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ABSTRACT 

The role of endogenous molecules in facilitating stem cell differentiation into 
cardiomyocytes is yet to be fully understood. SPC and S1P, common biolipids, 
promote cardiac differentiation of mesenchymal stem cells and cardiac progenitor 
cells, however, the same potential of closely related lysophosphatidic acid (LPA) has 
only recently become evident. The initial cardio-protection offered by elevated LPA 
levels in response to acute myocardial infarction and the ability of this biolipid to 
mediate other cellular fates served as a rationale to investigate the ability of LPA to 
mediate the cardiac differentiation of the murine P19 teratocarcinoma cell line and 
further examine the role of signalling molecules critical to lineage commitment.  

All experiments were carried out using P19 stem cells, cultured in supplemented 
alpha-minimal essential medium. Cells were aggregated into embryoid bodies in the 
presence of 5µM LPA in non-tissue grade Petri dishes over the course of 4 days to 

commence the differentiation process. Inhibitors were added 60 minutes before LPA 
while control cells were cultured in medium only. Embryoid bodies were transferred to 
6-well tissue culture grade plates and cultured for a further 6 days. Cardiac 
differentiation was assessed by examining the expression of ventricular myosin light 
chain (MLC1v) by western blot and the role of LPA receptors 1-4, PKC, PI3K, MAPKs, 
and NF-κB were determined by examining the changes in this expression in the 
presence of selective inhibitors. The induction and regulation of GATA4, MEF2C, ATF-
2, JNK, and YAP was also determined by western blotting. The activity and regulation 
of transcription factors, AP-1 and NF-κB, and the MAPKs was determined using ELISA 
kits.  

LPA induced the differentiation of P19 cells into cardiomyocytes most effectively when 
used at a concentration of 5µM as evidenced by the expression of MLC1v on day 10 

of the differentiation process. Inhibition of LPA receptor 4 (0.1mg/mL Suramin), LPA 
receptors 1/3 (20µM Ki16425), LPA receptor 2 (7.5nM H2L5186303), PKC (10µM BIM-

1), PI3K (20µM LY294002), ERK (20µM PD98059), JNK (10µM SP600125), and NF-

κB (0.01nM CAY10470) blocked LPA induced expression of MLC1v. GATA4, MEF2C, 
pcJun, pJunD, and pATF2 expression increased in a time-dependent manner peaking 
at day 10 in LPA treated cells. GATA4 and pcJun expression was suppressed by all 
the inhibitors whereas MEF2C expression was unaffected by CAY10470, pJunD 
expression was unaffected by H2L5186303, pATF2 and NF-κB expression was 
unaffected by LY294002, but the latter was enhanced by Suramin. JNK was transiently 
phosphorylated in all cells whereas YAP was dephosphorylated 24-48 hours after EB 
formation in LPA treated cells and were both affected by Ki16425 and partially by 
H2L5186303 treatment. 

In conclusion, the studies carried out in this thesis have shown that LPA mediates the 
cardiac differentiation of P19 cells through LPA receptor 2, partially through receptors 
1/3, and possibly through receptor 4. Conceivably downstream of these receptors, 
PKC, PI3K, MAPK, and NF-κB signalling pathways converge on the regulation of 
cardiac-specific transcription factors GATA4 and MEF2C along with ubiquitous 
transcription factor AP-1. JNK signalling is initiated through LPA receptors 1/3 and 
partially through receptor 2 to commence the cardiac program however the role of JNK 
and YAP in the proliferation of aggregating EBs is yet to be entirely established. 
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Overview 

Cardiovascular diseases (CVDs) are amongst the leading cause of death worldwide 

and become more prevalent with age. Amongst all CVDs, the manifestation of 

myocardial infarction (MI) is the most devastating to the cardiomyocyte population. 

Injury to the human heart due to sudden damage, disease, or age-related 

degeneration is traditionally treated in a palliative manner. In contrast to current 

treatments, cell therapy aims to restore functional cardiomyocytes. Cell therapy 

harnesses the unique potential of stem cells to generate multi-lineage cells. The past 

twenty years have been dedicated to evaluating cardiac repair by several sources of 

stem cells. There is growing evidence that the introduction of multipotent stem cells 

into the damaged human heart does not restore functional cardiomyocytes but offer 

improvement, albeit limited, via unknown paracrine mechanisms. Another approach is 

the directed differentiation of stem cells into a cardiac fate before introduction into the 

damaged myocardium, the accomplishment of which is largely dependent on the 

thorough understanding of the signalling transduction mechanisms responsible for 

driving the production of cardiomyocytes. In vitro manipulation of the signalling 

pathways that control cardiac development in vivo have allowed for more efficient 

directed differentiation, however, the complexity of these signalling networks and the 

role of endogenous molecules in initiating the program of cardiac differentiation 

remains poorly described.  
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1.1 Myocardial infarction  

Myocardial infarction (MI) is brought on by both genetic and environmental factors 

such as diet, exercise, stress, and smoking, and can be further modified by age, 

gender, obesity, hypertension, and diabetes. MI is most often caused by the build-up 

of plaque within the artery. Over time the plaque may either block the artery or rupture, 

facilitating thrombus formation thereby, blocking the flow of oxygen-rich blood to the 

heart. Cardiac physiology is rapidly altered in this ischemic environment, and 

physiological stresses induce multi-level adaptive responses. As reviewed by Webster 

(2009), a decrease in the mitochondrial ATP is initially compensated by increased 

production of glycolytic ATP but later leads to lactate accumulation and a decrease in 

cytosolic pH. Ultimately, the excessive depletion in ATP results in cell necrosis, 

initiated in the central zone of the infarcted area, and further damage is caused by 

ischemia related calcium overload, generation of reactive oxygen species, and the 

activation of inflammatory and cytokine signalling pathways. Apoptosis resulting from 

reperfusion of the myocardium can lead to secondary damage (Yellon & Hausenloy, 

2007). Ischaemic events, such as MI, are the most devastating to the cardiomyocyte 

population where upwards of a billion cardiomyocytes are lost (Laflamme & Murry, 

2005), resulting in the formation of fibrotic scar tissue and left ventricular remodelling 

(Sutton & Sharpe, 2000), diminishing the pumping capacity of the heart. 

1.1.1 Current treatments  

Endogenous repair mechanisms cannot restore the number of cardiomyocytes that 

are lost during an ischaemic event. Pharmaceutical interventions either at the onset of 

MI or prescribed as aftercare including aspirin, statins, nitrates, β-blockers, and 

fibrinolytic drugs may attenuate the symptoms but do not address the loss of 

cardiomyocytes (Sutton & Sharpe, 2000). Surgical interventions such as balloon 
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angioplasty and coronary stents also fail in this regard. Currently, the only treatment 

that restores lost cardiomyocytes is a heart transplant. Aside from the potential risk of 

organ rejection, this treatment is not a viable option on a large scale. In 2015 the World 

Health Organization reported over 17 million deaths worldwide were attributed to 

CVDs with the majority being due to MI, therefore, there is an immediate need for an 

alternative treatment with global availability.  

1.2 Cell therapy 

Experimental and clinical studies continue to focus on alternative therapies to address 

cardiomyocyte regeneration including stimulating the proliferation of existing 

cardiomyocytes, although terminally differentiated cardiomyocytes are resistant to cell 

cycle re-entry, and cell therapy. Cell therapy is the introduction of cells into the 

damaged myocardium, directly or indirectly, that are either not terminally differentiated 

or differentiated into cardiomyocytes in vitro. The former, known as stem cells, can 

differentiate into more mature cell types while maintaining the ability to undergo self-

renewal. The differentiation capacity of stem cells varies depending on the source and 

potency of the cells. Several sources of multipotent stem cells for cardiac repair have 

been evaluated in preclinical and clinical settings and select studies are summarised 

in table 1.0 and 1.1 respectively.  Preclinical and clinical trials have demonstrated that 

bone marrow mononuclear cells and mesenchymal cells are safe for cardiac cell 

therapy whereas skeletal myoblasts, although promising in preclinical studies with an 

increase in LVEF, result in higher incidences of arrhythmia in clinical trials. Amongst 

all cell types, bone marrow derived stem cells represent the greatest number 

evaluated in clinical trials. A meta-analysis of 50 publications including 2500 patients 

collectively concluded that although there is a moderate ~4% increase in LVEF, 

patients that have received cell therapy had lower mortality, reoccurrence of MI, and 
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rehospitalization for heart failure (Zimmet et al., 2012; Jeevanantham et al., 2012). A 

limited number of clinical trials have evaluated cardiac stem cells but a meta-analysis 

of 80 preclinical publications including over 1950 animals collectively by Zwetsloot et 

al. (2016) concluded that LVEF increased by ~12% and ~5% in small and large 

animals respectively compared to placebo groups. The effects of cell therapy for 

cardiac regeneration have been modest but a fair comparison between trials, both 

preclinical and clinical, is challenging due to the variation in cell isolation, delivery, 

dose, and patient cohort but it is evident that the beneficial outcomes of cell therapy 

may be due to paracrine effects rather than direct tissue regeneration.
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Table 1.0. Preclinical studies of cell therapy for cardiac regeneration   

↓ decreased, ↑ increased, ↔ no change, + observed, - not observed, CD – Cardiac Differentiation, LV – Left 
Ventricular, LVEF – Left ventricular ejection fraction, LVFS – Left ventricular fractional shortening. Amended from Bolli 
et al., 2013.  

Cell type Study Host Dose/Route Follow up Outcome 

Skeletal 
Myoblasts 

Suzuki et al. 
(2001) 

Rat 1x106 cells 
Intracoronary 

4 weeks ↓Mortality 

Chachques et al. 
(2004b) 

Sheep 70x106 cells  
Intramyocardial 

3 months ↑LVEF  
↓LV remodelling 

He et al. 
(2005) 

Dog 270-830x106 cells 
Intramyocardial 

10 weeks  ↑LVEF  
↓LV remodelling 

Farahmand et al. 
(2008) 

Rat 5x106 cells 
Intramyocardial  

30 days ↑LVFS  
↓LV remodelling 

Bone Marrow 
Stem Cells 

Tomita et al.  
(1999) 

Rat 1x106 cells 
Intramyocardial 

3 weeks ↓LV remodelling  
↑Angiogenesis  
CD+ 

Bel et al. 
(2003) 

Sheep 422 x106 cells 
Intramyocardial 

2 months ↔LVEF 
↔LV remodelling  
CD- 

Waksman et al. 
(2004) 

Pig 24 x106 cells 
Intramyocardial 

4 weeks ↓Infarct size  
↑Angiogenesis  

Mesenchymal 
Cells 

Nagaya et al. 
(2005) 

Rat 5x106 cells 
Intramyocardial 

4 weeks  ↑Angiogenesis  
↓Fibrosis  
CD+ 

Silva et al. 
(2005) 

Dog 100x106 cells 
Intramyocardial 

30 days ↑LVEF  
Neovascularization+ 

Liu et al. 
(2008) 

Rat 1x106 cells 
Intramyocardial 

4 weeks ↓Infarct size  
↓LV remodelling  
↑LVEF 
↓Fibrosis  
↑Angiogenesis  
CD+ 

Mazo et al. 
(2008) 

Rat 1x106 cells 
Intramyocardial 

3 months ↓Infarct size  
↑LVEF  
↓Fibrosis 
Neovascularization+ 

Li et al.  
(2009) 

Rat 3x106 cells 
Intramyocardial 

4 weeks  ↑LVEF  
↓Fibrosis 

Schuler et al. 
(2009) 

Pig 200x106 cells 
Intramyocardial 

24 weeks ↑LVEF  
↓Infarct size 

Mazo et al. 
(2010) 

Rat 1x106 cells 
Intramyocardial 

4 weeks ↑LVEF  
↓Fibrosis  
↑Angiogenesis 

Cardiac Stem 
Cells 

Rota et al. 
(2008) 
(cKit+ cells) 

Rat 4x104 cells 
Intramyocardial 

2 weeks ↑LVEF  
↓Fibrosis  
↓LV remodelling 
Cardiac regeneration+ 

Johnston et al. 
(2009) 
 

Pig 10x106 cells 
Intracoronary 
 

8 weeks ↓Infarct size   
↓LV remodelling 
Cardiac regeneration+ 

Tang et al. 
(2010) 
(cKit+ cells) 

Rat 4x104 cells 
Intracoronary 

35 days ↑LVEF 
↓Fibrosis  
↓LV remodelling 
Cardiac regeneration+ 

Lee et al. 
(2011) 
(cardiospheres) 

Pig 1x106 cells 
Intracoronary 

8 weeks ↑LVEF  
↓LV remodelling 

Bolli et al. 
(2013)  
(cKit+ cells) 

Pig 5x105 cells  
Intracoronary  

31 days ↑LVEF  
↓Fibrosis 
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Table 1.1.  Clinical studies of cell therapy for cardiac regeneration 

↓ decreased, ↑ increased, ↔ no change, LVEF – Left ventricular ejection fraction, LVESV – Left 
ventricular end systolic volume, LVEDV – Left ventricular end diastolic volume. Amended from Cahill, 
Choudhury, and Riley (2017) and Hao, Wang, and Wang (2017). 

Cell type Name Patients Follow up Dose/Route Outcome 

Skeletal 
Myoblasts 

Menasche et al. 
(2001) 

1 5 months 800x106 cells 
Intramyocardial 
during CABG 

↑Wall motion 
and perfusion 
on PET 

MAGIC 97 6 months 400-800x106 cells 
Surgical injection 

during CABG 

↔LVEF 
↓LVESV 
↓LVEDV 
↑Arrhythmia  

 SEISMIC 40 6 months 150-800x106 cells 
Intramyocardial 

↔LVEF 
↑Arrhythmia 

 CAUSMIC 23 12 months 3-600x106 cells 
Intramyocardial 

↑LVEF 
↑Arrhythmia 

Bone Marrow 
Mononuclear 

Stem cells 

BOOST 60 60 months 24.6x108 cells 
Intracoronary 

↑LVESV 
↑LVEDV 

ASTAMI 100 36 months 80x106 cells 
Intracoronary 

↔LVEF 
↔infarct size 

REPAIR-AMI 204 24 months 200x106 cells 
Intracoronary 

↑LVEF 
↓LVESV 

TOPCARE-AMI 59 60 months 5.5x106 cells 
Intracoronary 

↑LVEF 
↓LVESV 
↓LVEDV 

SWISS-AMI 200 12 months 140-160x106 cells 
Intracoronary 

↔LVEF 
↓infarct size 
↓LVESV 
↓LVEDV 

REGENERATE-
AMI 

100 12 months 59.8x106 cells 
Intracoronary 

↑LVEF 
↓infarct size 

Mesenchymal 
Stem Cells 

Prochymal 60 12 months 30-300x106 cells 
Intravenous 

infusion 

↑LVEF 

POSEIDON 31 13 months 20-200x106 cells 
Intramyocardial 

↑LVEF 
↓infarct size 

PROMETHEUS 9 18 months 20-200x106 cells 
Intramyocardial 

↑LVEF 
↓infarct size 

PRECISE 27 18 months 42 x106 cells 
Intramyocardial 

↔LVEF 
↓infarct size 

Cardiac 
Stem Cells 

CADUCEUS 25 12 months 12.5-25x106 cells 
Intracoronary 

↔LVEF 
↔LVESV 
↔LVEDV 
↓infarct size 

SCIPIO 23 12 months 1x106 cells 
Intracoronary 

↑LVEF 
↓infarct size 
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1.2.1 Multipotent stem cells  

The organ or tissue in which multipotent stem cells reside influences both their 

differentiation capacity; limited to maturing into cell types of that organ or tissue, and 

the rate of self-renewal. Several sources of multipotent stem cells for cardiac repair 

have been evaluated in clinical trials but with limited success. Aside from identifying 

the most appropriate cell type, dose, and method of transplantation, the other hurdles 

to be addressed include the poor survival of transplanted cells and further 

differentiation and integration into the myocardium with proper electrophysiological 

coupling.  

1.2.1.1 Skeletal myoblasts 

The use of multipotent stem cells as a means of reversing the damage ensued by MI 

was triggered by studies using a murine model demonstrating that skeletal myoblasts 

(SMs) engrafted the heart (Koh et al., 1993) and promoted cardiac repair (Taylor et 

al., 1998). SMs differentiate in response to muscle injury and show resistance to 

ischaemia (Chachques et al., 2004a). The ease of in vitro expansion and autologous 

availability translated quickly into clinical trials (Menasche et al., 2001) after success 

was achieved in both small and large animal models (Farahmand et al., 2008; He et 

al., 2005; Pouly et al., 2004). However, trans-differentiation into cardiomyocytes or 

integration into the myocardium has not been seen (Menasche et al., 2008; Reinecke 

et al., 2002). Furthermore, compound procedures including coronary artery bypass 

grafting make it difficult to distinguish between effects of revascularization and cell 

treatment. Higher incidence of arrhythmia is also documented that may be caused by 

the myofibers derived from the transplanted SMs failing to electromechanically couple 

with the host myocytes posing a challenge for using this cell source for therapeutic 

purposes (Menasche et al., 2003; Pagani et al., 2003).   
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1.2.1.2 Bone marrow  

In the late 1990's, investigators demonstrated reasonable repair, involving migration 

and differentiation of stem cells, after injury in muscle, the liver, and the brain. Orlic et 

al. (2001a, 2001b) found that direct transplantation of autologous bone marrow (BM) 

into the damaged myocardium of mice displayed the same repair. Numerous clinical 

trials have now evaluated BM mononuclear cells for cardiac myopathy with different 

cell dose, delivery route, follow up interval, and the number of patients. Evidence of 

BM stem cell plasticity in vivo (Assmus et al., 2002; Perin et al., 2003; Tse et al., 2003) 

is lacking, and only a handful of clinical trials have provided long-term results. The 

ASTAMI (Beitnes et al., 2009; Beitnes et al., 2011; Lunde et al., 2006), BOOST (Meyer 

et al., 2006; Wollert et al., 2004), and REPAIR-AMI (Assmus et al., 2010) trials showed 

little to no improvement after 3-5 years although the latter reported reduction in infarct 

size and increased wall thickening of the infarcted region at a 2 year follow up. Of the 

several dozen trials, none have shown significant improvement in all the outcomes 

assessed (reduction in infarct size, change in LVESV and LVEDV, and improved 

LVEF) (Jeevanantham et al., 2012). However, no major adverse events were reported 

showcasing the safety of this treatment (Sanganalmath & Bolli, 2013).  

1.2.1.3 Mesenchymal stem cells  

In the 1950's, it was revealed that bone marrow had two residing cell populations, 

namely hematopoietic and mesenchymal, responsible for the formation of all blood 

cells, and bone, cartilage, and fat cells respectively. Adipose tissue is another source 

of mesenchymal stem cells and are easily obtained through minimally invasive 

procedures such as liposuction (Lindroos, Suuronen, & Miettinen, 2011). 

Mesenchymal stem cells differentiate into multiple cell types including cardiomyocytes 

(Planat-Benard et al., 2004; Toma et al., 2002). The effects of mesenchymal stem 
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cells, isolated from both the bone marrow and adipose tissue, have been evaluated in 

several clinical trials (Hare et al.,2009; Hare et al., 2012; Karantalis et al., 2014) after 

observing improvement in cardiac function in animal models (Liu et al., 2008; Mazo et 

al., 2008; Mazo et al., 2010; Schuleri et al., 2009). The PRECISE trial has shown 

modest effects with adipose derived cells (Perin et al., 2014). However, the emerging 

consensus is that the therapeutic effect achieved by these cells may be due to 

paracrine effects and their ability to evade the immune system (Aggarwal & Pittenger, 

2005).  

1.2.1.4 Cardiac stem cells  

The mammalian heart, earlier thought to be a post-mitotic organ composed of 

terminally differentiated cardiomyocytes, has recently shown a little intrinsic rate of cell 

turnover (Ali et al., 2014; Kajstura et al., 2010; Senyo et al., 2013). Bergmann et al. 

(2009) elucidated with carbon dating that over an average human lifespan half the 

cardiomyocyte population is replaced with approximately 1% turnover per year in the 

early 20's to less than 0.5% turnover per year by the age of 75. Beltrami et al. (2001) 

also suggested that limited cell division occurred in ischaemic hearts. Debate exists 

over the attribution to this turnover by the proliferation of existing cardiomyocytes or 

by the differentiation of a progenitor population. A minuscule progenitor cell population 

within the heart exists (Chong, Forte, & Harvey, 2014) and cells capable of 

differentiating into cardiomyocytes have been isolated from myocardial biopsies 

(Smith et al., 2007). Reported populations include c-Kit+ (Beltrami et al., 2003), side 

populations (Martin et al., 2004), cardiosphere derived cells (Messina et al., 2004), 

and Sca1+ (Oh et al., 2003), however, no Sca1+ homolog in humans has been 

described. Cardiospheres form because of free-floating cardiac progenitor cell 

aggregation and express c-kit in the inner cells although in limited numbers. 
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Improvement of heart function in animal models in respect to MI has been documented 

with treatment of cells derived from cardiospheres. However, the CADUCEUS trial 

(Makkar et al., 2012) evaluating the use of cardiosphere derived cells demonstrated 

improvement in regional function only (Malliaras et al., 2014). The SCIPIO trial (Bolli 

et al., 2011) showed promise with an increase in LVEF using c-kit+ cells however the 

authenticity of cardiac progenitor cell identity is under debate (Sultana et al., 2015). 

1.2.2 Pluripotent stem cells  

Pluripotent stem cells (PSCs) have the greatest differentiation potential, forming 

mature cell types derived from all three germ layers, and although pluripotency in vivo 

is a transient developmental stage, it can be captured or induced in vitro in defined 

growth conditions. PSCs can be propagated in culture for long periods, however, 

cannot be used in cell therapy without prior differentiation into specific cell types. 

Inadequate differentiation risks teratoma formation after treatment and this has been 

one of the greatest challenges facing the use of PSCs in cardiac repair. Additionally, 

guided in vitro differentiation of PSCs towards a specific cell fate through the 

manipulation of the growth conditions has highlighted the differences in PSC 

characteristics and the culture conditions required to maintain pluripotency amongst 

species and the source of cells. A brief review of these differences is offered in table 

1.2.
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Table 1.2. Pluripotent stem cell characteristics 

  mECCs mESCs miPSCs mEpiScs hESCs hiPSCs 

Origin  Teratoma ICM Somatic Late Epiblast ICM Somatic 

Teratoma formation YES YES YES YES YES YES 

Chimera/germ line 
contribution 

YES YES YES NO ND ND 

Culture Conditions  LIF, FBS LIF, BMP4 LIF FGF2, A FGF2, A, MEF CM FGF2, A, MEF CM 

Morphology  Domed Domed Domed Flat Flat Flat 

Pluripotency state Naïve Naïve Naïve Primed ND ND 

Pluripotency 
Factors 

O-S-N-K O-S-N-K O-S-N-K O-S-N O-S-N O-S-N 

Response to LIF SR-P SR-P SR-P None None None 

Response to FGF2 D D D SR-P SR-P SR-P 

Response to BMP SR-P SR-P SR-P D D D 

Response to 2i SR-P SR-P SR-P D and CD D and CD D and CD 

SSEA 1 1 1  3 and 4 3 and 4 

2i - 2 inhibitor system, A – Activin, BMP - bone morphogenic protein, CD - cell death, D - Differentiation, FBS - foetal bovine serum, 
FGF - fibroblast growth factor, ICM - inner cell mass, K - Klf, LIF - leukaemia inhibitory factor, mECCs - mouse embryonic carcinoma 
cells, MEF CM - mouse embryonic fibroblast conditioned medium, m/hESCS - mouse/human embryonic stem cells, mEpiSCs - mouse 
epiblast stem cells, m/hiPSCs - mouse/human induced pluripotent stem cells, N - Nanog, ND - not determined, O - Oct4, P - 
Pluripotency, S - Sox2, SR - self renewal. Amended from Bieberich and Wang, 2013.
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1.2.2.1 Sources of pluripotent stem cells  

The establishment of pluripotent cells in culture was propelled by researchers 

exploring teratocarcinoma. In the 1960's, Kleinsmith and Pierce, demonstrated cells 

derived from a teratocarcinoma tumour, and ectopically transplanted, gave rise to 

specialized cells representative of the three germ layers. The cells were termed as 

embryonal carcinoma cells (ECCs) and exhibited in vitro characteristics that now 

define stem cells: the potential to self-renew without undergoing senescence and to 

mature into multiple cell types. Chimera formation resulted from the incorporation of 

these cells into a blastocyst. Additional findings showing the similarities between the 

early differentiation of cultured ECCs and the in vivo inner cell mass (ICM) led to the 

isolation of cells from the ICM of a pre-implantation blastocyst without an intermediate 

teratocarcinoma stage and termed embryonic stem cells (ESCs) (Evans & Kaufman, 

1981; Martin, 1981). Maintaining the pluripotency of these cells in vitro required the 

addition of leukaemia inhibitory factor (LIF) to the culture medium. Cells from mouse 

epiblast post-implantation (mEpiSCs) have also been isolated with naïve and primed 

pluripotency states displayed by mESCs and mEpiSCs respectively (Nicholas & Smith, 

2009).  

Human pluripotent stem cells were derived by Thomson and colleagues in 1998. The 

ethical concern stemming from the origin of these cells was by-passed with the advent 

of the induced pluripotent stem cell (iPSC) technology. In 2006, Takahashi and 

Yamanaka, successfully reverted terminally differentiated mouse fibroblasts into a 

pluripotent state using four pluripotent genes; Oct4, Sox2, c-Myc, and Klf4. A year later 

the same was accomplished in human fibroblasts (Takahashi et al., 2007). Concern 

over the use of c-Myc and viral vectors in inducing pluripotency in somatic cells have 

since pushed researchers to create other combinations of genes, such as Oct3/4, 
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SOX2, Lin28, and Nanog (Yu et al., 2007), and non- integrating methods using 

episomal DNAs (Okita et al., 2011; Yu et al., 2009), synthetic mRNAs (Warren et al., 

2010), and Sendai virus (Fusaki et al., 2009) amongst others (Jia et al., 2010; Kim et 

al., 2009; Lin et al., 2008; Miyoshi et al., 2011; Stadtfeld et al.,2008; Woltjen et al., 

2009) to generate iPSCs.  

1.3 Signal transduction  

A cells decision to proliferate, migrate, differentiate, or undergo cell death, is 

dependent on the cues provided by the environment including neighbouring cells, 

hormones, growth factors, and physiological and chemical stress. Extracellular signals 

are transmitted into the cell most often via cell surface receptors and intracellular 

signalling pathways carry the message into the nucleus to alter gene expression 

through the regulation of transcription factors.  

1.3.1 Transcription factors  

Gene expression is regulated by the binding of transcription factors to regulatory 

regions in DNA, in enhancing or silencing regions, to activate or repress activity. This 

is a highly regulated process and frequently requires the binding of multiple activator 

or repressor transcription factors in a specific order or number. There are several 

families of transcription factors including helix-turn-helix, zinc finger, helix-loop-helix, 

basic protein-leucine zipper, and β-sheet motifs. Dimerization, phosphorylation, and 

ubiquitination are some of the regulatory mechanisms that allow versatility in 

transcription factor activity which is furthered by cooperation with other transcription 

factors and co-activators. Transcription factors can be ubiquitously expressed or 

confined to specific tissues and cell types. Transcription factors specific to in vivo 

mesoderm and cardiac development have been identified and are frequently used as 
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markers to assess in vitro cardiac differentiation. One of the most extensively studied 

is the GATA family of transcription factors which are members of the zinc finger family 

and divided into two subfamilies; GATA1-3 regulate hematopoietic stem cells and 

GATA4-6 regulate endoderm and mesoderm development (Arceci et al., 1993; Kelley 

et al., 1993; Laverriere et al., 1994; Molkentin et al., 2000; Morrisey et al., 1996; 

Morrisey et al., 1997; Suzuki et al., 1996). Of the six GATA members, GATA4 is a 

critical regulator of cardio-myogenesis and is one of the earliest expressed 

transcription factors in cardiac progenitor cells. The diversity of cardiac genes 

regulated by GATA4 includes cardiac troponin I and C (Bhavsar et al., 2000; Di Lisi et 

al., 1998; Ip et al., 1994; Murphy et al., 1997), myosin heavy chain (Molkentin, 

Kalvakolanu, & Markhan, 1994), myosin light chain (McGrew et al., 1996), and atrial 

natriuretic factor (Grepin et al., 1994) amongst others (Cheng et al., 1999; Nicholas & 

Philipson, 1999; Rivkees et al., 1999). Regulation by GATA4 and differentiation of 

cardiac progenitor cells occurs through the interaction of several other transcription 

factor families including myocyte enhancer factor 2 (MEF2), NK2 transcription factor 

related locus 5 (NKX2.5), T-box (Tbx), and heart and neural crest derivatives (Hand) 

(Dodou et al., 2004; Garg et al., 2003; Lien et al., 1999; Maitra et al., 2008; Searcy et 

al., 1998; Zeisberg et al., 2005). Other co-factors include ubiquitous transcription 

factors such as activator protein 1 (AP-1).  

