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Abstract The determination of astrophysical reaction rates
requires different approaches depending on the conditions in
hydrostatic and explosive burning. The focus here is on astro-
physical reaction rates for radiative neutron capture reactions.
Relevant nucleosynthesis processes not only involve the s-
process but also the i-, r- and γ -processes, which from the
nuclear perspective mainly differ in the relative interaction
energies of neutrons and nuclei, and in the nuclear level den-
sities of the involved nuclei. Emphasis is put on the difference
between reactions at low and high temperature. Possible com-
plications in the prediction and measurement of these reac-
tion rates are illustrated and the connection between theory
and experiment is addressed.

1 Introduction

Neutron-induced reactions, and specifically neutron cap-
tures, play an important role in a number of nucleosynthe-
sis processes. This is surprising insofar as free neutrons are
unstable and therefore a constant neutron supply is required
to maintain an appreciable level of neutrons in an astrophysi-
cal plasma. This supply is provided by neutron-releasing par-
ticle reactions (s-process, i-process), photon-induced neutron
emission (γ -process) or neutron-rich environments caused
by the weak interaction (r-process) [1–5]. These processes
not only differ in the neutron sources but also in the temper-
ature achieved in the plasma and in the nuclear level density
at the formation energy of the compound nucleus created in
the reaction. This also determines the dominating reaction
mechanism and directly impacts the choice of theory to pre-
dict the rate. It also indirectly affects the experimental setup
because it determines which nuclear properties are of inter-
est to be determined experimentally and even whether the
astrophysical reaction rate can be constrained purely exper-
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imentally at all, without the invocation of a model. This has
to be considered already in the design of an experiment.

2 Definitions

2.1 Reaction rate

The astrophysical reaction rate (number of reactions per time
per unit volume of the plasma) for neutron captures A(n, γ )B
is given by [6,7]

r∗
A = nAnn

√
8

πμ

(
1

kBT

)3/2

×
∞∫

0

σ ∗ (E, T ) Ee−E/(kBT ) dE

= nAnn〈σ ∗v〉, (1)

where nn and nA are the number densities of neutrons and
target nuclei, respectively, E is the centre-of-mass energy, μ
is the reduced mass of neutron and target nuclide, and T is
the plasma temperature. The Boltzmann constant is denoted
by kB. The quantity 〈σ ∗v〉 is the reaction rate per particle
pair (reactivity) under stellar conditions (see Sect. 2.4 for a
detailed discussion of the impact of thermal plasma effects),
which sometimes is denoted by 〈σv〉∗. It includes the stel-
lar cross section σ ∗ of nucleus A for radiative neutron cap-
ture. At low T the stellar cross section may be identical to
the laboratory cross section σlab that, in principle, is directly
measureable (unless the cross section is too low or the target
nucleus unavailable for measurements).

An important property of astrophysical reaction rates
using the appropriate stellar cross section σ ∗ is that there
is a direct relation for the rate of the reverse reaction. For
B(γ , n)A in a stellar plasma, the astrophysical photodisinte-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-022-00866-9&domain=pdf
http://orcid.org/0000-0002-1266-0642
mailto:thomas.rauscher@unibas.ch


  214 Page 2 of 10 Eur. Phys. J. A           (2022) 58:214 

gration rate is (see, e.g., [7])

λ∗ = 〈σ ∗v〉2gA

gB

GA
0

GB
0

(
2πμkBT

h2

)3/2

e−Sn/(kBT ). (2)

The normalized nuclear partition functions G are given by
sums over excited states i (i = 0 specifies the ground state)
of the specified nuclide with excitation energy Ei and spin
Ji ,

G0(T ) = 1 + 1

g0

∑
i>0

(2Ji + 1) eEi /(kBT ), (3)

with g0 = 2J0 + 1. It is to be noted that the connection
between Eqs. (1) and (2) only holds when stellar cross sec-
tions are used.

To obtain the abundance of a nuclide after an elapsed
time, one has to consider the difference between all reac-
tion rates creating the nuclide and all reactions destroying
it. This leads to a set of coupled differential equations (e.g.,
A(n, γ )B would be among the reactions destroying nuclide
A and creating B, and its reverse reaction B(γ , n)A would
be among the reactions destroying B and creating A) that are
called a reaction network. Thus, a simple network would be
dYA/dt = nBλ∗

B − r∗
A, dYB/dt = r∗

A − nBλ∗
B. Integrating

the network over time yields the abundances of the included
nuclides, e.g., YA, YB.

