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Abstract—Creating speech emotion recognition models com-
parable to the capability of how humans recognise emotions
is a long-standing challenge in the field of speech technology
with many potential commercial applications. As transformer-
based architectures have recently become the state-of-the-art for
many natural language processing related applications, this paper
investigates their suitability for acoustic emotion recognition and
compares them to the well-known AlexNet convolutional ap-
proach. This comparison is made using several publicly available
speech emotion corpora. Experimental results demonstrate the
efficacy of the different architectural approaches for particular
emotions. The results show that the transformer-based models
outperform their convolutional counterparts yielding F1-scores in
the range [70.33%, 75.76 %]. This paper further provides insights
via dimensionality reduction analysis of output layer activations
in both architectures and reveals significantly improved clustering
in transformer-based models whilst highlighting the nuances with
regard to the separability of different emotion classes.

Index Terms—speech emotion recognition, transformers,
wav2vec2, convolutional neural networks, alexnet, transfer learn-
ing, mel spectrograms

I. INTRODUCTION

In recent years, increasing attention has been paid to the
problem of predicting emotions from speech. Interest in this
issue has been driven by everyday human social interactions,
where it is essential to be able to understand and appropriately
respond to other people’s emotions correctly. Research on the
relationship between emotions and stress [1] indicates that
the key to managing stress lies with identifying the under-
lying negative emotions. Recognising emotions from speech
is also of interest to areas such as criminology, banking, and
insurance, where detection of emotions can aid in appropriate
corrective action in cases of crime and fraud.

While recognizing emotions from speech is an easy task
for humans, computers still have a long way to go before
emotion recognition becomes a form of artificial intelligence.
The biggest impediment in using speech is that there is
no single discrete speech feature that directly reflects the
speaker’s emotions [2]. An added challenge in the engineering
side, as evidenced in past research, is the problem of having
limited repositories of commercially available training data
resulting in low prediction accuracies.

In this paper, a transformer-based architecture, namely
Wav2Vec [3], which is a model pre-trained on approximately

53,000 hours of unlabeled data, is compared with the well
known AlexNet Convolutional Neural Network (CNN) on
three publicly available speech emotion datasets. To the best
of the authors’ knowledge, the performance of Wav2Vec on
these datasets in the existing literature was measured using
either the accuracy rate or the recall, making the comparison
of different models difficult. This study has produced perfor-
mance measurements using recall, precision, and F1-score on
those datasets. Furthermore, cross-validation has been applied
to ensure a robust result. These results can be used as the
benchmark for models trained with these datasets. In addition,
Principal Component Analysis (PCA) is applied on the output
layer activations of the deep learning architectures used in this
study to gain insights into how the model architectures classify
emotions.

II. RELATED RESEARCH

Human emotions can be detected from various channels,
such as speech [4], body language [5], facial expressions [6],
and text [7]. The most obvious channel for emotion recognition
is through speech. Just like studying body language and text to
process user sentiment, speech signals can encompass a wealth
of information related to various emotional characteristics [8].
They can be used to infer different facets of human behaviour
irrespective of language, ethnicity, and other distinguishing
factors.

Researchers have attempted a plethora of techniques with
varying degrees of success using machine learning and deep
learning to solve the problem of emotion recognition from
speech signals. The subsections below highlight how previous
research has guided the design decisions and research pathway
for the work presented in this paper.

A. Emotion Classes

One of the common attempts has been to group emotions
into discrete labels such as happy, sad, disgust, fear, surprise,
anger, neutral, and so on. This makes the task amenable to
classification algorithms that provide accurate results with
little to no ambiguity between emotion classes. An alternate
theory is to consider a continuous emotional space to describe
the emotions with respect to valence (positive emotions and
negative emotions) and their arousal (high intensity and low



intensity) [9]. Although primitive emotions such as happy or
sad tend to fit well in this emotional continuum, it becomes
hard to distinguish emotions such as anger and fear. It is
equally possible that some other emotions (such as surprise)
may lie outside this continuous spectrum, which is usually
subjective and open to interpretation. Having a continuous
spectrum to classify emotions also means that the range
of discrete emotions contained within a single spectrum is
limited, and often involves a lot of ambiguity [10]. Based on
these factors, the research proposed in this paper works with
emotions in the discrete space.