AP-1 consists of dimers formed by members of the Jun and Fos protein families (Angel 

& Karin, 1991; Vogt & Bos, 1990). The Jun family includes c-Jun, JunB, and JunD and 

the Fos family includes c-Fos, FosB, and Fos-related antigen 1/2 (Fra1/2). The dimer 

composition of these families dictates which genes are regulated (Hai & Curran, 1991; 

Kouzarides & Ziff, 1988; Smeal et al., 1989). The complete upstream regulatory 

network of these transcription factors is currently unknown however many intracellular 
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transduction pathways have been evaluated and implicated in both in vivo and in vitro 

cardiac differentiation models including the mitogen-activated protein kinases 

(MAPKs), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), and SMAD 

(Pandur, 2005; Rose, Force, & Wang, 2010).  

1.3.2 Intracellular signalling kinases  

1.3.2.1 MAPK 

Mitogen-activated protein kinase (MAPK) catalytic activity relies on the 

phosphorylation of their activation loop and forms a three-tier kinase cascade involving 

the sequential activation of MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK) 

and MAPKs. MAPKKKs are Ser/Thr kinases frequently activated through interaction 

with small G proteins such as Ras/Rho. MAPKKKs including TAK1, ASK1, TAO, 

MLK2, Raf, and DLK, act on specific MAPKKs. Activation of a specific MEK further 

phosphorylates and activates a MAPK subfamily through dual phosphorylation on Thr 

and Try residues within a conserved Thr-X-Tyr motif. MAPKs are subdivided into three 

kinase subfamilies: extracellular signal-regulated kinases (ERK), p38, and c-jun N-

terminal kinases (JNK).  

ERK, divided into ERK1/2 and ERK 3-5, was the first of the mammalian MAPKs to be 

characterized. ERK can be activated by multiple stimuli including growth factors, lipids, 

cytokines, and osmotic stress through the Ras/Raf pathway acting on MEK1-2 

(Cooper et al., 1982; Kazlauskas & Cooper, 1988; Raman, Chen, & Cobb, 2007; Ray 

& Sturgill, 1988; Shaul & Seger, 2007). The p38 MAPK has four isoforms; α, β, γ, and 

δ (Cuadrado & Nebreda, 2010; Han et al., 1994; Lee et al., 1994; Rouse et al., 1994). 

The α and β isoforms are more ubiquitously expressed with α expression being higher 

between the two (Jiang et al., 1996). The p38 subfamily is more responsive to stress 

stimuli and inflammatory cytokines including hypoxia and ischaemia and can be 
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activated by the recruitment of TRAF by tumour necrosis factor alpha and interleukin 

1 or by small G proteins Rac/Cdc42 (Bagrodia et al., 1995; Bradley & Pober, 2001; 

Goldsmith & Dhanasekaran, 2007). Both pathways act on MAPKKKs that further 

stimulates MKK3 and 6. The former shows more selectivity in p38 isoform activation 

whereas MKK6 activates all isoforms (Derijard et al., 1995; Han et al., 1996; Stein et 

al., 1996). There are three JNK genes with ten splice variations; JNK1 has splice 

variations of JNK1α1/2 and JNK1β1/2, JNK2 has spice variations of JNK2α1/2 and 

JNK2β1/2, and JNK3 has splice variations of JNK3α1/2 (Derijard et al., 1994; Gupta 

et al., 1996; Kyriakis et al., 1994). JNK1 and 2 are ubiquitously expressed whereas 

JNK3 is more restricted but is expressed in myocytes (Bode & Dong, 2007). As 

reviewed by Bogoyevitch et al. (2010) the JNKs can be activated by a plethora of 

stimuli including cellular stresses such as oxidative stress, DNA and protein synthesis 

inhibitors, heat shock, and UV irradiation and by growth factors, serum, and GPCR 

ligands. MAPKKs, MKK4 and 7, activate the JNKs (Lawler et al., 1998). The MAPKs 

regulate a vast number of substrates independently while other targets are mutually 

regulated such as AP-1 or MAPK activated protein kinases (MAPKAPKs); MK2/3 and 

5, MNKs, MSKs, and RSKs (Arthur, 2008; Buxade, Parra-Palau & Proud, 2008; 

Carriere et al., 2008; Gaestel, 2008; Perander, Keyse, & Seternes, 2008; Ronkina, 

Kotlyarov, & Gaestel, 2008; Roux & Blenis, 2004). 

1.3.2.2 PI3K 

PI3K is sub-divided into three classes: class I PI3Ks, (further divided into IA and IB), 

are heterodimers of regulatory (p85, p55, or p101) and catalytic subunits (p110α, β, δ, 

and γ) as is the class III Vsp34 enzyme. Class II are monomeric proteins without 

adapter subunits (PI3K-C2α/β/γ). PI3Ks are activated by both receptor tyrosine 

kinases (IA) and GPCRs (IB) along with Ras and generate phosphatidylinositol (3,4,5)-
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triphosphate (PIP3) through the phosphorylation of phosphoinositide (PI) (Aoyagi & 

Matsui, 2011; Crackower et al., 2002; Maehama & Dixon, 1998).  

1.3.2.3 PKC 

Protein kinase C (PKC) consists of three subfamilies and several isozymes: classical 

PKCs consist of α, β1/2, and γ isozymes. Novel PKCs include μ, δ, ε, η, and θ 

isozymes and atypical PKCs are formed of ζ, ι, and λ isozymes (Musashi, Ota, & 

Shiroshita, 2000; Newton, 2003; Nishizuka, 1995). Classic isozymes contain domains 

for both DAG and anionic lipid binding in a calcium-dependent manner with a strong 

preference for PIP2. Novel isozymes are not sensitive to calcium and bind DAG with 

higher affinity than classic isozymes (Giorgione et al., 2006; Nalefski & Newton, 2001). 

Atypical isozymes differ in the sense that their function is controlled by protein-protein 

interactions and not DAG, calcium, or phorbol esters.  

1.3.3 Extracellular Targets 

Intracellular signalling pathways, highlighted above, are typically initiated by the 

binding of a ligand to a cell surface receptor. Several classes of receptors are known 

to exist on a cells surface, with some, such as the ligand-gated ion channel receptors, 

limited to specific cell types, or present in most cells, such as the G-protein coupled 

receptors and tyrosine kinase receptors. Cooper (2000) has discussed the major 

classes of cell surface receptors which are summarised below.  

1.3.3.1 Cell surface receptors 

G-protein coupled receptors (GPCRs) are formed of a single polypeptide containing 

seven regions, three intracellular loops, and three extracellular loops. The N-terminus 

contains glycosylation sites located on the extracellular side, and the C-terminus 

contains sites for phosphorylation located on the intracellular side. Conformational 

changes occur after a ligand is bound on the extracellular side, mediating events 
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through both heterotrimeric guanine nucleotide binding proteins (G proteins) and non-

G proteins. The activation of heterotrimeric G proteins causes the dissociation from 

the receptor and its subunits (α and βγ). The α subunit and the βγ complex then 

individually interact with specific intracellular targets. Several hundred GPCRs have 

been identified and different Gα-proteins, such as Gαi, GαS, Gα12/13, and Gαq, associate 

with different receptors.  Several enzyme-coupled receptors are also found on the cell 

surface including receptor protein tyrosine kinases. These receptors are formed of a 

single transmembrane α helix with both an extracellular and intracellular domain for 

ligand binding and with protein-tyrosine kinase (PTK) activity respectively. Upon ligand 

binding, dimerization and autophosphorylation of the receptor occurs. Recruitment of 

specific enzymes to the membrane by protein domains that bind specifically to 

phospho-tyrosine containing peptides such as SH2 domains in turn recruit and activate 

further proteins. A group of receptors also phosphorylate other residues for instance 

serine/threonine instead of tyrosine in their substrate enzymes. Ligand binding to 

these receptors leads to the hetero-dimerization of two distinct polypeptide chains that 

cross-phosphorylate one another. Cytokine receptors function similarly but do not 

possess an intracellular domain with catalytic activity. Dimerization of these receptors 

upon ligand binding phosphorylates non-receptor protein-tyrosine kinases which in 

turn phosphorylate the receptor.  

1.3.3.2 Ligands 

Growth factors (GFs) are secreted peptides that control cellular responses through 

specific binding of transmembrane receptors triggering intracellular secondary 

messengers. Groups of GFs are evolutionary conserved and can be divided into 

families and super-families based on amino acid sequence similarity and shared 

structural folds respectively.  
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Fibroblast growth factors 

Members of the fibroblast growth factor (FGF) family regulate various cellular 

responses including growth and cell survival by binding to four tyrosine kinase FGF 

receptors (FGFRs) which have been extensively reviewed by Ornitz and Itoh (2015). 

FGFs are found in nearly all tissues and function in tissue maintenance and repair in 

the adult and are vital in early embryonic development. Currently, seven subfamilies 

of secreted FGFs are known. The endocrine FGF15/19 subfamily is comprised of 

FGF15/19, 21 and 23. The intracellular FGF11 subfamily is comprised of FGF11-14. 

The remaining five subfamilies are paracrine FGFs: the FGF1 subfamily is comprised 

of FGF1 and 2, the FGF4 subfamily is comprised of FGF4-6, the FGF7 subfamily is 

comprised of FGF3, 7, 10, and 22, the FGF8 subfamily is comprised of FGF 8, 17-18, 

and the FGF9 subfamily is comprised of FGF9, 16 and 20. 

Activation of FGFRs by the binding of a specific FGF triggers the phosphorylation of 

adaptor proteins such as FGFR substrate 2α (FRS2α) initiating the activation of 

intracellular signalling pathways. The growth factor receptor-bound 2 (GRB2) 

membrane anchored adaptor protein is bound by active FRS2α and further recruits 

either SOS or GAB1. Recruitment of SOS to the plasma membrane by GRB2 activates 

the G protein Ras leading to the activation of the three-tiered MAPK cascade. 

Recruitment of GAB1 leads to the activation of PI3K and phosphorylation of PI in the 

plasma membrane. The synthesis of PIP3 causes the translocation of AKT to the 

plasma membrane where it is phosphorylated by PKD1. AKT regulates both proteins 

and transcription factors such as GSK3 and FoxO respectively. The FGFR1 requires 

the phosphorylation of six tyrosine residues to activate the RAS-MAPK and PI3K-AKT 

pathways and the phosphorylation of a further two residues to activate the PLCγ and 
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STAT pathways. Activated PLCγ leads to the production of IP3 and DAG which 

increase intracellular calcium and activate PKC respectively.  

Transforming Growth Factor-β superfamily   

Over forty members of the transforming growth factor-β superfamily (TGF-β) are 

known and regulate a variety of cellular responses including development, apoptosis, 

and inflammation (Beyer et al., 2013). Bone morphogenetic proteins (BMPs), Nodal, 

and Activin are some of the subfamilies of the TGF-β superfamily. Ligands of this 

family can form both homo- or heterodimers and activate receptors with 

serine/threonine activity. TGF-β receptors are divided into type I and type II receptors 

with the type I receptor being phosphorylated by the type II receptor prompting 

activation of Smad proteins (Smad1-8). Smad 1-5, and 8 translocate into the nucleus 

whereas Smad 6 and 7 are inhibitory proteins. Non-Smad signalling pathways are also 

activated by ligand bound TGF-β receptors including RAS-MAPK, PI3K-AKT, and TAK 

(de Caestecker, 2004). 

As reviewed by Bragdon et al. (2011) the largest subgroup of the TGF-β superfamily 

are the BMPs with over twenty members and further subdivided into four groups: 

BMP2/4, BMP5-8, BMP9-10, and BMP12-14. Eight BMP receptors have been 

identified: five type I, ALK1 (Acvrl1), ALK2 (ActRI), ALK3 (BRIa), ALK4 (ActRIb) and 

ALK6 (BRIb), and three type II receptors, BRII, ActRIIa, and ActRIIb. BMPs regulate 

cell survival, migration, and differentiation and activate several Smad independent 

pathways such as the MAPK pathway and the transcription factor NF-κB through the 

activation of the BRIa complexes along with other pathways including PKA/C/D and 

PI3K through the activation of other complexes.  
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Wnt – Secreted signalling proteins  

Approximately 20 mammalian Wnt proteins are currently known that regulate cell 

survival, migration, proliferation, and cell fate through the binding and activation of 

Frizzled receptors. The transduction of Wnt signals is mediated by canonical and non-

canonical pathways. Canonical Wnt pathways are activated by Wnt1, 2, 3A, 8A/B/C, 

and 10A/B whereas non-canonical Wnt pathways are activated by Wnt 4, 5A/B, 6, 

7A/B and 11 (Parikh et al., 2015). Canonical Wnt signalling results in the stabilization 

and accumulation of β-catenin in the nucleus by the inactivation of the multiprotein 

complex composed of APC, Axin, and GSK3β mediated by dishevelled (Dvl) proteins. 

Dvl proteins, when activated by the binding of non-canonical Wnt members to Frizzled 

receptors, activate RhoA and Rac resulting in the activation of downstream ROCK and 

JNK that modulate the activity of transcription factors such as ATF. Non-canonical Wnt 

signalling is β-catenin independent and is also mediated via the activation of G 

proteins resulting in the increase of calcium, in turn, activating calcium-dependent PKC 

(Komiya & Habas, 2008).  

1.3.4 In vivo signalling associated with cardiomyocyte production   

Proper development of the heart requires the induction of mesoderm formation and 

specification into cardiac mesoderm with a sophisticated program of migration, 

proliferation, and further differentiation of four distinct progenitors; the first heart field, 

the second heart field, the proepicardial organ, and the cardiac neural crest. The 

spatiotemporal activity of the extracellular signalling families discussed above 

regulates these processes. 

Wnt3a, BMP4, and Nodal gradients established in the epiblast are critical for 

mesendoderm patterning and lineage specification. Early decisions between 

mesoderm, neuroectoderm, and extra-embryonic fates are affected by BMP signalling 
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(Parikh et al., 2015) whereas canonical Wnt signalling is crucial in the formation of the 

anterior/posterior axis, primitive streak and node, and mesoderm (Huelsken et al., 

2000; Liu et al., 1999). Nodal signalling is involved in the formation of the anterior 

mesoderm and endoderm (Beck et al., 2002; Shen, 2007).  

During gastrulation, the T-box Brachyury, initially expressed in the mesoderm, node, 

notochordal plate, and notochord, undergoes upregulation by canonical Wnt and 

further synergy with BMP and FGF8 signalling promote a mesodermal fate (Evans et 

al., 2012; Paige et al., 2015; Parikh et al., 2015; Schultheiss, Burch, & Lassar, 1997).  

Canonical Wnt inhibitors, DKK1 and Crescent, are secreted by the adjacent endoderm 

whereas BMP antagonists, Noggin and Chordin, are emitted by the notochord to 

further mesoderm specification (Kwon et al., 2007; Marvin et al., 2001; Pandur et al., 

2002; Schneider & Mercola, 2001; Tzahor & Lasser, 2001). As the cells migrate 

through the primitive streak, Brachyury is downregulated, and the upregulation of T-

box Eomes activates MESP1 (Costello et al., 2011; David et al., 2011; van den Ameele 

et al. 2012). MESP1 expressing cardiac progenitors arising from the anterior lateral 

mesoderm migrate to the cranial and cranio-lateral regions of the embryo forming the 

first heart field (FHF). The fusion of bilateral FHFs forms the cardiac crescent, the first 

morphological sign of heart development (Harvey, 2002). The earliest known cardiac-

specific transcription factors expressed in the cardiac crescent include members of the 

Gata, Nkx, MEF2, Hand, and Tbx families. MESP1 is partly responsible for the 

activation of GATA4/6, Tbx20, Hand2, and Nkx2.5 (Bondue et al., 2008), while BMP 

also induces activation of GATA4, MEF2c, and Nkx2.5 (Klaus et al., 2012; Lien et al., 

2002) with cardiac neural crest cells later regulating FGF8 in the endoderm to further 

induce Nkx2.5 and MEF2 in cells exposed to BMP (Alsan & Schultheiss, 2002). Cells 

of the first heart field undergo rapid differentiation and proliferation forming the linear 
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heart tube and a gradient in Tbx5 is established, with higher levels observed 

posteriorly (Bruneau et al., 1999).  

Earlier belief was that all cardiomyocytes originated from the cardiac crescent until the 

discovery of a second source of cells in 2001, the pharyngeal mesoderm-derived 

second heart field (SHF) progenitors (Kelly, Brown, & Buckingham, 2001; Mjaatvedt 

et al., 2001; Waldo et al., 2001). Development of SHF progenitors has been linked to 

the suppression of canonical Wnt signalling by non-canonical Wnt5A and Wnt11 

(Cohen et al., 2012). The proliferation of both cell populations occurs, but the FHF 

cells differentiate quickly whereas a delay in differentiation occurs in cells of the SHF, 

which undergo differentiation as they contribute to the elongation of the heart tube at 

both the venous and atrial poles (Buckingham, Meilhac, & Zaffran, 2005; Paige et al., 

2015; Rochais, Mesbah, & Kelly, 2009). BMP signalling and inhibition of FGF may 

influence the switch from proliferating to differentiating cells (Hami et al., 2011; Hutson 

et al., 2010). The FHF contributes to the left ventricle and minimally to the atria while 

the anterior SHF adds to the right ventricle and outflow tract, and posterior SHF 

contributes to atria and inflow myocardium. Further proliferation and myocardial 

subpopulation specification with septation and valve development eventually form the 

four-chambered heart (Paige et al., 2015).   
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1.3.5 In vitro cardiomyocyte production 

The first pluripotent stem cell lines were established in culture over half a century ago 

with efficient differentiation of ECCs being dependent on the formation of three-

dimensional aggregates in suspension called embryoid bodies (EBs). Two commonly 

used protocols for initiating the formation of EBs include allowing a definite number of 

cells to self-aggregate in non-adherent dishes for a period (e.g. 4 days) before being 

transferred to cell culture grade dishes to grow in monolayers or cultured using the 

hanging drop method. The latter allows for better control of EB size as the EBs 

aggregate in a droplet of medium suspended from the lid of a culture dish for a short 

period (e.g. 2 days). The EBs are collected and further cultured in suspension for 

several days before being plated on gelatin-coated culture dishes (Burridge et al., 

2007; Doetschman et al., 1985; Ng et al., 2005).  

The use of an extensive variety of growth factors, small molecules, and organic 

chemicals during spontaneous EB formation has allowed several research groups to 

derive differentiated cardiomyocytes from PSCs with variable efficiency (Kawai et al., 

2004; Laflamme et al., 2007; McBurney et al., 1982; Ren et al., 2011; Tran et al., 2009; 

Ueno et al., 2007). Inhibiting DNA methylation, using 5-azacytidine (Choi et al., 2004; 

Yang et al., 2009), or using hormones, such as oxytocin (Fathi et al., 2009; Paquin et 

al., 2002), have also been shown to persuade cells to commit to a cardiac fate. 

Highlighted by developmental studies, the critical role of the anterior endoderm in the 

cardiac induction of the mesoderm in vivo was applied to in vitro differentiation by co-

culturing PSCs with visceral endoderm-like cells (END-2) (Mummery et al., 1991).  

Further dissection of the signal transduction mechanisms that regulate cardiac 

development in vivo has allowed researchers to mimic and modulate key factors to 
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further enhance in vitro cardiac differentiation (Kattman et al., 2011; Lian et al., 2012). 

The importance of Wnt signalling with timed activation and inhibition of canonical and 

non-canonical pathways in initiating cardiomyocyte differentiation (Gessert & Kuhl, 

2010; Tzahor, 2007) has been studied in both mouse and human ESCs. Temporal 

modulation of Wnt in which canonical signalling is initially enhanced and then 

suppressed results in high yields of cardiomyocytes from several hESCs lines (Lian et 

al., 2012; Mehta et al., 2014). Canonical Wnt signalling is required by both mECCs 

(Nakamura et al. 2003) and hESCs (Paige et al., 2010) to differentiate into 

cardiomyocytes whereas mESCs lack mesodermal precursors in which Wnt/β-catenin 

activity is suppressed by soluble DKK1 (Lindsley et al., 2006). Temporary addition of 

both BMP4 and Activin A also induce cardiac mesoderm formation in both mouse and 

human cell lines with greater cardiomyocyte differentiation achieved using additional 

factors including FGF2, VEGFA, and DKK1 in combination with the inhibition of Nodal 

or TGFβ-R2 (Kattman et al., 2011; Laflamme et al., 2007; Yang et al., 2008). The 

differentiation efficiency of human PSCs using the methods described above are 

summarised in table 1.3. In addition to deriving cardiomyocytes from stem cells, 

fibroblasts have also been reprogrammed into cardiomyocytes without an intermediate 

pluripotent stage. As reviewed by Chen and Qian (2015), several investigators have 

achieved this with varying efficiency using cardiac-specific transcription factors 

including a combination of GATA4, MEF2C, and Tbx5.   

Table 1.3. Efficiency of established protocols for cardiac differentiation from stem cells 

      Amended from Rajala, Pekkanen-Mattila and Aalto-Setala, 2011. 

Method Differentiation Efficiency % 

Spontaneous differentiation by EB formation <10% 
END-2 method 20-25% 
Guided differentiation method using  
Activin A and BMP4 

>30% 

Guided differentiation method using  
Activin A, BMP4, bFGF, VEGF, and DKK-1 

40-50% 
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1.3.6 Markers for in vitro cardiac differentiation 

The progression of cardiac differentiation attained in vitro is measured by the 

expression of proteins, discussed earlier, at different stages and is summarised in 

Figure 1.0. Mesoderm lineages are confirmed by the early presence of Brachyury or 

Eomes and markers including MESP1/2 are used to confirm early cardiac 

differentiation. The differentiation cascade can be further followed by the expression 

of transcription factors including GATA4, MEF2c, and NKX2.5. Immature 

cardiomyocytes often display spontaneous beating and confirmed by the expression 

of cardiac-specific structural proteins including atrial and ventricular myosin. Cardiac 

troponin T and I, the former a subunit of the troponin complex responsible for the 

regulation of muscle contraction in response to changes in calcium ion concentrations, 

are also used as markers to evaluate cardiac differentiation as are connexin proteins. 

Atrial and ventricular connexin proteins, Cx43 and Cx40 respectively, are commonly 

used. A pure population of cardiomyocytes or a specific subset of cardiomyocytes has 

not been achieved, however, purification methods have been developed including the 

isolation of cells, from a heterogenous pool, that express differences in glucose versus 

lactate metabolism (Tohyama et al., 2013) and the expression of signal regulatory 

protein alpha (Dubois et al., 2011). 
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Figure 1.0. Markers for sequential steps required for obtaining cardiomyocytes from pluripotent stem cells 
Image amended from Rajala, Pekkanen-Mattila and Aalto-Setala, 2011. 
cTnT – Cardiac muscle troponin T, Dkk1 – Dickkopf-1, Flk1 – Fetal liver kinase 1, Fox C1 – Forkhead Box C1, Hand – heart and 
neural crest derivatives expressed proteins 1/2, Isl1 – Insulin gene enhancer protein 1, Mef2c – Myocyte enhancer factor 2c, Mesp1 
– Mesoderm posterior 1, MHC – Myosin heavy chain, MLC2a/v – Myosin light chain 2 atrial/ventricular, Nkx2.5 - NK2 homeobox 5, 
Oct4 – Octamer binding protein 4, Sox – Sex determining region Y, Tbx5/20 – Tbox 5/20. 
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1.4 LPA 

Wnt, FGF, and TGF-β signalling converge on the regulation of the MAPKs, PKC, and 

PI3K amongst others to mediate their actions. Lysophospholipids, a group of bioactive 

lipids, are also reported to regulate the same pathways via GPCRs to mediate cellular 

events including proliferation, apoptosis, differentiation, migration, and survival (Choi 

et al., 2010). Sphingosylphosphorylcholine (SPC), sphingosine 1-phosphate (S1P), 

and lysophosphatidic acid (LPA) comprise this group of lipids and their role during 

cellular differentiation and development has recently become evident.  

1.4.1 LPA characteristics    

Lysophosphatidic acid (LPA) is a small ubiquitous phospholipid typically ester-linked 

to an acyl chain of various length and saturation, and these different chemical forms 

are present both extracellularly and intracellularly. Derived from a triglyceride 

backbone, LPA has low solubility in aqueous solution; therefore, water-soluble carrier 

proteins such as albumin or gelosin are typically bound to LPA (Eichholtz et al., 1993; 

Goetzl et al., 2000; Osborne & Stainier, 2003; Yatomi et al., 2000). LPA concentrations 

of serum and plasma vary (Aoki, 2004), with the concentration being much lower in 

plasma under physiological conditions but increasing significantly following an 

infarction (Chen et al., 2003). 

1.4.2 LPA synthesis 

The availability of precursor metabolites and catalytic enzyme expression regulate the 

production of LPA. Intracellular LPA, a precursor for glycerolipid synthesis, is produced 

enzymatically from the mitochondria and endoplasmic reticulum by either glycerol 3-

phosphate being acylated by glycerophosphate acyltransferase or by degrading LPA 

into monoacylglycerol by monoacylglycerol phosphate acyltransferase which is re-
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phosphorylated by monoacylglycerol kinase (Pages et al., 2001). Other pathways 

derive LPA from phosphatidic acid produced from phospholipids by the hydrolysis of 

fatty acid at either the sn-1 or sn-2 position of phosphatidic acid by phospholipase A1 

or A2 respectively (Aoki, Inoue, & Okudaira, 2008). Extracellular LPA is produced from 

lysophospholipids (LP) derived from phospholipids. LPs, lysophosphatidylcholine 

(LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylserine (LPS), can 

be enzymatically processed to produce LPA. Autotaxin, with lysophospholipase D 

(lysoPLD) activity, is responsible for the conversion of LPC, the major source of LPA 

(Aoki, Inoue, & Okudaira, 2008; Tanaka et al., 2006; Watanabe et al., 2007a). 

Sequential actions of lecithin-cholesterol acyltransferase (LCAT) and lysoPLD 

converting phosphatidylcholine to LPC also generate LPA. Enzymes secreted from 

activated platelets causes upregulation of LPA, during blood coagulation, by acting on 

plasma phospholipids (Aoki et al., 2002; Baker et al., 2001; Tokumara et al., 2002; 

Umezu-Goto et al., 2002; Watanabe et al., 2007b). 

 

1.4.3 LPA receptors 

LPA influences developmental, physiological, and pathological processes through 

GPCR and PPARγ signalling but also functions as a direct intracellular messenger. 

Extracellular LPA confers its bioactive effects through at least eight GPCRs, LPA 

receptors (LPAR) 1-8, with the first identified in 1996 (Hecht et al., 1996). LPARs 1-3 

are members of the endothelial differentiation gene (EDG) family whereas the other 

receptors are members of the purinoreceptor family.  

LPARs classified as members of the EDG family have a more ubiquitous expression 

whereas receptors identified as members of the P2Y cluster of GPCRs exhibit limited 

expression (Meyer zu Heringdorf & Jakobs, 2007). LPA receptors of both families 
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couple to Gαi, Gαq, Gαs, and Gα12/13 proteins allowing a diverse range of biological 

functions to be controlled.  

1.4.3.1 EDG family 

LPAR1 (Hecht et al., 1996) is found in several human and mouse tissues including the 

heart, brain, GI tract, and reproductive organs (An et al., 1998; Contos et al., 2000; 

Dancs et al., 2017; Ohuchi et al., 2008; Yang, Ishii, & Chun, 2002). This receptor 

couples with Gαi, Gαq, and Gα12/13 to alter a range of cellular responses including cell-

cell contact through SRE, cell proliferation, survival, migration, calcium mobilization, 

cytoskeletal changes, and adenylyl cyclase (AC) inhibition through Rho, PLC, Akt, and 

MAPK signalling (Fukushima et al., 2001; Meyer zu Heringdorf & Jakobs, 2007; 

Pebay, Bonder, & Pitson, 2007). LPAR2 is found in several mouse tissues, including 

both embryonic and neonatal brain tissues, and human tissues such as the thymus 

and spleen (An et al., 1998; Ohuchi et al., 2008). This receptor also couples with Gαi, 

Gαq, and Gα12/13 to regulate cell proliferation and survival, through Rho, Ras, Rac, 

PLC, DAG, PI3K, and MAPK signalling (Fukushima et al., 2001; Ishii et al., 2000; 

Meyer zu Heringdorf & Jakobs, 2007). LPAR3 is found in heart and brain tissue 

amongst others in both humans and mice (Im et al., 2000; McGiffert et al., 2002; 

Ohuchi et al., 2008; Ye et al., 2005). LPAR3 couples to Gαi, and Gαq, with a preference 

for 2-acyl LPA unsaturated fatty acids, and calcium mobilization and AC modulation 

are mediated via PLC and MAPK signalling (Fukushima et al., 2001; Meyer zu 

Heringdorf & Jakobs, 2007).  

1.4.3.2 P2Y family  

LPAR4 is found in the heart, thymus, and ovaries, amongst other tissues, of both mice 

and humans (Noguchi, Ishii, & Shimizu, 2003; Ohuchi et al., 2008). This receptor 

couples to Gαs and Gα12/13 to modulate cAMP accumulation and calcium mobilization. 