2.2 Relevant energy range

Although formally the integration limits in Eq. (1) run from
zero to infinite energy, most of the contributions to the inte-
gral stem from a comparatively narrow energy range. The
energy range for the dominant contributions is given by the
convolution of the energy dependence of the cross section
and the energy distribution of the neutrons impinging on a
nucleus. The latter is given by Ee−E/(kBT ) and depends on
the plasma temperature T . This implies that most neutrons
have an energy around E = kBT and there are (almost) no
neutrons at very low and at very high energy. As neutrons
are not affected by the Coulomb force, there is no Coulomb
barrier in neutron captures. Rather, the energy dependence
of the cross section is determined by the angular momentum
barrier. In principle, in the absence of resonances the cross
section is given by a sum over a range of partial waves (s-, p-,
d-, ... waves) corresponding to different angular momentum
quantum numbers (� = 0, 1, 2, …),

σlab = C�=0/
√
E + C�=1

√
E + C�=2E

3/2 + · · ·
=

∑
�

C�E
�−1/2. (4)

At the comparatively low interaction energies encountered
in astrophysical environments only few partial waves con-
tribute and the allowed � (C� > 0) are selected by spin and

parity selection rules. TheC� depend on nuclear and quantum
constants but also on the strength of electromagnetic transi-
tions. The latter depend on the energy of the released γ -rays
Eγ ≤ E + Sn and this gives rise to an energy dependence
of the C�. As long as the interaction energy E , however, is
small compared to the neutron separation energy Sn in the
final nucleus, the energy dependence is negligible. Along sta-
bility E � Sn is always fulfilled. Approaching the neutron
dripline, this is not the case anymore.

Even with energy-dependent C�, in the absence of reso-
nances the energy dependence of the cross section is weaker
than the energy dependence of the neutron energy distribu-
tion. Therefore this determines the energy range of the main
contributions to the integral in Eq. (1) is only slightly modi-
fied. A good approximation is [8,9]

Eeff ≈ 1.72 × 10−10T (� + 1/2) MeV , (5)

ΔE ≈ 1.94 × 10−10T
√

� + 1/2 MeV , (6)

with the energy range given by Eeff ± ΔE when the temper-
ature is given in K. Although the dominant � may not always
be known, the shifts with increasing � are small and the values
for � = 0 provide a reasonable guidance [9]. In fact, even for
� = 0 the value of Eeff is close to kBT . Again, these relations
are applicable for most nuclides and only lose their validity
close to the neutron dripline for nuclides with small Sn , as
explicitly shown by [9]. Strictly speaking, the notion of a sin-
gle energy range contributing to the rate integral is only valid
for smooth, non-resonant cross sections. In the presence of i
isolated resonances with their resonance energies Ei

r , the rate
can be described by a (coherent) sum of resonance contribu-
tion with their individual effective energy ranges. This could
also be incorporated as (strongly) energy dependent coeffi-
cients Ci

�(E, Ei
r ). In the regime of unresolved, overlapping

resonances the situation reverts to the non-resonant case with
a single range of effective energies. In short, assuming cross
sections at energies around kBT are the dominant contribu-
tors to the reaction rate integral shown in Eq. (1) is safe for
most astrophysical reactions.

2.3 MACS

Experimental investigations of neutron captures often report
the Maxwellian Averaged Cross Section (MACS) 〈σlab〉
instead of the capture cross section σlab, defined as (e.g.,
[7])

〈σlab〉 = 2√
π

1

(kBT )2

∫ ∞

0
σlab(E)Ee−E/(kBT ) dE

= 〈σlabv〉/vT, (7)

with the thermal (most probable) velocity

vT = √
(2kBT )/μ. (8)
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An interesting relation in the context of the MACS is the fact
that 〈σlab〉vT = 〈σlabv〉 = const for s-wave neutron capture.