B. Features

Research on Speech Emotion Recognition (SER) has seen
the use of a range of handcrafted features over the years.
The features extracted from a speech signal can be classified
as two different types, namely the prosodic (for example,
fundamental frequency, pitch, intonations, rhythm) and the
spectral (for example, linear predictive coding, log frequency
power coefficients) [11] feature types.

Prosodic features are those features that can be perceived by
humans and have been known to contain distinctive properties
of emotional content in the context of SER [12]. However, it
has also been observed that these features may not be able to
distinguish angry and happy utterances accurately since they
have similar trends in fundamental frequency and speaking
rate [13].

Spectral features are obtained by converting the time domain
speech signal into its frequency domain using Fourier trans-
forms. Mel Frequency Cepstral Coefficients (MFCCs) [14]
are one of spectral-based feature representations. MFCCs are
obtained by computing the discrete cosine transform on the
log scaled Mel-spectrogram, which essentially is a visual rep-
resentation of an audio signal. Compared to prosodic features,
spectral features can distinguish angry from happy. However,
the magnitude and shift of the formants for the same emotions
vary across different vowels, adding more complexity to the
emotion recognition task [15].

C. Deep Learning Architectures

Research on speech emotion recognition using deep learning
has shown promising results. MFCCs and features such as
pitch or energy have been widely used with deep learning
models in the context of speech emotion recognition [16].
Long short-term memory (LSTM) networks have also been
proposed to deal with speech emotion recognition [17]. In
recent years, intensive research and development activities
have been carried out in the field of image processing. CNNs
have always shown encouraging results on image recognition
tasks. Some of the most powerful CNN-based architectures
like DenseNet [18] and ResNext [19] have been applied to
speech spectrogram images [20]. In [21], the authors compared
the effects of Mel coefficients and spectrogram images using
deep learning in speech emotion recognition, and the results
showed that the spectrogram images outperformed MFCCs
through the implementation of deep learning neural networks.

One major problem in SER in dealing with real-life sce-
narios is the poor generalisation that arises due to limited
training datasets and the mismatch of the training sets and the
test sets. Recent achievements in deep learning, especially in
the field of natural language processing, have been employed
to cope with the limitations in speech emotion recognition
[22]. Transformer models, which use encoders and decoders,
can learn emotional long-term temporal dependencies with the
self-attention mechanism [23]. Research into this field has
resulted in a library of pre-trained models that have shown
to be useful for a variety of speech related tasks. One such
model from this library is the Wav2Vec model [24]. Using the
concept of transfer learning, these pre-trained models can be
leveraged with small scale datasets to accomplish a range of
tasks in speech processing.

This paper presents one such architecture using a more
recent version of the Wav2Vec architecture, the Wav2Vec 2.0
model [3] to perform emotion recognition and compares the
results with the ones obtained using handcrafted features as
inputs to the AlexNet-based CNN model [25].

III. A DESCRIPTION OF THE DATASETS

There are several datasets publicly available for SER related
research. These can be classified as acted (RAVDESS [26],
CREMA-D [27]), elicited (IEMOCAP [28]), and natural
datasets CMU-MOSEI [29]. RAVDESS, CREMA-D and
IEMOCAP, while significantly smaller than CMU-MOSEI,
have well balanced emotion content available with well an-
notated data. The CMU-MOSEI is imbalanced in the context
of emotions available and the methodology of data annotation
where multiple simultaneous, and often conflicting emotion la-
bels, obtained using crowd sourcing, adds noise and unwanted
complexity to the task. Furthermore, collecting natural speech
signals from the real world typically comes with barriers such
as acquisition challenges (as demonstrated by CMU-MOSEI),
data handling constraints, and regulatory restrictions. Hence,
the research presented in this paper utilises RAVDESS (acted),
IEMOCAP (elicited), and CREMA-D (acted) which contain
a mixture of noisy as well as clean data whilst capturing
diversity in speakers as well as emotions. Table I shows the
number of emotions considered and the number of audio files
used in this study.

