUB-ARRAYS

DRAM activation power is proportional to the number of accessed
wordline segments (sub-rows) during a row activation operation.
Besides the substantial power reduction, the activation of fewer
wordline segments of the target row is an attractive mechanism
to relax DRAM power timing constraints, which in turn improves
DRAM performance. However, if any design suggested for a fine-
grained row activation does not consider the way data is accommo-
dated and fetched in a DRAM device, this may lead to a significant
degradation in the overall system performance. In this section, we
expand on this to provide the necessary background on how data
is fetched and accommodated in modern DRAM memory systems.

DRAM memory bank is characterized by its two-dimensional
structure; rows and columns. Figure 1a depicts an example of a 1KB
memory row; 1024 bytes numbered from 0 to 1023 (B0−B1023). Each
byte consists of two nibbles; right and left. For instance,N(0,L) refers
to the left or the most significant 4-bit of the byte number 0 (𝐵0),
while N(0,R) denotes the right or the least significant 4-bit of the
byte number 0 (𝐵0). The smallest unit that can be addressable in the
modern DRAM-based main memory systems is called a column. If
the column access granularity is eight bytes, then the total number
of columns in 1KB memory page is 128 numbered from 0 to 127
(C0−C127) (see Figure 1b). For example, the first column (𝐶0) in a
row includes the contiguous bytes from 0 to 7 (𝐵0-𝐵7), the bytes
from 𝐵8 to 𝐵15 represent the second column (C1), and the last
column (𝐶127) contains the bytes from 𝐵1016 to 𝐵1023.

The transferred data between the external memory and Last
Level Cache (LLC) is in the form of contiguous bytes called a cache
line (block). In modern DRAM devices, the cache line is transferred
through multiple data bursts. As mentioned before, every DRAM
sub-array consists of a group of MATs. Each data burst is therefore
mapped into differentMATswithin a specific sub-array. TheseMATs

Dynamic Row Activation Mechanism for Multi-Core Systems CF ’21, May 11–13, 2021, Catania, Sicily, Italy

Row-Buffer KB (B0−B1023)

N (0,L) N (0,R) N (1,L) N (1,R) N (1023,L) N (1023,R)

B3 B1023B0 B1

(a) A 1KB memory row in terms of bytes.

B3C0 (B0−B7) C1 (B8−B15) C127(B1016−B1023)

Row-Buffer KB (C0−C127)

(b) A 1KB memory row in terms of columns.

C0−C31 C32−C63 C64−C95 C96−C127
(B0−B255) (B256−B511) (B512−B767) (B768−B1023)

Segment0 Segment1 Segment2 Segment3

(c) A 1KB memory row divided into 4 equal-sized segments.

Figure 1: A 1KBmemory row (page).

operate in lockstep to fetch or write a data of one burst; each MAT
contributes with a 4-bit. As shown in Figure 2a, we assume a Double
Data Rate (DDR) memory system with 16 MATs for each sub-array
and a 64-bit memory data bus width. We also assume that the
dimension of each MAT is 512 × 512 cells, hence the row-buffer
size is 1KB (= 16×512

8). A read memory operation is issued by the
memory controller to fetch the column number 0 (𝐶0) that residing
in an activated row. This leads to fetching a 64B cache line through 8
data burst (beat) transactions. In every burst transaction, an 8-byte
word is transferred. Each MAT contributes with a nibble (4-bit). For
instance, the first data burst represents the bytes numbered from 0
to 7 (B0−B7). The left nibble of B0 (N(0, 𝐿)) and the right nibble of B0
(N(0, 𝑅)) are transmitted from MATs 0 and 1 respectively, whereas
the left nibble of B7 (N(7, 𝐿)) and the right nibble of B7 (N(7, 𝑅)) are
delivered from MATs number 15 and 16 respectively. As a general
rule, every cache line in the DRAM row is divided into words. The
word (usually 8B) is partitioned into multiple bytes, the right and
left nibbles of each byte are linearly accommodated to two adjacent
MATs within a specific sub-array.

In DDR memory systems, the data is transmitted at the rising
and falling edge of memory clock cycles. Thus, the eight 8B data
bursts take 4 memory cycles to transfer them via the memory data
bus; transferring two bursts in one cycle. However, some previous
fine-grained row activation studies [4, 20] suggested enabling only
a single MAT or a group of adjacent MATs to reduce the DRAM row
activation granularity. Unfortunately, such techniques reduce the
number of bits that can be read or written simultaneously from a
sub-array (i.e. wasting/dropping bandwidth). This, in turn, increases
the number of bursts needed to move the entire cache line to/from
a sub-array. Figure 2b illustrates how the entire 64B cache line is
transferred through the data memory bus when employing the
Fine-Grained Activation (FGA) mechanism that activates only one-
eighth of the target wordline by enabling 2 out of 16 MATs. This
mechanism will be termed as FGA_(1/8Bank) in this work. Instead
of delivering 8B per burst (beat), each group of two MATs conveys
8 bits (1B) at a time to/from the target sub-array. Therefore, 7/8 of
bandwidth is wasted. The entire cache line is accommodated within
two contiguous MATs, hence sixty-four 1B bursts are required to
transfer the entire 64B cache line. This takes 32 memory cycles

to transfer them through the DDR memory data bus, which leads
to a significant degradation in the overall system performance.
Increasing the Burst Length (BL) to deliver 64B data chunk during
memory access means that the time spent by data on the bus is also
increased. This, in turn, leads to wasting a significant amount of
power consumption.