Historically, there is a theoretical and an experimental
motivation for introducing the MACS. On the theory side,
in the classical s-process model a full reaction network
was simplified by only considering neutron capture reac-
tions (neglecting the reverse, photodisintegration reactions
because they are too slow at regular s-process conditions) and
β− decays, and by assuming steady flow, i.e. the abundances
have reached their equilibrium values and don’t change over
time [10]. Further assuming that s-wave neutron capture
dominates the (n, γ ) cross sections and using a neutron flux
nnvT, it can be shown (e.g., [7]) that in the (local) steady-flow
equilibrium there is a connection between the stellar MACS
and the abundances of neighboring nuclides,

〈σ ∗〉AYA = 〈σ ∗〉BYB = const. (9)

The constant is determined by the actual neutron expo-
sure. Using long-term neutron exposures with an exponential
decay in time, the classical s-process model identified several
s-process contributions to the abundances, the main and weak
s-process (a third component, the strong s-process, was also
discussed for a while) [11]. The MACS is taken at kBT = 30
keV, a typical value for He-shell flashes in AGB stars.

On the experimental side, Beer and Käppeler [12,13] pio-
neered a method to directly measure the MACS by activa-
tion using a tailored neutron spectrum (obtained from the
7Li(p,n)7B reaction) corresponding to a thermal energy spec-
trum at kBT = 25 keV, very close to the energy distribution
assumed for AGB stars. This not only allowed to directly
determine the quantity required in the classical model but
also solved experimental complications with time-of-flight
(TOF) measurements and with the definition of the neutron
spectrum for the activation method [14,15]. This ground-
breaking approach led to a wealth of experimental MACS
data, also made available in dedicated compilations [16–18]
for the s-process and also boosted theoretical s-process stud-
ies. Not all reactions of interest can be measured by acti-
vation, though, as this method requires an unstable final
nucleus B. Therefore the activation measurements are sup-
plemented by high-resolution TOF measurements probing
the energy range required to compute the MACS. Unfortu-
nately, often such measurements only published the derived
30 keV MACS instead of the measured cross sections. This
loses information that could be helpful for a further theoreti-
cal analysis, especially when rates at other temperatures are
needed.

With the advances in stellar models combined with precise
nuclear and astronomical data, it has become apparent that the
classical s-process model is not sufficient to explain all fea-
tures of s-process nucleosynthesis [19]. It also became clear
that AGB stars are not the only site of the s-process but that
also massive stars contribute. Even within AGB stars, one has

Fig. 1 Percentage error in SEF estimate of the thermal excited state
contribution

to consider two production regions with different timescales
and temperatures. Therefore, modern models have to abol-
ish the simplifying assumptions of steady flow and a single
temperature and use complete reaction networks requiring
the knowledge of reaction rates across a larger range of tem-
peratures, extending well below and well above 30 keV. This
necessitates to go beyond a 30 keV MACS (or an experi-
mental MACS at another discrete temperature, as could be
achieved by using another reaction for neutron production
[15]). Such reaction rates are either derived from experi-
mentally measured cross sections across a sufficiently large
energy range, from theoretical predictions, or from a com-
bination of both. Publicly available reaction network codes,
inspired by high-T nucleosynthesis and suited for a large
range of temperatures, make use of reaction rates as defined
in Eq. 1 instead of MACS. Such rates are compiled as tables
or fits. This eventually leads to a phase-out of MACS in mod-
els.

Another reason why the MACS loses its importance in
modern astrophysical investigations is the fact that labora-
tory measurements cannot directly measure the astrophysical
rate at higher temperature because of the increasing contri-
butions from excited target states (see Sect. 2.4). Thus, a
laboratory measurement of the MACS 〈σlab〉 does not yield
immediately the astrophysically interesting quantities 〈σ ∗〉or
〈σ ∗v〉 and the original experimental advantage and motiva-
tion to determine the MACS is lost even when the activation
method is applicable. Even when the MACS or rate cannot be
constrained fully by experiment alone, high-resolution cross
section measurements across a range of energies nevertheless
can help to test nuclear theory and its predictions of cross sec-
tions or other nuclear properties. A conversion of these data
to MACS, however, becomes unnecessary.
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Fig. 2 Temperature at which
X∗