32 
 

LPAR4 also has suppressive effects on both cell motility and migration (Ishii, Noguchi, 

& Yanagida, 2009; Lee et al., 2007; Yanagida & Ishii, 2011). LPAR5 is found in many 

mouse tissues (Dancs et al., 2017; Kotarsky et al., 2006; Lee et al., 2006; Oh et al., 

2008; Ohuchi et al., 2008) but is limited to the heart, spleen, small intestine, liver, 

platelets, colon, placenta, and mast cells in humans (Amisten et al., 2008; Lundequist 

& Boyce, 2011) and acts through Gα12/13 signalling to regulate stress fibre formation 

(Lee et al., 2006) and possibly Gαq to increase intracellular calcium (Yung, Stoddard, 

& Chun, 2014). LPAR6 is found in the heart, brain, lung, and kidney tissues amongst 

others (Lee et al., 2009; Pasternack et al., 2008; Yukiura et al., 2015) and acts through 

Gα12/13 signalling (Lee et al., 2009; Yanagida et al., 2009). LPAR7 is found in both skin 

and hair, and LPAR8 is found in the uterus, placenta, prostate, brain, lung, and skeletal 

muscle (Murakami et al., 2008; Pasternack et al., 2008; Tabata et al., 2007).  

LPA also signals independently of GPCRs through peroxisome proliferator-activated 

receptor gamma (PPARγ) (McIntyre et al., 2003). This receptor has shown to play a 

role in several diseases including atherosclerosis, diabetes, and cancer (Lehmann et 

al, 1995; Li et al., 2000; Sarraf et al., 1998) as it regulates cell proliferation and 

apoptosis but also mediates inflammation and lipid and glucose homeostasis (Elstner 

et al., 1998; Evans, 2005; Lehrke & Lazar, 2005; Mueller et al., 1998; Ricote & Glass, 

2007; Tigyi, 2010). PPARγ has shown to be activated by unsaturated LPA species 

only (Tsukahara et al., 2006). LPA synthesis and signalling are summarised in Figure 

1.1.  

1.4.3.3 LPA receptor antagonists 

Most of the commercially available LPAR antagonists target the EDG family and 

frequently lack selectivity between receptors 1-3 or target enzymes, such as ATX, that 

regulate LPA production (Yung, Stoddard, & Chun, 2014). Amongst the available 
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LPAR1-3 antagonists, Ki16425 is the most established and has been used to disrupt 

LPA signalling in various stem cells. Ki16425 targets LPAR1 and 3 with an IC50 of 

0.34µM, 0.93µM, but also targets LPAR2 with an IC50 of 6.5µM (Ohta et al., 2003). In 

contrast, the less established, H2L5186303 targets LPAR2 with much higher 

selectivity than LPAR 3 and 1 with an IC50 of 8.9, 1230, and 27534nM, respectively 

(Fells et al., 2008). Currently, highly selective antagonists for the P2Y family of LPA 

receptors have not been described. The P2Y family of LPA receptors, notably receptor 

4, have traditionally been targeted with broad spectrum antagonists, such as Suramin. 

Aside from targeting P2Y receptors Suramin also inhibits the binding of several 

extracellular targets (Coffrey et al., 1987; Kathir et al., 2006; Smolich et al., 1993) and 

promotes the differentiation of mESCs towards a sinus node phenotype (Wiese et al., 

2011).  
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Figure 1.1. Summary of LPA synthesis and signalling 
Image amended from Yung, Stoddard, and Chun, 2014. 
AC – Adenylate Cyclase, ATX - Autotaxin, Ca2+- Calcium, cAMP – cyclic adenosine 
monophosphate, DAG – 1, 2, diacyglyerol, IP3 – Inositol (1,4,5) triphosphate, LCAT – 
Lecithin cholesterol acyltransferase, LPA – Lysophosphatidic acid, LPAR – LPA 
receptor, LPC - Lysophosphatidylcholine, LPE - Lysophosphatidylethanolamine, LPS 
- Lysophosphatidylserine, MAPK – Mitogen Activated Protein Kinase, PA – 
Phosphatidic acid, PC - Phosphatidylcholine, PE - Phosphatidylethanolamine, PI3K - 
Phosphatidylinositol-3-kinase, PKC – Protein Kinase C, PLA - Phospholipase, PLC – 
Phospholipase C, PLD – Phospholipase D, PS - Phosphatidylserine, ROCK - Rho-
associated protein kinase, SRF – Serum Response Factor.  
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1.4.4 LPA in vascular biology  

LPA exerts both protective and damaging effects on the cardiovascular system (Chen 

et al., 2006a). Damage to myocytes during a heart attack occurs primarily due to 

ischaemia and hypoxia. LPA is elevated in atherosclerotic lesions and after acute 

myocardial infarction but how LPA confers a protective role in the early stages of each 

event is elusive. However, through Gi-coupled signalling, activation of downstream 

pathways, PI3K/AKT and ERK, elevated levels of LPA have been shown to increase 

myocyte (Karliner et al., 2001), and mesenchymal stem cell (Chen et al., 2008a) 

survival from hypoxia-induced apoptosis, whereas activation of downstream pathways 

Rho, PI3K/AKT, and NF-κB contribute to the hypertrophic response (Chen et al., 

2008b; Hilal-Dandan et al., 2004). CD34+ cells derived from umbilical cord blood 

treated with LPA also exhibit higher survival under ischaemic conditions through 

activation of PPARγ mediated ERK/AKT signalling (Kostic et al., 2015). LPA also 

regulates myocyte contractibility (Cremers et al., 2003), increased protein synthesis in 

cultured cardiomyocytes (Goetzl et al., 2000), and increased LPL activity (Pulinikunnil 

et al., 2005), however, topical application of LPA to the arterial wall prompts neointima 

formation associated with atherosclerosis (Zhang et al., 2004).  

1.4.5 LPA in stem cell differentiation 

LPARs are expressed in both pluripotent and multipotent stem cells. Bone marrow and 

mesenchymal stem cells of human and murine origin express LPAR1-3 whereas 

distinct expression levels for LPAR1-6 are found in PSCs between species. Both 

hESCs and hiPSCs express higher levels of LPAR2, 3, and 4 whereas mESCs 

express higher levels of LPAR1, 2, 4-6 and miPSCs express higher levels of LPAR1 

and 6 (Kleger et al 2011, Pebay, Bonder, & Pitson, 2007). 
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LPA induces the differentiation of multiple cell types into different lineages including 

mesenchymal stem cell differentiation into myofibroblasts (Jeon et al., 2008, Tang et 

al., 2014) and osteoblasts (Liu et al., 2010), neuroblast differentiation (Fukushima et 

al., 2007), neural stem cell differentiation into neuroglial and cholinergic committed 

neurons (Cui & Qiao, 2006; Cui & Qiao, 2007), and CD34+ myeloid differentiation 

(Evseenko et al., 2013). While the role of LPA in cardiac differentiation is not yet 

established, other similar bioactive lipids such as SPC and S1P both promote the 

differentiation of Sca1+ cardiac stem cells and umbilical cord mesenchymal stem cells 

respectively into cardiomyocytes (Li et al., 2016; Zhao et al., 2011).  

In addition to regulating pathways critical to cardiac differentiation discussed above, 

LPA modulates the Hippo pathway in both human ESCs and iPSCs. The Hippo 

pathway acts on the Yes-associated protein (YAP) and is fundamental in development 

but also a key regulator of stem cell pluripotency and differentiation (Lian et al., 2010; 

Meng, Moroishi, & Guan, 2016; Qin et al., 2016; Zhou et al., 2015a).  

1.5 Aim of the thesis 

Our group has demonstrated that LPA may act as an effective molecule for regulating 

the differentiation of P19 stem cells, a murine embryonal carcinoma cell line, into 

cardiomyocytes (Pradmod, 2017). This study reaffirmed this ability of LPA and 

examined the role of LPA receptors and downstream signalling molecules associated 

with the differentiation of stem cells into cardiomyocytes. Furthermore, the regulation 

of both cardiac specific and ubiquitous transcription factors has also been investigated. 
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2.1 Cell culture 

Mouse P19 embryonal carcinoma cells (ATCC CRL-1825) were used to carry out all 

experiments and were cultured in complete alpha-minimum essential medium 

(complete αMEM) containing 10% heat-inactivated foetal bovine serum with penicillin 

(100units/mL) and streptomycin (100µg/mL) and maintained in a humidified 5% CO2 

atmosphere at 37˚C. The cells were sub-cultured every 48 hours (cells ~70% 

confluent) using 0.05% trypsin-EDTA.  

All cell culture reagents were purchased from Gibco (Life Technologies) and warmed 

to 37˚C using a water bath before use. All centrifuge steps were carried out at 4˚C at 

1000rpm for 5 minutes unless otherwise specified.   

2.1.1 Recovery of P19 cells  

P19 cells at passage 2, cryopreserved in 5% DMSO, were received from ATCC. For 

removal of the cryopreservative, cells were rapidly thawed by repeated pipetting of 

1mL complete αMEM into the vial. The suspension was then transferred to a 15mL 

falcon tube containing 8mL complete αMEM and centrifuged. The medium was 

removed by aspiration, and the pellet was separated in 1mL of complete αMEM and 

added to a T25 flask containing 6mL of complete αMEM. The complete αMEM was 

changed every 48 hours until the cells were ~70% confluent. The pattern of cell growth 

during this period is shown in Figure 2.0.
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Figure 2.0. Growth of recovered P19 cells 
Cells were recovered and cultured as described in section 2.1.1 with the observation 
of growth after 24 (left), 72 (middle), and 96 (right) hours post recovery. Images are 
taken at 200x, 40x and 40x, respectively, using the inverted Olympus light microscope.
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2.1.2 Culturing of P19 cells 

The cells were maintained in exponential growth and sub-cultured by aspirating the 

medium and washing the cells twice with 1x PBS. 1ml of 0.05% trypsin-EDTA was 

used to detach the cells with 4mL of complete αMEM being added to stop the action 

of trypsin. The suspension was transferred to a 15mL falcon tube and centrifuged. The 

medium was aspirated and the pellet was resuspended in 5mL of complete αMEM. 

When sub-culturing cells from a T25 to a T75 flask, 1mL of the cell suspension was 

added to a T75 flask containing 12mL of αMEM. For future studies, the cell pellet was 

cryopreserved in 1mL of freezing medium containing 80% FBS, 10% glycerol, and 

10% complete αMEM. The cryovials were stored in a Mr. Frosty for 24 hours at -80˚C 

followed by storage in liquid nitrogen (-196˚C). The cells recovered thereafter were not 

centrifuged and were directly added to a T25 containing 6mL of complete αMEM as 

DMSO was not used as a cryopreservative.  

2.2 Differentiation Protocol   

2.2.1 Preparation of lysophosphatidic acid  

LPA (Oleoyl-L-α-lysophosphatidic acid sodium salt) was purchased from Sigma (UK) 

and prepared in a 5mM stock solution dissolved in 1x PBS containing 0.01% fatty acid-

free BSA. Aliquots of 10µL - 100µL were protected from light and stored at -20˚C. The 

final concentration of 5µM LPA was achieved by dilution in complete αMEM. 

2.2.2 Formation of embryoid bodies 

The differentiation model used required the formation of embryoid bodies (EBs) with 

an initial seeding density of 3.7x105 cells into bacterial grade 50mm Petri dishes with 

a total volume of 5mL complete αMEM. The cell count was determined using the 

Countess electronic cell counter. After separating the pellet in 5mL of complete αMEM, 
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20µL of the cell suspension was mixed with an equal volume of trypan blue and added 

to each of the two chambers of the cell countess slide. The volume of cell suspension 

containing 3.7x105 cells was determined from the average number of viable cells/mL 

as shown below.  

Chamber A: 
Total cells: 2.0X106/ml. 
Live cells: 1.8X106/ml 

Viability: 90% 

Chamber B: 
Total cells: 2.6X106/ml 
Live cells:  2.3X 106/ml 

Viability: 88% 
 

Average live cells =  
1.8𝑥106+2.3𝑥106

2
= 2.05𝑥106 𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
 

Volume of cell suspension required for plating = 
3.7𝑥105𝐶𝑒𝑙𝑙𝑠

2.05𝑥106𝐶𝑒𝑙𝑙𝑠/𝑚𝐿 
= 0.180mL. 

Each Petri dish was plated with 0.180mL of cell suspension with the 
addition of 4.82mL of complete αMEM. 

  

2.2.3 Cardiac differentiation of P19 cells  

Differentiation was induced by supplementing the medium with 1% DMSO (positive 

control) or with LPA at the time of seeding. When used, EBs were incubated with LPA 

receptor antagonists or kinase-specific inhibitors for 60 minutes before the addition of 

LPA. An additional 2mL of complete αMEM was added 48 hours after seeding. The 

differentiation process was continued by transferring the EBs to a 15mL falcon tube 

96 hours after seeding and allowed to aggregate at the bottom of the tube before 

gently aspirating the medium. 12mL of complete αMEM was added, and the EBs were 

gently separated into a single EB suspension by repeated pipetting. 2mL of the 

suspension was added to each well of a 6-well tissue culture grade plate, and the 

medium was replaced every 48 hours.  The differentiation process is summarised in 

Figure 2.1.  
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2.2.4 Preparation of adherent cell cultures for ELISA analysis   

ELISA kits were used to study the early phosphorylation of specific kinases in the 

presence of LPA. Cells that were approximately 70% confluent were trypsinized and 

pelleted as described in section 2.1.2. The number of viable cells per mL was 

determined using the Countess cell counter as described in section 2.2.2 The cell 

suspension was diluted to obtain 100µL of cell suspension containing 1.5x104 cells. 

Each well of a 96-well plate was seeded with 100µL of cell suspension containing 

1.5x104 cells and incubated for 48 hours. Cells were then treated with LPA, diluted in 

serum-free αMEM, for 1, 5, 15, 30, 60 or 180 minutes. The cells were fixed and 

assayed as specified by the manufacturer’s instructions for each ELISA kit. The 

preparation of adherent cell cultures is summarised in Figure 2.2.  
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Figure 2.1. The differentiation of P19 cells into cardiomyocytes by the 
spontaneous formation of embryoid bodies in the presence of LPA  
P19 cells were cultured in a T75 flask until approximately 70% confluent and seeded 
(*) into non-tissue culture grade microbiological Petri dishes in the presence or 
absence of 5µM LPA over the course of four days (**). The embryoid bodies were 

cultured in tissue culture grade 6-well plates for further differentiation and lysates were 
generated on day 10 of the differentiation process (***).
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Figure 2.2. Preparation of adherent cell cultures for ELISA analysis 
P19 cells were cultured in a T75 flask until approximately 70% confluent and seeded into each well of a 96 well at a density of 1.5x104 

cells. After an incubation period of 48 hours, the cells were stimulated with 5µM LPA, diluted in serum free αMEM, for 1-180 minutes. 

The cells were fixed and the ELISA was performed according to the manufacturer’s instructions.  
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2.3 Protein quantification 

2.3.1 Cell lysis for the detection of MLC1v 

Lysates were generated on day 10 of the differentiation process. The 6-well plates 

were placed on ice, and after discarding the medium, each well was washed twice with 

cold 1X PBS followed by the addition of cold lysis buffer (10mM Tris-HCl, 1% SDS, pH 

7.4). The lysed cells were gathered using a cell scraper and transferred to a chilled 

Eppendorf. The lysates were processed by ultra-sonication for 90 seconds with 30-

second intervals and centrifuged for 20 minutes at 13000rpm. The supernatant was 

transferred to a chilled Eppendorf and stored at -80˚C until used. 

2.3.2 Cell lysis for the detection of total and phosphorylated proteins 

Lysates were generated at experiment-specific time points. For lysates generated on 

days 1-4 of the differentiation process, the EBs were transferred into 15mL falcon 

tubes and allowed to settle at the bottom before removing the medium. Cells were 

washed with 500µL of cold 1x PBS containing phosphatase and protease inhibitor 

cocktail (Sigma) at dilutions of 1:100 and 1:200 respectively and transferred to chilled 

1.5mL Eppendorf tubes. Tubes were centrifuged for 15 seconds at maximum speed 

in a microcentrifuge after which the PBS was removed and replaced with 1x RIPA 

buffer (Cell Signaling Technology). 1mM PMSF was added to the 1x RIPA buffer 

immediately before use. The tubes were kept on ice for 5 minutes followed by high-

speed vortex for 15 seconds and sonicated for 30 seconds in ice water. The lysates 

were then centrifuged at 13000rpm for 20 minutes at 4˚C. The supernatant was 

transferred to a chilled Eppendorf tube and stored at -80˚C until analysed. For lysates 

generated on days 6-10 of the differentiation process, each well of a 6-well plate was 

first washed with 1x PBS as described above followed by the addition of 1x RIPA buffer 

directly to the well. The plate was chilled on ice for 5 minutes, and the lysed cells were 
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scrapped using a cell scraper and transferred into a pre-chilled Eppendorf tube and 

processed in the same way as described above.   

2.3.3 The bicinchoninic acid assay (BCA) 

The Peirce BCA Protein Assay Kit was used to determine the total concentration of 

protein in the lysates. A stock of bovine serum albumin (BSA) was prepared at a 

concentration of 10mg/mL in double distilled water (DDW). Standards and a 96 well 

plate were prepared as shown in table 2.0 and 2.1 respectively. The plate was 

incubated for 60 minutes on an orbital shaker at room temperature. A reading at 

620nm was taken using the Labsystems Multiskan ascent or CLARIOstar plate reader. 

A protein standard curve was generated by plotting absorbance against protein 

concentration, and the amount of protein in the samples was calculated using the 

equation y=mx+b.
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Table 2.1. Preparation of a 96-well plate for protein quantification by BCA 

Well Double Distilled 
Water 

Standard Lysate Lysis Buffer (1x) BCA Solution 

Control 5µL  - - 5µL 100µL 

Standard - 5µL - 5µL 100µL 

Sample 5µL - 5µL - 100µL 

Table 2.0. Preparation of BSA standards 

BSA 
(10mg/mL)  

Double 
Distilled Water 

Final Concentration 
(µg/µL)  

 0µL  1000µL 0 

20µL  980µL  0.2 

40µL  960µL  0.4 

60µL  940µL  0.6 

100µL  900µL 1 

200µL  800µL 2 

300µL  700µL 3 

400µL 600µL 4 
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2.4 Protein analysis by western blot   

20µg of protein was mixed with an equal volume of 2x sample buffer and heated at 

95˚C for 5 minutes. Proteins were separated by 12% SDS-PAGE with a current of 

20mA and 25mA per gel, as the samples migrated through the stacking gel and 

resolving gel respectively, followed by transfer to a PVDF membrane with the Thermo 

G2 fast blotter using the pre-programmed method for mixed weight protein. The PVDF 

membrane was soaked in 100% methanol for 15 seconds and then in double distilled 

water for 2 minutes before transfer. Membranes were blocked with 5% non-fat milk for 

60 minutes at room temperature on a rocking platform. Primary antibody, anti-myosin 

light chain 3 (Abcam), was used at a dilution of 1:500 in blocking buffer with an 

overnight incubation at 4˚C with gentle agitation. The membrane was washed with 

TBS-T 3 times for 5 minutes each followed by a 60-minute incubation with agitation at 

room temperature with the secondary antibody, anti-mouse IgG, HRP-linked (Cell 

Signaling Technology), used at a dilution of 1:4500 in blocking buffer. The membrane 

was washed with TBS-T 3 times for 5 minutes each, and the Thermo ECL Reagent 

was used for protein detection with the Thermo myECL Imager. The compositions of 

the buffers can be found in tables 2.2 to 2.4. Expression of the protein of interest was 

normalised against the expression of the housekeeping protein β-actin (Cell Signaling 

Technology), used at a concentration of 1:10000 dilution in blocking buffer during 

secondary antibody incubation, in all experiments. The Restore Western Blot Stripping 

Buffer (Thermo Fisher) was used to detect other proteins of interest on the same 

membrane by incubating the blots for 20 minutes at room temperature followed by 

blocking as described earlier. 
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Table 2.2. Preparation of 2x sample buffer 

Reagent  2x Sample Buffer (10mL) 

Tris-HCl 0.5M pH 6.8 2500µL  

Glycerol 2000µL  

10% SDS 4000µL  

1% Bromophenol Blue 400µL  

2M Dithiothreitol 100µL  

Double distilled water 1000µL  

pH 6.8 

Storage Room Temperature 

 

 

Table 2.3. Preparation of resolving and stacking gel for SDS-PAGE 

Reagents 12% Resolving Gel (5mL) Stacking Gel (2mL) 

DDW  1655µL  1220µL  

30% Acrylamide  1995µL  260µL  

10% Ammonium persulfate 50µL  10µL  

10% SDS  50µL  20µL  

TEMED 3µL  2µL  

Tris-HCL 
1.5M pH 8.8 
0.5M pH 6.8 

 
1250µL  

- 

 
- 

500µL  

 

 

Table 2.4. Preparation of buffers 

Reagent  Electrophoresis Buffer Transfer Buffer TBS 

Tris-Base 250mM 480mM 200mM 

Glycine  1.92M 390mM - 

SDS 35mM 0.375% - 

NaCl - - 1.37M 

pH - 8.3 7.6 

Storage Room Temperature 4°C 4°C 

Concentration  10x 10x 10x 

Buffers were diluted to 1x in DDW before use.  
For TBS-T; 0.01% Tween-20 was added to TBS before use. 
For blocking buffer; 5% non-fat milk was added to TBS-T before use. 
For transfer buffer; 20% methanol was added before use.  
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2.5 Cell viability assay 

The MTT assay was used to determine the toxicity of the inhibitors used. 10x104 cells 

were seeded into each well of a 96-well plate. Once the cells were 60% confluent, the 

medium was removed and replaced with medium containing the inhibitor for 24 hours 

after which it was replaced with 200µL of medium containing 0.1mg of MTT for 4 hours. 

The MTT was discarded, and 100µL of isopropanol was added to each well. The plate 

was incubated at room temperature on an orbital shaker for 10 minutes. The plate was 

read at 540nm using the Labsystems Multiskan Ascent plate reader.  

2.6 Mycoplasma testing 

Mycoplasma testing was routinely carried out using the MycoAlert mycoplasma 

detection kit purchased from Lonza. P19 cells were cultured in a T75 flask containing 

12mL complete αMEM for 48 hours, and the cell supernatant was collected during 

passage of the cells. The complete αMEM was removed and transferred to a 15mL 

falcon tube and centrifuged for 5 minutes at 1500rpm. 100µL of the cleared 

supernatant was transferred to a 96 well clear bottom white polystyrene microplate 

and incubated at room temperature for 5 minutes with 100µL MycoAlert reagent. The 

luminescence was measured using the Promega Glomax multi-detection system 

followed by the addition of 100µL of MycoAlert substrate to the sample and incubated 

for a further 10 minutes at room temperature. Luminescence was measured again and 

reading 1 was divided by reading 2. A ratio of <0.9 was negative for mycoplasma 

whereas a ratio >1.2 was positive. Testing for mycoplasma was repeated 24 hours 

later if a ratio between 0.9-1.2 was calculated. Testing was carried out more frequently 

when cells exhibited changes in growth, morphology, or response to the positive 



51 
 

control (1% DMSO) and were not responsive to troubleshooting such as changes in 

serum, reagents, and cell culture conditions. 

2.7 Statistical analysis 

Densitometry was done using Image Studio Lite, and statistical analysis was done 

using GraphPad Prism 7. Statistical comparisons were performed by one-way and 

two-way analysis of variance (ANOVA) with Dunnett’s or Bonferroni post hoc test 

respectively. A value of p<0.05 was significant. The data are expressed as means ± 

S.E.M of at least three independent experiments unless otherwise noted.
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differentiation model  
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The role of LPA receptors and the 
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3.1 Introduction 

The murine P19 teratocarcinoma cell line (McBurney & Rogers, 1982) can be 

maintained in culture without the addition of LIF or a feeder layer and has been 

extensively studied as a model system for cardiomyogenic differentiation (Bradley et 

al., 1984; van der Hayden & Defize, 2003). During spontaneous EB formation, the 

organic solvent, dimethyl sulfoxide (DMSO) (Edwards, Harris, & McBurney, 1983; 

McBurney et al., 1982), has been widely used and led to invaluable insight into the 

mechanisms and signalling pathways that promote the differentiation to a cardiac fate 

(van der Hayden & Defize, 2003). Little was, however, known about the role 

endogenous biomolecules might play in generating cardiomyocytes from stem cells 

until recently when Pramod (2017) demonstrated that LPA has the potential to regulate 

the differentiation of P19 cells into cardiomyocytes. This occurred in a manner 

comparable to that of DMSO and established the upregulation of LPA receptors 

(LPARs) 1-4 in differentiating P19 cells. LPARs 1-4 signal through coupling with Gαi, 

Gαq, Gαs, and Gα12/13 proteins that regulate kinases including PI3K and PKC. The 

requirement of PI3K signalling in LPA mediated cell survival (Weiner & Chun, 1999) 

and hypertrophy (Chen et al., 2008b) and LPA mediated PKC activation in the 

presence of DAG, PS, and calcium (Sando & Chertihin, 1996) have been 

demonstrated and Pramod (2017) has also suggested that they may also regulate LPA 

induced differentiation of P19 cells to cardiomyocytes. The requirement of canonical 

Wnt signalling in DMSO treated P19CL6 cells was established by Nakamura et al. 

(2003) and Naito et al. (2005) demonstrated the importance of PI3K/AKT pathway 

signalling in maintaining canonical Wnt activity in these cells and as a required 

pathway for the further expression of GATA4 and NKX2.5 (Naito et al., 2003). Whether 
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this pathway also mediates effects on LPA in generating cardiomyocytes from P19 

stem cells remain to be established. 

Stimulation with insulin or insulin-like growth factors also prompts ESC differentiation 

towards a cardiac fate mediated in part by PI3K signalling (Engels et al., 2014). Bekhite 

et al. (2011) reported inhibition of the PI3K pathway impaired cardiac differentiation of 

ESCs and similar results were demonstrated by D’Amico et al. (2016) using H9C2 

cells. PKC upregulation has been studied for its role in ischemia, hypertrophy, and 

heart failure (Gray, Karliner, & Mochly-Rosen, 1997; Mizukima et al., 2000; Muth et 

al., 2001; Rouet-Benzineb et al., 1996), however, the combinatory effect of PKC 

isoforms makes it difficult to assess the precise role of PKC in in vitro cardiac 

differentiation, but Zhou, Quann, and Gallicano (2003) identified that the upregulation 

of the novel PKCε in co-operation with the downregulation of classic PKCβ and 

atypical PKCζ are critical in differentiating cardiomyocytes from ESCs. Further 

inhibition of both PKCβ and ζ in combination with PKG also enhances cardiac 

differentiation (Mobley et al., 2010). Other studies have shown while PKCζ is 

unchanged during cardiac differentiation of ESCs, PKCα, β, δ, and ε increase in 

nuclear expression (Ventura et al., 2003) however PKCα, ε, and ζ translocate to the 

cytosolic compartment in DMSO treated P19 cells (Xu et al., 1999). Bekhite et al. 

(2011) found little effect of PKC inhibition on cardiac differentiation of ESCs but studies 

within the group have found that inhibition of PKC abolishes DMSO induced cardiac 

differentiation in P19 cells (Humphrey, 2009).  

In this study, we aimed to validate the model developed by Pramod (2017) and confirm 

that LPA does indeed drive P19 stem cells down a cardiac lineage. In addition, the 

studies on LPARs conducted by Pramod were extended to establish the role of LPAR2 

in the differentiation process induced by LPA as this was not previously investigated.  
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3.2 Materials and Methods  

3.2.1 Determining the effect of LPA on P19 cells  

Differentiation of P19 cells was carried out as specified in chapter 2 section 2.2. EBs 

were seeded in medium containing 1, 5, 10, or 20µM LPA and lysates were generated 

on days 6, 8, 10, and 16 of the differentiation process as described in chapter 2 section 

2.3.1. Protein quantification and western blotting were performed as set out in chapter 

2 section 2.3.3 and section 2.4 respectively. Cell viability in the presence of 1, 5, 10, 

20, and 50µM LPA was determined using the MTT assay as described in chapter 2 

section 2.5. Statistical analysis was carried out as described in chapter 2 section 2.7. 

3.2.2 Determining the role of LPA receptors in LPA mediated cardiac 

differentiation of P19 cells 

Differentiation of P19 cells was carried out as specified in chapter 2 section 2.2. The 

LPA receptor 4 antagonist, Suramin, was purchased from Sigma and prepared in a 

1.43mg/mL stock solution dissolved in water. The antagonists of LPA receptor 1/3 and 

2, Ki16425 and H2L5186303, were purchased from Tocris and prepared in a 10mM 

and 1mM stock solution, respectively, dissolved in DMSO. Aliquots were protected 

from light and stored at -20˚C until used. Working concentrations were obtained by 

dilution in complete αMEM on the day of use. Lysates were generated on day 10 of 

the differentiation process as described in chapter 2 section 2.3.1. Protein 

quantification and western blotting were performed as set out in chapter 2 section 2.3.3 

and section 2.4 respectively. Cell viability in the presence of varying concentrations of 

each antagonist was determined using the MTT assay as described in chapter 2 

section 2.5. Statistical analysis was done as described in chapter 2 section 2.7. 
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3.2.3 Determining the role of PKC and PI3K in LPA mediated cardiac 

differentiation of P19 cells 

Differentiation of P19 cells was carried out as specified in chapter 2 section 2.2. In 

solution inhibitors for both PKC and PI3K were purchased from Merck Chemicals. The 

PKC inhibitor, Bisindolylmaleimide-1 (BIM-1), was received, dissolved in DMSO, at a 

concentration of 1mg/mL and the PI3K inhibitor, LY294002, was received, dissolved 

in DMSO, at a concentration of 10mM. Aliquots were protected from light and stored 

at -20˚C until use. Working concentrations were obtained by dilution in complete 

αMEM on the day of use. Lysates were generated on day 10 of the differentiation 

process as described in chapter 2 section 2.3.1. Protein quantification and western 

blotting were performed as set out in chapter 2 section 2.3.3 and section 2.4 

respectively. Cell viability in the presence of varying concentrations of each inhibitor 

was determined using the MTT assay as described in chapter 2 section 2.5. Statistical 

analysis was done as described in chapter 2 section 2.7.
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3.3 Results  

3.3.1 LPA induced differentiation of P19 cells into cardiomyocytes  

The number of cardiomyocytes derived spontaneously by the formation of EBs is very 

low but have been remarkably enhanced using chemical inducers. In establishing 

whether LPA is capable of inducing P19 cells into cardiomyocytes, the following 

studies were carried out. 