Figure 1c represents 1KBDRAM row divided into four equal-sized
segments. The data of the first segment (Segment0), for instance,
consists of columns (data bursts) numbered from 0 to 31 (C0−C31).
As discussed above, the bytes of these columns/bursts logically
appear as one contiguous block, however these bytes are physically
distributed throughout different MATs in a sub-array.

This deep understanding of the ways in which wordline segment
data can be accommodated (mapped) within MATs of a specific
sub-array is foundational to this work. This allows us to precisely
determine the required MAT structure modifications that allow
the dynamic row activation mechanism in providing a significant
reduction in activation power without sacrificing the performance
and full memory bandwidth.

5 PROPOSED ARCHITECTURE
In this paper, we propose a new dynamic row activation mecha-
nism, in which the optimal number of bitlines (DRAM row size)
driven by a single wordline is detected at run-time. This mecha-
nism aims to achieve a significant reduction in DRAM activation
power consumption without sacrificing DRAM memory bandwidth
or performance. This represents a novel contribution in the form of
permitting a full consideration of run-time detection of the optimal
number of activated wordline segments based on monitoring the
access behaviour of the memory requests on recently targeted sub-
rows. Specifically, we maintain history information at run-time to
calculate the value of a new metric, termed as Permutation Rate be-
tweenWordline Segments (PRWS). This metric is useful in selecting
the optimal number of segments of the wordline being activated
during memory access. It represents the rate of permutation of
the memory requests at run-time between different segments of
the recently activated wordline. With increasing the number of
successive memory requests that are mapped to different wordline
segments, the value of PRWS increases.

The history information that is used in calculating PRWS can be
maintained at three different granularities; per-page, per-bank, and
per-rank (global). Maintaining the history information at theDRAM
page-level provides the highest accuracy in terms of identifying
the optimal number of wordline segments being accessed during
a row activation. Contrarily, coarse-grained (rank) granularity is
the lowest accuracy. However, tracking data at a fine-scale would
incur a significant hardware overhead. In order to strike balance
between prediction accuracy and hardware overhead, we therefore
maintain the history information in this study at the DRAM bank-
level. We also suggest further optimizations that work in unison
with the dynamic row activation mechanism proposed in this work.
These optimizations, which will be discussed later in Section 5.1,
aim at achieving further improvements in prediction accuracy and
performance.

The value of PRWS at the bank-level is calculated by using Equa-
tion 1. All parameters used in this equation are described in Table 1.

CF ’21, May 11–13, 2021, Catania, Sicily, Italy Tareq A. Alawneh, Raimund Kirner, and Catherine Menon
S

ub
−

ar
ra

y

MAT1MAT0

N(0,L)
N(8,L)
N(16,L)
N(24,L)
N(32,L)

N(48,L)
N(56,L)

<
0:

3>

N(0,R)

N(8,R)

N(16,R)

N(24,R)

N(32,R)

N(48,R)

N(56,R)

MAT3MAT2

N(1,L)
N(9,L)
N(17,L)
N(25,L)
N(33,L)
N(41,L)
N(49,L)
N(57,L)

<
8:

11
>

N(1,R)

N(9,R)

N(17,R)

N(25,R)

N(33,R)

N(49,R)

N(57,R)

<
4:

7>

<
12

:1
5>

MAT15MAT 14

N(7,L)
N(15,L)
N(23,L)
N(31,L)
N(39,L)

N(55,L)
N(63,L)

<
56

:5
9>

N(7,R)

N(15,R)

N(23,R)

N(31,R)

N(39,R)

N(55,R)

N(63,R)

<
60

:6
3>

MAT 4

N(2,L)
N(10,L)
N(18,L)
N(26,L)
N(34,L)

N(50,L)
N(58,L)

<
16

:1
9>

Data <0:63>

(D7=B56−B63)

8th data burst

D0−D7=(B0−B63)

1st data burst
(D0=B0−B7)

512 cells 1KB Row

N(63,R)N(63,L)N(62,R)N(62,L)N(57,R)N(57,L)N(56,R)N(56,L)

8B 8B 8B 8B 8B 8B 8B

Target cache line (64B)
8B

N(40,L) N(40,R) N(41,R) N(42,L) N(47,L) N(47,R)

(a) Conventional DRAM memory system.

MAT1MAT 0

N(0,L)
N(1,L)
N(2,L)
N(3,L)

N(61,L)
N(62,L)
N(63,L)

N(0,R)

N(1,R)

N(2,R)

N(3,R)

N(61,R)

N(62,R)

N(63,R)

MAT3MAT2 MAT 15MAT14MAT 4

Data <0:63>

(D63=B63)
64th data burst

Target cache line (64B)
1B

D0−D63=(B0−B63)

4-
bi

t

4-
bi

t

4-
bi

t

4-
bi

t

4-
bi

t

4-
bi

t

4-
bi

t

1B is transferred

at a time instead of 8B

D
is
ab
le
d

N(63,R)N(63,L)

1B 1B 1B 1B 1B

(b) DRAM memory system that employs 𝐹𝐺𝐴_(1/8𝐵𝑎𝑛𝑘) mechanism.

Figure 2: (a) An example shows the data fetching and accommodating in conventional DRAM memory systems. (b) An example shows the
bandwidth drop that arises when fetching data in the DRAM memory system that employs FGA_(1/8Bank) mechanism. Dn and Bm denote
data burst number n and byte numberm respectively.

Table 1: Brief description of the parameters used in calculating PRWS_bank.