0 ≤ 0.8

Table 1 Nuclides with X∗
0 ≤ 0.8 at kBT = 30 keV

57Fe 73Ge 80Br 83Kr 94Nb 96Tc
103Ru 105Ru 103Rh 104Rh 107Ag 108Ag
111Ag 119Sn 121Sn 121Sb 122Sb 126Sb
127Te 130I 129Xe 134Cs 140La 133Ce
142Pr 151Sm 153Sm 154Sm 151Eu 152Eu
156Eu 153Gd 155Gd 156Gd 157Gd 158Gd
160Gd 158Tb 159Tb 160Tb 161Tb 159Dy
161Dy 162Dy 164Dy 166Ho 162Er 164Er
168Er 169Er 170Er 169Tm 170Tm 171Tm
170Yb 171Yb 172Yb 174Yb 176Yb 174Hf
178Hf 180Hf 181Hf 182Hf 179Ta 180Ta
182Ta 182W 183W 185W 186Re 188Re
189Os 192Ir 193Ir 194Ir 193Pt 197Pt
201Hg

2.4 Ground-state contribution to the stellar rate

Often misjudged is the impact of thermal modifications of
the reaction cross sections in a stellar plasma. Nuclei in such
a plasma can be excited through thermal and nuclear inter-
actions and therefore a fraction of the target nuclei is found
in an excited state [20]. The population of an excited state i
in a nucleus at a given plasma temperature T is given by the
Boltzmann factor

Bi (T ) = gie
−Ei /(kBT ) (10)

and the population relative to the ground state is

Pi = gi
g0G0

e−Ei /(kBT ) = Bi
(2J0 + 1)G0

. (11)

To derive the stellar cross section σ ∗ as used in Eq. (1) one
has to realize that each nucleus – in the ground state or in
an excited state – is bombarded by neutrons with an energy
distribution given by the plasma temperature. This means that
the rate including nuclei in thermally excited states comprises
a sum of rates, one for the ground state and each excited state,

〈σ ∗v〉 = P0〈σv〉0 + P1〈σv〉1 + P2〈σv〉2 + · · ·
=

∑
i

Pi 〈σv〉i

=
√

8

πμ

(
1

kBT

)3/2

×
∑
i

Pi

∞∫
0

σi (εi )εie
−εi /(kBT )dεi . (12)

The cross section of the nucleus in excited state i is denoted
by σi . Note that the integration variable εi runs from zero to
infinity in each case because each excited state is bombarded
by the same neutron distribution. Relative to each other, how-
ever, the integrals are shifted by the excitation energies Ei .
In order to arrive at Eq. (1) with a single integral instead of
a weighted sum of integrals, it is necessary to realize that
it is mathematically permitted to exchange summation and
integration, as pointed out by [21]. To collapse the range of
integrals to a single integral, their energy scales εi have to be
shifted by the Ei and the integration limits adjusted accord-
ingly. The full derivation is given in [7]. Comparing the result
to Eq. (1) allows to find the expression for the stellar cross
section,

σ ∗(E, T ) = 1

(2J0 + 1)GA
0 (T )
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×
∑
i

(2Ji + 1)

(
1 − Ei

E

)
σi (E − Ei ). (13)

The individual cross sections σi for reactions on nuclei in
the i-th excited state now have to be evaluated at an energy
E − Ei . Following [21], cross sections at (E − Ei ) ≤ 0 are
set to zero. A temperature dependence of the stellar cross
section enters through the T -dependence of the normalized
partition function GA

0 (T ) of the target nuclide A. At low T
the peak of the neutron energy distribution (Eq. 5) is shifted
well below the excitation energy of the first excited state E1.
Then only reactions on the nuclear ground state contribute
significantly because most neutrons do not have sufficient
energy to allow for non-zero σi>0. This situation is (almost)
equivalent to using the laboratory cross section σlab instead
of σ ∗ in Eq. (1). With rising T the number of neutrons at
higher energy increases and more and more σi of excited
states provide non-negligible contributions. The size of the
individual contributions depends on the actual energy depen-
dences of the cross sections σi and on the weighting factor
Wi appearing in front of the σi in Eq. (13), with

Wi (E) = (2Ji + 1)

(
1 − Ei

E

)
. (14)

Interestingly, Wi shows a linear dependence on the energy
of the excited state Ei whereas the Boltzmann factor Bi falls
off exponentially with Ei . The actual contribution, however,
is difficult to assess from Wi alone because a range of c.m.
energies E is contributing to the rate integral (see Sect. 2.2).
Moreover, the behaviour of the σi at low energy significantly
impacts the relative importance of a contribution. This is
especially relevant in s-wave neutron captures because the
cross section increases with 1/

√
E − Ei towards small E −

Ei . Therefore contributions from excited states are expected
to be more important in neutron captures dominated by s-
waves on excited states. This is the dominant partial wave in
the majority of neutron captures. It was found that excited
states up to Ei ≈ kBT may contribute significantly [6,7].