Firstly, tolerance to LPA (1, 5, 10, 20, and 50µM) by P19 cells was established. The 

lowest concentration of 1µM showed an increase in MTT metabolism of 17% 

compared to the control. Concentrations of 5-20µM LPA were also well tolerated by 

the cells and showed no significant differences in MTT metabolism when compared to 

the control. Cytotoxicity was observed at the highest concentration tested, 50µM, 

where viability decreased by 30% compared to the control (Figure 3.0).  

To examine the effects of LPA on the differentiation of cardiomyocytes, EBs were 

seeded in the absence and presence of LPA (1, 5, 10, 20µM). 1% DMSO was also 

used in parallel studies as a positive control.  As evidenced by the expression of the 

cardiac-specific marker MLC1v, cardiac differentiation was induced by all the tested 

concentrations of LPA compared to untreated cells, but maximum induction was 

achieved with 5µM LPA, and the effect was comparable to that seen with 1% DMSO 

on day 10.  Induction by concentrations of 1, 10 and 20µM LPA was approximately 20-

30% less than that seen by 5µM LPA (Figure 3.1A). 

As shown in Figure 3.1B, expression of MLC1v was sustained until day 16 of the 

differentiation process in cells treated with LPA compared to untreated cells. No 

significant difference between the lower concentrations of LPA was observed, 
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however, induction with the highest concentration of 20µM was approximately 20% 

less than the other concentrations of LPA tested.  

Next, to establish whether the expression of MLC1v induced by LPA was time-

dependent, EBs were treated with 5µM LPA, as maximum induction was achieved at 

this concentration. As shown in Figure 3.2, on days 6 and 8, MLC1v expression was 

near absent in cells seeded with or without LPA, establishing day 10 as the earliest 

expression of MLC1v in LPA treated cells.   
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Figure 3.0. The viability of P19 cells in the presence of LPA 
P19 cells were cultured in a 96 well plate until 60% confluent and incubated for 24 
hours with medium alone or with increasing concentrations of LPA. Cells were 
incubated with medium containing 0.1mg MTT for a further 4 hours before assessing 
viability as described in chapter 2 section 2.5. Statistical comparisons were performed 
by one-way ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the 
means ± S.E.M. of 3 experiments.
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Figure 3.1. LPA induces the expression of MLC1v in P19 cells 
P19 cells were seeded in the presence of LPA, 1% DMSO, or without an inducing 
agent in non-tissue grade Petri dishes for 4 days. EBs were then transferred and 
cultured in 6-well tissue grade plates for a further 6 or 12 days. Lysates were generated 
on days 10(A) and 16(B) of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 6 experiments.
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Figure 3.2. LPA induces the expression of MLC1v in P19 cells in a time-
dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Lysates were generated on days 6, 8, and 10 of the 
differentiation process for expression of MLC1v determined by western blot. Statistical 
comparisons were performed by two-way ANOVA with Bonferroni post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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3.3.2 LPA receptors 1-4 mediate cardiac differentiation in LPA treated P19 

cells 

The concentrations used for each receptor antagonist were determined to be non-

cytotoxic using the MTT assay. Ki16425 (Figure 3.3A) and H2L5186303 (Figure 3.3B) 

were well tolerated by P19 cells even at high concentrations whereas concentrations 

of 1 and 2mg/mL of Suramin (Figure 3.3C) indicated cytotoxicity. 

To establish the importance of these receptors in LPA mediated cardiac differentiation, 

EBs were seeded in the presence of LPA receptor 1/3, 2, and 4 antagonists, Ki16425, 

H2L5186303, and Suramin respectively for 60 minutes before the addition of 5µM 

LPA. Treatment with each of the antagonists showed inhibition of MLC1v on day 10 in 

a concentration-dependent manner. Ki16425 reduced MLC1v expression by ~15, 35, 

and 85% using concentrations of 1, 10 and 20µM (Figure 3.4) whereas H2L5186303 

showed a reduction of ~25, 60, and 80% using a concentration of 1, 5, and 7.5nM 

compared to cells treated with 5µM LPA alone (Figure 3.5). Differentiation was not 

induced in cells treated with Ki16425 or H2L5186303 alone.  

Treatment with Suramin at 0.01, 0.05, and 0.1mg/mL concentrations decreased 

MLC1v expression by ~25, 40, and 90% respectively compared to cells treated with 

5µM LPA alone. However, at a concentration of 0.01mg/mL Suramin alone induced 

significant differentiation when compared to untreated cells. Compared to treatment 

with LPA alone, Suramin alone at 0.01mg/mL showed a mean difference of 15% in 

MLC1v expression (Figure 3.6). 
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Figure 3.3. The viability of P19 cells in the presence LPA receptor antagonists 
P19 cells were cultured in a 96 well plate until 60% confluent and incubated for 24 
hours with medium alone or with increasing concentrations of Ki16425 (A), 
H2L5186303 (B), or Suramin (C). Cells were incubated with medium containing 0.1mg 
MTT for a further 4 hours before assessing viability as described in chapter 2 section 
2.5. Statistical comparisons were performed by one-way ANOVA with Dunnett’s post 
hoc test (α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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Figure 3.4. Ki16425 blocks LPA induced MLC1v expression in a concentration 
dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with Ki16425 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were then 
transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates were 
generated on day 10 of the differentiation process for expression of MLC1v determined 
by western blot. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. *represents significance relative to LPA treatment alone.
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Figure 3.5. H2L5186303 blocks LPA induced MLC1v expression in a 
concentration dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with H2L5186303 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone.
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Figure 3.6. Suramin blocks LPA induced MLC1v expression in a concentration 
dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with Suramin for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone. #represents 
significance relative to without LPA treatment.
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3.3.3 PKC and PI3K signalling mediate cardiac differentiation in LPA 

treated P19 cells 

To establish whether PKC or PI3K was necessary to mediate the effects of LPA in 

cardiomyocyte differentiation, P19 cells were incubated during the EB forming stage 

with either BIM-1 or LY294002, inhibitors of PKC and PI3K respectively, for 60 minutes 

before the addition of 5µM LPA. The concentrations used for each inhibitor were 

determined to be non-cytotoxic using the MTT assay. BIM-1 was well tolerated by P19 

cells (Figure 3.7A), and LY294002 displayed reduced viability at 30µM and higher 

(Figure 3.7B). 

On day 10, neither of the inhibitors induced differentiation when used alone, and 

concentration-dependent inhibition of MLC1v was seen in cells treated with 5µM LPA 

following inhibitor treatment. 5µM BIM-1 treatment reduced MLC1v expression by half 

and abolished expression when treated with 10µM (Figure 3.8) compared to the 

treatment of 5µM LPA alone. LY294002 treatment of 1 and 10µM reduced expression 

by approximately 10%, and 40%, respectively, and abolished expression with 20µM 

treatment (Figure 3.9) compared to the treatment with 5µM LPA alone. 
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Figure 3.7. The viability of P19 cells in the presence of BIM-1 and LY294002   
P19 cells were cultured in a 96 well plate until 60% confluent and incubated for 24 
hours with medium alone or with increasing concentrations of BIM-1 (A), or LY294002 
(B). Cells were incubated with medium containing 0.1mg MTT for a further 4 hours 
before assessing viability as described in chapter 2 section 2.5. Statistical 
comparisons were performed by one-way ANOVA with Dunnett’s post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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Figure 3.8. BIM-1 blocks LPA induced MLC1v expression in a concentration 
dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with BIM-1 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were then 
transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates were 
generated on day 10 of the differentiation process for expression of MLC1v determined 
by western blot. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. *represents significance relative to LPA treatment alone.
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Figure 3.9. LY294002 blocks LPA induced MLC1v expression in a 
concentration dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with LY294002 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone.



71 
 

3.4 Discussion 

Several models are used to decipher the mechanisms mediating differentiation of stem 

cells into cardiomyocytes. Of these, the murine P19 teratocarcinoma cell line 

(McBurney & Rogers, 1982) has been extensively used for nearly 36 years and has 

established a foundation of signalling transduction mechanisms, although not entirely 

elucidated, that are involved in cardiac differentiation (van der Heyden & Defize, 2003). 

P19 cells are grown in culture medium containing foetal bovine or calf serum and 

maintained in an undifferentiated state, without the addition of leukaemia inhibitory 

factor (LIF) or a feeder layer, for prolonged period whereas culture in suspension 

initiates differentiation into multiple cell types (Edwards, Harris, & McBurney, 1983; 

McBurney et al., 1982). Although the differentiation efficacy of these cells to develop 

into cardiomyocytes during spontaneous EB formation is low, the relatively simple 

culture conditions permit exaggeration or manipulation of differentiation. Changes in 

the culture medium by the addition of various molecules allows easy evaluation of the 

effects on differentiation, not only in comparison to DMSO but also to determine if 

signalling transduction mechanisms are conserved in regulating cardiac 

differentiation. In this regard, we evaluated the ability of a biolipid, LPA, in mediating 

cardiac differentiation of P19 cells. 

Cardiac differentiation of P19 cells (Rudnicki et al., 1990; Rudnicki et al., 1989) in 

response to DMSO treatment is verified by the expression of several cardiac-specific 

proteins, including MHC and MLC, and with the occurrence of beating cells. Our initial 

studies assessed the effect of non-cytotoxic concentrations of 1, 5, 10, and 20µM LPA 

on cardiac differentiation compared to 1% DMSO. Findings determined that all 

concentrations induce differentiation as evidenced by the expression of cardiac-

specific ventricular myosin light chain (MLC1v) in a manner comparable to DMSO. 
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Consistent with the findings of Pramod (2017), maximum induction was achieved with 

5µM LPA at day 10 that was sustained until day 16. The expression of MLC1v in LPA 

treated cells was time-dependent and the earliest expression of MLC1v, determined 

to be day 10, corresponded to the earliest time point in which beating cells were 

routinely observed in both LPA and DMSO treated cells.  

The ability of LPA to induce cardiac differentiation may reflect the properties 

possessed by bioactive lipids as other closely related lipids, including S1P and SPC, 

have been reported to differentiate various cell lines into cardiomyocytes (Li et al., 

2016; Zhao et al., 2011). A concentration of 5µM LPA is within range of commonly 

used concentrations of LPA for in vitro studies (Evseenko et al., 2013; Fukushima et 

al., 2007; Liu et al., 2010; Shumay et al., 2007) but also within the physiological 

concentrations found under normal conditions (Gaits et al., 1997; Yung, Stoddard, & 

Chun, 2014). However, it is important to note that experiments were conducted in the 

presence of foetal bovine serum (FBS) containing culture medium. LPA and other 

lipids are constituents of FBS and vary in each batch. The concentration of LPA that 

resulted in enhanced cardiac differentiation of P19 cells was in addition to the 

unidentified concentration present in FBS. Very little cardiac differentiation was 

however observed in cells cultured without additional LPA treatment, suggesting that 

if LPA was present in FBS, it was at concentrations not sufficient to induce 

differentiation.   

Although beating cells were routinely observed in LPA treated cells, this was not 

uniform in the well or amongst experiments. Obtaining a homogenous population of a 

specific cardiomyocyte sub-type is a challenge in deriving cardiomyocytes from 

pluripotent cells. Our studies used only the ventricular MLC marker to verify cardiac 

differentiation, and the existence of other cell types was not addressed. 
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LPA acts via G-protein coupled receptors (GPCRs) to control multiple cell processes. 

LPA receptors are present in pluripotent and multipotent stem cells of both murine and 

human origin (Pebay, Bonder, & Pitson, 2007). The effect of LPA on differentiation 

through receptors 1 and 3 has been shown in neural stem cells to oligodendrocytes 

(Cui & Qiao, 2007). Liu et al. (2010) revealed that LPA receptor 1 signalling was 

required for osteoblastic differentiation of human mesenchymal stem cells and this 

process was negatively regulated by LPA receptor 4. The role of LPA receptor 1 in 

stimulating neuronal differentiation of neuroblasts (Fukushima et al., 2007) and 

myofibroblastic differentiation of mesenchymal stem cells (Tang et al., 2014) is also 

known whereas opposing roles for LPA receptor 2 and 3 in differentiating K562 cells 

have been shown (Ho et al., 2015; Lin et al., 2016).  

We next evaluated the role of LPA receptors 1-4 in mediating the action of LPA in 

differentiating P19 cells into cardiomyocytes. Pharmacological inhibitors were used to 

antagonise the action of LPA at receptors 1-3. Ki16425 selectively inhibits LPA 

receptor 1 and 3 with a slightly higher affinity for the former (Ohta et al., 2003) and 

H2L5186303 selectively inhibits LPA receptor 2 (Fells et al., 2008). Suramin is a non-

metallic compound that inhibits many cellular enzymes, growth factors, and cell 

surface receptors. It is a broad-spectrum antagonist of P2Y purinergic receptors and 

was used to antagonise LPA receptor 4 (Beindl et al., 1996; Charlton et al., 1996).  

Using RT-PCR, Pramod (2017) identified the expression of LPAR1-4 in P19 cells and 

found mRNA levels for LPARs 1-4 were upregulated in LPA treated P19 cells. A 1.25 

and 1-fold increase was observed in mRNA levels for LPAR1 and 3/4 respectively 

whereas LPAR2 had a 3-fold increase compared to untreated cells. Pramod (2017) 

further established the role of LPARs 1/3 and 4 using receptor antagonists Ki16425 

(1-50µM) and Suramin (0.001-0.5mg/mL) respectively which decreased MLC1v in a 
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concentration dependent manner. These findings were replicated in this study using 

the same receptor antagonists within the same concentration range.  

LPA was unable to induce the same differentiation response in the presence of 

antagonists for LPA receptors 1-4 and this effect was concentration dependent for 

each antagonist used. Ki16425 decreased the expression of MLC1-v with 10µM 

treatment, but this effect was far more prominent with 20µM treatment. Other studies 

have used 10µM Ki16425 (Fukushima et al., 2007; Li et al., 2017; Liu et al., 2010; Wu 

et al., 2015) but treatment with 5µM and 20µM are also reported (Evseenko et al., 

2013; Tsutsumi et al., 2015). Ki16425 has an IC50 of 0.34µM, 0.93µM, and 6.5µM for 

LPAR 1, 3, and 2 respectively, therefore, it is important to highlight the possible 

inhibition of all three receptors at the concentrations used in this study. Inhibition of 

each receptor individually would be required to establish whether the effects observed 

are due to compounded inhibition of the receptors or if cardiac differentiation can be 

abolished by inhibition of either receptor.  

Pramod (2017) identified that mRNA levels for LPAR2 had the greatest fold increase 

in LPA treated cells, however, did not establish a role for LPAR2. To address this, we 

have now demonstrated that treatment with 7.5nM H2L5186303 for 60 minutes before 

the addition of LPA abolishes differentiation. The concentration range used is 

consistent with at least one other study by McArthur et al. (2015) whereas Wu et al. 

(2015) used higher concentrations of 1µM. H2L5186303 has an IC50 of 8.9, 1230, and 

27354nM for LPA receptors 2, 3, and 1. As we used concentrations of 1-7.5nM in our 

studies, we can conclude that LPA receptor 2 is required for LPA mediated cardiac 

differentiation of P19 cells.  
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Suramin blocked LPA induced differentiation in a concentration-dependent manner, 

however, also induced expression of MLC1-v with a treatment of 0.01mg/mL alone. 

This may be due to the ability of Suramin to inhibit the binding of FGF, TGF-β, and 

Wnt proteins (Coffrey et al., 1987; Kathir et al., 2006; Smolich et al., 1993). Modulation 

of these proteins in the culture medium alone has shown to impact cardiac 

differentiation (Laflamme et al., 2007; Lian et al., 2012; Mehta et al., 2014; Monzen et 

al., 1999; Yang et al., 2008). Suramin has also been shown to differentiate cells into a 

sinus node phenotype (Wiese et al., 2011). In this study, mesendoderm and cardiac-

specific transcription factors were initially downregulated and later sinus node markers 

were upregulated. An established and selective LPA receptor 4 antagonist was not 

available at the time these studies were initiated, and as Suramin is a broad-spectrum 

antagonist, we can only conclude that LPA receptor 4 may be involved in LPA 

mediated cardiac differentiation of P19 cells.   

We next set out to confirm the role of PKC and PI3K in mediating the actions of LPA 

in differentiating P19 cells into cardiomyocytes as established by Pramod (2017) 

wherein BIM-1 (0.1-10µM) and LY294002 (1-20µM) were used. The PKC inhibitor, 

BIM-1, is selective for PKCα, β, γ, δ, and ε isozymes with an IC50 of 10nM but may 

also inhibit GSK3/GSK3β and PKA at concentrations 30 and 200-fold higher 

respectively (Toullec et al., 1991). The PI3K inhibitor, LY294002, is selective for PI3K 

in the order of α > δ > β with an IC50 of 0.5µM, 0.57µM, and 0.97µM respectively 

(Vlahos et al., 1994).  

Consistent with the data produced by Pramod (2017), BIM-1 inhibited the response 

produced by LPA in a concentration-dependent manner. Identifying the exact role of 

PKC in cardiac differentiation has been difficult as PKC isoforms have opposing and 

combinatory effects resulting in contradicting studies (Bekhite et al., 2011; Ventura et 
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al., 2003; Xu et al., 1999; Zhou et al., 2003). Our results are consistent with other 

studies concluding that PKC was essential for cardiomyocyte differentiation from 

mESCs or circulating progenitor cells (Koyanagi et al., 2005; Ronca et al., 2009). 

Previous studies within our group also achieved concentration-dependent disruption 

of DMSO induced cardiac differentiation of P19 cells within the same concentration 

range of 1-10µM BIM-1 (Humphrey, 2009).  

Similar to the data produced by Pramod (2017), LY294002 also inhibited the response 

produced by LPA in a concentration-dependent manner. The importance of PI3K 

signalling in cardiomyocyte differentiation has been documented by several groups 

(Bekhite et al., 2011; Klinz et al., 1999; Naito et al., 2005; Sauer et al., 2000). 20µM 

LY294002 abolished differentiation in our model which is consistent with the study by 

Naito et al. (2005) in which the use of 20µM LY294002 disrupted DMSO induced 

cardiac differentiation of P19CL6 cells.  

In conclusion, the data generated in this study is consistent with that of Pramod (2017) 

in which LPA induced cardiac differentiation of P19 cells, most effectively when used 

at a concentration of 5µM. The effect is mediated through LPAR1/3 and 4, and both 

PKC and PI3K signalling pathways. We further established the critical role of LPAR2 

in this study which was previously unknown. Although treatment with Ki16425 

decreased the expression of MLC1v in LPA treated cells, the selectivity of the 

antagonist merits further assessment to establish the critical receptor in this 

experimental model. Similarly, the requirement of LPAR4 requires further evaluation 

as Suramin is a broad-spectrum antagonist.
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Chapter 4 

The role and regulation of the MAPKs 
in LPA mediated cardiac differentiation 

of P19 cells
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4.1 Introduction 

Response to signals from both intra- and extra-cellular stimuli including physical or 

chemical stress creates a portfolio of diverse cellular events mediated by the MAPKs. 

Cross-talk and feedback amongst MAPKs are partially owing to shared upstream 

activators and downstream targets but have been individually studied for their role in 

proliferation, survival, apoptosis, and differentiation (Binetruy et al., 2007; Rose, Force, 

& Wang, 2010; Wada & Penninger, 2004; Wang, 2007). MAPKs are capable of 

signalling independently and are targets of several identified regulators of cardiac 

lineage specification in ESCs.  

Activation of the ERK pathway by FGF effects many cellular processes including 

differentiation. ESCs isolated from fgfr+/- mice formed beating myocytes which was 

blocked with the inhibition of MEK1/2 but not MEK1 alone (Dell’Era et al., 2003). Other 

growth factors such as VEGF have also been shown to mediate cardiac differentiation 

of mESCs in an ERK-dependent manner (Chen et al., 2006b). Inhibition of the ERK 

pathway has also been reported to maintain ESC pluripotency (Force & Woodgett, 

2009). Findings in P19CL6 cells have been inconclusive as studies have shown no 

role for ERK in cardiac differentiation (Davidson & Morange, 2000) or a partial role in 

the presence of DMSO (Eriksson & Leppa, 2002). However, Pramod (2017) identified 

ERK as a critical signalling kinase in LPA induced cardiac differentiation of P19 cells. 

In differentiating P19 cells, the proliferative capacity of cells has been attributed mainly 

to JNK in the presence of DMSO (Eriksson & Leppa, 2002). This was challenged by 

Xu & Davis (2010) by demonstrating the requirement of JNK for ESC differentiation 

and not proliferation with other studies reporting similar findings (Byun et al., 2013; 

Yao et al., 2014). For the differentiation of ESCs, JNK1 and 2 is required for 
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establishing mesodermal and ectodermal lineages (Xu & Davis, 2010). JNK can be 

activated by numerous signals and factors including Wnt and TGF-β signalling. Wnt11 

induction of the cardiac fate has reportedly been prevented with the inhibition of the 

JNK pathway (Chen et al., 2015). Impaired cardiac differentiation was also observed 

in JSAP null ESCs with a decrease in NKX2.5 activity (Sato et al., 2005). There are 

approximately 90 well-validated targets of JNK, and several have been identified as 

regulators of cardiomyocyte differentiation of ESCs including, but not limited to, β-

catenin, ATF, Jun proteins, and YAP (Zeke et al., 2016).  

A study by Aouadi et al. (2006) suggested p38 activity may be critical in the promotion 

of a cardiac fate over a neural and is supported by p38 inhibition in DMSO treated P19 

cells abolishing cardiomyocyte differentiation (Eriksson & Leppa, 2002). p38 may be 

acting through BMP activated TAK1 signalling which has been shown to regulate 

multiple transcription factors, including cardiac specific transcription factors, GATA4 

and MEF2c, and ATF-2 (Hanafuse et al., 1999; Monzen et al., 2001; Sano et al., 1999). 

In contrast, Pramod (2017) found inhibiting p38 did not impact LPA induced cardiac 

differentiation of P19 cells. 

Pramod (2017) recently identified the role of ERK and p38 in LPA induced cardiac 

differentiation of P19 cells. We extended these studies to further establish the role of 

JNK which was previously not investigated. Furthermore, we aimed to determine the 

regulation of the three MAPKs by LPA receptors 1-4 and PKC/PI3K. 
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4.2 Materials and Methods 

4.2.1 Determining the role of MAPKs in LPA mediated cardiac 

differentiation of P19 cells 

Differentiation of P19 cells was carried out as specified in chapter 2 section 2.2. 

Inhibitors for ERK, p38, and JNK were purchased from Merck Chemicals. The ERK 

inhibitor, PD98059, was received in DMSO at a concentration of 5mg/mL. The p38 

inhibitor, SB203580, was received in DMSO at a concentration of 1mg/mL and the 

JNK inhibitor, SP600125, was received in DMSO at a concentration of 50mM. Aliquots 

were protected from light and stored at -20˚C until use. Working concentrations were 

obtained by dilution in complete αMEM on the day of use. Lysates were generated on 

day 10 of the differentiation process as described in chapter 2 section 2.3.1. Protein 

quantification and western blotting were performed as set out in chapter 2 section 2.3.3 

and section 2.4 respectively. Cell viability in the presence of varying concentrations of 

each inhibitor was determined using the MTT assay as described in chapter 2 section 

2.5. Statistical analysis was done as described in chapter 2 section 2.7. 

4.2.2 Determining the effect of 20µM SP600125 on the aggregation and 

proliferation of EBs 

Differentiation was carried out as described in chapter 2 section 2.2 with the following 

modifications: EBs were seeded in the presence or absence of 5µM LPA with 20µM 

SP600125 treatment at the same time, 24 hours, or 48 hours after initial seeding. The 

lysates were generated at day 10 as described in chapter 2 section 2.3.1. Protein 

quantification was carried out as specified in chapter 2 section 2.3.3. Statistical 

analysis was done as described in chapter 2 section 2.7. 
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4.2.3 Determining the phosphorylation of JNK during EB formation   

EBs were formed as described in chapter 2 section 2.2 and seeded in the absence or 

presence of 5µM LPA for 18, 24, 48 and 72 hours. Lysates were generated at 18, 24, 

48, and 72 hours as described in chapter 2 section 2.3.2 and protein quantification 

was carried out as described in chapter 2 section 2.3.3. Western blot was carried out 

as specified in chapter 2 section 2.4 with the following modifications: Blocking buffer 

was made with 5% BSA in TBS-T, phospho-SAPK/JNK (Thr183/Tyr185) mouse 

primary antibody (Cell Signaling Technology) was used at a dilution of 1:3000, and 

SuperSignal West Dura Substrate (Thermo Fisher) was used for protein detection. 

Statistical analysis was done as described in chapter 2 section 2.7. 

4.2.4 Determining the effect of delayed inhibition of the JNK pathway in 

differentiating P19 cells 

Differentiation was carried out as described in chapter 2 section 2.2 with the following 

modifications: EBs were seeded in the presence of 5µM LPA with 10µM SP600125 

treatment at the same time, 1, 3, 24, or 48 hours after initial seeding, or with 20µM 

SP600125 treatment 48 hours after initial seeding. Lysates were generated on day 10 

as described in chapter 2 section 2.3.1. Protein quantification was done as set out in 

chapter 2 section 2.3.3 followed by western blotting as described in chapter 2 section 

2.4. Statistical analysis was done as described in chapter 2 section 2.7. 

4.2.5 Determining the regulation of JNK by LPA receptors 

The regulation of JNK by LPA receptors 1-4 during EB formation was determined by 

forming EBs as described in chapter 2 section 2.2. EBs were seeded in the absence 

or presence of LPA after a 60-minute pre-treatment with LPA receptor antagonists, 

Suramin (LPAR4), Ki16425 (LPAR1 and 3), and H2L5186303 (LPAR2) or the JNK 

inhibitor, SP600125. Lysates were generated 48 hours after initial seeding as 
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described in chapter 2 section 2.3.2. Protein quantification and western blot were 

carried out as described in chapter 2 section 2.3.3 and section 2.4 with the following 

modifications: blocking buffer was made with 5% BSA in TBS-T, phospho-SAPK/JNK 

(Thr183/Tyr185) mouse primary antibody (Cell Signaling Technology) was used at a 

dilution of 1:3000, and SuperSignal West Dura Substrate (Thermo Fisher) was used 

for protein detection. Statistical analysis was done as described in chapter 2 section 

2.7. 

4.2.6 Determining the phosphorylation of MAPKs by LPA  

A cell-based ELISA kit (Sigma: product RAB0352) was used for detecting 

phosphorylated and total ERK, p38, and JNK in LPA treated cells. Buffers were 

supplied with the kit and prepared according to the manufacturer instructions. P19 

cells were prepared for the ELISA analysis as described in chapter 2 section 2.2.4. 

After treatment with LPA the medium was removed, and wells were washed three 

times with 1x wash buffer, and fixing solution was added. The plate was incubated for 

20 minutes at room temperature with gentle shaking and washed three times. 

Quenching buffer was added and the plate was incubated for 20 minutes without 

shaking followed by four washes. Wells were then incubated with 50µL of the 

appropriate primary antibody and incubated for 2 hours at room temperature with 

gentle shaking. The plate was washed four times followed by incubation with 50µL/well 

of secondary antibody for 1 hour at room temperature. The plate was washed four 

times before the addition of TMB substrate reagent. The plate was incubated for 30 

minutes in the dark with gentle shaking after which stop solution was added, and the 

plate was read at 450nm using the CLARIOstar plate reader. As multiple wash steps 

were carried out, resulting in the possible loss of cells, crystal violet solution was used 

to estimate the relative number of cells in each well. After reading the plate, cells were 
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washed twice with the buffer supplied and twice with 1x PBS. The plate was air dried 

for 10 minutes and 100µL of crystal violet solution was added to each well and left to 

incubate at room temperature for 30 minutes. The plate was washed using 1x PBS for 

5 minutes, repeated three times, before incubation with 1% SDS solution for 1 hour 

with gentle shaking. The absorbance was read at 595nm using the CLARIOstar plate 

reader. The MAPK phospho- and total signals were then normalized for cell number 

and data expressed as a percentage of non-treated cells (basal expression). Statistical 

analysis was done as described in chapter 2 section 2.7. 