Parameter Description
PRWS_bank(𝑖, 𝑟) The rate of permutation between wordline segments of the memory requests that go to the bank i in rank r.
TNMR_bank(𝑖, 𝑟) The total number of memory requests that access the bank i within rank r.
TNP_bank(𝑖, 𝑟) The total number of transitions between wordline segments of the memory requests targeting the bank i within rank r.

If PRWS value for a specific bank is less than or equal to a certain
threshold, then Partial Wordline Activation (PWA) is the preferred
policy to follow. The exact number of howmany wordline segments
being activated is proportional to the PRWS value. On the other
hand, whenever the value of PRWS is above the given threshold,
Full Wordline Activation (FWA) is the optimal choice to enforce.
This is a good indication that subsequent memory requests are
likely to access all wordline segments of the targeted DRAM rows.
Using the PWA policy, in this case, would fail to take advantage
of the available row-buffer locality, which in turn would lead to
DRAM performance degradation. Assuming that DRAM rows are
divided equally into 8 segments, Table 2 shows the exact number
of wordline segments that must be accessed when activating a new
row based on the value of PRWS, which is calculated at the bank-
level. It can be seen that the higher the ratio, the more wordline
segments of the target DRAM row are activated. If the PRWS ratio is
less than or equal to 75% (given threshold), then the PWA policy is
applied. More specifically, one out of the eight wordline segments
(i.e. 1/8th) is activated, if the PRWS ratio is less than or equal to
25%. When the PRWS ratio is between 26%−50% a quarter of the
target row (i.e. 2/8th) is accessed. When it is greater than 50% and
less than 76%, half of the original row (4 wordlines segments) is
accessed. The entire content of the target row is activated, only if
the PRWS ratio is greater than 75%.

𝑃𝑅𝑊𝑆_𝑏𝑎𝑛𝑘 (𝑖, 𝑟) =
𝑇𝑁𝑃_𝑏𝑎𝑛𝑘 (𝑖, 𝑟)

𝑇𝑁𝑀𝑅_𝑏𝑎𝑛𝑘 (𝑖, 𝑟) − 1
(1)

Table 2: Number of wordline segments being accessed during row
activation based on the value of PRWS. Every DRAM wordline/row
is equally divided into 8 segments.

PRWS value Number of activated
From To wordline segments (ratio)
0% 25% 1 (one-eighth)
26% 50% 2 (quarter)
51% 75% 4 (half)
76% 100% 8 (full)

5.1 Detailed Description of the Proposed
Architecture

Figure 3a shows the changes to the MAT structure required in our
proposed mechanism when each memory row is divided into four
equally-sized sub-rows (wordline segments). Physically, each MAT
is split into four sub-MATs. Every sub-MAT contains a linear portion
of the contiguous data nibbles for one of the sub-rows. In each sub-
MAT, the contiguousDRAM cells in each local wordline are grouped
together and their gates are linked to a single access transistor. The
source of each access transistor is attached to the respective local
wordline. The gates of all access transistors attached to sub-MATs
containing a portion of data belonging to the same sub-row are
controlled by one bit selection signal. Each of these bits enables the
sub-MATs that belong to the same sub-row towork in lockstep when
activating it in the respective portion of the row-buffer. Therefore,

Dynamic Row Activation Mechanism for Multi-Core Systems CF ’21, May 11–13, 2021, Catania, Sicily, Italy

Local wordline

Lo
ca

l w
or

dl
in

e
dr

iv
er

DRAM cell

Helper flip-flop
 (HFF)

 Local MAT’s row-buffer

S
u

b
_M

A
T

(3
,0

)

S
u

b
_M

A
T

(2
,0

)

S
u

b
_M

A
T

(1
,0

)

S
u

b
_M

A
T

(0
,0

)

 access
transistors

S
u

b
_M

A
T

(0
,1

)

128 cells 128 cells S3S2 128 cells 128 cellsS1S0

(a) EnhancedMAT structure.

128 cells

S
ub

_
M
A
T

(1
,0

)

S
ub

_
M
A
T

(1
,1

)

S
ub

_
M
A
T

(1
,1

5)

C31=(B248−B255)

8th data burst

1st data burst

Target cache line (64B)

8B

Data <0:63>

8B 8B 8B 8B 8B 8B
8B

C24=(B192−B199)

(C24−C31)=(B192−B255)

N
(1

99
,R

)

N
(2

07
,R

)

N
(2

15
,R

)

N
(2

23
,R

)

N
(2

31
,R

)

N
(2

39
,R

)

N
(2

47
,R

)

N
(2

55
,R

)

N
(1

92
,R

)

N
(2

00
,R

)

N
(2

08
,R

)

N
(2

16
,R

)

N
(2

24
,R

)

N
(2

32
,R

)

N
(2

40
,R

)

N
(2

48
,R

)

N
(1

92
,L

)

N
(2

00
,L

)

N
(2

08
,L

)

N
(2

16
,L

)

N
(2

24
,L

)

N
(2

32
,L

)

N
(2

40
,L

)

N
(2

48
,L

)

S
ub

_
M
A
T

(0
,0

)

S
ub

_
M
A
T

(0
,1

)

S
ub

_
M
A
T

(0
,1

5)

N(254,R)N(254,L) N(255,R)N(255,L)N(248,R)N(248,L) N(249,R)N(249,L)

N(192,L)
N(200,L)
N(208,L)
N(216,L)
N(224,L)
N(232,L)
N(240,L)
N(248,L)

8
 b
ur
st
s

<
0:

3>

N(192,R)

N(200,R)

N(208,R)

N(216,R)

N(224,R)

N(232,R)

N(240,R)

N(248,R)

<
4:

7>

N(199,R)

N(207,R)

N(215,R)

N(223,R)

N(231,R)

N(239,R)

N(247,R)

N(255,R)

<
60

:6
3>

(b) Fetching data from sub-array in our proposed mechanism.