TABLE I
DISTRIBUTION OF EMOTIONS ACROSS DATASETS

Emotion Class The Number of Utterance in Each Dataset
IEMOCAP CREMA-D RAVDESS

Neutral 1708 1087 96
Happy 1636 1271 192
Sad 1084 1271 192
Anger 1103 1271 192
Fear - 1271 192
Disgust - 1271 192
Surprise - - 192
Calm - - 192
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Fig. 1. Proposed methodology for speech emotion recognition. Here two architectures are proposed - an AlexNet-based CNN architecture (M1 in green) and

a Wav2Vec2-based transformer architecture (M2 in red).

A. The RAVDESS dataset

RAVDESS is an audiovisual acted dataset consisting of
1,440 utterances in a noise free environment and spoken
in English with a North American accent. It consists of
eight emotions (neutral, happy, sad, fearful, angry, disgust,
surprised, and calm) enacted by 12 female and 12 male actors.
The diversity in emotions as well as the gender of speakers
is well balanced in this dataset. The length of the audio clips
are ~ 4 seconds each with predefined short sentences.

B. The CREMA-D dataset

CREMA-D is a crowd sourced audiovisual dataset consist-
ing of 7,442 utterances with 91 speakers (48 males and 43
females) reading 12 predefined sentences and portraying a set
of six emotions (anger, disgust, fear, happy, sad, and neutral).
The audio files in this dataset contain added environmental
noise. The length of each audio is ~ 3 seconds in duration.

C. The IEMOCAP dataset

IEMOCAP contains data recorded across five sessions with
ten speakers (five males and five females) spanning close to
12 hours of audiovisual data with transcripts. There are 10,093
utterances of scripted and improvised emulated scenarios
representing a total of nine emotions. The average duration of
an utterance is ~4 seconds. However the data points present
in this dataset are quite unbalanced. Hence, out of the nine
available emotions, this research considers only four emotions
(anger, happy, sad, neutral) to not only balance but to also
enable effective comparison across datasets. The data labelled
as excited was added to it to further augment the labels for

happy.

D. Pre-processing data

Speech signals are time-variant and non-stationary signals.
The audio files within the datasets used are stored in the wav
format. They are first digitized using the Librosa library [30] at
a sampling rate of 16 kHz. The digitized signals are trimmed to

remove the leading and trailing silences. The resulting signals
are zero padded to make the sizes consistent.

IV. TWO ARCHITECTURES USED IN THIS STUDY

In this study, two model architectures are applied for SER.
The first model architecture (denoted as A1) uses Mel-
spectrograms as the feature vector with an AlexNet-based
CNN [25]. The second model architecture (denoted as M?2) is
based on Wav2Vec2 [31]. Fig. 1 shows these two architectures:
architecture M1 in green and architecture M 2 in red. Both M 1
and M2 make use of all of the above datasets.

A. Architecture M1 - AlexNet-based CNN

In this architecture, the pre-processed audio files (see section
III-D) were transformed to the frequency domain using the
Short Term Fourier Transform (STFT) with a time frame size
of 256 with 50% overlap. After applying STFT, the magnitude
is taken and frequencies are converted to the Mel scale, by
passing the signal through several filter banks [32] to obtain
Mel spectrograms. The feature extraction is performed using
the Librosa library [30].

The Mel spectrograms are then passed as inputs to an
AlexNet network. The AlexNet topology consists of five
convolutional layers and three fully connected layers, all of
which are ReLU activated [25]. The convolutional layers in the
AlexNet extract essential features from the Mel spectrogram,
and the fully connected layers that follow learn the data
classification model parameters. The final layer, which is a
softmax activated fully connected layer, is suitably modified
to predict the required number of emotion classes.