4.2.7 Determining the cross-talk between MAPKs, and the regulation of 

MAPKs by LPA receptors 1-4, PKC, and PI3K 

A cell-based ELISA kit (Sigma: product RAB0352) was used to determine the effects 

of the inhibition of LPA receptors 1-4, PI3K, and PKC on the phosphorylation of ERK, 

p38, and JNK in the presence of LPA. Compensation by other MAPKs when a single 

subfamily was inhibited was also determined. Antagonists for LPA receptor 1/3 (20µM 

Ki16425), 2 (7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) were prepared in 

serum-free αMEM as were inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), p38 (10µM SB203580) and JNK (10µM SP600125). Cells were 

prepared as described in chapter 2 section 2.2.4 but were treated with the antagonists 

for 60 minutes before stimulation with 5µM LPA, prepared in serum-free αMEM, for 15 

minutes. The steps carried out next are the same as specified above in section 4.2.6. 

The MAPK phospho- signals were then normalized for cell number and data 

expressed as a percentage of LPA treated cells. As limited reagents were available, 

the treatments were repeated twice and presented as mean data. 
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4.3 Results 

4.3.1 ERK and JNK signalling mediate cardiac differentiation in LPA 

treated P19 cells 

To establish whether any of the MAPK subgroups were required in mediating LPA 

induced cardiomyocyte differentiation of P19 cells, the series of studies described 

were carried out.  

The concentrations used to inhibit each of the MAPKs were determined to be non-

cytotoxic using the MTT assay (Figure 4.0). Inhibition of MLC1v was achieved using 

20µM of the ERK inhibitor, PD98059 (Figure 4.1), whereas concentrations of 1-10µM 

of the p38 inhibitor, SB203580, did not affect the expression of MLC1v in LPA treated 

cells (Figure 4.2). Neither inhibitor induced the expression of MLC1v in cells when 

used alone. The JNK inhibitor, SP600125, decreased MLC1v by a third when used at 

a concentration of 1µM followed by 5µM LPA treatment and 10µM SP600125 

abolished the expression of MLC1v in the same conditions (Figure 4.3). Treatment 

with 20µM of SP600125 in the absence or presence of LPA resulted in significantly 

less protein being extracted from lysates generated at day 10 even though cytotoxicity 

was not observed when determined using the MTT assay (Figure 4.0C). The EBs 

treated with 20µM SP600125 displayed disrupted aggregation, and the aggregates did 

not demonstrate growth. Upon transfer to 6-well plates, the surviving EB's also failed 

to adhere.
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Figure 4.0. The viability of P19 cells in the presence of MAPK inhibitors 
P19 cells were cultured in a 96 well plate until 60% confluent and incubated for 24 
hours with medium alone or with increasing concentrations of PD98059 (A), SB203580 
(B), or SP600125 (C). Cells were incubated with medium containing 0.1mg MTT for a 
further 4 hours before assessing viability as described in chapter 2 section 2.5. 
Statistical comparisons were performed by one-way ANOVA with Dunnett’s post hoc 
test (α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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Figure 4.1. 20µM PD98059 blocks LPA induced MLC1v expression 

P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with PD98059 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone.
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Figure 4.2. SB203580 does not block LPA induced MLC1v expression 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with SB203580 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone.
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Figure 4.3. SP600125 blocks LPA induced MLC1v expression in a 
concentration dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with SP600125 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone.
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4.3.2 The time-dependent effect of 20µM SP600125 on the aggregation 

and size of EBs 

From the observations and results above, we next set out to determine if delayed 

inhibition of JNK using 20µM SP600125 would yield a similar effect. EBs were seeded 

in the absence or presence of 5µM LPA with the addition of 20µM SP600125 at the 

time of seeding, 24 hours, or 48 hours after initial seeding. Photographs were taken 

96 hours after initial seeding (Figure 4.4A). 

The cells seeded without (Figure 4.4A1) or with 5µM LPA (Figure 4.4A2) exhibited 

normal EB aggregation, growth, adhered once transferred to 6-well plates, and 

resulted in normal protein content of lysates generated on day 10 (Figure 4.4B). Cells 

treated with 20µM SP600125 at the same time as 5µM LPA (Figure 4.4A4) or without 

LPA (Figure 4.4A3) exhibited disrupted EB aggregation and growth and did not adhere 

once transferred to 6-well plates which resulted in low protein content of lysates 

generated on day 10. The addition of 20µM SP600125 24 hours after initial seeding 

without (Figure 4.4A5) or with 5µM LPA (Figure 4.4A6) yielded similar results but the 

EBs were slightly larger. Treatment with 20µM SP600125 48 hours after initial seeding 

without (Figure 4.4A7) or with 5µM LPA (Figure 4.4A8) yielded results similar to 

treatment with lower concentrations of SP600125 and the EBs exhibited normal 

aggregation, growth, and adhered once transferred to 6-well plates. Protein 

quantification of lysates generated at day 10 showed that treatment with 20µM 

SP600125 after 48 hours of initial seeding was comparable to EBs seeded in the 

absence of SP600125 with or without LPA treatment (Figure 4.4B).
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Figure 4.4. Time-dependent effects of 20µM SP600125 on aggregating P19 cells 

P19 cells were seeded in the absence or presence of 5µM LPA with a 20µM SP600125 treatment 

at the same time, 24 hours, or 48 hours after initial seeding in non-tissue grade Petri dishes for 4 
days. Photographs (A) were taken and EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Lysates were generated on day 10 of the differentiation process for 
protein quantification using the BCA assay (B) as specified in chapter 2 section 2.3.3. Statistical 
comparisons were performed by two-way ANOVA with Bonferroni post hoc test (α=0.05). The data 
represent the means ± S.E.M. of 3 experiments.
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4.3.3 Phosphorylation of JNK during EB formation 

The above experiments were followed by studies examining the phosphorylation of 

JNK (p46 and p54) during EB formation. 

As seen in Figure 4.5A, phosphorylation of p46 was gradual, peaking at 48 hours, and 

comparable in both LPA treated and untreated cells. Phosphorylation of both groups 

decreased at 72 hours to levels slightly less than at 18 hours. Phosphorylation of p54 

(Figure 4.5B) was barely detectable at 18 hours but steeply increased at 24 hours and 

was maintained at 48 hours. A sharp decrease at 72 hours was comparable to 

phosphorylation at 18 hours suggesting a transient activation between 24 and 48 

hours. No significant difference in phosphorylation between LPA treated and untreated 

cells was observed in any of the lysates generated.  
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Figure 4.5. Phosphorylation of JNK during EB formation of P19 cells 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 18, 24, 48 and 72 hours. Lysates were generated using 1x RIPA buffer, 
as described in chapter 2 section 2.3.2, for expression of phospho-SAPK/JNK 
(Thr183/Tyr185) determined by western blot. Statistical comparisons were performed 
by two-way ANOVA with Bonferroni post hoc test (α=0.05). The data represent the 
means ± S.E.M. of 3 experiments.
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4.3.4 The effect of delayed inhibition of the JNK pathway on the 

expression of MLC1v 

From the experiment above, we next set to establish the effect of delayed inhibition of 

the JNK pathway in differentiating P19 cells.  

Differentiation into cardiomyocytes was inhibited as evidenced by the abolishment of 

MLC1v expression at day 10 with the addition of 10µM SP600125 at the same time as 

5µM LPA and 1, 3, 24, or 48 hours after initial seeding. Although, treatment with both 

10µM and 20µM SP600125 48 hours after LPA treatment inhibited the expression of 

MLC1v, a greater reduction in MLC1v was seen with 20µM SP600125 treatment 

(Figure 4.6)
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Figure 4.6. Delayed inhibition of the JNK pathway blocks LPA induced MLC1v 
expression 
P19 cells were seeded in the presence of 5µM LPA in non-tissue grade Petri dishes. 

Addition of 10µM SP600125 was concurrent with LPA treatment or 1, 3, 24, or 48 

hours after initial seeding. Treatment with 20µM SP600125 was 48 hours after initial 

seeding. Cells were cultured in suspension for 4 days and were then transferred and 
cultured in 6-well tissue grade plates for a further 6 days. Lysates were generated on 
day 10 of the differentiation process for expression of MLC1v determined by western 
blot. Statistical comparisons were performed by one-way ANOVA with Dunnett’s post 
hoc test (α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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4.3.5 LPA receptor mediated regulation of JNK 

As seen in Figure 4.7, in EBs collected at 48 hours after initial seeding, the 

phosphorylation of both p54 and p46 JNK did not significantly differ with LPA 

treatment. In the presence of SP600125, 10µM of the inhibitor affected p46 JNK 

phosphorylation more drastically than p54 JNK, both of which were significantly 

inhibited irrespective of LPA treatment as did 20µM SP600125 treatment but affected 

both p46 and p54 JNK phosphorylation comparably. No change in JNK 

phosphorylation was detected with LPA receptor antagonist treatment alone. LPAR4 

inhibition by 0.1mg/mL Suramin did not affect JNK phosphorylation whereas LPAR2 

inhibition by 7.5nM H2L5186303 decreased both p46 and p54 mean phosphorylation 

by approximately 40% compared to LPA treatment alone. Phosphorylation of JNK was 

most drastically affected by LPAR1/3 inhibition by 20µM Ki16425, resulting in a mean 

decrease of both p46 and p54 by approximately 80% compared to LPA treatment 

alone.
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Figure 4.7. Ki16425 and H2L5186303 block JNK phosphorylation in LPA treated 
cells 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with LPA receptor 1/3 (20µM Ki16425), receptor 2 (7.5nM H2L5186303), receptor 4 

(0.1mg/mL Suramin) antagonist, or JNK inhibitor (*10µM or **20µM SP600125) for 60 

minutes in non-tissue grade Petri dishes for 48 hours. Lysates were generated using 
1x RIPA buffer as described in chapter 2, section 2.3.2, for expression of phospho-
SAPK/JNK (Thr183/Tyr185) by western blot. Statistical comparisons were performed 
by one-way ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the 
means ± S.E.M. of 3 experiments. *represents significance relative to LPA treatment 
alone. #represents significance relative to without LPA treatment.
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4.3.6 Phosphorylation of the MAPKs by LPA 

A cell-based ELISA was used to investigate the effects of LPA treatment on early 

phosphorylation of the MAPKs. Basal expression was determined by untreated cells, 

marked at time 0. Change in expression by LPA treatment over the course of 180 

minutes was compared to this. Total protein expression was unchanged in cells 

treated with LPA over the course of 180 minutes for all three MAPKs. Phosphorylation 

of each MAPK occurred within the first minute but was not significantly elevated for 

the first 15 minutes. A steep decrease in phosphorylated ERK was observed at 30 

minutes that was sustained until 180 minutes (Figure 4.8). A reduction in p38 

phosphorylation was also observed at 180 minutes (Figure 4.9) whereas a 

considerable decrease in phosphorylation was seen at 60 minutes in JNK with a 

further reduction at 180 minutes (Figure 4.10).
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Figure 4.8. Phosphorylation of ERK by LPA in adherent P19 cells 
A cell-based ELISA kit (Sigma) was used for detecting phosphorylated and total ERK, 
in LPA (5µM) treated cells. 100µL of cell suspension containing 1.5x104 cells was 

seeded into each well of a 96-well plate and incubated for 48 hours. LPA was diluted 
in serum-free αMEM, and the cells were treated for 1, 5, 15, 30, 60 or 180 minutes. 
The assay was carried out as described in section 4.2.6. The ERK phospho- (A) and 
total (B) signals were normalised for cell number and data expressed as a percentage 
of non-treated cells (time 0). Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments.
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Figure 4.9. Phosphorylation of p38 by LPA in adherent P19 cells 
A cell-based ELISA kit (Sigma) was used for detecting phosphorylated and total p38, 
in LPA (5µM) treated cells. 100µL of cell suspension containing 1.5x104 cells was 

seeded into each well of a 96-well plate and incubated for 48 hours. LPA was diluted 
in serum-free αMEM, and the cells were treated for 1, 5, 15, 30, 60 or 180 minutes. 
The assay was carried out as described in section 4.2.6. The p38 phospho- (A) and 
total (B) signals were normalised for cell number and data expressed as a percentage 
of non-treated cells (time 0). Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments.
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Figure 4.10. Phosphorylation of JNK by LPA in adherent P19 cells 
A cell-based ELISA kit (Sigma) was used for detecting phosphorylated and total JNK, 
in LPA (5µM) treated cells. 100µL of cell suspension containing 1.5x104 cells was 

seeded into each well of a 96-well plate and incubated for 48 hours. LPA was diluted 
in serum-free αMEM, and the cells were treated for 1, 5, 15, 30, 60 or 180 minutes. 
The assay was carried out as described in section 4.2.6. The JNK phospho- (A) and 
total (B) signals were normalised for cell number and data expressed as a percentage 
of non-treated cells (time 0). Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments.
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4.3.7 Regulation of the MAPKs in LPA treated cells by LPA receptors 1-4, 

PKC, and PI3K 

For further investigation into whether there is cross-talk amongst MAPK or regulation 

by PKC, PI3K and LPA receptors 1-4, an ELISA kit was used. Basal expression was 

determined by stimulating the cells with 5µM LPA for 15 minutes and change in 

expression by LPA treatment for 15 minutes after an initial 60-minute incubation with 

the inhibitor was compared to this. As limited reagent was available, the treatments 

were repeated twice and presented as mean data.  

Phosphorylation of ERK appeared to be upregulated with the inhibition of the p38 

pathway whereas a minuscule decrease was observed with LPA receptor inhibition 

and inhibition of the JNK pathway. No change was seen in ERK phosphorylation with 

the inhibition of the PKC and PI3K kinases (Figure 4.11A). 

p38 phosphorylation appeared to be upregulated with LPA receptor 1-4 inhibition as 

with PKC. No noticeable difference in p38 phosphorylation was observed by the 

inhibition of PI3K, ERK, or JNK (Figure 4.11B).   

JNK phosphorylation did not appear to be affected by LPA receptor 4 and 1/3 

inhibition, but a slight decrease in phosphorylation with the inhibition of LPA receptor 

2 was detected. Inhibition of the PKC kinase showed an increase in JNK 

phosphorylation and inhibition of the PI3K kinase showed no change. A slight increase 

in JNK phosphorylation was detected upon inhibition of the ERK pathway; this result 

was more prominent with p38 inhibition (Figure 4.11C)
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Figure 4.11. Regulation of the MAPKs in LPA treated cells 
A cell-based ELISA kit (Sigma) was used to determine the regulation and cross-talk 
between MAPK subgroups. 100µL of cell suspension containing 1.5x104 cells was 

seeded into each well of a 96-well plate and incubated for 48 hours. Basal expression 
was determined by stimulating the cells with 5µM LPA, prepared in serum-free αMEM, 

for 15 minutes. Changes in basal expression after an initial 60-minute incubation with 
the inhibitors for LPA receptors (LPAR 1/3 antagonized with 20µM Ki16425, LPAR 4 

antagonized with 0.1mg/mL Suramin, LPAR2 antagonized with 7.5nM H2L5186303) 
or kinase inhibitors (ERK pathway inhibited with 20µM PD98059, p38 pathway 

inhibited with 10µM SB203580, JNK pathway inhibited with 10µM SP600125, PI3K 

inhibited with 20µM LY294002, PKC inhibited with 10µM BIM-1) followed by 

stimulation with LPA for 15 minutes was compared to basal expression. The assay 
was carried out as described in section 4.2.7. The phospho-signals for ERK (A), p38 
(B), and JNK (C) were normalised for cell number and the data expressed as a 
percentage of basal expression. As limited wells were available, the treatments were 
repeated twice and presented as mean data.
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4.4 Discussion  

The mitogen-activated kinases are activated by multiple stimuli and receptor families 

including GPCRs. LPA signalling, via the MAPKs, regulates proliferation, survival, 

migration, and differentiation (Du et al., 2010; Hayashi et al., 2001; Kostic et al., 2015; 

Malchinkhuu et al., 2005; Schuck et al., 2003; Sorensen et al., 2003). The requirement 

of the MAPKs for LPA signal transduction and evidence of PKC and PI3K regulation 

of the MAPKs in other models, in conjunction with our findings highlighted in chapter 

3, prompted us to extend our studies to examine the involvement of the MAPKs in LPA 

mediated cardiac differentiation of P19 cells.   

Commercially available and widely used inhibitors were used to determine the role of 

each MAPK subfamily. ERK inhibition was achieved using PD98059, a selective 

inhibitor of MEK1 (Dudley et al., 1995). Inhibition of p38 was achieved using 

SB203580, a selective inhibitor of p38α and β with slightly more affinity for the former. 

SB203580 has an IC50 of 0.6µM but also shown to inhibit Akt at 10-fold higher 

concentrations (Cuenda et al., 1995; Lali et al., 2000). JNK inhibition was achieved 

using SP600125, a selective inhibitor for JNK1> JNK2>JNK3 with an IC50 of 40nM, 

40nM, and 90nM respectively but also MKK4 at 10-fold higher concentrations and 

MKK3/6, Akt, and PKCα at 25-fold higher concentrations (Bennett et al., 2001).  

Pramod (2017) established the role of ERK and p38 using 1-20µM of PD98059 and 1-

10µM of SB203580 respectively and found while ERK was a required signalling target 

of LPA, inhibition of p38 did not result in the decrease of MLC1v in LPA treated cells. 

The current thesis has confirmed that LPA induced cardiac differentiation of P19 cells 

could be inhibited with the treatment of 20µM PD98059. The importance of ERK in 

cardiac differentiation is supported by several recent studies (Abbey and Seshagiri, 
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2013; Qian et al., 2012; Wang et al., 2017; Wu et al., 2013), however, studies in P19 

cells have not fully supported this (Davidson & Morange, 2000; Eriksson & Leppa, 

2002). Dell’Era et al. (2003) shed light on this contradiction by treating fgfr+/- EBs with 

both PD98059 and U0126, the latter is an inhibitor of both MEK1 and MEK2. Only 

inhibition of MEK1/2 inhibited cardiac differentiation whereas inhibition of MEK1 alone 

did not. PD98059 is highly selective for MEK1, and the concentration of 20µM used in 

our studies is supported by reports inhibiting the ERK pathway to evaluate the effect 

on cardiac differentiation (Ronca et al., 2009; Wu et al., 2013). 

Inhibition of p38 by 1, 5, and 10µM SB203580 did not affect LPA induced cardiac 

differentiation of P19 cells. This observation contradicts several reports that have 

implicated p38 in cardiac differentiation (Aoudi et al., 2006; Ding et al., 2008; Eriksson 

& Leppa, 2002; Li et al., 2006). However, others have suggested that the use of 

SB203580 at concentrations of less than 10µM promotes cardiac differentiation of 

hESCs whereas higher concentrations oppose this (Graichen et al., 2008; Kempf et 

al., 2011; Xu et al., 2008). Davidson and Morange (2000) and Gaur et al. (2010) also 

reported that effects are dependent on the stage of development in which p38 is 

inhibited.  

The expression of MLC1v was abolished by treatment of 10µM SP600125 before LPA 

treatment. Earlier studies implicated JNK in regulating proliferation (Eriksson & Leppa, 

2002) or differentiation by association to noncanonical Wnt signalling (Pandur et al., 

2002). However, recent reports indicate that JNK signalling is involved in cardiac 

differentiation induced by different stimuli and in multiple cell types (Li et al., 2016; Ou 

et al., 2016; Shi et al., 2017; Tanwar et al., 2014; Wu et al., 2013). This is supported 

by the negative regulation of JNK on pluripotent genes, OCT4 and Klf4 (Byun et al., 
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2013; Yao et al., 2014). SPC, a closely related lipid to LPA, also induced differentiation 

into cardiomyocytes through JNK signalling (Li et al., 2016). Supportive of our findings, 

both Li et al. (2016) and Tanwar et al. (2014) reported inhibition of cardiac 

differentiation upon 10µM SP600125 treatment. 

Treatment with 20µM SP600125 60 minutes before LPA treatment resulted in the 

formation of smaller EB aggregates that were unable to adhere once transferred to 

tissue grade 6-well plates. The same was observed in EBs seeded with the inhibitor 

without LPA. Cytotoxicity was not reported at this concentration. Therefore, we 

furthered our investigation to determine if the effect was time-dependent. EBs were 

seeded in the absence or presence of 5µM LPA and 20µM SP600125 treatment was 

administered at the same time or delayed by 24 and 48 hours. Treatment at the same 

time or 24 hours after initial seeding yielded similar results although some cells 

appeared to adhere after transfer in the latter. Treatment 48 hours after initial seeding 

resulted in normal EB aggregation and cells adhered once transferred to tissue grade 

6-well plates.  

Our observations are supported by many studies as JNK is known to regulate 

development and cell cycle progression. Nakaya et al. (2009) observed defective 

cytokinesis, in the context of neurogenesis, of P19 clone #3 cells that was SP600125 

concentration dependent; 2.5, 5, 10, and 20µM SP600125 concentrations were used. 

Zhou et al. (2013) reported that increasing concentrations of 5, 10, 15, 20, and 25µM 

SP600125 resulted in smaller and smaller sized ESC colonies. The same study also 

found that culturing mESCs for 24 hours followed by treatment with 25µM SP600125 

arrested over 60% of the cells in the G2/M phase. Ou et al. (2016) highlighted the 

requirement of JNK in cardiac differentiation of miPSCs but also found that 20µM 
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SP600125 treatment significantly affected proliferation of these cells. In the context of 

neurogenesis, Tiwari et al. (2011) demonstrated that the addition of SP600125 in the 

early stages of differentiation resulted in cell death, however, apoptosis was not 

apparent when differentiated neurons were treated with SP600125.  

In our studies, the effect of SP600125 was found to be time and dose-dependent, as 

highlighted above. Therefore, we next set out to determine the phosphorylation of JNK 

in aggregating EBs. The earliest collection of EBs was achievable 18 hours after initial 

seeding. Attempts were made to collect EBs 1-15 hours after initial seeding, however, 

the size of pelleted cells was too small making protein extraction difficult, and 

consistency could not be assured. The number of cells initially seeded could have 

been increased however this requires further optimisation as seeding density 

influences gene expression patterns (Chen et al., 2015).  

We examined JNK phosphorylation in EBs seeded in the absence and presence of 

5µM LPA for 18, 24, 48, and 72 hours and found a transient phosphorylation of JNK 

in both groups between 24 and 48 hours. The phosphorylation of p46 was more 

gradual between 18-48 hours whereas p54 phosphorylation was steep and sustained 

at 24 and 48 hours. Both p46 and p54 phosphorylation was decreased at 72 hours. 

From these findings, we next set out to determine if disruption of JNK signalling during 

the period of transient phosphorylation inhibited cardiac differentiation. Our previous 

findings demonstrated that pre-treatment of EBs for 60 minutes with 10µM SP600125 

was sufficient to block differentiation, however, whether JNK activation is a biphasic 

event, as JNK activation in EBs cultured for less than 18 hours was not determined, is 

unknown, therefore, we cultured EBs in the presence of 5µM LPA for 1 and 3 hours 

before the addition of 10µM SP600125. EBs were also cultured in the presence of LPA 
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for 24 and 48 hours before the addition of 10µM SP600125. It was determined from 

findings discussed above that treatment with 20µM SP600125 48 hours after initial 

seeding restored proliferation, however, the effect of this concentration on 

differentiation was unknown. Therefore, we treated EBs with 20µM SP600125 48 

hours after LPA treatment. Treatment of SP600125 1, 3, 24, or 48 hours after LPA 

treatment disrupted cardiac differentiation suggesting that commitment to the cardiac 

lineage in LPA treated cells occurs post 48 hours. Treatment of 20µM SP600125 also 

inhibited cardiac differentiation more strongly than 10µM SP600125. Taken together 

these results suggest that the gene program for proliferation that is regulated by JNK 

is switched off half way through EB formation, as evidenced by the normal growth in 

EBs treated with 20µM SP600125 48 hours after initial seeding, whereas the gene 

program for cardiac differentiation that is regulated by JNK occurs post 48 hours.  

Xu and Davis (2010) demonstrated something similar in ESCs derived from JNK 

deficient mice. They showed that compound JNK1-/- and JNK2-/- ES cells formed EBs 

but did not increase in number during culture suggesting that JNK is necessary for the 

proliferation of cells that have initiated a differentiation program. They further 

examined the effect of compound JNK1-/- and JNK2-/- ES cells on mesodermal lineage 

genes and found that Brachyury is poorly expressed in these cells as are cardiac 

progenitor genes, GATA4 and MEF2c, and MHC and MLC genes.  

From the results above, we next set out to determine if 10µM and 20µM SP600125 

were affecting p46 and p54 phosphorylation differently. We also furthered our studies 

to investigate the regulation of p46 and p54 by Ki16425, H2L5186303, and Suramin. 

EBs were seeded in the absence or presence of 5µM LPA after a 60-minute pre-

treatment with SP600125 (10µM and 20µM), Ki16425 (20µM), H2L5186303 (7.5nM), 
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and Suramin (0.1mg/mL). Phosphorylation of p46 and p54 JNK in the presence of 

SP600125 revealed that 10µM of the inhibitor effected p46 JNK phosphorylation more 

drastically than p54 JNK, but both were significantly inhibited irrespective of LPA 

treatment as did 20µM SP600125 treatment but affected both p46 and p54 JNK 

phosphorylation comparably. No change in JNK phosphorylation was detected with 

LPA receptor antagonist treatment alone. LPAR4 inhibition by 0.1mg/mL Suramin did 

not affect JNK phosphorylation whereas LPAR2 inhibition by 7.5nM H2L5186303 

decreased both p46 and p54 mean phosphorylation by approximately 40% compared 

to LPA treatment alone. The phosphorylation of JNK was most drastically affected by 

LPAR1/3 inhibition by 20µM Ki16425, resulting in a mean decrease of both p46 and 

p54 by approximately 80% compared to LPA treatment alone. A decrease in JNK 

signalling by interrupting LPAR2 (Saatian et al., 2006), LPAR1 and LPAR2 (Contos et 

al., 2002) and LPAR1 using Ki16425 (Iyoda et al., 2012) is also seen in studies 

evaluating other cellular processes.  

We evaluated the activation of each MAPK subfamily upon stimulation with LPA over 

the course of 180 minutes using the MAPK ELISA kit (Sigma). Cells were plated in 96 

well plates and cultured for 48 hours to allow serum depletion. Cells were then 

stimulated with 5µM LPA, prepared in serum-free αMEM. Phosphorylated and total 

ERK, p38, and JNK was measured after 1, 5, 15, 30, 60, and 180 minutes. LPA did 

not cause a significant spike in the phosphorylation of any of the kinases, but an 

upward trend for each was seen for 15-30 minutes followed by a decrease at 30 and 

60 minutes for ERK and p38/JNK respectively. Studies within the group have identified 

that EB formation is required for cardiac differentiation induction by LPA. It is possible 

that in EBs the upward trend initially seen in the phosphorylation of the kinases would 

continue, but as the cells were in adherent culture, LPA does not maintain their activity. 
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It is also possible that serum is required for the sustained activation of the MAPKs 

upon LPA treatment. 

We next evaluated the regulation of the MAPKs by LPA receptors 1-4 and PKC/PI3K, 

as the importance of these kinases was highlighted in chapter 3. We also investigated 

the possibility of cross-talk between the MAPKs. We stimulated the cells with LPA for 

15 minutes, where maximum activity was achieved as evidenced from the study 

above, after a 60-minute pre-treatment with inhibitors specific to the targets mentioned 

earlier. LPA and the inhibitors were prepared in serum-free αMEM and treatment was 

after cells were cultured for 48 hours in 96 well plates. The experiments were repeated 

twice as limited reagents were available. 

Phosphorylation of ERK was unchanged (within 2% range) by the inhibition of PKC 

and PI3K by BIM-1 and LY294002 respectively. A minor decrease of 8-14% was seen 

in cells treated with Ki16425 (LPAR 1/3 antagonist), H2L5186303 (LPAR 2 

antagonist), Suramin (LPAR 4 antagonist), and SP600125 (JNK inhibitor) whereas an 

increase of 30% occurred in cells treated with SB203580 (p38 inhibitor).  

Phosphorylation of p38 was unchanged (within 5% range) by the inhibition of ERK by 

PD98059, JNK by SP600125, and PI3K by LY294002. Treatment with Suramin (LPAR 

4 antagonist) and Ki16425 (LPAR 1/3 antagonist) increased phosphorylation by 

approximately 10% whereas targeting LPAR2 with H2L5186303 and PKC with BIM-1 

resulted in a 16-17% increase.  

Phosphorylation of JNK was unchanged (within 2% range) with the inhibition of PI3K 

by LY294002, LPAR4 by Suramin and LPAR1/3 by Ki16425. Phosphorylation 

increased by 8-12% in response to the inhibition of ERK by PD98059 and PKC by 
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BIM-1, and a 30% increase was seen in cells treated with SB203580 (p38 inhibitor). 

Inhibition of LPAR2 by H2L5186303 decreased phosphorylation by 10%. 