Figure 3: (a) Overview of the enhancedMAT structure in this study when dividing each wordline/row into 4 segments. (b) An example demon-
strates how data fetching from sub-MATs of a DRAM sub-array is implemented in our proposed work. Sub_MAT(n,m) indicates theMAT area
that contains a portion of data belonging to sub-row number n in the MAT number m of a specific sub-array.

we need 4-bit selection signals (S0−S3) to control the activation
of the data of the four sub-rows separately. In such manner, we
sustain the full bandwidth that is available in the conventional
DRAM memory by maintaining the contribution of each MAT by
a 4-bit to deliver 8B chunk data per burst as shown in Figure 3b.
Furthermore, this MAT modification enables the access to rows of
different sizes at run-time, ranging from a quarter of the original
row size to a full row size. The optimal row size is determined at
run-time based on adaptation to the dynamic nature of the memory
access characteristics of the applications executing concurrently.

As mentioned before, the predicated number of wordline seg-
ments to be activated by the proposed Dynamic Row Activation
(DRA) mechanism at the bank-level might not be always the optimal
choice. Maintaining the history information at per-page level pro-
vides the highest accuracy, but with the consequent disadvantage of
a significant hardware overhead. In this study, several optimizations
have been added working in line with the proposed architecture to
increase the accuracy of predicting the optimal wordline segments
being accessed at run-time.

The identification made by our suggested DRA mechanism for
selecting and deselecting wordline segments during a row activa-
tion is partially based on the information gathered by monitoring
the access behaviour of the memory requests on DRAM sub-rows.
However, it also takes into account other wordline segments that
will need to be activated for memory requests pending in the trans-
action queue at the time of issuing an ACT command to the DRAM
devices. To this end, we employ an 8-bit register for each DRAM

bank; 1-bit assigned for each wordline segment. When a new mem-
ory request is mapped to an empty row-buffer or inactive segment
of the recently accessed wordline/row, this memory request is given
a high priority by the memory scheduler, i.e. it is placed at the head
of the transaction queue. Meanwhile, the assigned bit correspond-
ing to the target row segment in that bank’s register is set to 1. In
each ACT issued to the DRAM device, the register assigned for the
target bank is looked up. If there are bits set to 1 corresponding to
wordline/row segments which will be targeted by memory requests
which are pending at this moment in the transaction queue and
different from that proposed by the DRA, then all bits assigned
for these row segments in the S0−S7 signals are set to 1. Then
they are sent to the DRAM device through the address inputs in
the clock cycle that follows the issuing of the ACT command. In
this way, we avoid adding new DRAM pins dedicated only to the
wordline segment selection signals (S0−S7). On the other hand,
one additional cycle is relatively insignificant compared to either
the hundreds of cycles incurred in each memory access or those
that could be avoided as a result of the relaxation of power timing
constraints [20].

To prevent over-frequent issuing of multiple ACT commands for
the same partially activated DRAM row, we utilise a technique that
can quickly respond to the requirement to activate the full content
of the recently partially accessed row. Each bank is associated with
a 2-bit saturating counter to keep track of the state of activation
mode for the row that has already been activated in the bank’s
row-buffer. If the bank is precharged (empty row-buffer), the row
activation mode state is IDLE (see Figure 4). When a memory access

CF ’21, May 11–13, 2021, Catania, Sicily, Italy Tareq A. Alawneh, Raimund Kirner, and Catherine Menon

goes to an unopened row, an ACT command is issued to the DRAM
device to open this row fully or partially. The state becomes Fully
Activated (FA) when the decision is made to activate the entire
content of the target row (Open_FA). Similarly, the state changes to
Strong Partially Activated (S_PA) if the decision is made to partially
activate the target row (Open_PA). The state of the target row re-
mains in the S_PA state as long as the consecutive memory accesses
hit in the portion of the row that has been recently activated. Oth-
erwise, the state changes to Weak Partially Activated (W_PA) if any
memory request goes to an unopened segment of the target row
(Unopened_sub_row). Similarly, it remains in the state ofW_PA as
long as the mapped memory requests hit in the portion of the row
that has been recently activated. Otherwise, if the state is W_PA
and a memory request mapped to an unopened segment is received,
then the decision is made to issue an activation for the remaining
unopened sub-rows, and accordingly the state changes to FA.

 Open_PA

IDLE

U
n

o
p

en
ed

_

su
b

_
ro

w

S_PA

W_PAFA

Unopened_
 sub_row

IDLEIDLEIDLEIDLEIDLEIDLEIDLEIDLEIDLEIDLEIDLEIDLE

W_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PAW_PA

S_PAS_PAS_PAS_PAS_PAS_PAS_PAS_PAS_PAS_PAS_PA

Hit

 O
p

en
_F

A

 R
o

w
_

co
n

fl
ic

t

 Empty
row_buffer

HitHit

FAFAFAFAFAFAFAFAFAFAFAFAFA

Figure 4: The finite state of activation mode for the recently ac-
cessed row.