B. Architecture M2 - Wav2Vec2-based Transformer

In this architecture, the pre-processed audio files (see
section III-D) were passed onto the Wav2Vec2 model. The
Wav2Vec2 model is essentially a pre-trained model for au-
tomatic speech recognition (ASR) [3]. This model learns
contextualized speech representations by randomly masking



feature vectors before passing them to a transformer network.
This research makes use of features extracted from a pre-
trained model called Wav2Vec2-Large-XLSR-53-English [33].
Architecturally, the Wav2Vec2 model has an encoder net-
work and a context network. The encoder network transforms
the digitized speech into a latent speech representation for a
given number of time steps. These are then fed into the context
network, which is basically a transformer, to build context
representations that capture information from the entire se-
quence. To handle the context representations for any audio
length, a mean merge strategy plan (pooling mode) is used.
The output layer uses a linear classifier to map these context
representations to emotions. For the experiments described in
this paper, the pre-trained Wav2Vec2 model is fine-tuned with
Connectionist Temporal Classification (CTC) [34].

C. Optimization and Hyper-parameter Tuning

In order to identify discrete emotions, categorical cross
entropy is used as the loss function for architecture M1 and
binary cross entropy for architecture M 2. The choice of opti-
mizer is the Adam optimizer that computes individual adaptive
learning rates intelligently to speed up computation. Early
stopping and model selection is used to prevent overfitting.
The learning rate is set as 0.0001 and a batch size of 16 was
used [35]. Architecture M1 was trained for 16 epochs with
a constant learning rate schedule and the validation loss was
monitored for a patience of five epochs. Architecture M2 used
a learning rate scheduler with a warm up of 1000 steps to a
peak of 0.0001 followed by an exponential decay, and was
fine tuned for two epochs for the RAVDESS and CREMA-D
datasets, and three epochs for the [IEMOCAP dataset.

The resulting suite of models from these two architectures
are extensively tested and their performance has been com-
pared to determine the best performing model. These are
detailed in the next section.

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

All of the experiments ensure that there is no intermixing
of speakers in the training and testing datasets. It has also
been ensured that all emotions are equally distributed across
these subsets, both for the training set and the test set, while
all the speakers (identified by their Speaker ID) are evenly
apportioned across these subsets.

In RAVDESS, each training set consists of 16 speakers,
while the validation and test set has four speakers each. The
CREMA-D dataset is split to have a training set with 71
speakers, and a validation and test set with ten speakers each.
The training set from IEMOCAP consists of four sessions,
while the last session is split into the validation and test set.
This ensured that all of the datasets are split with a ratio
of 8 : 1 1 for the training, validation, and testing set,
respectively, while ensuring no mixing of speakers across sets.

For each dataset, models are trained for architectures M1
and M2 using the k-fold cross validation technique. Here,
the dataset is first split into n subsets. One of these subsets
is kept for testing and the remaining (n-1) subsets undergo
(n-1)-fold cross validation. This leads to n different test
sets and consequently n different models. To measure the
performance of each model, precision, recall, and F1-score
are computed from the confusion matrix. The mean and the
standard deviation of each performance metric across the test
sets are shown in Table II.

B. A Comparison of M1 and M?2

The objective of the first experiment is to identify a suitable
workflow and model architecture that derives optimal perfor-
mance in the context of emotion recognition. Subsection V-B1)
shows the overall results, and subsection V-B2) presents the
detailed performance of each emotion.

1) Results of M'1 vs M2: Table II shows the performance
values across three datasets namely, RAVDESS, CREMA-
D, and IEMOCAP. The first notable feature of this result
is that architecture M2 significantly outperforms architecture
M1 across all performance metrics on all three datasets.
Model architecture M2 shows a mean Fl-score of 77% on
RAVDESS, 70.33% on CREMA-D, and 72.9% on IEMOCAP,
significantly surpassing the performance metrics obtained from
M1, which are 34.83%, 42.16% and 42.68%, respectively.
This is likely because M2 is derived from a more robust
pre-trained model indicating that pre-trained models may be
the way forward to accomplish the task of speech emotion
recognition.