In conclusion, LPA mediated cardiac differentiation of P19 cells requires both ERK 

and JNK signalling. JNK signalling is regulated by LPA receptors 1/3 and partially 

through LPA receptor 2. Disruption in JNK signalling using 20µM SP600125 suggests 

that early JNK signalling is required for the proper aggregation and growth of EBs 

whereas late signalling is required for LPA induced cardiac differentiation. However, 

the latter was also achieved with the treatment of 10µM SP600125. Therefore, the 

selectivity of SP600125 when used at a concentration of 20µM requires further 

evaluation.
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Chapter 5 

The role and regulation of ubiquitous 
transcription factors in LPA mediated 

cardiac differentiation of P19 cells
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5.1 Introduction 

Activator protein 1 (AP-1) is involved in cell regulation, apoptosis, development, and 

differentiation (Hess, Angel, & Schorpp-Kistner, 2004). It also impacts on gene 

expression through the dimerization of members of the Jun and Fos families. Members 

of the Jun family form both homo- and heterodimers with other Jun and Fos members 

whereas members of the Fos family do not form dimers with other Fos proteins (Deng 

& Karin, 1993; Whitmarsh & Davis, 1996). Disruption in the c-Jun protein is embryonic 

lethal at E12.5 due to defects in the heart outflow tract (Eferl et al., 1999) and disruption 

in the JunB protein is embryonic lethal at E8.5-10 due to defects in extra-embryonic 

tissues (Schorpp-Kistner et al., 1999). Fra-1 is also embryonic lethal at E9.5 (Schreiber 

et a., 2000) whereas Fra-2 knockout results in inadequate cartilage and spinal 

development (Karreth et al., 2004). Disruption in JunD results in cardiac hypertrophy 

(Ricci et al., 2005), while disruption in c-Fos affects bone development (Johnson, 

Spiegelman, & Papaioannou, 1992). AP-1 has been reported to be vital for the cardiac 

differentiation of P19 cells in the presence of DMSO (Eriksson & Leppa, 2002) and in 

icariin induced cardiac differentiation of mESCs (Wo et al., 2008). Other transcription 

factors such as ATF also dimerize with Jun and Fos proteins (Angel & Karin, 1991; 

Fuchs & Ronai, 1999; Mechta-Grigoriou, Gerald, & Yaniv, 2001; Vogt & Bos, 1990). 

ATF and c-Jun are well-studied substrates of JNK as is c-Fos as an ERK substrate, 

however, other transcription factors and signalling pathways also converge on the 

regulation of AP-1 including NF-κB (Kracht, 2007; Whitmarsh & Davis, 1996). 

The ubiquitous NF-κB transcription factor (Ghosh & Hayden, 2012) contains the Rel 

homology domain and is subdivided into five subunits, p100/p52, p105/p50, RelA 

(p65), RelB, and c-Rel. These subunits produce homo- and hetero-dimers forming 

inactive or active NF-κB complexes with different DNA binding affinities. IκB proteins 
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bind and retain NF-κB in the cytoplasm preventing translocation into the nucleus. 

Translocation can be mediated by events such as proteasomal degradation of IκB 

proteins or DNA damage. p38 is known to regulate NF-κB (Wagley et al., 2013) and 

the most active p65 subunit has also been shown to be phosphorylated by the MAPK 

activated protein kinases, RSK1 and MSK1/2, amongst other non-MAPK mediated 

kinases (Buss et al., 2004a; Buss et al., 2004b; Schmitz et al., 2004; Viatour et al., 

2005).  

In this study, we aim to investigate the activation and regulation of AP-1 in 

differentiating P19 cells. Both the MAPKs and NF-κB are critical regulators of AP-1, 

and the importance of MAPK signalling in our model has already been established in 

chapter 4. Therefore, the role and regulation of NF-κB will also be evaluated here.
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5.2 Materials and Methods 

5.2.1 Determining the role of NF-κB in LPA mediated cardiac 

differentiation of P19 cells 

Differentiation of P19 cells was carried out as specified in chapter 2 section 2.2. The 

inhibitor for NF-κB, CAY10470, was purchased from Merck Chemicals and received 

in a DMSO solution at a concentration of 10mM. Aliquots were protected from light 

and stored at -20˚C until use. Working concentrations were obtained by dilution in 

complete αMEM on the day of use. Lysates were generated on day 10 of the 

differentiation process as described in chapter 2 section 2.3.1. Protein quantification 

and western blotting were performed as set out in chapter 2 section 2.3.3 and section 

2.4 respectively. Cell viability in the presence of varying concentrations of the inhibitor 

was determined using the MTT assay as described in chapter 2 section 2.5. Statistical 

analysis was done as described in chapter 2 section 2.7. 

5.2.2 Determining the phosphorylation of NF-κB by LPA 

The differentiation process was carried out as described in chapter 2 section 2.2. 

Lysates were generated on day 1, 2, 3, 4, 6, 8, and 10 of the differentiation process 

as described in chapter 2 section 2.3.2. Protein quantification and western blot were 

carried out as described in chapter 2 section 2.3.3 and section 2.4 respectively with 

the following modifications: the membrane was blocked using 1x TBS-T containing 5% 

BSA. The phospho-NF-κB p65 (Ser536) (Cell Signaling Technology) primary antibody 

was used at a dilution of 1:1000 and the anti-rabbit IgG, an HRP-linked secondary 

antibody was used at a dilution of 1/4000. SuperSignal West Dura Substrate (Thermo 

Fisher) was used for protein detection. Statistical analysis was done as described in 

chapter 2 section 2.7. 
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5.2.3 Determining the early phosphorylation of NF-κB by LPA in adherent 

P19 cells 

The FACE NF-κB p65 Profiler Kit was purchased from Active Motif (product 48400) to 

detect the phosphorylation of NF-κB p65 at serine residues 536 and 468, and total p65 

in LPA treated cells. Buffers were supplied with the kit and prepared according to the 

manufacturer instructions. P19 cells were prepared for analysis as described in 

chapter 2 section 2.2.4. After treatment with LPA the cells were fixed with 4% 

formaldehyde for 20 minutes at room temperature, washed 3 times with wash buffer 

for 5 minutes with gentle shaking, followed by incubation with quenching buffer for 20 

minutes at room temperature. The wells were washed twice, incubated with blocking 

buffer for 1 hour, and washed twice before overnight incubation at 4˚C with primary 

antibody. The wells were washed three times before adding the secondary antibody 

for 1 hour and then washed three times with wash buffer and twice with 1x PBS. A 

chemiluminescent working solution was added to each well and read using the CCD 

camera equipped Thermo myECL Imager. As multiple wash steps were carried out, 

resulting in the possible loss of cells, crystal violet solution was used to estimate the 

relative number of cells in each well. After reading the plate, cells were washed twice 

with the buffer supplied and twice with 1x PBS. The plate was air dried for 10 minutes, 

and 100µL of crystal violet solution was added to each well and left to incubate at room 

temperature for 30 minutes. Each plate was washed using 1x PBS for 5 minutes, 

repeated three times, before incubation with 1% SDS solution for 1 hour with gentle 

shaking. The absorbance was read at 595nm using the CLARIOstar plate reader. The 

total and phospho- NF-κB signals were then normalised for cell number and data 

expressed as a percentage of non-treated cells (basal expression). Statistical analysis 

was done as described in chapter 2 section 2.7. 
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5.2.4 Determining the regulation of NF-κB in LPA treated cells by LPA 

receptors, MAPKs, PKC and PI3K 

The FACE NF-κB p65 Profiler kit (Active Motif: product 48400) was used to determine 

the effects of LPA receptor, MAPKs, PKC, and PI3K inhibition on the phosphorylation 

of NF-κB in the presence of LPA. Antagonists for LPA receptor 1/3 (20µM Ki16425), 2 

(7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) were prepared in serum-free αMEM 

as were inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), ERK (20µM 

PD98059), and JNK (10µM SP600125). P19 cells were prepared for analysis as 

described in chapter 2 section 2.2.4. but were treated with the antagonists for 60 

minutes before stimulation with 5µM LPA, prepared in serum-free αMEM, for 15 

minutes. The steps carried out next were the same as specified in section 5.2.3. The 

NF-κB phospho- signals were then normalised for cell number and data expressed as 

a percentage of LPA only treated cells. Statistical analysis was done as described in 

chapter 2 section 2.7. 

5.2.5 Determining the phosphorylation of AP-1 subunits by LPA 

The TransAM AP-1 family transcription factor assay kit was purchased from Active 

Motif (product 44296) to evaluate the activation of AP-1 subunits, c-Jun, JunD, FosB, 

and c-Fos. Buffers were supplied with the kit and prepared according to the 

manufacturer instructions. 

5.2.5.1 Preparation of nuclear extract  

Cardiac differentiation was carried out as described in chapter 2 section 2.2 and 

lysates were generated on day 1, 2, 3, 4, 6, 8, and 10 of the differentiation process. 

For the generation of lysates on days 1-4 of the differentiation process, EBs were 

transferred to falcon tubes as described in chapter 2 section 2.2.3 with the following 

modifications: cold 1x PBS containing phosphatase and protease inhibitor cocktails 
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(Sigma) (1:100 and 1:200 respectively) was added to the tubes instead of complete 

αMEM. The cells were transferred to a pre-chilled 1.5mL Eppendorf and centrifuged 

for 15 seconds at 13000rpm. The PBS was removed, and 150µL-350µL of hypotonic 

buffer (20mM Hepes pH 7.5, 5mM NaF, 0.1mM EDTA, and 10µM Na2MoO4) was 

added. The cells were gently broken into a single cell suspension by repeated pipetting 

and allowed to swell on ice for 15 minutes. Nonidet P-40 (final concentration of 0.5%) 

was added to the tube and vortexed for 10 seconds. The cells were then centrifuged 

for 60 seconds at 4˚C. The cytoplasmic fraction (supernatant) was removed, and the 

pellet was resuspended in 50µL of complete lysis buffer (provided with the kit). The 

tube was rocked on ice for 30 minutes and then centrifuged for 15 minutes at 

13000rpm at 4˚C. The nuclear fraction (supernatant) was transferred to a chilled tube 

and stored at -80˚C until required. Lysates generated on days 6, 8, and 10 of the 

differentiation process were washed with 1x PBS containing phosphatase and 

protease inhibitors, and the hypotonic buffer was added to each well. The cells were 

scraped using a cell scraper and transferred to a pre-chilled Eppendorf before the 

addition of Nonidet P-40 and processed as described above.  

5.2.5.2 Protein quantification  

The Bradford-based assay was used to determine the total concentration of protein in 

the nuclear lysates. The Bradford reagent was made by first dissolving 100mg of 

Coomassie brilliant blue G-250 in 50mL of 95% ethanol followed by the addition of 

100mL of 85% w/v orthophosphoric acid. The final volume was made to 1L using 

double distilled water. The reagent was filtered using Whatman filter paper and stored 

at room temperature. BSA standards were prepared as set out in table 2.0. A 96 well 

plate was used to carry out the assay. 300µL of Bradford reagent was added to 10µL 

of each standard or unknown sample and mixed for 30 seconds using a plate shaker 
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followed by a 10-minute incubation at room temperature. Absorbance was read at 

595nm using the CLARIOstar plate reader. A standard curve was prepared by plotting 

the average of each BSA standard measurement against the concentration in µg/µL, 

and the protein concentration of each unknown sample was determined using the 

standard curve. 

5.2.5.3 AP-1 assay 

All buffers and antibodies were supplied with the kit and prepared according to the 

manufacturer’s instructions. 30µL of complete binding buffer was added to each well 

followed by 20µg of sample diluted in 20µL of complete lysis buffer and incubated for 

60 minutes at room temperature with mild agitation. The K-562 nuclear extract was 

provided with the kit and used as a positive control. The wells were washed three times 

with wash buffer, and 100µL of the primary antibody was added to each well. The plate 

was incubated for 60 minutes at room temperature, and each well was washed three 

times using wash buffer. 100µL of secondary antibody was added to each well and 

incubated for 60 minutes at room temperature. Wells were washed four times with 

wash buffer and then incubated with developing solution until the positive control wells 

turned dark blue. The plate was protected from light during this incubation. 100µL of 

stop solution was added to each well, and the absorbance was read at 450nm using 

the CLARIOstar plate reader. Statistical analysis was done as described in chapter 2 

section 2.7.   

5.2.6 Determining the regulation of AP-1 subunits in LPA treated cells by 

LPAR1-4, MAPKs, PKC, PI3K, and NF-κB. 

The TransAM AP-1 family transcription factor assay kit (Active Motif: product 44296) 

was used to determine the role of LPA receptors, MAPKs, PKC, PI3K, and NF-κB 

inhibition on the activation of AP-1 subunits in the presence of LPA. Differentiation was 
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carried out as described in chapter 2 section 2.2 in the presence of antagonists for 

LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) 

and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), ERK (20µM PD98059), 

JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) for 60 minutes prior to 

treatment with 5µM LPA. Preparation of nuclear extracts on day 10 of the 

differentiation process was completed as described in section 4.2.5.1. Protein 

quantification and the AP-1 assay were carried out as described in section 4.2.5.2 and 

4.2.5.3 respectively. Statistical analysis was done as described in chapter 2 section 

2.7. 

5.2.7 Determining the phosphorylation of ATF2 by LPA 

The differentiation process was carried out as described in chapter 2 section 2.2. 

Lysates were generated on day 1, 2, 3, 4, 6, 8, and 10 of the differentiation process 

as described in chapter 2 section 2.3.2. Protein quantification and western blot were 

carried out as described in chapter 2 section 2.3.3 and 2.4 respectively with the 

following modifications: the membrane was blocked using 1x TBS-T containing 5% 

BSA. The phospho-ATF2 (Thr71) primary antibody (Cell Signaling Technology) was 

used at a dilution of 1:1000, the anti-rabbit IgG, HRP-linked secondary antibody (Cell 

Signaling Technology) was used at a dilution of 1:4000, and SuperSignal West Dura 

Substrate (Thermo Fisher) was used for protein detection. Statistical analysis was 

done as described in chapter 2 section 2.7. 

5.2.8 Determining the regulation of ATF2 in LPA treated cells by LPAR1-4, 

MAPKs, PKC, PI3K, and NF-κB. 

The differentiation process was carried out as described in chapter 2 section 2.2. Cells 

were seeded in the presence of antagonists for LPA receptor 1/3 (20µM Ki16425), 2 

(7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) and inhibitors for PI3K (20µM 



120 
 

LY294002), PKC (10µM BIM-1), ERK (20µM PD98059), JNK (10µM SP600125) and 

NF-κB (0.01nM CAY10470) for 60 minutes before treatment with 5µM LPA. Lysates 

were generated on day 10 of the differentiation process as described in chapter 2 

section 2.3.2. Protein quantification and western blot were carried out as described in 

chapter 2 section 2.3.3 and section 2.4 respectively with the following modifications: 

the membrane was blocked using 1x TBS-T containing 5% BSA. The phospho-ATF2 

(Thr71) primary antibody (Cell Signaling Technology) was used at a dilution of 1:1000, 

the anti-rabbit IgG, HRP-linked secondary antibody (Cell Signaling Technology) was 

used at a dilution of 1:4000, and SuperSignal West Dura Substrate (Thermo Fisher) 

was used for protein detection. Statistical analysis was done as described in chapter 

2 section 2.7.
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5.3 Results  

5.3.1 NF-κB signalling mediates cardiac differentiation in LPA treated P19 

cells 

To establish whether LPA was acting through the NF-κB transcription factor in 

mediating cardiac differentiation of P19 cells, NF-κB was inhibited during EB formation 

using CAY10470. No cytotoxicity was reported with the concentrations used. A higher 

concentration of 1nM, not used in experimental studies, showed a slight decrease in 

the viability of P19 cells (Figure 5.0). In lysates generated on day 10, the inhibitor of 

NF-κB did not induce differentiation when used alone (Figure 5.1). When used in 

conjunction with LPA treatment, concentrations of 0.01nM and 0.05nM of CAY10470 

returned MLC1v expression to basal level while the lowest concentration of 0.001nM 

had no significant effect



122 
 

 

Figure 5.0. The viability of P19 cells in the presence of CAY10470  
P19 cells were cultured in a 96 well plate until 60% confluent and incubated for 24 
hours with medium alone or with increasing concentrations of CAY10470. Cells were 
incubated with medium containing 0.1mg MTT for a further 4 hours before assessing 
viability as described in chapter 2 section 2.5. Statistical comparisons were performed 
by one-way ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the 
means ± S.E.M. of 3 experiments.
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Figure 5.1. CAY10470 blocks LPA induced MLC1v expression in a concentration 
dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA after pre-treatment 

with CAY10470 for 60 minutes in non-tissue grade Petri dishes for 4 days. EBs were 
then transferred and cultured in 6-well tissue grade plates for a further 6 days. Lysates 
were generated on day 10 of the differentiation process for expression of MLC1v 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. *represents significance relative to LPA treatment alone. 
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5.3.2 Phosphorylation of NF-κB by LPA 

To determine whether the phosphorylation of NF-κB by LPA is an early or late event 

the following studies were carried out. Lysates were generated on days 1, 2, 3, 4, 6, 

8, and 10 of the differentiation process and as seen in Figure 5.2, NF-κB 

phosphorylation at the serine 536 residue was detectable on days 1 and 2 in both LPA 

treated and untreated cells and undetected afterwards. No difference in expression 

between LPA treated and untreated cells was seen throughout the differentiation 

process. 
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Figure 5.2. p65 at serine 536 is phosphorylated during early EB formation  
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Lysates were generated on day 1, 2, 3, 4, 6, 8, and 10 of 
the differentiation process using 1x RIPA buffer, as described in chapter 2 section 
2.3.2, for expression of phospho-NF-κB p65 (Ser536) determined by western blot. 
Statistical comparisons were performed by two-way ANOVA with Bonferroni post hoc 
test (α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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5.3.3 Early phosphorylation of NF-κB by LPA 

As very early activation of NF-κB at the serine 536 residue was detected in the study 

above, we next set out to determine if LPA activates NF-κB at serine 536 and 468 

within 180 minutes of LPA stimulation. Early activation of NF-κB at both serine 536 

and serine 468 residues by LPA was determined using the FACE NF-κB kit. As seen 

in Figure 5.3A and B, stimulation with 5µM LPA for up to 180 minutes did not 

significantly change the activation of NF-κB at either serine residue. Total NF-κB 

activity was also stable over the course of 180 minutes (Figure 5.3C). Although there 

was no significant change upon LPA stimulation, there was higher basal activity at the 

serine 468 residue compared to the serine 536 residue as seen in Figure 5.3D.  
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Figure 5.3. Effect of LPA on NF-κB activation in adherent P19 cells 
A cell-based ELISA kit (Active Motif) was used for detecting phosphorylated and total 
NF-κB in LPA treated cells. 100µL of cell suspension containing 1.5x104 cells was 

seeded into each well of a 96-well plate and incubated for 48 hours. LPA was diluted 
in serum-free αMEM, and the cells were treated for 1, 5, 15, 30, 60 or 180 minutes. 
The assay was carried out as described in section 5.2.3. Chemiluminescence was 
read using the CCD camera equipped Thermo myECL Imager (D). The NF-κB 
activation signal at Ser536 (A), Ser468 (B), or total (C), was normalised for cell number 
and data expressed as a percentage of basal expression (time 0). Statistical 
comparisons were performed by one-way ANOVA with Dunnett's post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments. 
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5.3.4 The regulation of NF-κB in LPA treated cells by LPAR1-4, MAPKs, 

PKC and PI3K. 

LPA receptors and specific kinases were inhibited by treating the cells with antagonists 

60 minutes before stimulation with 5µM LPA for 15 minutes. As seen in Figure 5.4, the 

LPA receptor 4 antagonist, Suramin, increased the expression of both serine 536 (A) 

and serine 468 (B) residues compared to LPA treatment alone. The serine 536 residue 

was more sensitive to this inhibition and showed a much greater increase than the 

serine 468 residue which was evident but not significant. Inhibition of LPA receptors 

1/3 and 2 using Ki16425 and H2L5186303 respectively resulted in approximately 30% 

decrease in mean phosphorylation at serine 468 (Figure 5.4B) but was without 

significant effect on serine 536 (Figure 5.4A). The same was observed with PD98059 

and BIM-1 treatment. Inhibition of PI3K using the inhibitor LY294002 had no significant 

effect on either residue. The greatest effect at both residues was observed with JNK 

inhibition, reducing phosphorylation to ~50%. Expression of total NF-κB (Figure 5.4C) 

was unchanged by treatment with the inhibitors and LPA receptor antagonists. 
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Figure 5.4. Regulation of NF-κB in LPA treated P19 cells 
A cell-based ELISA kit (Active Motif) was used to determine the regulation of 
phosphorylated and total NF-κB in LPA treated cells. 100µL of cell suspension 

containing 1.5x104 cells was seeded into each well of a 96-well plate and incubated 
for 48 hours. Basal expression was determined by stimulating the cells with 5µM LPA, 
prepared in serum-free αMEM, for 15 minutes. Changes in basal expression after an 
initial 60-minute incubation with the inhibitors for LPA receptors (LPAR 1/3 
antagonized with 20µM Ki16425, LPAR 4 antagonized with 0.1mg/mL Suramin, 

LPAR2 antagonized with 7.5nM H2L5186303) or kinase inhibitors (ERK pathway 
inhibited with 20µM PD98059, JNK pathway inhibited with 10µM SP600125, PI3K 

inhibited with 20µM LY294002, PKC inhibited with 10µM BIM-1) followed by 

stimulation with LPA for 15 minutes was compared to basal expression. The assay 
was carried out as described in section 5.2.4. The NF-κB activation signal at Ser536 
(A), Ser468 (B), or total (C) was normalised for cell number and data expressed as a 
percentage of basal expression. Statistical comparisons were performed by one-way 
ANOVA with Dunnett's post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. 
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5.3.5 Phosphorylation of AP-1 subunits by LPA 

To determine the activation of c-Fos, JunD, FosB, and c-Jun in LPA treated cells, the 

TransAm AP-1 family ELISA kit was used.  

The phosphorylation of c-Fos (Figure 5.5) was relatively low and unchanged in cells 

seeded with or without 5µM LPA during EB formation. Maximum expression was seen 

on day 10 in both treated and untreated cells. Similarly, the phosphorylation of FosB 

(Figure 5.6) was also unchanged in cells seeded with or without 5µM LPA during EB 

formation. Expression in both treated and untreated cells was near constant until day 

6 with a sustained peak on day 8 and 10. Although not statistically different, the 

untreated cells showed a higher FosB expression from day 6 to 10. JunD expression 

(Figure 5.6) was also relatively unchanged between treated and untreated cells from 

days 1-4. An increase in JunD phosphorylation in LPA treated cells was seen on day 

6 and onwards compared to the untreated cells with a significant difference seen on 

day 10. Maximum activity of JunD in LPA treated cells was also seen on day 10. 

Phosphorylation of c-Jun (Figure 5.7) was also comparable in both treated and 

untreated cells on days 1-4. On day 6 a spike in cJun activity in both untreated and 

treated cells was seen with the latter being slightly greater. This decreased on day 8, 

and the decrease continued to day 10 in untreated cells but significantly increased in 

LPA treated cells.
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Figure 5.5. The effect of LPA on the activation of c-Fos 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Nuclear lysates were generated on day 1, 2, 3, 4, 6, 8, and 
10 of the differentiation process and activation of c-Fos was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.5. Statistical comparisons were performed by two-way ANOVA with 
Bonferroni post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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Figure 5.6. The effect of LPA on the activation of FosB 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Nuclear lysates were generated on day 1, 2, 3, 4, 6, 8, and 
10 of the differentiation process and activation of FosB was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.5. Statistical comparisons were performed by two-way ANOVA with 
Bonferroni post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments.
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Figure 5.7. The effect of LPA on the activation of JunD 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Nuclear lysates were generated on day 1, 2, 3, 4, 6, 8, and 
10 of the differentiation process and activation of JunD was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.5. Statistical comparisons were performed by two-way ANOVA with 
Bonferroni post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments.
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Figure 5.8. The effect of LPA on the activation of c-Jun 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Nuclear lysates were generated on day 1, 2, 3, 4, 6, 8, and 
10 of the differentiation process and activation of c-Jun was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.5. Statistical comparisons were performed by two-way ANOVA with 
Bonferroni post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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5.3.6 Regulation of AP-1 subunits in LPA treated cells by LPAR1-4, 

MAPKs, PKC, PI3K, and NF-κB 

5.3.6.1 c-Fos 

As seen in Figure 5.9, inhibition of LPA receptor 4, 1/3, and 2 using Suramin, Ki16425, 

and H2L5186303 respectively did not significantly affect the activation of c-Fos. 

Inhibition of the PKC and PI3K kinases by BIM-1 and LY294002 respectively also did 

not affect the activation of c-Fos. The AP-1 subunits are well-established targets of the 

MAPKs and NF-κB, however, inhibition of JNK, ERK, and NF-κB by SP600125, 

PD98059, and CAY10470 respectively did not change the activity of c-Fos.
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Figure 5.9. Regulation of c-Fos in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Nuclear lysates were generated on day 
10 of the differentiation process, and activation of c-Fos was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.6. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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5.3.6.2 FosB 

As seen in Figure 5.10, inhibition of LPA receptor 4, 1/3, and 2 using Suramin, 

Ki16425, and H2L5186303 respectively did not significantly affect the activation of 

FosB. Inhibition of the PKC kinase by BIM-1 also did not change the activation of FosB. 

However, inhibition of PI3K by LY294002 significantly reduced the activity of FosB as 

did the inhibition of ERK by PD98059. Inhibition of JNK with SP600125 also left the 

activation of FosB unchanged. A slight decrease in FosB activation was observed with 

the inhibition of NF-κB by CAY10470, but this was not significant.
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Figure 5.10. Regulation of FosB in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Nuclear lysates were generated on day 
10 of the differentiation process, and activation of FosB was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.6. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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5.3.6.3 JunD 

As seen in Figure 5.11, inhibition of LPA receptor 4, and 1/3 using Suramin, and 

Ki16425 respectively noticeably decreased the activation of JunD as did the inhibition 

of JNK by SP600125 and PKC by BIM-1. A further decrease was seen with the 

inhibition of PI3K by LY294002 and NF-κB by CAY10470. The greatest decrease in 

the activation of JunD was achieved with the inhibition of ERK by PD98059. Inhibition 

of LRA receptor 2 using H2L5186303 was the only treatment that left JunD activation 

unchanged compared to LPA treatment alone. 
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Figure 5.11. Regulation of JunD in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Nuclear lysates were generated on day 
10 of the differentiation process, and activation of JunD was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.6. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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5.3.6.4 cJun 

As seen in Figure 5.12, each treatment inhibiting a specific kinase or LPA receptor 

significantly affected the activation of c-Jun compared to treatment with LPA alone. 

The decrease in cJun activation with the inhibition of LPA receptor 4, 1/3, and 2 was 

comparable amongst the group with the mean decrease between 25-35% when 

compared to LPA treatment alone. Inhibition of JNK also decreased cJun activation by 

a similar margin. A decrease of approximately 40% in the mean activation of cJun was 

achieved with the inhibition of PKC, PI3K, and NF-κB whereas the activation of cJun 

was reduced to ~50% with the inhibition of ERK. 
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Figure 5.12. Regulation of c-Jun in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Nuclear lysates were generated on day 
10 of the differentiation process, and activation of c-Jun was determined using the 
TransAM AP-1 family transcription factor assay kit (Active Motif) as described in 
section 5.2.6. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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5.3.7 Phosphorylation of ATF2 by LPA  

The expression of pATF2 steadily increased in both LPA treated and untreated cells 

from day 1 until day 4 with comparable expression. Expression of pATF2 plateaued 

from day 4 until 8 in both treated and untreated cells with slightly greater pATF2 

expression in LPA treated cells on day 4 and 6. On day 10 the expression of pATF2 in 

untreated cells remained relatively the same as days 4-8 however the expression of 

pATF2 approximately doubled in LPA treated cells (Figure 5.13). 
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Figure 5.13. The effect of LPA on the expression of pATF2. 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in 6-well tissue grade 
plates for a further 6 days. Lysates were generated on day 1, 2, 3, 4, 6, 8, and 10 of 
the differentiation process using 1x RIPA buffer, as described in chapter 2 section 
2.3.2, for expression of phospho-ATF2 (Thr71) determined by western blot. Statistical 
comparisons were performed by two-way ANOVA with Bonferroni post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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5.3.8 The regulation of pATF2 in LPA treated cells by LPAR1-4, MAPKs, 

PKC, PI3K, and NF-κB. 

As seen in Figure 5.14, each treatment inhibiting a specific kinase or LPA receptor 

significantly affected the phosphorylation of pATF2 compared to treatment with LPA 

alone. The decrease in phosphorylated pATF2 with the inhibition of LPA receptor 4, 

1/3, and 2 was comparable amongst the group with the mean decrease of 

approximately 80% when compared to LPA treatment alone. Inhibition of the MAPKs, 

JNK and ERK, reduced the mean expression of phosphorylated pATF2 by 

approximately 75% and 50% respectively. Inhibition of PKC also reduced mean 

expression by approximately 80% whereas inhibition of PI3K had no significant effect 

on the expression of phosphorylated pATF2. A decrease of approximately two thirds 

in the expression of phosphorylated pATF2 was achieved with the inhibition of NF-κB.  
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Figure 5.14. Regulation of pATF2 in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Lysates were generated on day 10 of the 
differentiation process using 1x RIPA buffer, as described in chapter 2 section 2.3.2, 
for expression of phospho-ATF2 (Thr71) determined by western blot. Statistical 
comparisons were performed by one-way ANOVA with Dunnett’s post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.