On the other hand, several static and dynamic row-buffer man-
agement policies, also known as page policies, have been studied
previously [8, 11]. The optimal page policy plays an important role
in achieving a higher DRAM performance when efficiently exploit-
ing the embedded localities of the applications that run concurrently.
Due to the dynamic nature of the applications in accessing DRAM
pages at run-time, we suggest a dynamic page policy that works in
line with the proposed approach in this study. In the conventional
execution time of the running applications, we utilise the Open
Page (OP) policy, in which the recently activated row is left open.
However, early precharge can be performed proactively when a
row-buffer conflict is expected to occur in the next memory re-
quest. In case of activation to a new row, the dynamic mechanism
introduced in this work can predict that the optimal row size to be
activated is one-eighth of the original row size. This activated row
size might be not re-accessed for a specific period of time (TRC) [11].
In anticipating that the next memory request going to the same
bank will likely target a row different from the recently activated
one (i.e. row-buffer conflict), an early precharge for this row is
proactively issued. This early precharge is useful in converting the
potential row-buffer conflicts into row-buffer empties. The row-
buffer empty incurs a shorter delay than the row-buffer conflict.
Because the time needed to precharge the bank for the next memory
request is saved. Therefore, further performance improvements can
be obtained through the use of this early precharge technique in
our proposed mechanism.

6 EVALUATION METHODOLOGY AND
RESULTS

In this section, we present an evaluation and analysis of the re-
sults obtained whilst running the evaluated multi-programming
workloads on our proposed approach.

6.1 DRAM Power and Energy Consumption
Estimation

The power consumption of modern DRAM devices is categorized
into three main components, namely activation power, read and
write power, and background power [16, 23]. The activation power
represents the power that is used during the row activation and
bank precharge operations, whereas the read and write power
is consumed by the read and write operations, the output driver
and RD/WR termination. The background power includes refresh
power and static power. More specifically, the background power
comes from the power that is consumed during active standby
(ACT_Stdby), precharged standby (PRE_Stdby), active power-down,
(ACT_PD), precharged power-down (PRE_PD), and refresh (REF).
That is, the background power represents the power that is con-
sumed all the time with or without DRAM access activities.

Table 3: KeyDRAM currents, voltage, and power parameters that are
used in this study.

Description Symbol Value
One bank Activate-to-Precharge IDD0 73𝑚𝐴
Burst read operating current IDD4R 252𝑚𝐴
Burst write operating current IDD4W 190𝑚𝐴
Precharged standby current IDD2N 35𝑚𝐴
Active standby current IDD3N 49𝑚𝐴
Active power-down current IDD3P 41𝑚𝐴
Precharged power-down current IDD2P 37𝑚𝐴
Refresh current IDD5B 242𝑚𝐴
Self refresh current IDD6 20𝑚𝐴
Supply voltage VDD 1.5𝑉
Output driver power Pio 5.3𝑚𝑊
ODT power Podt 13.2𝑚𝑊

In this study, the DRAM power consumption is estimated based
on Micron’s DRAM power model [16]. The drawn DRAM cur-
rents, supply voltage, output driver power, and On-Die Termination
(ODT) power of the selected baseline system are listed in Table 3.
These values are from the Micron Technology𝑀𝑇41𝐾512𝑀8𝐷𝐴-
107 datasheet [17]. IDD3N is the consumption of standby current
when at least one memory bank is active (i.e. during ACT_Stdby),
whereas the standby current drawn when all memory banks are
precharged (i.e. during PRE_Stdby) is termed as IDD2N. On the
other hand, the consumption of current associated with the row
activation (ACT) and bank precharge (PRE) commands during a
row cycle (TRC) is termed as IDD0. The current consumed only for
ACT and PRE commands without the standby currents (i.e. IDD3N
and IDD2N) is termed the pure activation current (𝐼ACT) and is
obtained by subtracting the standby currents from IDD0 as shown
in Equation 2. Then, the pure activation power consumption (PACT)
that stems from performing ACT and PRE commands is calculated

Dynamic Row Activation Mechanism for Multi-Core Systems CF ’21, May 11–13, 2021, Catania, Sicily, Italy

Table 4: The values of IDD0, IACT, PACT, and EACT for various row activation granularities. These values are obtained as discussed in Section 6.1.

% of activated wordline/row 1/8𝑡ℎ 2/8𝑡ℎ 3/8𝑡ℎ 4/8𝑡ℎ 5/8𝑡ℎ 6/8𝑡ℎ 7/8𝑡ℎ 𝐹𝑢𝑙𝑙

IDD0 Value (mA) 52 55 58 61 64 67 70 73
IACT (mA) 7.07 10.07 13.06 16.06 19.13 22.06 25.06 28.07
PACT (mW) 10.6 15.1 19.6 24.1 28.7 33.1 37.6 42.1
EACT (pJ) 507.7 723.3 938.9 1154.5 1370.1 1585.7 1801.3 2016.9

as defined in Equation 3. Energy consumption in any state is calcu-
lated by multiplying the power drawn during the state by the time
spent in that state. Table 4 shows the value of IDD0 at 1/8th, 2/8th,
3/8th, 4/8th, 5/8th, 6/8th, 7/8th, and full row activation. It also
shows the values of pure activation current (IACT), pure activation
power (PACT), and pure activation energy (EACT) when DRAM rows
are activated with sizes ranging from 1/8th to full row size.