From Eq. (11) it is easy to see that the actual contribution
X∗
i of reactions on level i to the astrophysical reactivity is

X∗
i (T ) = Pi 〈σv〉i

〈σ ∗v〉 = gi
g0G0

e−Ei /(kBT ) 〈σv〉i
〈σ ∗v〉 . (15)

For the ground-state (g.s.) contribution X∗
0 this reduces to

X∗
0(T ) = 1

G0

〈σv〉0

〈σ ∗v〉 = 1

G0

〈σv〉lab

〈σ ∗v〉 . (16)

The g.s. contribution is a monotonically dropping function
with increasing T , in the range 0 ≤ X∗

0(T ) ≤ 1 = X∗
0(0).

The combined contribution of all excited states to the astro-
physical rate simply is X∗

exc = 1 − X∗
0 .

It is important to realize that this is different from a sim-
ple comparison of astrophysical and laboratory reactivities
(or rates) as it is often found in literature when using the

stellar enhancement factor (SEF) fSEF = 〈σ ∗v〉/〈σv〉lab.
The SEF is not a measure of the importance of excited state
contributions because it does not account for the population
of excited states through the partition function G0. Thus,
it overestimates the g.s. contribution at non-zero tempera-
ture and underestimates the relative contribution of excited
states. A value fSEF 
 1 does not support the conclusion
that the excited states do not contribute nor that the rate
is fully constrained by a determination – for example by
a measurement - of 〈σv〉lab [22]. The combined contribu-
tions of reactions on ground and excited states could just sum
up to yield 〈σ ∗v〉 
 〈σv〉lab but with non-negligible X∗

exc.
For the same reason a rescaling of an experimentally deter-
mined 〈σv〉lab by fSEF to obtain 〈σ ∗v〉 is highly question-
able. Figure 1 shows the (underestimation) error in the SEF
for stable nuclides (see also [22] for a list of these nuclides
along with their values of X∗

0 and fSEF) due to the neglect
of the partition function. It basically reproduces the values
of G0. These are well known around stability because the
excitation energies and spins of the contributing, low-lying
levels are experimentally determined. Table 1 lists naturally
occurring nuclides up to Bi that exhibit X∗

0 ≤ 0.8 already
at kBT = 30 keV. Neutron capture rates on these nuclides
cannot be constrained accurately by a measurement without
invoking additional theoretical considerations (see [23] for
a detailed discussion of how to combine theory and experi-
ment in such cases). Figure 2 shows the temperature at which
the g.s. contribution drops to 80% and below for nuclides at
and around stability (data taken from [24]). It can be clearly
seen that the higher intrinsic nuclear level density of inter-
mediate and heavy nuclides – and in particular in strongly
deformed nuclei – reduces the g.s. contribution already at
low plasma temperature. There are some exceptions in the
lighter nuclides, for which the g.s. contribution is low already
at s-process temperatures (see also Table 1). Most notable,
for example, is 57Fe with a first excited state at 14.4 keV,
leading to X∗

0 = 0.39 at kBT = 30 keV. Nevertheless, the
SEF is only fSEF = 1.1, which would incorrectly suggest
only a small contribution of excited states.

For comparison, the temperature in the s-process ranges
from kBT = 8 keV (T = 0.09 GK; AGB interpulse burn-
ing), over kBT = 22 keV (T = 0.25 GK; convective He-core
burning of massive stars) and kBT = 30 keV (T = 0.384
GK; thermal AGB pulses), to kBT = 90 keV (T = 1.04
GK; C-shell burning in massive stars). Inspecting Table 1
and Fig. 2 it becomes evident that already at temperatures
corresponding to the thermal pulses of AGB stars, contribut-
ing to the main s-process component, the g.s. contributions
for many nuclides are already small and that for temperatures
of C-shell burning in massive stars, contributing to the weak
s-process component, excited state contributions dominate
the reaction rate for almost all nuclides in the s-process path
along stability. This has important consequences for exper-
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Fig. 3 Ground-state
contribution X∗

0 at T = 2 GK

iments because it does not allow to directly constrain the
astrophysical reaction rate by measuring capture cross sec-
tions or the MACS of nuclei in their ground states.