147 
 

5.4 Discussion 

Little is known about the role of NF-κB in heart development or in the differentiation of 

stem cells into cardiomyocytes, but it has a cardioprotective ability during acute 

hypoxia and reperfusion injury (Misra et al., 2003; Mustapha et al., 2000). NF-κB 

activation in cardiomyocytes is also necessary for regeneration after injury in the 

zebrafish (Karra et al., 2015). Although NF-κB subunits p50 and p65 are present 

throughout myocyte development (Norman, Yacoub, & Barton, 1998), studies in stem 

cells have been contradicting. NF-κB activity has been reported to maintain 

pluripotency of ihPSCs (Takase et al., 2013) and hESCs (Armstrong et al., 2006) while 

studies in mESCs suggest the up-regulation of NF-κB in differentiating cells (Kim et 

al., 2008; Torres & Watt, 2008).    

We evaluated the role of NF-κB in mediating the actions of LPA in P19 cells by blocking 

NF-κB activity using CAY10470 (Tobe et al., 2003). This inhibitor has an IC50 of 7-

11nM and has previously been used in the low nM range in P19 cells (Wagley et al., 

2013), and hiPSC derived neurons (Nekrasov et al., 2016). Possible mechanisms for 

NF-κB inactivation by this inhibitor include indirect inhibition by blocking store-operated 

calcium entry (Choi et al., 2006) or directly by blocking IκB-α phosphorylation (Bernard 

& Gallo, 2010).  

Inhibition of NF-κB using 0.01nM of the inhibitor effectively blocked LPA induced 

expression of MLC1v on day 10 of differentiation implying that NF-κB is necessary in 

our model. We furthered examined the phosphorylation profile of p65 at serine 536 on 

days 1, 2, 3, 4, 6, 8, and 10 of the differentiation process in response to LPA and found 

that p65 phosphorylation occurs in both untreated and untreated cells only for the first 

2 days. We next used the FACE NF-κB kit to examine the phosphorylation of p65 at 
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serine 536 and 468 in response to LPA over the course of 180 minutes to determine 

if NF-κB activation by LPA was an immediate event. Our findings indicate that, 

although activity is higher at serine 468, p65 activity does not increase in response to 

LPA. As discussed in chapter 4, this may be due to the adherent culture conditions in 

which the assay is conducted. We also evaluated the regulation of p65 using the same 

kit.  

The LPA receptor 4 antagonist, Suramin, increased the expression of both serine 468 

and 536 residues compared to LPA treatment alone. The serine 536 residue was more 

sensitive to this inhibition and showed a much greater increase than the serine 468 

residue which was evident but not significant. Aside from blocking P2Y receptors, 

Suramin is an agonist of ryanodine receptors (Emmick et al., 1994; Hohenegger et al., 

1996; Sitsapesan & Williams, 1996). These receptors activate NF-κB by mediating 

calcium release (Valdes et al., 2007) and are expressed in iPSCs exposed to DMSO 

to initiate cardiac differentiation (Iglesias-García et al., 2015).  

Inhibition of LPA receptors 1/3 and 2 using the Ki16425 and H2L5186303 antagonists 

respectively resulted in approximately 30% decrease in phosphorylation at serine 468 

but was without significant effect at serine 536. The same was observed with PD98059 

and BIM-1 treatment.  In the context of cardiac hypertrophy, LPAR 1/3 and ERK have 

been implicated in the induction of the NF-κB pathway (Chen et al., 2008b). LPA also 

requires PKC signalling to induce NF-κB signalling in MEFs (Klemm et al., 2007; Sun 

et al., 2009), bronchial epithelial cells (Cummings et al., 2004), and ovarian cancer 

cells (Mahanivong et al., 2008), whereas PI3K signalling is dispensable (Chen et al., 

2008b; Klemm et al., 2007) and is consistent with our results where inhibition of PI3K 

using the inhibitor LY294002 had no significant effect on either residue. The greatest 

effect at both residues was observed with JNK inhibition, reducing phosphorylation to 
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half. IκB proteins bind and retain NF-κB in the cytoplasm preventing translocation into 

the nucleus. Several kinase cascades including PKC, PKA, MAPKs, and Raf, can 

activate NF-κB for translocation into the nucleus (Valen, Yan, & Hansson, 2001). The 

upstream kinase TAK1 has been shown to regulate JNK and NF-κB, both of which 

cross-talk and converge on the regulation of AP-1 (Kracht, 2007).  

The effects of AP-1 signalling are multi-faceted and span multiple cellular processes. 

This is achieved by different compositions of dimerization of Jun and Fos, and with 

other transcription factors including ATF2. AP-1 also acts as a co-factor for other 

transcription factors including GATA4 (Martin et al., 2012; Schroder et al., 2006; 

Suzuki et al., 1999). c-Jun lacking murine embryos expressing the second heart field 

(SHF) marker IsI1 are reported to display multiple defects in cardiac development 

(Zhang et al., 2013) supported by earlier findings of Eferl et al. (1999) and a study by 

Jahangiri et al. (2016) that implicated Fos-like antigen 2 in the transition of SHF 

progenitors to cardiomyocytes. AP-1 has been reported to be vital for the cardiac 

differentiation of P19 cells in the presence of DMSO (Eriksson & Leppa, 2002) and in 

icariin induced cardiac differentiation of mESCs (Wo et al., 2008). Recently, Liu et al. 

(2017) also suggested Fos and Jun play important roles in cardiac differentiation by 

profiling both hiPSC and hESC cell lines during various stages of differentiation.   

Eriksson and Leppa (2002) examined the induction of AP-1 in P19 cells stimulated by 

DMSO and reported the upregulation of c-Jun and JunD during differentiation whereas 

c-Fos remained steady and that this activity was necessary for cardiac differentiation 

of P19 cells. LPA induces AP-1 (Cook, Aziz, & McMahon, 1999; Marinissen et al., 

2004) and, in our experimental model, JunD and c-Jun were also upregulated in 

differentiating cells while c-Fos and FosB were steadily expressed in both treated and 

untreated cells on days 1-6 with an increasing trend on days 8 and 10. Our studies 
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were not extended to examine the necessity of AP-1 activity in LPA induced cardiac 

differentiation of P19 cells but initiated studies to understand the regulation of the AP-

1 subunits in this model.  

As c-Fos expression was barely detectable compared to other AP-1 subunits in 

response to LPA stimulation, it is reasonable that phosphorylation levels of c-Fos were 

unaffected by treatment with antagonists for LPA receptors 1-4, the MAPKs, PKC, 

PI3K, and NF-κB. FosB phosphorylation was decreased only with PD98059 and 

LY294002. Phosphorylated levels of JunD were brought to basal by the inhibition of 

LPAR4, LPAR1/3, JNK, PKC, PI3K, and NF-κB, but inhibition of the ERK pathway 

reduced levels to below basal. Phosphorylated levels of c-Jun were similarly brought 

to basal with the inhibition of LPAR4, LPAR1/3, but also LPAR2. Inhibition of NF-κB, 

PI3K, and PKC reduced levels to below basal. Of the MAPKs, inhibition of JNK 

returned phosphorylated levels to basal and inhibition of ERK had the greatest effect 

amongst all pathways targeted.  

AP-1 forms complexes with ATF2 and is essential to cardiac differentiation in P19CL6 

cells (Eriksson & Leppa, 2002; Monzen et al., 2001). In our studies, the expression of 

phosphorylated ATF2 steadily increased during EB formation in both LPA treated and 

untreated cells and was sustained until day 10 in untreated cells but doubled in LPA 

treated cells on day 10. Phosphorylation of ATF2 was negatively affected by the 

inhibition of LPAR1-4 in a comparable manner, reducing the expression to 

approximately 20%. Inhibition of PKC, NF-κB, and JNK was slightly less effective and 

decreased phosphorylation by two thirds whereas inhibition of ERK only reduced 

expression by half. Inhibition of PI3K was without effect. Multiple pathways converge 

on ATF2 regulation as it is a target of SMAD and TAK1 pathways in TGF-β signalling 

(Sano et al.,1999). In mECCs, the overexpression of Noggin antagonized cardiac 
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differentiation in the presence of DMSO which was rescued by the addition of BMP to 

the culture medium as did the downstream targets of BMP signalling, SMAD 1/4 

(Monzen et al., 2001), and TAK1 (Monzen et al., 1999).  

In conclusion, NF-κB signalling is required in LPA mediated cardiac differentiation of 

P19 cells however p65 phosphorylation at serine 468 and 536 was unchanged in 

response to LPA treatment therefore further evaluation of other phosphorylation sites 

and subunits is required. Although the role of AP-1 in our model is yet to be identified, 

AP-1 subunits, c-Jun and JunD, and ATF2 were found to be regulated by NF-κB along 

with LPAR4, 1/3, PKC, JNK, and ERK. Inhibition of PI3K did not affect ATF2 whereas 

inhibition of LPAR2 did not affect JunD. 
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Chapter 6 

The regulation of cardiac specific 
transcription factors in LPA mediated 

cardiac differentiation of P19 cells
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6.1 Introduction  

A complex gene regulatory network is involved in the development of the heart fields 

and their specification. GATA4, NKX2.5, and MEF2C are expressed in cardiac 

precursor cells and act in combination with several cofactors to regulate cardiac 

specification (Bruneau, 2013; Dodou et al., 2004; Paige et al., 2015; Roche, Czubryt, 

& Wigle, 2013). The precise regulation of these factors is elusive, and several 

compensatory mechanisms identified further complicate the endeavour. GATA4 

activity has been suggested to be the earliest amongst several of the transcription 

factors, and MEF2C and NKX2.5 contain GATA sites in their enhancer region. These 

proteins are frequently used to assess differentiation into a cardiac fate and 

overexpression of GATA4, NKX2.5, or MEF2c in aggregated P19 cells induces cardiac 

differentiation without the addition of other factors. Overexpression of one of these 

factors result in the upregulation of the other two factors whereas upregulation is not 

seen in dominant negative GATA4 or NKX2.5 cells, and cardiac differentiation is 

arrested demonstrating a positive regulatory loop (Grepin, Nemer, & Nemer, 1997; 

Jamali et al., 2001; Skerjanc et al., 1998).   

Upstream signalling of these transcription factors is not well defined. MAPKs, ERK 

and p38, have both been implicated in their regulation and this has further been 

evidenced in P19 cells overexpressing noggin, a natural BMP antagonist. BMP 

signalling via TAK1 and possible downstream MAPK may regulate cardiac specific 

transcription factors as the combined overexpression of GATA4 and NKX2.5 or TAK1 

(Monzen et al., 1999) alone rescues the cardiac phenotype. Involvement of p38 MAPK 

in MEF2c nuclear localisation has also been reported (Han et al., 1997; Hernandez-

Torres et al., 2008; Zhao et al., 1999). NKX2.5 was shown to be a direct target of the 
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JNK substrate NFAT and regulates NKX2.5 during cardiac differentiation with GATA4 

co-ordination (Chen & Cao, 2009).  

In this study, we aim to determine the expression profile of GATA, MEF2C, and 

NKX2.5 during LPA mediated cardiac differentiation. We further aim to evaluate the 

regulation of these factors by LPAR1-4, PI3K, PKC, NF-κB, and the MAPKs, as they 

have been found to be critical in our experimental model. 
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6.2 Materials and Methods  

6.2.1 Determining the effect of LPA treatment on the expression of 

cardiac-specific transcription factors 

The differentiation process was carried out as described in chapter 2 section 2.2. 

Lysates were generated on days 6, 8, and 10, and protein quantification was carried 

out as described in chapter 2 section 2.3.2 and 2.3.3 respectively. Western blot was 

carried out as outlined in chapter 2 section 2.4 with the following modifications. The 

GATA-4 and the MEF2C (Cell Signaling Technology) primary antibodies were used at 

a dilution of 1:1000. The anti-NKX2.5 (Abcam) primary antibody was used at dilutions 

of 1:1000, 1:2500, and 1:5000 in both 5% non-fat milk blocking buffer and 5% BSA 

blocking buffer. The anti-rabbit IgG, HRP-linked secondary antibody (Cell Signaling 

Technology) was used at a dilution of 1:4000 for the detection of GATA4 and MEF2C 

and at dilutions of 1:4000 and 1:6000 for the detection of NKX2.5 Statistical analysis 

was done as described in chapter 2 section 2.7. 

6.2.2 Determining the regulation of cardiac-specific transcription factors 

in LPA treated cells by LPA receptors 1-4, MAPKs, PKC, PI3K, and NF-κB 

The differentiation process was carried out as described in chapter 2 section 2.2. EBs 

were seeded in the presence of antagonists for LPA receptor 1/3 (20µM Ki16425), 2 

(7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) and inhibitors for PI3K (20µM 

LY294002), PKC (10µM BIM-1), ERK (20µM PD98059), JNK (10µM SP600125) and 

NF-κB (0.01nM CAY10470) for 60 minutes before treatment with 5µM LPA. Lysates 

were generated on day 10 of the differentiation process as described in chapter 2 

section 2.3.2. Protein quantification and western blot were carried out as described in 

chapter 2 section 2.3.3 and 2.4 respectively with the following modifications: The 

GATA-4 and the MEF2C (Cell Signaling Technology) primary antibodies were used at 

a dilution of 1:1000. The anti-rabbit IgG, HRP-linked secondary antibody (Cell 

Signaling Technology) was used at a dilution of 1:4000. Statistical analysis was done 

as described in chapter 2 section 2.7.
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6.3 Results  

6.3.1 Expression of cardiac-specific transcription factors in LPA treated 

cells. 

Lysates were generated on days 6, 8, and 10 of the differentiation process. The 

expression of both GATA4 (Figure 6.0) and MEF2C (Figure 6.1) was below 25% in 

both untreated and treated cells on day 6. GATA4 expression remained near this basal 

expression on days 8 and 10 in untreated cells, but the expression in LPA treated cells 

increased substantially on day 8 and was sustained until day 10. In comparison, the 

increase in MEF2C expression was time-dependent in LPA treated cells with a 

maximum expression on day 10. The untreated cells exhibited an unchanged basal 

expression from days 6-10. 

NKX2.5 expression could not be determined as further optimisation with the primary 

antibody was required. The anti-NKX2.5 primary antibody was used at dilutions of 

1:1000, 1:2500, and 1:5000 in both 5% non-fat milk blocking buffer and 5% BSA 

blocking buffer. A dilution of 1:1000 of primary antibody and 1:4000 dilution of the anti-

rabbit IgG, HRP-linked secondary antibody is shown in Figure 6.2A. Too many 

unspecific bands were obtained, and a further dilution of 1:2500 of the primary 

antibody with the previously used dilution of secondary antibody was attempted (B). A 

further dilution of 1:5000 of primary antibody and 1:6000 dilution of the anti-rabbit IgG, 

HRP-linked secondary antibody is shown in Figure 6.2C.
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Figure 6.0. LPA induces GATA4 expression in a time-dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in tissue grade 6-well 
plates for a further 6 days. Lysates were generated on days 6, 8, and 10 of the 
differentiation process for expression of GATA4 determined by western blot. Statistical 
comparisons were performed by two-way ANOVA with Bonferroni post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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Figure 6.1. LPA induces MEF2C expression in a time-dependent manner 
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in tissue grade 6-well 
plates for a further 6 days. Lysates were generated on days 6, 8, and 10 of the 
differentiation process for expression of MEF2C determined by western blot. Statistical 
comparisons were performed by two-way ANOVA with Bonferroni post hoc test 
(α=0.05). The data represent the means ± S.E.M. of 3 experiments.
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Figure 6.2. Optimization of the NKX2.5 antibody  
P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue grade 

Petri dishes for 4 days. EBs were then transferred and cultured in tissue grade 6-well 
plates for a further 6 days. Lysates were generated on days 6, 8, and 10 of the 
differentiation process for expression of NKX2.5 determined by western blot. 
Optimization of the primary antibody was attempted using a dilution of 1/1000 (A) and 
1/2500 (B) with a 1/4000 dilution of the anti-rabbit IgG, HRP-linked secondary antibody 
and with a dilution of 1/5000 and 1/6000 for the primary and secondary antibody (C). 
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6.3.2 The regulation of cardiac specific transcription factors in LPA 

treated cells by LPA receptors 1-4, MAPKs, PKC, PI3K, and NF-κB 

6.3.2.1 GATA4 

From the study above, maximum GATA4 expression was observed on day 10 of the 

time points analysed, therefore, we next set out to determine if the inhibition of the 

LPA receptors or specific kinases changed this expression. 

As seen in Figure 6.3, the expression of GATA4 was reduced by the inhibition of each 

of the LPA receptors. Inhibition of receptor 4 by Suramin was the most effective and 

reduced levels to below basal. Inhibition of receptor 1/3 and 2 by Ki16425 and 

H2L5186303 respectively were similar, with a mean expression of approximately 25% 

compared to cells treated with only LPA (5µM). Inhibition of PKC by BIM-1 also 

reduced expression levels to below basal while inhibition of PI3K by LY294002 

showed a mean decrease of approximately 30%. Inhibition of JNK by SP600125 

reduced the mean expression of GATA4 by over 80%. The decrease in GATA4 

expression by the inhibition of ERK by PD98059, although significant, was less 

effective than JNK. Like ERK, the inhibition of NF-κB also reduced GATA4 expression 

by half compared to cells treated with LPA alone.  
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Figure 6.3. Regulation of GATA4 in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Lysates were generated on day 10 of the 
differentiation process using 1x RIPA buffer, as described in chapter 2 section 2.3.2, 
for expression of GATA4 determined by western blot. Statistical comparisons were 
performed by one-way ANOVA with Dunnett’s post hoc test (α=0.05). The data 
represent the means ± S.E.M. of 3 experiments. 
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6.3.2.2 MEF2C 

From the study above, maximum MEF2C expression was observed on day 10 of the 

time points analysed, therefore, we next set out to determine if the inhibition of the 

LPA receptors or specific kinases changed this expression. 

As seen in Figure 6.4, the expression of MEF2c was reduced by the inhibition of LPA 

receptor 4, 1/3, and 2 by approximately 65%, 80% and 65% respectively compared to 

LPA treatment alone. Inhibition of PKC and PI3K also significantly decreased the 

expression of MEF2c with BIM-1 reducing levels to basal and LY294002 reducing 

expression by approximately 40%. The inhibition of JNK also brought expression 

levels back to basal whereas inhibition of ERK caused 50% less expression compared 

to LPA treatment alone. Inhibition of NF-κB did not significantly change the expression 

of MEF2C. 
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Figure 6.4. Regulation of MEF2C in LPA treated P19 cells  
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) and inhibitors for PI3K (20µM LY294002), PKC (10µM BIM-1), 

ERK (20µM PD98059), JNK (10µM SP600125) and NF-κB (0.01nM CAY10470) in 

non-tissue grade Petri dishes for 4 days. EBs were then transferred and cultured in 6-
well tissue grade plates for a further 6 days. Lysates were generated on day 10 of the 
differentiation process using 1x RIPA buffer, as described in chapter 2 section 2.3.2, 
for expression of MEF2C determined by western blot. Statistical comparisons were 
performed by one-way ANOVA with Dunnett’s post hoc test (α=0.05). The data 
represent the means ± S.E.M. of 3 experiments. 
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6.4 Discussion 

The expression of cardiac-specific transcription factors is used to validate the 

commencement of the cardiac program. However, the in vitro regulation of these 

factors is not entirely known, but transcription factors typically have multiple levels of 

control and often work in conjunction with other cell type dependent and independent 

transcription factors.  

The expression of GATA4, MEF2C, and NKX2.5 in P19 cells exposed to 1% DMSO 

is typically evident after cells have been transferred to tissue culture plates (Harada et 

al., 2008; Yilbas et al., 2014). Therefore, we evaluated the expression of these factors 

in response to LPA treatment on day 6, 8, and 10 of the differentiation process. The 

expression of GATA4 in untreated cells remained relatively stable through days 6-10 

with less than 30% expression. A similar expression was seen in LPA treated cells on 

day 6, with a dramatic increase in expression observed on day 8 which was sustained 

on day 10. The expression of MEF2C in untreated cells also remained stable on days 

6, 8 and 10 with less than 30%. MEF2C expression in LPA treated cells on day 6 was 

comparable to the expression in untreated cells and gradually increased until day 10.  

As maximum expression of GATA4 and MEF2C was observed on day 10 of the time 

points analysed, we next sought out to determine if treatment with kinase-specific 

inhibitors altered this expression. Inhibition of LPAR4 by Suramin abolished the 

expression of GATA4 and MEF2C whereas inhibition of LPAR2 by H2L5186303 and 

inhibition of LPAR1/3 by Ki16425 brought the expression of both to the basal level. 

These findings correlate to findings discussed in chapter 3 where treatment with 

Suramin (0.1mg/mL) resulted in the MLC1v expression being below that of basal 
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expression and treatment with H2L5186303 (7.5nM) and Ki16425 (20µM) returned 

levels of MLC1v to basal.  

Inhibition of PKC by BIM-1 inhibited GATA4 and MEF2C expression by 85% and 65% 

respectively. PKC mediated GATA4 regulation has been observed by groups studying 

signalling in the context of cardiac hypertrophy (Wang et al., 2005) however, in the 

context of cardiac differentiation, PKC regulation of GATA4 has not been well 

supported (Gallagher et al., 2014).   

Treatment with LY294002 had marginal effects on GATA4 and MEF2C, with 

approximately 30% and 40% reduction in expression respectively. Bekhite et al. (2011) 

have provided data suggesting inhibition of PI3K inhibits GATA4 expression when 

induced by VEGF. Naito et al. (2003) also demonstrated that 20µM LY294002 inhibited 

GATA4 expression in P19 cells. Tamir and Bengal (2000) reported MEF2C regulation 

by PI3K.  

Inhibition of NF-κB decreased GATA4 expression by 50% whereas little effect was 

seen on the expression of MEF2C. Using a zebrafish model to study cardiac 

regeneration, Karra et al. (2015) found NF-κB activity was responsible for the induction 

of GATA4 regulatory sequences and that over-expression of GATA4, with NF-κB 

inhibition, was not enough to restore the regeneration program suggesting 

multifactorial regulation by NF-κB. Treatment with ERK inhibitor, PD98059, also 

decreased the expression of GATA4 and MEF2c by half which is line with the results 

of Ling et al. (2017)  who used 50µM PD98059 to block the upregulation of GATA4 

and MEF2C observed by the inhibition of miR155-3p. 

JNK inhibition by SP600125 returned expression of GATA4 and MEF2C to the basal 

level. These findings are supported by the work of Geng, Liu, and Chen (2014) who 
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used BMP9 to induce cardiac differentiation and the expression of both GATA4 and 

MEF2C was negatively affected by JNK inhibition.  

The same evaluation was attempted for NKX2.5 however further optimisation of the 

primary antibody is needed. All primary antibodies used were purchased from Cell 

Signaling Technology other than MLC1v and anti-NKX2.5. The predicted band size is 

34kDa, but on the data sheet accompanying the product, the band shown was not in 

this range, therefore, making it more difficult to identify the appropriate band on the 

blots generated in our studies. Currently, Cell Signaling Technology does not have an 

anti-NKX2.5 antibody that reacts with mouse samples, therefore, the antibody from 

Abcam needs to be further optimised or sourced from elsewhere to accurately 

determine the expression profile of NKX2.5 using western blotting. Other studies have 

indicated that NKX2.5 expression is in line with the expression of GATA4 and MEF2C 

or lags slightly (Grepin, Nemer, & Nemer, 1997; Harada et al., 2008; Naito et al., 2003; 

Yilbas et al., 2014).  

In conclusion, GATA4 and MEF2C expression is upregulated on day 8 and 10 in 

response to LPA treatment. This expression is inhibited by LPAR1-4 antagonists which 

correspond to the effect of these antagonists on MLC1v expression. PKC inhibition 

also decreased GATA4 and MEF2C expression to basal whereas PI3K inhibition 

resulted in 30-40% decrease in GATA4 and MEF2C expression. NF-κB and ERK 

inhibition resulted in a 50% loss of GATA4 expression while only the latter had a similar 

effect of MEF2C expression. JNK inhibition abolished both GATA4 and MEF2C 

expression.
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Chapter 7 

The regulation of the Hippo pathway in 
LPA mediated cardiac differentiation of 

P19 cells
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7.1 Introduction  
Members of the Hippo pathway were individually identified earlier, but the pathway 

was pieced and studied together in the Drosophila only in the mid-1990's and the 

mammalian homologs of the core proteins comprising the pathways have since been 

identified (Del Re, 2014; Meng, Moroishi, & Guan, 2016). The mammalian hippo 

pathway contains mammalian Ste20-like 1 and 2 (MST1/2) and large tumour 

suppressor 1 and 2 (LATS1/2) Ser/Thr proteins that require co-activator regulatory 

proteins, Salvador homolog 1 (SAV1) and Mps One binder 1 (MOB1). MST1/2, 

activated by SAV1, phosphorylates both LATS1/2 and MOB1 (Callus, Verhagen, & 

Vaux, 2006; Chan et al., 2005; Praskova, Xia, & Avruch, 2008). Active MOB1 

increases the binding affinity to LATS1/2 resulting in full activation. The Yes-

associated protein (YAP) is a transcriptional modulator that is retained in the 

cytoplasm when phosphorylated by MOB1 bound LATS1/2 (Huang et al.,2005). YAP 

was initially recognised to regulate proliferation, but several other roles have since 

emerged that are both cell and tissue-specific (Dong et al., 2007; Zhao et al., 2008; 

Zhao et al., 2010). The earliest cell fate decision during embryonic development 

involves YAP, and co-activated TEAD (Nishioka et al., 2009), and later regulates organ 

size, including the heart, and cardiomyocyte proliferation (Zhou et al., 2015b). YAP 

has been shown to regulate other transcription factors including Smads (Ferrigno et 

al., 2002) and Tbx5 (Murakami et al., 2005). Yu et al. (2012) found that YAP was 

phosphorylated following serum starvation but rapidly dephosphorylated upon serum 

addition in multiple cell lines. They discovered that LPA, found in serum, inhibits 

LATS1/2, acting in parallel with MST1/2, thereby allowing YAP to translocate into the 

nucleus.  

In this study, we aimed to evaluate the effect of LPA treatment on YAP phosphorylation 

and further determine the regulation of YAP and MOB1 by LPAR1-4 and JNK. 
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7.2 Materials and Methods 

7.2.1 Determining the expression of phosphorylated YAP and MOB in 

LPA treated cells   

The differentiation process was carried out as described in chapter 2 section 2.2 and 

lysates were generated 18, 24, 48 and 72 hours after initial seeding as described in 

chapter 2 section 2.3.2. Protein quantification and western blot were carried out as 

specified in chapter 2 section 2.3.3 and 2.4 respectively with the following 

modifications: Blocking buffer was made with 5% BSA in TBS-T, and Phospho-YAP 

(Ser397), Phospho-YAP (Ser127), and Phospho-MOB1 (Thr35) primary antibodies 

(Cell Signaling Technology) were used at a dilution of 1:1000 and anti-rabbit IgG, 

HRP-linked secondary antibody (Cell Signaling Technology) was used at dilution of 

1:4000. SuperSignal West Dura Substrate (Thermo Fisher) was used for protein 

detection. Statistical analysis was done as described in chapter 2 section 2.7. 

7.2.2 Determining the regulation of YAP and MOB1 in LPA treated cells by 

JNK and LPAR1-4   

The differentiation process was carried out as described in chapter 2 section 2.2. EBs 

were seeded in the presence of antagonists for LPA receptor 1/3 (20µM Ki16425), 2 

(7.5nM H2L5186303), and 4 (0.1mg/mL Suramin) and JNK (10µM and 20µM 

SP600125) for 60 minutes before treatment with 5µM LPA. Lysates were generated 

24 and 48 hours after initial seeding as described in chapter 2 section 2.3.2 for analysis 

of phosphorylated MOB1 and phosphorylated YAP respectively. Protein quantification 

and western blot were carried out as specified in chapter 2 section 2.3.3 and 2.4 

respectively with the following modifications: Blocking buffer was made with 5% BSA 

in TBS-T, and Phospho-YAP (Ser397), Phospho-YAP (Ser127), and Phospho-MOB1 

(Thr35) primary antibodies (Cell Signaling Technology) were used at a dilution of 
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1:1000 and anti-rabbit IgG, HRP-linked secondary antibody (Cell Signaling 

Technology) was used at dilution of 1:4000. SuperSignal West Dura Substrate 

(Thermo Fisher) was used for protein detection. Statistical analysis was done as 

described in chapter 2 section 2.7. 

7.2.3 Determining the expression of Hippo pathway members in LPA 

treated cells 

The differentiation process was carried out as described in chapter 2 section 2.2 and 

lysates were generated 18, 24, 48 and 72 hours after initial seeding as described in 

chapter 2 section 2.3.2. Protein quantification and western blot were carried out as 

specified in chapter 2 section 2.3.3 and 2.4 respectively with the following 

modifications: LATS1, MOB1, MST1, MST2, SAV1, and TAZ primary antibodies (Cell 

Signaling Technology) were used at a dilution of 1:1000 and anti-rabbit IgG, HRP-

linked secondary antibody (Cell Signaling Technology) was used at dilution of 1:4000. 
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7.3 Results 

7.3.1 The effect of LPA on phosphorylated YAP and MOB  

EBs were seeded in the absence or presence of 5µM LPA and lysates were collected 

18, 24, 48, and 72 hours after initial seeding. YAP was comparably phosphorylated at 

serine residue 127 (Figure 7.0) in both treated and untreated cells 18 hours after initial 

seeding. In untreated cells, this was sustained for 48 hours but radically decreased in 

LPA treated cells at 24 and 48 hours whereas phosphorylation was barely detectable 

at 72 hours in both groups. A similar trend was observed at the serine 397 residue 

(Figure 7.1). The untreated cells maintained phosphorylated YAP for 48 hours and 

then rapidly decreased at 72 hours whereas phosphorylation gradually decreased in 

LPA treated cells. The difference between untreated and treated cells at 24 hours, 

although significant, was not as drastic at serine 397 as serine 127 however, results 

were comparable at 48 and 72 hours.  