𝐼ACT = 𝐼𝐷𝐷0 −
[
𝐼𝐷𝐷3𝑁×𝑇RAS+𝐼𝐷𝐷2𝑁×(𝑇RC−𝑇RAS)

𝑇RC

]
(2)

𝑃ACT = 𝐼ACT ×𝑉DD (3)

6.2 Experimental Setup
To examine the performance and energy efficiency of the proposed
mechanism, we developed VHDL models for traditional and en-
hanced DRAM memory systems. The enhanced DRAM memory
system in this study splits the row into 8 wordline segments. For
comparison, a VHDL model was also developed for a memory sys-
tem employing the Half−DRAM row activation architecture. The
DRAM power and energy consumption in this study is estimated
based on what mentioned before in Section 6.1.

Table 5: Main parameters for the evaluated baseline system.

Component Configuration
Multi-core system size 4 cores
CPU Frequency 3.2GHz
L1 Cache 32KB, 4-way, 64B line
L2 Cache 4MB, 8-way, 64B line
Main memory 4GB, 933MHz, DDR3-1866 13-13-13,

14.9GB/s, 64-entry transaction queue,
single channel, 1 rank/channel, 8 banks/
rank, burst of 8, 2KB memory page size,
OP policy, page interleaving address
mapping scheme, FR-FCFS scheduler

The keyDRAM timing constraints of the selected baseline system
are excerpted from the Micron Technology𝑀𝑇41𝐾512𝑀8𝐷𝐴-107
datasheet [17]. The values of the main parameters are shown in
Table 5. Experiments were conducted by running RTL simulations
using Vivado 2019.2 [21] for our design, the half fine-grained row
activation architecture, and the baseline. We used workloads from
MediaBench [14] and PARSEC [5] benchmark suites to build four-
core multi-programming workloads. The workloads selected from
the PARSEC [5] suite have different application domains. Table 6
lists the four-core workload combinations that are used to verify
the performance of the proposed mechanism in this study. These
workload sets are simulated using GEM5 [6] and their memory

traces are captured to replay them during our simulations (similar
to [2]).

In this work, more than four rows of different sizes can be acti-
vated within a rolling window time (TFAW), but without exceeding
the peak power that is permissible to be drawn for four full DRAM
row activation within TFAW. In such manner, we meet TFAW timing
constraint in our proposed mechanism.

Table 6: The workload mixes that are used in this work. WC_n, E,
and D denote workload combination number n, encoder, and de-
coder respectively.

Workload combination Workload mixes
WC_1 CJPEG, H263_E, JPEG2000_D, MPEG4_E
WC_2 DJPEG, MPEG4_E, H263_E, JPEG2000_D
WC_3 H263_D, H264_D, MPEG4_E, MPEG2_D
WC_4 MPEG4_D, JPEG2000_E, H264_D, H263_D
WC_5 MPEG4_E, DJPEG, H264_D, JPEG2000_D
WC_6 Fluidanimate, MPEG2_E, JPEG2000_E, Canneal
WC_7 Freqmine, Canneal, Blackscholes, Fluidanimate
WC_8 JPEG2000_E, H264_E, CJPEG, Bodytrack
WC_9 Canneal, Bodytrack, MPEG2_E, JPEG2000_E

6.3 Evaluation Results and Discussion
Row activation (ACT) and bank precharge (PRE) are expensive
memory operations in terms of power and delay [1, 3, 23]. When
these memory commands are performed on a fewer number of
bitlines, a significant activation power reduction is achieved. This is
attributed to the reduction in the drawn IDD0 current during a row
cycle (TRC). It can be seen clearly in Table 4 that the activation power
and energy consumption is reduced significantly as the size of the
activated DRAM row decreases. When DRAM rows are activated
with sizes ranging from 7/8th to 1/8th of the original row size, the
obtained reductions in activation power and energy consumption
compared to full row activation are 10.7%, 21.4%, 32.1%, 42.8%,
53.4%, 64.1%, and 74.8% respectively.

Figure 5a shows the reduction in average activation power achieved
by our proposed mechanism and the Half−DRAM approach com-
pared to baseline. It is clear that all the evaluatedmulti-programming
workloads benefit from a significant reduction in the activation
power, up to 47.6% in the case of our proposed approach in this
study. On average, our proposed mechanism and the Half−DRAM
approach provide a 36.2% and 18.5% reduction in average activation
power compared to baseline respectively. The workloads running
concurrently are affected highly by the memory contention prob-
lem. The conventional DRAM memory system activates the entire
content of large DRAM rows only to fetch or write back a 64B chunk
data. This leads to a massive waste of activation power with no

CF ’21, May 11–13, 2021, Catania, Sicily, Italy Tareq A. Alawneh, Raimund Kirner, and Catherine Menon
A

ct
iv

at
io

n
 p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

 5

 10

 15

 20

 25

 30

 35

 40

 45

WC_2WC_1 WC_3 WC_4 WC_5 WC_6 WC_7 WC_8 WC_9 Average

 50
Half-DRAM Proposed

(a) Average activation power consumption.

N
o

rm
al

iz
ed

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

WC_2 WC_3 WC_4 WC_5 WC_6 WC_7 WC_8 Average

 1.6
FGA_(1/4Bank) FGA_(1/2Bank) Half-DRAM Proposed

WC_1 WC_9

47.4%

16.9%

(b) Average DRAM memory access latency.