Interestingly, M2 has produced relatively larger standard
deviation values on RAVDESS and IEMOCAP, and smaller
standard deviation values on CREMA-D when compared with
M1. This may suggest that M2 generalises better when more
speakers are involved in the dataset to do the fine tuning. In
this case, CREMA-D involves 91 speakers, which is more than

TABLE II
PRECISION, RECALL, AND F1-SCORE FOR ARCHITECTURES M1 AND M2 ACROSS DIFFERENT DATASETS
Precision (%) Recall (%) F1 (%)
Dataset Model Mean Std. dev. Mean Std. dev. Mean Std. dev.
RAVDESS Ml 33.31 2.87 37.16 2.79 34.83 2.80
M2 75.76 8.66 78.16 7.58 77 8.44
CREMA-D Mi 41.66 4.19 42.16 3.8 42.16 4.48
M2 70.37 3.74 71.66 3.14 70.33 3.72
IEMOCAP Ml 44.7 6.61 43.2 5.23 42.68 6.1
M2 73.16 10.28 75.6 9.15 72.9 9.88
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Fig. 2. Box and whisker plot of Fl-scores for individual emotions

the other two datasets (24 and 10, respectively). However, this
finding needs to be further validated on more datasets.

2) Results of Model Performance on Each Emotion: To
observe the model performance for each emotion, the FI-
scores for each of the emotions across each of the datasets
are graphically depicted in the form of box plots in Fig. 2. It
can be seen that,

o In general, M2 provides better performance over all

emotions than M1.

o As seen in the right panel of Fig. 2, the mean values
for anger across all three datasets are higher than other
emotions, though the mean value for disgust and fear on
RAVDESS, and the mean value for neutral on CREMA-
D are equally high.

o The same architecture can have different performance on
different datasets. For example, M2 provides better results
for classes anger and disgust on RAVDESS, while for
CREMA-D higher Fl1-scores are obtained for anger and
neutral classes.

e Models trained using M2 on CREMA-D have a much
smaller range of F1-scores than those trained on the other
two datasets for almost all emotions, except for classes
sad and fear. On the other hand, the trained M2 models
tend to produce a bigger range of Fl-score values on
RAVDESS, especially for classes happy and neutral.

C. Principal Component Analysis of Output Layer Activations

The aim of the second experiment is to gain some insights
into how the model architectures M1 and M2 classify emo-
tions. PCA is used to visualise the output layer activations of
M1 and M2, respectively. In M1, this layer is the softmax
activated fully connected layer while in M2 it is the linear
classifier layer.

Fig. 3 shows the PCA plots corresponding to the actual
labels for models trained on the IEMOCAP dataset corre-
sponding to model architectures M1 (the left panel) and M2
(the right panel). The total variance captured by the first two
principal components is 85.89% and 86.89% for M1 and
M?2 respectively. The equivalent PCA plot for the predicted

labels corresponding to architecture M2 is shown in Fig. 4.
Emotional utterances that are highly correlated tend to be
clustered together. These plots show the results for only one of
the test sets from the IEMOCAP database to avoid cluttering
and for ease of viewing, but the results have been verified to
hold true for the remaining test sets as well. The confusion
matrix for the M2 model discussed here is shown in Fig. 5.

Looking at the left panel in Fig. 3 for model architecture
M1, it can be seen that there is significant overlap among
all emotions without any clear clusters, especially for happy
and neutral. This explains why the performance of the model
is so poor for happy and neutral classes (see the left panel
of Fig. 2). The informal listening experiments conducted
by [19] further corroborate this finding. However the picture
is very different and far more promising for M2 as seen
in Fig. 3 and Fig. 4. For architecture M2, it is seen that
the predicted emotions all have distinct clusters with only
slightly overlapping decision boundaries. This suggests that
transformer-based models can provide more efficient feature
discrimination for speech emotion recognition, and it explains
why this model outperforms the one derived from M 1.

On looking at the right panel in Fig. 3 for actual labels
corresponding to M2, it is seen that while most of anger and
sad are well separated with clear clusters, there is quite a bit
of overlap for happy, neutral, and sad, indicating that these
emotions are more difficult to classify. Fig. 5 shows that 31 and
40 out of 161 clips labeled as happy have been misclassified
as neutral and sad, respectively, while 73 out of 158 clips
labeled as neutral have been misclassified as sad.