Moderate phosphorylation of MOB1 (Figure 7.2) was seen at 18 hours and was 

comparable between untreated and treated cells. Phosphorylation decreased in LPA 

treated cells but increased in untreated cells at 24 hours. Both groups showed a 

comparable decrease in phosphorylation at 48 hours and 72 hours with a minuscule 

increase at the latter time point.
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Figure 7.0. The effect of LPA treatment on p-YAP (Ser127) in P19 cells 
The P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue 

grade Petri dishes for 18, 24, 48 and 72 hours. Lysates were generated using 1x RIPA 
buffer, as described in chapter 2 section 2.3.2, for expression of phospho-YAP 
(Ser127) determined by western blot. Statistical comparisons were performed by two-
way ANOVA with Bonferroni post hoc test (α=0.05). The data represent the means ± 
S.E.M. of 3 experiments.
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Figure 7.1. The effect of LPA treatment on p-YAP (Ser397) in P19 cells 
The P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue 

grade Petri dishes for 18, 24, 48 and 72 hours. Lysates were generated using 1x RIPA 
buffer, as described in chapter 2 section 2.3.2, for expression of phospho-YAP 
(Ser397) determined by western blot. Statistical comparisons were performed by two-
way ANOVA with Bonferroni post hoc test (α=0.05). The data represent the means ± 
S.E.M. of 3 experiments.



174 
 

 

 

Figure 7.2. The effect of LPA treatment on p-MOB1 in P19 cells 
The P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue 

grade Petri dishes for 18, 24, 48 and 72 hours. Lysates were generated using 1x RIPA 
buffer, as described in chapter 2 section 2.3.2, for expression of phospho-MOB1 
determined by western blot. Statistical comparisons were performed by two-way 
ANOVA with Bonferroni post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments.
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7.3.2 Regulation of YAP and MOB in LPA treated cells by JNK and 

LPAR1-4 

From the studies above, the difference in YAP activity at serine 127 and serine 397 

between LPA treated and untreated cells was greatest at 48 hours after initial seeding, 

therefore, this time point was used to determine changes in activity by the presence 

of LPAR antagonists or JNK inhibition. YAP serine 127 phosphorylation (Figure 7.3) 

was maintained in the untreated cells and cells treated with 10 or 20µM SP600125. 

Phosphorylation decreased in LPA treated cells and was unaffected by inhibition of 

LPAR4 by 0.1mg/mL Suramin treatment. Inhibition of LPAR2 by 7.5nM H2L5186303 

also had minimal effect on phosphorylation whereas inhibition of LPAR1/3 by 20µM 

Ki16425 caused a significant increase in phosphorylation compared to LPA treatment 

alone. Untreated and SP600125 (10 and 20µM) treated cells displayed the same 

increased phosphorylation at serine 397 (Figure 7.4). 5µM LPA treatment alone and 

with Suramin also exhibited similarly decreased phosphorylation at serine 397 as 

serine 127. LPAR1/3 inhibition by Ki16425 significantly increased phosphorylation, 

and unlike at serine 127, serine 397 phosphorylation was maintained with the inhibition 

of LPAR2 by H2L5186303 although not as predominantly as with Ki16425 treatment.  

Unlike YAP, the greatest difference in MOB activity between LPA treated and 

untreated cells was 24 hours after initial seeding, therefore, this time point was used 

to determine changes in activity by the presence of LPAR antagonists or JNK 

inhibition. MOB phosphorylation (Figure 7.5) at 24 hours in response to LPAR1-4 and 

JNK inhibition was similar to YAP serine 397. Untreated and cells treated with 

SP600125 (10 or 20µM) maintained phosphorylation whereas LPA treatment alone 

and with Suramin decreased phosphorylation. Inhibition of LPAR2 and LPA1/3 by 

H2L5186303 and Ki16425 respectively increased phosphorylation compared to LPA 

treatment alone, however, phosphorylation with treatment using the latter was higher 

in comparison. 
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Figure 7.3. Regulation of p-YAP (Ser127) in LPA treated P19 cells 
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) or JNK inhibitor (*10µM or **20µM SP600125) in non-tissue 

grade Petri dishes for 48 hours. Lysates were generated using 1x RIPA buffer, as 
described in chapter 2 section 2.3.2, for expression of phospho-YAP (Ser127) 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments. 
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Figure 7.4. Regulation of p-YAP (Ser397) in LPA treated P19 cells 
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) or JNK inhibitor (*10µM or **20µM SP600125) in non-tissue 

grade Petri dishes for 48 hours. Lysates were generated using 1x RIPA buffer, as 
described in chapter 2 section 2.3.2, for expression of phospho-YAP (Ser397) 
determined by western blot. Statistical comparisons were performed by one-way 
ANOVA with Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. 
of 3 experiments.  
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Figure 7.5. Regulation of p-MOB1 in LPA treated P19 cells 
P19 cells were seeded in the presence of 5µM LPA after a 60-minute pre-treatment 

with antagonists for LPA receptor 1/3 (20µM Ki16425), 2 (7.5nM H2L5186303), and 4 

(0.1mg/mL Suramin) or JNK inhibitor (*10µM or **20µM SP600125) in non-tissue 

grade Petri dishes for 24 hours. Lysates were generated using 1x RIPA buffer, as 
described in chapter 2 section 2.3.2, for expression of phospho-MOB1 determined by 
western blot. Statistical comparisons were performed by one-way ANOVA with 
Dunnett’s post hoc test (α=0.05). The data represent the means ± S.E.M. of 3 
experiments. 
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7.3.3 Expression of Hippo pathway members 

The total protein expressed for each member of the Hippo cascade was also 

determined at 18, 24, 48, and 72 hours after EB formation with and without LPA 

treatment. LATS1, SAV1, MOB1, and MST1 were unchanged at the time points 

assessed however MST2 was undetectable. Total TAZ was also unchanged 

throughout, but a decrease was observed in LPA treated cells after 72 hours. 

Experiments conducted to determine the changes in TAZ expression were preliminary 

and need to be further expanded to verify this trend and significance (Figure 7.6).
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Figure 7.6. The effect of LPA treatment on kinases of the Hippo cascade 
The P19 cells were seeded in the absence or presence of 5µM LPA in non-tissue 

grade Petri dishes and cultured in suspension for 18, 24, 48 and 72 hours. Lysates 
were generated using 1x RIPA buffer, as described in chapter 2 section 2.3.2, for 
expression of LATS1, MOB1, MST1, MST2, SAV1, and TAZ as determined by western 
blot. The data represent 3 individual experiments except for the latter, which 
represents 2 experiments.



181 
 

7.4 Discussion 
Soon after birth, the heart grows by increased cardiomyocyte size instead of 

cardiomyocyte proliferation (Ahuja, Sdek, & MacLellan, 2007; Li et al., 1996; Maillet, 

van Berlo, & Molkentin, 2013). The loss of mitotic potential in cardiomyocytes prevents 

endogenous cardiac repair post-ischaemic injury. Efforts to identify cell cycle 

regulators capable of promoting cardiomyocyte proliferation have demonstrated a key 

role for the Hippo pathway. Evolutionarily conserved from the Drosophila to human, 

the Hippo pathway controls organ size including that of the heart (Zhou et al., 2015b).   

The main effector of the Hippo pathway is the Yes-associated protein (YAP), typically 

regulated through MOB activated LATS. In addition to regulating organ size, this 

kinase cascade is involved in early embryonic development, stem cell pluripotency, 

and differentiation (Aylon et al., 2014; Li et al., 2013; Posfai & Rossant, 2016).  

Phosphorylation of YAP at serine 127 or 381 by LATS tags the protein for cytoplasmic 

sequestration by binding to 14-3-3 and ubiquitination dependent degradation 

respectively. In 2012, two independent groups identified S1P and LPA responsible for 

YAP activation (Miller et al., 2012; Yu et al., 2012). Yu et al. (2012) demonstrated 

rapid, although transient, de-phosphorylation of YAP, at serine 127 and 381, and 

nuclear localisation of YAP in response to stimulation by serum after serum starvation 

in several different cell lines. Furthermore, the serum component driving the nuclear 

localisation of YAP was found to be LPA, and this effect was unchanged by growth 

factors including FGF, EGF, insulin, and PDGF, or inhibitors for MEK, PI3K, mTOR, 

and p38.   

Our findings, consistent with those of Yu et al. (2012), suggest YAP has a transient 

window of de-phosphorylation between 24-48 hours after commencing the 

differentiation process in the presence of 5µM LPA. We determined the 
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phosphorylation profile of YAP at serine residues 127 and 397 during EB formation in 

LPA treated and untreated cells. As reported by Zhao et al. (2010) the serine 397 

residue of the YAP protein isoform 1 corresponds to the serine 381 residue of the YAP 

protein isoform 2. EBs collected 18 hours after initial seeding exhibited high 

phosphorylation at both serine residues irrespective of treatment. Phosphorylation 

was maintained in untreated cells for 48 hours and decreased rapidly at 72 hours at 

both sites. In LPA treated cells, phosphorylation at serine residue 127 decreased 

rapidly much earlier, at 24 hours, to below 30% compared to untreated cells whereas 

phosphorylation dropped by less than 50% at serine 397 at the same time point but 

dropped further at 48 hours to 25% with stable expression at serine 127. Expression 

levels were below 20% after 72 hours at both sites and equivalent in LPA treated and 

untreated cells. Further investigation is required to evaluate the possibility of YAP 

degradation. This was initiated by looking at changes in total YAP expression, 

however, time constraints did not allow for full optimisation of the antibody. Studies 

were also undertaken to determine the cellular localisation of YAP in LPA treated and 

untreated cells. This was to establish the involvement of the Hippo pathway in LPA 

induced cardiac differentiation of P19 cells. However, due to prolonged mycoplasma 

contamination, time constraints did not permit for these studies to be repeated after 

the contamination had been identified and resolved.   

LPA is a ligand for multiple GPCRs initiating a complex signalling network that is 

difficult to fully decipher as the expression of GPCRs is cell-type specific and bound 

to an array of Gα proteins. Multiple Gα subunits, in the order of 12/13>q>i/o, have 

been identified to be potent inhibitors of the Hippo pathway and de-phosphorylation of 

YAP has been known to occur through LPA receptors 1 and 3 relayed via Rho 
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GTPases to inhibit LATS whereas Gs signalling induces YAP phosphorylation (Cai 

and Xu, 2013; Jeong et al., 2013; Yu et al., 2012).  

In line with these studies, our finding also suggests that LPA receptors 1 and 3 are 

largely responsible for regulating YAP activity. Treatment with Ki16425 abolished YAP 

de-phosphorylation by LPA, with a greater effect at serine 397. However, our findings 

also suggest a partial role for LPA receptor 2. As with Ki16425, treatment with 

H2L5186303, had a greater effect at serine 397, increasing phosphorylation to 

approximately 70%, compared to LPA treatment alone but only approximately 40% at 

serine 127. Treatment with Suramin yielded no change in expression compared to 

LPA treatment alone possibly because LPA receptor 4 utilises Gs signalling (Lee et 

al., 2007).  

JNK and YAP are well-defined regulators of multiple cellular processes, and JNK 

activation of YAP (Grusche et al., 2011; Shaw et al., 2010; Staley & Irvine, 2010; Sun 

& Irvine, 2011; Sun & Irvine, 2013) is context dependent. JNK mediated regulation of 

YAP occurs upon mechanical stress and promotes the proliferation of epithelial cells 

through inactivation of LATS1 by LIMD1 (Codelia, Sun, & Irvine, 2014). In the context 

of UV irradiation, JNK directly phosphorylates YAP, further promoting UV induced 

apoptosis (Tomlinson et al., 2010). Aside from JNK, other kinases critical to cardiac 

differentiation also regulate YAP including Wnt/β-catenin, PKC, and ERK (Heallen et 

al., 2011; Imajo et al., 2012; Konsavage et al., 2012; Tomlinson et al., 2010; Wang et 

al., 2013).  

The expression profile of pYAP in P19 cells exposed to LPA discussed above, 

correlated to the phosphorylation of JNK, discusses in chapter 4. We found interruption 

of the JNK pathway using SP600125 disrupted cardiac differentiation and proliferation 
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in a dose-dependent manner. As YAP has been implicated in both differentiation and 

proliferation and found to be activated by LPA and JNK we furthered our investigation 

to determine the effect of SP600125, both 10µM and 20µM, on YAP activation at both 

serine 127 and 397 residues in EBs treated with 5µM LPA for 48 hours. We found that 

Inhibition of JNK maintained phosphorylation levels equivalent to untreated cells at 

both serine residues irrespective of the concentration of SP600125 used. As 

insufficient EB proliferation is seen with 20µM SP600125 treatment within 48 hours of 

EB seeding, and equivalent phosphorylation of YAP was observed irrespective of the 

concentration of SP600125 as stated above, it is unlikely that YAP alone is involved 

in JNK mediated proliferation of EBs however, it is important to investigate YAP activity 

in the presence of 20µM SP600125 prior to 48 hours and the effect of JNK inhibition 

on other kinases implicated in EB proliferation which was not done here due to time 

constraints. YAP may be involved in regulating JNK mediated cardiac differentiation 

of P19 cells in the presence of LPA. YAP phosphorylation was not determined 

between 48 and 72 hours, however if YAP phosphorylation in untreated cells was 

sustained for several hours after the 48-hour time point examined, it may be possible 

that the lack of cardiac differentiation, observed with SP600125 treatment 48 hours 

after initial seeding, is due to continued YAP phosphorylation in untreated cells and 

de-phosphorylation of YAP in LPA treated cells that is disrupted upon JNK inhibition.   

Hippo-dependent phosphorylation of YAP requires the full activation of LATS by the 

binding of phosphorylated MOB and studies have indicated LATS modulation by LPA 

but also de-phosphorylation of MOB by LPA in HSG cells (Hwang et al., 2014). In P19 

cells we found that MOB1 is moderately phosphorylated 18 hours after EB formation 

irrespective of LPA treatment but quickly decreased in LPA treated cells at 24 hours 

to less than 20% whereas expression in untreated cells doubled. Expression in LPA 
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treated cells was sustained near 30% thereafter with an equivalent expression 

observed in untreated cells at 48 and 72 hours. De-phosphorylation of MOB1 in P19 

cells 48 hours after initial seeding irrespective of LPA treatment may indicate sustained 

MOB1 phosphorylation is not required in untreated cells for YAP phosphorylation 48 

hours after EB formation or that dual regulatory mechanisms exist for YAP regulation.  

The difference in MOB1 phosphorylation between LPA treated and untreated cells was 

most evident 24 hours after initial seeding. This expression profile was dramatically 

changed in the presence of JNK inhibitor, SP600125, and LPAR1/3 antagonist, 

Ki16425, compared to LPA treatment alone, both of which returned phosphorylation 

levels to near maximum. Treatment with Suramin was without effect whereas 

treatment with H2L5186303 increased phosphorylation expression to approximately 

60% compared to LPA treatment alone.  

In conclusion, the data discussed above suggests that LPAR1/3, and partially LPAR2 

mediated JNK signalling targets the Hippo kinase, MOB1, for de-phosphorylation of 

YAP in the presence of LPA. However, sustained de-phosphorylation of MOB1 may 

not be required for prolonged YAP de-phosphorylation implying that multiple regulatory 

mechanisms may act on YAP in this context. To confirm this, other phosphorylation 

sites of MOB1 and MOB2 would need to be examined. The cellular localisation of both 

YAP and MOB1 also require investigation to determine the involvement of the Hippo 

pathway in LPA induced cardiac differentiation of P19 cells.
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Chapter 8 

General Discussion
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Cardiovascular diseases are a major cause of morbidity and mortality around the 

globe, and the increasing awareness of stem cell research is linked to the hope of 

reversing the debilitating damage ensued by events such as myocardial infarction. The 

use of multipotent stem cells is being evaluated in multiple clinical trials, and thus far, 

improvement in cardiac function has not been substantial, therefore, there is growing 

interest in directed differentiation of stem cells for cardiac regeneration.   

The role of endogenous molecules in facilitating stem cell differentiation into 

cardiomyocytes is yet to be fully understood. SPC and S1P, common biolipids, 

promote differentiation of mesenchymal stem cells and cardiac progenitor cells to 

cardiomyocytes (Li et al., 2016; Zhao et al., 2011). However, little was known about 

the same potential of closely related LPA until recently (Pramod, 2017). 

The initial cardio-protection offered by elevated LPA levels in response to acute 

myocardial infarction (Chen et al., 2003) and the ability of this biolipid to mediate 

cardiac differentiation (Pramod, 2017) served as a rationale to investigate the signal 

transduction mechanisms mediating LPA induced cardiac differentiation of the murine 

P19 teratocarcinoma cell line. The mechanisms of cardiac differentiation have been 

widely studied in this cell line typically in response to DMSO. 

8.1 The Differentiation Protocol 

Differentiation of P19 stem cells into cell types representative of the three germ layers 

occurs when cultured in suspension through the spontaneous formation of EBs 

(Edwards, Harris, & McBurney, 1983; McBurney & Rogers, 1982; McBurney et al., 

1982). The number of cardiomyocytes derived this way is very low but can be 

enhanced with manipulation of the culture medium. In our experimental model, LPA 

induced cardiac differentiation of P19 cells in a manner comparable to DMSO. This 

was achieved using LPA at physiologically relevant concentrations with maximal 
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induction attained with 5µM as previously shown by Pramod (2017). Differentiation 

was assessed by examining the expression of the ventricular myosin light chain 

protein (MLC1v). Beating clusters of cells were routinely observed on day 10 of the 

differentiation process, however, this was not uniform, and the presence of other cell 

types was not determined. Further studies were conducted to examine the role of 

signalling molecules critical to lineage commitment including the PI3K and PKC 

pathway (chapter 3), the MAPK pathway (chapter 4), NF-κB pathway (chapter 5), and 

their regulation of transcription factors, AP-1 (chapter 5), GATA4, and MEF2C (chapter 

6). Furthermore, preliminary studies were conducted investigating the regulation of 

YAP in differentiating stem cells (chapter 7). The major findings of this thesis are 

summarised in Figure 8.0 and further discussed below.  
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Figure 8.0. Signal transduction mechanisms for LPA induced cardiac 
differentiation of P19 stem cells. 
LPA induces cardiac differentiation through LPA receptor 2 and partially through LPA 
receptor 1/3 signalling. Downstream to these receptors, the PKC and PI3K pathways 
converge on the regulation of ERK and possibly JNK. The MAPKs converge on the 
regulation of the ubiquitous transcription factors, AP-1/ATF2, which are also regulated 
by NF-κB signalling, which itself may be regulated by the JNK pathway. ERK, JNK, 
and NF-κB converge on the regulation of cardiac specific transcription factors, GATA4 
and MEF2C, however, whether the AP-1 complex lies upstream and acts as a co-
activator of these cardiac specific transcription factors is currently unknown. JNK 
regulates the Hippo pathway in this experimental model but the cellular localisation 
and role of YAP in LPA induced cardiac differentiation is yet to be determined.  
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8.2 LPA receptors 

After confirming the suitability of the differentiation protocol followed by Pramod (2017) 

we examined the roles of LPARs 1-4 in LPA induced cardiac differentiation. Pramod 

(2017) found LPAR 1/3 and 4 to be involved using Ki16425 and Suramin, respectively, 

to antagonise the actions of these receptors. Ki16425 is selective for LPARs 1 and 3 

at low concentrations but targets LPAR2 with an IC50 of 6.5µM. Pramod (2017) and 

studies carried out in this thesis have used 10µM or greater to target LPAR1/3, 

therefore, it is important to highlight that there is a possibility that the results obtained 

are due to LPAR2 inhibition. The current thesis determined the role of LPAR2 using 

H2L5186303, a highly selective antagonist, in LPA mediated cardiac differentiation. 

LPAR2 is a critical receptor in this experimental model and its inhibition blocks LPA 

induced MLC1v expression but in addition also blocks the phosphorylation of JNK 

which was found to be a critical signalling molecule. Inhibition of JNK phosphorylation 

was, however, more profound with Ki16425 treatment. The same effects were 

observed when investigating the regulation of YAP and MOB. These results suggest 

that LPAR1/3 either independently or in conjunction with LPAR2 regulate critical 

kinases and, therefore, merit further investigation into the precise role of LPAR1 and 

3. Pramod (2017) established a role of LPAR4 using Suramin and this was confirmed 

in the current thesis. Suramin is a broad-spectrum antagonist and has a multitude of 

off-target effects including promoting differentiation of stem cells into sinus node cells 

and inhibiting the binding of various key extracellular targets. Although, studies 

completed in this thesis provide preliminary indication for the involvement of LPAR4, 

in the absence of a selective established pharmacological inhibitor, for confirmatory 

studies, siRNA may be a useful tool to explore the role of LPAR4. Therefore, we can 
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conclude that LPAR2 is a critical receptor and LPAR1/3 are partially involved and 

LPAR4 may possibly be involved in LPA induced cardiac differentiation.  

8.3 The JNK pathway 

JNK signalling was determined to be necessary for our differentiation model and 

regulated through LPA receptors 1-3, however, the specific regulation by LPAR1/3 

requires further investigation as discussed above. Phosphorylation of JNK was 

transient during EB formation irrespective of LPA treatment. The use of 10µM 

SP600125, a JNK inhibitor, inhibited LPA induced MLC1v expression whereas 20µM 

SP600125 impacted the proliferation capacity of the aggregating EBs. The inhibition 

of LPAR 1/3 and 2 did not impact on proliferation suggesting the JNK isoforms 

regulated are the same as those targeted by 10µM SP600125 and that additional JNK 

isoforms or kinases are targeted by 20µM SP600125. Inhibition of specific JNK 

isoforms, perhaps using siRNA, may establish isoform specific roles during various 

stages of EB formation and rule out the possibility of non-selective kinase inhibition by 

SP600125. 

The program of cardiac differentiation initiated by LPA may also involve the regulation 

of late genes by JNK as inhibition of the pathway 48 hours after initial EB seeding in 

the presence of LPA, using 10µM or 20µM SP600125, abolished the expression of 

MLC1v. Whether JNK signalling is required during early EB formation solely for 

proliferation, irrespective of an inducing agent, requires further investigation. For this, 

we initiated studies evaluating the regulation of the Hippo pathway, as it is implicated 

in the proliferation of several cell types and a target of both LPA and JNK. 

Phosphorylation of YAP at serine 127 and 397 was reduced in LPA treated cells during 

early EB formation and was found to be regulated by JNK. No difference was seen 
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between treatment of 10µM or 20µM SP600125 suggesting YAP is not required for 

proliferation in this context. The role of YAP was not identified in this study. To 

establish YAP as a critical signalling molecule in LPA induced cardiac differentiation, 

it is important to determine its cellular localisation and the effect its deletion would have 

on differentiation. Studies were initiated to determine the cellular localisation of YAP 

in LPA treated and untreated cells during EB formation using the Life Technologies 

NE-PER extraction kit. The results were, however, inconclusive as mycoplasma 

contaminations disrupted the programme of studies and time constraints did not allow 

for the experiments to be completed after the contamination had been resolved.  

8.4 The NF-κB Pathway 

LPA induced MLC1v expression was blocked by the inhibition of NF-κB, using 

CAY10470, during EB formation. Exploring the expression profile of NF-κB during LPA 

induced cardiac differentiation revealed that NF-κB is phosphorylated at serine 536 in 

both LPA treated and untreated EBs after an 18-hour incubation. Earlier time points 

could not be examined as the size of the pelleted EBs was very small making protein 

extraction difficult and consistency could not be assured. Although, due to time 

constraints, an ELISA kit was used to determine the changes in early NF-κB 

phosphorylation at serine 468 and 536 upon LPA treatment in adherent cells, it may 

be possible to study the changes in NF-κB phosphorylation at earlier time points in 

EBs if the initial seeding density is increased or if identical treatments are cultured and 

pooled together resulting in a larger EB pellet and easier protein extraction. Changes 

in early NF-κB phosphorylation at serine 468 or 536 were not evident upon LPA 

treatment in adherent cells. NF-κB phosphorylation at serine 536 and 468 was found 

to be mediated by JNK signalling, but, regulation at only serine 468 may be initiated 

through LPA receptors 1-3 as inhibition of these receptors did not affect serine 536. 
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Phosphorylation of the latter has been suggested to be a negative regulator of NF-κB 

activity (Pradere et al., 2016), and further investigation into the possibility of negative 

regulation by JNK dependent phosphorylation at this residue or possible cross-talk 

through AP-1 is required. It is important to mention that previous studies within the 

research group have found that treatment with LPA without an EB formation stage 

does not induce cardiac differentiation. It is possible that the signalling cascade 

leading to and from NF-κB phosphorylation is different in these culturing conditions.  

8.5 Transcription Factors 

Pramod (2017) determined that LPA induced expression of MLC1v was blocked by 

the inhibition of PKC, PI3K, or ERK, and further found that both PI3K and PKC 

converged on the regulation of ERK in LPA induced cardiac differentiation. While only 

the former was confirmed in the current thesis, we further established the regulation 

of AP-1/ATF2 by PI3K, PKC, and ERK. JunD and cJun were found to be regulated by 

PI3K/PKC-ERK whereas only FosB was regulated in a PI3K-ERK manner and ATF2 

was regulated by PKC-ERK. JNK and NF-κB were also found to regulate cJun, JunD, 

and ATF2. Although critical signalling molecules converge on the regulation of AP-

1/ATF2, the necessity of AP-1 in LPA mediated cardiac differentiation of P19 cells 

requires evaluation before concluding the regulation by critical kinases as anything 

more than observational. 

PKC, MAPKs, and NF-κB signalling converged on the regulation of GATA4, however, 

PI3K inhibition by LY294002 was shown to target AP-1 subunits. The combinatorial 

regulation by GATA4-AP-1 complexes have been suggested by several groups (Martin 

et al., 2012; Schroder et al., 2006; Suzuki et al., 1999) and perhaps PI3K regulates 

the differentiation into cardiomyocytes through modulating the GATA4 co-factor AP-1 

rather than GATA4 directly. Zeidler et al. (2016) also suggested that both AP-1 and 
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GATA4 may synergistically regulate genes during cardiac maturation after analysing 

the co-occurrence of several transcription factors during specific stages of heart 

muscle development. The role of AP-1 in differentiating P19 cells was not directly 

investigated in this study although it would be interesting to identify GATA4 co-factor 

activity, if any, in LPA mediated cardiac differentiation.  

Aside from NF-κB signalling, all pathways converged on the regulation of MEF2C. As 

FosB regulation was found to be mediated through the NF-κB independent PI3K-ERK 

pathway, it may be possible that this pathway regulates MEF2C. The necessity of dual 

regulation for full MEF2C activity is unknown as inhibiting PKC and JNK signalling also 

affected MEF2C expression. The possibility of JNK regulation by PKC and PI3K are 

yet to be established in this experimental model, although, it may be possible that 

MEF2C is regulated in a PI3K-ERK and PKC-JNK manner. 

8.6 Summary and Conclusion 

The studies carried out in this thesis have shown that LPA mediates the cardiac 

differentiation of P19 cells through LPAR2 and partially through LPAR 1/3 and possibly 

through receptor 4. The inhibition of PKC, PI3K, JNK, ERK, or NF-κB signalling blocks 

LPA induced MLC1v expression. JNK is a critical signalling molecule downstream of 

LPARs 1-3 along with ERK. Conceivably, PKC and PI3K may regulate JNK as they 

have shown to converge on the ERK pathway. Further downstream ERK, JNK, along 

with NF-κB converge on the regulation of AP-1/ATF2, and GATA4/MEF2C. Whether 

the AP-1 complex lies upstream of the examined cardiac specific transcription factors 

or if there is any co-factor activity between AP-1/ATF2 and GATA4/MEF2C is yet to 

be established. The regulation of YAP was found to be mediated by JNK, however, 

the role of YAP in the proliferation or cardiac differentiation of P19 cells requires further 

investigation.  
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Although these results are encouraging, the evaluation of LPA as a mediator of cardiac 

differentiation is in its infancy. The actions of LPA must be reproducible in more 

clinically relevant stem cells types. LPA accumulates after the onset of an acute 

myocardial infarction and has shown to protect stem cells against hypoxic injury. 

Evaluating the profile of LPA receptors in the healthy and ischaemic heart followed by 

examining the effects of both overexpression and knockdown of each receptor may 

provide insight into a potential additional pharmacological avenue for the use of LPA 

as a strategy to alleviate some of the detrimental effects, enhance survival and 

differentiation of the transplanted stem cells, or enhance the activity of resident cardiac 

progenitor stem cells. Prolonged LPA accumulation, however, can have detrimental 

effects. Therefore, identifying the ideal window of LPA activity would be vital. For this, 

in vivo studies utilizing molecular imaging and labelling techniques may prove useful 

as it is beyond the scope of conventional dish-based methods to assess the dynamic 

cellular responses to the microenvironment and stimuli during an acute myocardial 

infarction. 
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