Figure 5: (a) The reduction of average activation power consumption for all evaluated four-core multi-programming workloads achieved by
Half−DRAM and proposed mechanism compared to baseline (b) The average DRAMmemory access latency for all evaluated four-core multi-
programming workloads achieved by the FGA_(1/4Bank) , FGA_(1/2Bank) , Half−DRAM, and the proposed mechanisms normalized to the
baseline system (the percentage in red color represents a slowdown, whereas percentage in green indicates an improvement).

performance gains. On the other hand, the static half row activation
architecture (Half−DRAM) delivers a reduction in activation power
up to 42.8% compared to full row activation. This may waste the
opportunity to achieve a 74.8% power reduction when activating
only 1/8th of the original row size. The significantly better perfor-
mance of our proposed mechanism is due to the fact that it selects
the optimal number of bitlines being accessed at run-time based on
the behavioural changes of applications executing concurrently. It
accesses a fewer number of bitlines when a low row hit is shown,
whereas a high row hit leads to an increase in the number of ac-
cessed bitlines. These factors mean that our proposed approach
demonstrates a significant reduction in activation power compared
to the baseline and the Half−DRAM approach.

Figure 5b shows the average DRAM memory access latency ob-
tained by FGA_(1/4Bank), FGA_(1/2Bank), Half−DRAM, and the
proposed mechanism normalized to that of the baseline system.
FGA_(1/4Bank) and FGA_(1/2Bank) are the fine-grained activa-
tion mechanisms that enable respectively one-fourth and half of
the total MATs in a specific sub-array during a row activation. In
order to compensate for the bandwidth loss that appears in these
mechanisms, the burst length is set to 32 and 16 respectively. There-
fore, these two mechanisms significantly slowdown the workload
combinations used in this paper, by an average of 34.6% and 17.3%
respectively. The Half−DRAM approach degrades the average mem-
ory access latency by 2.4% on average and up to 10.5%. On the
other hand, our proposed mechanism provides, on average, 12.3%
and 14.2% reduction in the average DRAM memory access latency
compared to baseline and Half−DRAM approach respectively. Due
to DRAM power and energy issues, the number of row activations
in the baseline system is limited to four within a rolling window
referred to as TFAW. The power and energy savings provided by our
proposed mechanism can contribute greatly to improving the row
activation rate. This means that the allowed number of row activa-
tion commands that can be issued within a TFAW window can be
increased to more than four. For instance, the peak energy that can
be used within TFAW when activating the entire content of 4 rows
is 8067.6pJ (4 × 2016.9). For instance, using 3/8𝑡ℎ row activation
allows us to increase the number of issued ACT commands consum-
ing the same amount of energy within TFAW to roughly 9 (≈ 8067.6

938.9).
Thus, significant performance gains are obtained in our proposed

approach due to this further relaxation of the TFAW timing con-
straint. Furthermore, the early precharge technique adopted in this
study works in tandem with our proposed dynamic row activation
mechanism to convert the potential row-buffer conflicts into row-
buffer empties. This, in turn, contributes to a further improvement
in the average DRAM memory access latency.

Figure 6 shows the DRAM energy breakdown of our proposed
mechanism and the Half−DRAM approach normalized to the base-
line system. The achieved average activation power reduction in
our proposed approach in this work translates to a significant re-
duction in the activation energy, by an average of 39% and 19.2%
compared to the baseline and the Half−DRAM approach respec-
tively. The performance overhead of the workload mixes when
using the Half−DRAM approach leads to an increase in the back-
ground energy by 3.2% over the baseline. On the other hand, the
average DRAM memory access latency improvement of our dy-
namic FGA mechanism reduces the background energy by 14.9%
compared to the baseline. IDLE DRAM devices go into low-power
mode, thus saving further energy. The reductions in activation and
background energy consumption translate to an improvement of
12.8% and 8.3% of total DRAM energy efficiency over the baseline
and the Half−DRAM approach respectively.

In order to enable independent access for the portion of the data
that belongs to a specific DRAM sub-row, 8 transistors per each
MAT wordline segment are required in our proposed mechanism.
The space existing in each MAT wordline segment is used to place
the extra 8 transistors. Even without exploiting the existing space,
adding 8 transistors for every 512 DRAM cells incurs a minimal
area overhead, if we take into account that every DRAM cell con-
sists of one transistor and one capacitor. On the other hand, the
storage required in the memory controller is less than 0.5Kb. Us-
ing CACTI [19] and a 32nm process node, this additional storage
requires 0.0030323𝑚𝑚2. Therefore, the area overhead incurred in
our proposed mechanism is negligible.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a dynamic fine-grained row activation
mechanism, in which an efficient solution addressing the negative
impact of the row over-fetching problem on both memory energy

Dynamic Row Activation Mechanism for Multi-Core Systems CF ’21, May 11–13, 2021, Catania, Sicily, Italy

D
R

A
M

 E
n

er
g

y
B

re
ak

d
o

w
n

0.2

ACTRD/WRBackground

0.4

0.6

0.8

 1

 0

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_1

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_2
H

al
f-

D
R

A
M

B
as

el
in

e

P
ro

p
o

se
d

WC_3

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_4

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_5

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_6

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_7

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_8

H
al

f-
D

R
A

M

B
as

el
in

e

P
ro

p
o

se
d

WC_9

Figure 6: DRAM energy breakdown for all evaluated four-core multi-programming workloads when using the proposed mechanism and the
Half−DRAM approach normalized to the baseline system.

and performance is introduced. On average, a 12.8% and 8.3% re-
duction of total DRAM energy for the evaluated four-core multi-
programming workloads is achieved by our proposed approach
compared to baseline and Half−DRAM approach respectively. Fur-
thermore, our proposed mechanism delivers, on average, a 12.3%
and 14.2% improvement in average DRAM memory access latency
over baseline and Half−DRAM approach respectively.