Furthermore, the misclassified speech clips have been inves-
tigated. For example, two clips shown in coordinates of (3.2,
-0.5) and (5, -1.6) respectively in the right panel of Fig. 3
have the actual label of sad. However, they are misclassified
as anger, shown in the same coordinates respectively in
Fig. 4. The authors have all unanimously agreed that the
emotion in the clips could have been interpreted as anger after
listening to these audio clips. It matches what the model has
predicted. Therefore, the misclassifications could be caused
by mislabeling due to how different listeners perceive them.
In addition, some of these data points also have a mixture of
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emotions, such as anger and sad, but have only a single label.
This also gives us insight into why anger can be an easily
identifiable emotion in both model architectures compared to
other emotions.

The PCA plots for the models built from RAVDESS and
CREMA-D for M2 show similar clustering behaviour. In
summary, it is seen that the models derived from M2 are able
to draw piecewise decision boundaries and are a promising
way to look at emotion recognition in speech for future
research.
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Fig. 5. Confusion matrix for model trained on the IEMOCAP database with
architecture M 2.

D. Discussion

Accurately predicting emotions from speech audio clips is
extremely difficult. Table III shows a comparison of perfor-
mance between the results obtained from the best performing
proposed model using architecture M 2 for each of the datasets
and recent state-of-the-art literature. One can see that the
performance reported through the research presented in this
paper surpasses or is at par with state-of-the-art.

However, there are some caveats for the records reported in
the comparison table. In [36] and [37], the experimental proto-
cols and how the test was set up are not detailed well, making
meaningful comparisons difficult. In [38], the authors used a
modified Wav2Vec2 pre-trained model but only reported the
recall rather than F1-score. Further, they combined neutral and
calm to a single emotion for the RAVDESS model which may
slightly skew the comparison results.



TABLE III
COMPARISON WITH STATE-OF-THE-ART LITERATURE

Performance Metrics
Dataset References Model Accuracy F1 Recall
IEMOCAP Shen et al., 2020 [39] DialogXL - 62.4% -
Majumder et al., 2019 [40] DialogueRNN - 60.6% -
Kim et al.,2021 [41] EmoBERTa - 68.57% -
Padi et al., 2021 [42] MWA-SER - 66% -
Muppidi et al., [36] QCNN 70.46% - -
Pepino et al., [38] ‘Wav2Vec2-Pretrained - - 67.2%
Proposed Methodology Wav2Vec2-XLSR-53-English 73.29 72.9% 75.6%
RAVDESS Jimenez et al., [43] CNN-14 76.58% - -
Jimenez et al., [43] Sequentian bi-LSTM 57.08% - -
Muppidi et al., [36] QCNN 77.87% - -
Pepino et al., [38] ‘Wav2Vec2-Pretrained - - 84.3%
Proposed Methodology ‘Wav2Vec2-XLSR-53-English 77.05% 75.76% 78.16%
CREMA-D Shukla et al., [36] Audio-encoder - 59.2% -
Ristea et al., [44] DeepCNN Audio+Video 69.2% - -
Ahmed et al., [37] ID-CNN-LSTM-GRU 74% - -
Proposed Methodology ‘Wav2Vec2-XLSR-53-English 70.77% 70.33% 71.66%

VI. CONCLUSION

This paper has compared the performance of an AlexNet-
based CNN model with handcrafted features as inputs to a
transformed-based model, Wav2Vec, on three speech emotion
datasets.

It was found that the pre-trained Wav2Vec2 model yielded
high levels of accuracy in classifying different emotions across
these different datasets. Further investigation using PCA to the
output layer activations in both architectures revealed that the
transformer-based model is more adept at defining piecewise
decision boundaries across emotion classes, thereby producing
a more accurate classification of different emotions.

The research presented in this paper raises new questions
and paves the path for further research to aid the evolution
of SER systems. A potential extension to this research is
through a multi-modal approach wherein using textual content
as an added feature could boost the performance of emotion
recognition. Further speech systems trained on datasets with
a particular language and dialect are unlikely to perform
well globally. Therefore modelling such as cultural variations,
different languages, speaker speeds, pitch scales are potential
avenues to explore. It also makes the role of good quality
and robust data essential. Training and testing with data from
varied real-world scenarios are mandatory to make this an
attractive application for deployment to a larger audience.
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