The fact that the contributions of thermally excited states
are important in astrophysical reaction rates has been well
established in the community studying explosive nucleosyn-
thesis at high T . At temperatures of a few GK, all rates are
dominated by these contributions and the g.s. contribution
becomes small or even negligible. Figure 3 illustrates this
by plotting X∗

0(kBT = 2GK) for nuclides at and around
stability.

3 Further differences between neutron captures at low
and high temperature

Beyond the s-process other nucleosynthesis processes involv-
ing neutrons are the i-, r-, and γ -process. While the i-process
involves temperatures comparable to core He-burning in
massive stars, the r-process already exceeds this temperature,
proceeding at 1–2 GK. The γ -process in the outer shell of an
exploding massive star photodisintegrates intermediate and
heavy nuclides with emission of neutrons and charged parti-
cles at 2–3.5 GK. The emitted neutrons can then be recaptured
by other nuclides.

3.1 Reverse rates

The magnitude of excited state contributions is not the only
difference between nucleosynthesis at low and at high tem-
perature. In order to follow the abundance evolution in high-
T environments it becomes necessary to also include the
reverse reactions into the network. This is easily seen in Eq.

(2) because the ratio of reverse to forward rate is proportional
to exp (−Sn/(kBT )). This explains why a simpler network
only containing neutron captures and β− decays along the
line of stability is sufficient for s-process simulations whereas
also (γ , n) reactions have to be included for the i-, r-, and
γ -processes. Excited state contributions to the reaction rate
play a dominant role in these circumstances. It is interesting
to note, however, that captures still have larger X∗

0 by sev-
eral orders of magnitude than (γ , n) reactions especially at
γ -process temperatures and that this makes an experimental
determination of the capture rate highly preferrable over a
photodisintegration measurement [25,26].

With sufficiently high neutron densities nn, as attained
in the i- and r-processes, forward and reverse rate become
comparably fast and reach an (n, γ )-(γ , n) equilibrium. The
individual nuclide abundances in such an equilibrium do
not depend on the rates anymore (provided the rates stay
fast enough to remain in equilibrium) and can be calculated
from simpler relations derived by equating Eqs. (1) and (2),
wherein 〈σ ∗v〉 cancels out [7]. This implies that the (experi-
mental or theoretical) knowledge of cross sections and rates
is only required to follow the freeze-out from equilibrium
with dropping temperature. Depending on the process and
the astrophysical simulation, the freeze-out can be so fast
that final neutron captures do not alter the equilibrium abun-
dances significantly [15,27].

3.2 Systems with low, intermediate, and high intrinsic
nuclear level density

The high neutron densities in the i- and r-process together
with the fact that reaction rates depend exponentially on tem-
perature, allows for the (temporary) production of highly
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unstable nuclides in these high-T environments. These
require different experimental approaches than used for sta-
ble species. Then it is especially important to understand what
kind of information is helpful to improve theoretical models,
also because high-T reaction rates cannot be constrained by
measurements on nuclei in their ground states.

All the high-T processes mostly involve intermediate and
heavy nuclides. These may, however, have been built by reac-
tions on light nuclides. Also in the s-process light nuclides
play a role because they can act as neutron “poisons” when
exhibiting a large neutron capture cross section or when being
very abundant in the plasma. Neutron poisons remove neu-
tron flux and thus hamper the production of heavier nuclides
through neutron captures. Regardless of the mass of the
nucleus, the actual distinguishing feature is the nuclear level
density (NLD) ρNLD at the compound formation energy, i.e.,
the (hypothetical) excitation energy at which the nucleus
B = A+n is formed. The compound formation energy for neu-
tron captures is given by the sum of neutron separation energy
in B, Sn, and the c.m. energy E . Thus, the interesting quantity
is ρNLD(Sn + E) in nucleus B. (The neutron energy E is neg-
ligible compared to Sn for basically all astrophysical neutron
captures except very close to the neutron dripline.) Different
approaches have to be adopted for experimental and theo-
retical studies of systems with low, intermediate, and high
NLD.