As future work, we will investigate the possibility of integrat-
ing our proposed approach with the sub-array level parallelism
approach introduced in [12]. This will allow wordline segments
from different memory pages to be activated simultaneously in
the same bank’s row-buffer. Therefore, this could deliver further
improvements in memory energy and performance.

REFERENCES
[1] T. Alawneh. 2019. A Dynamic Row-Buffer Management Policy for Multimedia

Applications. In Proceedings of the 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP. 148–157.

[2] T. Alawneh and A. Elhossini. 2016. A Data Access Prediction Unit for Multi-
media Applications. In Proceedings of the 28th IEEE International Conference on
Microelectronics, ICM. 125–128.

[3] T. Alawneh and A. Elhossini. 2018. A Prefetch-Aware Memory System for Data
Access Patterns in Multimedia Applications. In Proceedings of the 15th ACM
International Conference on Computing Frontiers, CF. 78–87.

[4] E. C. Balis and B. Jacob. 2010. Fine-Grained Activation for Power Reduction in
DRAM. IEEE Micro 30 (April 2010), 34–47.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proceedings of the 17th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT.
72–81.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News 39 (May 2011), 1–7.

[7] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and
W. J. Dally. 2017. Architecting an Energy-Efficient DRAM System for GPUs.
In Proceedings of the 2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA. 73–84.

[8] M. Ghasempour, A. Jaleel, J. D. Garside, and M. Luján. 2016. HAPPY: Hybrid
Address-based Page Policy in DRAMs. In Proceedings of the 2nd International
Symposium on Memory Systems, MEMSYS. 311–321.

[9] N. Gulur, R. Manikantan, M. Mehendale, and R. Govindarajan. 2012. Multiple
Sub-Row Buffers in DRAM: Unlocking Performance and Energy Improvement
Opportunities. In Proceedings of the 26th ACM International Conference on Super-
computing, ICS. 257–266.

[10] H. Ha, A. Pedram, S. Richardson, S. Kvatinsky, and M. Horowitz. 2016. Improving
Energy Efficiency of DRAM by Exploiting Half Page RowAccess. In Proceedings of
the 49th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO.
1–12.

[11] D. Kaseridis, J. Stuecheli, and L. K. John. 2011. Minimalist open-page: a DRAM
page-mode scheduling policy for the many-core era. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO. 24–35.

[12] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. 2012. A case for exploiting
subarray-level parallelism (SALP) in DRAM. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA. 368–379.

[13] K. Koo, S. Ok, Y. Kang, S. Kim, C. Song, H. Lee, H. Kim, Y. Kim, J. Lee, S. Oak, Y.
Lee, J. Lee, J. Lee, H. Lee, J. Jang, J. Jung, B. Choi, Y. Kim, Y. Hur, Y. Kim, B. Chung,
and Y. Kim. 2012. A 1.2V 38nm 2.4Gb/s/pin 2Gb DDR4 SDRAM with bank group
and ×4 half-page architecture. In Proceedings of the IEEE International Conferenc
Solid-State Circuits, ISSCC. 40–41.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. 1997. Mediabench: a tool
for evaluating and synthesizing multimedia and communications systems. In
Proceedings of the 30th Annual International Symposium on Microarchitecture,
MICRO. 330–335.

[15] Y. Lee, H. Kim, S. Hong, and S. Kim. 2017. Partial Row Activation for Low-Power
DRAM System. In Proceedings of the 2017 IEEE International Symposium on High
Performance Computer Architecture, HPCA. 217–228.

[16] Micron Technology Inc. [n.d.]. TN-41-01: Calculating Memory System Power For
DDR3.

[17] Micron Technology Inc., MT41K512M8DA-107 Data sheet. [n.d.]. Micron DDR3
SDRAM Part, 4Gb: x4, x8, x16 DDR3L SDRAM Description. http://www.micron.
com/products/dram/ddr3-sdram.

[18] Y. H. Son, S. O, H. Yang, D. Jung, J. H. Ahn, J. Kim, J. Kim, and J. W. Lee. 2014. Mi-
crobank: Architecting Through-Silicon Interposer-Based Main Memory Systems.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC. 1059–1070.

[19] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. 2008. CACTI 5.1. In
Technical Report HPL-2008-20, Hewlett Packard Labs.

[20] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis,
and N. P. Jouppi. 2010. Rethinking DRAM Design and Organization for Energy-
Constrained Multi-Cores. In Proceedings of the 37th Annual International Sympo-
sium on Computer Architectureg, ISCA. 175–186.

[21] Xilinx Inc. 2019. Vivado Design Suite. https://www.xilinx.com/support/download.
html.

[22] C. Zhang and X. Guo. 2017. Enabling Efficient Fine-Grained DRAM Activations
with Interleaved I/O. In Proceedings of the 2017 IEEE/ACM International Symposium
on Low Power Electronics and Design, ISLPED. 1–6.

[23] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. 2014. Half-DRAM: a
High-bandwidth and Low-power DRAM Architecture from the Rethinking of
Fine-grained Activation. In Proceedings of the 2014 ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA. 349–360.

http://www.micron.com/products/dram/ddr3-sdram
http://www.micron.com/products/dram/ddr3-sdram
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html

	Abstract
	1 Introduction
	2 DRAM Background
	3 Related Work
	4 Data Mapping within DRAM Memory Sub-arrays
	5 Proposed Architecture
	5.1 Detailed Description of the Proposed Architecture

	6 Evaluation Methodology and Results
	6.1 DRAM Power and Energy Consumption Estimation
	6.2 Experimental Setup
	6.3 Evaluation Results and Discussion

	7 Conclusions and Future Work
	References