It is important to consider that different reaction mech-
anisms are dominating the captures in these systems. Light
nuclides exhibit large level spacings and therefore ρNLD(Sn+
E) is small, despite of large Sn. Without levels close to Sn, the
direct reaction mechanism dominates, directly capturing the
neutron into its final state in nucleus B and radiating away the
excess energy as a mono-energetic γ -ray [6,7]. This process
can be described in a potential model, using effective nuclear
potentials to calculate the wavefunctions of incident and cap-
tured neutron, and a simple multipole operator to account for
the electromagnetic emission. Depending on the dominating
partial wave, the obtained cross sections show a behaviour as
given by Eq. (4). Very light systems (typically A ≤ 20) can
also be described in more microscopically grounded models,
making use of effective nucleon-nucleon interactions (see,
e.g., [28] for references).

With increasing NLD around Sn, neutrons can be captured
through resonances or tails of resonances into excited nuclear
states, sharing their initial energy among all the nucleons in
the system. This is the compound reaction mechanism, form-
ing an excited compound nucleus that subsequently decays
through γ -cascades (and particle emission, if energetically
possible). This is modeled by (partial) resonance widths
(related to transmission coefficients) derived from particle
wavefunctions in effective nuclear potentials, usually apply-
ing the optical model. The γ -width is computed by folding a
γ -strength function (specifying the probability for the emis-

Fig. 4 Schematics of the relative importance of γ -energies contribut-
ing to the capture cross section and reaction rate, not to scale. (Figure
by the author, first published in [29])
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Fig. 5 Relative contribution of Eγ to the reaction rate for the capture of
60 keV neutrons on two Sn isotopes. (Figure from [30], with permission)

sion of the specific EM radiation between two states) with
the number of available final states at an excitation energy
given by Sn +E−Eγ , where Eγ is the energy of the γ -ray. A
reliable prediction of resonant cross section is difficult due to
interference effects between resonances and between a reso-
nance and the direct capture background. Often, phenomeno-
logical approaches are used, such as the R-matrix method
which fits resonance properties to measured excitation func-
tions. An independent determination of resonance widths is
helpful to improve predictions for nuclides for which cross
section measurements are unavailable.

The NLD is very high around the compound formation
energy in intermediate and heavy nuclides, which comprise
the majority of nuclei in neutron-capture nucleosynthesis.
The compound reaction mechanism is definitely dominat-
ing in this case, with the direct mechanism being negligible.
At high NLD individual resonances cannot be disentangled
anymore and this feature lends itself to apply a model using
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Fig. 6 Sensitivity of the (n, γ )
rate at 0.6 GK to a change in the
neutron width; a value of 1
means that the rate changes
equally as the width, a value of
0 means no change. (Data taken
from [24])

average properties, such as average widths. This is called
the statistical model of compound nuclear reactions or the
Hauser-Feshbachmodel [6,7]. It assumes the presence of res-
onances with any spin and parity at the compound formation
energy. Instead of the widths of the individual resonances,
averaged particle widths for each spin/parity are calculated
from optical model potentials. For the γ -width, the averaged
property again is based on the γ -strength function, with E1
transitions dominating in most cases but also M1 and E2
transitions can be considered.

Even at the low interaction energies of the s-process – and
much more so in high-T processes – the neutron width is
considerably larger than other widths because it is easy to
capture or eject uncharged particles with sufficient energy.
Since the cross section (and thus the reaction rate) in the
compound nucleus mechanism is determined by the smallest
width in entrance or exit channel, (n, γ ) on intermediate and
heavy nuclides in astrophysics are determined by the γ -width
[24]. This is illustrated in Fig. 6. Predictions of the γ -strength
function, however, are notoriously difficult. A further com-
plication is given by the fact that the most important γ -ray
energies Eγ , that contribute most to the reaction rate inte-
gral, are smaller than the particle emission threshold. This is
sketched in Fig. 4, where the downward arrows indicate the
γ -emission by de-excitation of the compound nucleus and the
shading indicates the exponential increase of the NLD with
increasing excitation energy of nucleus B. As the γ -strength
decreases with decreasing Eγ (lengths of the arrows), there is
a competition between decreasing γ -strength and increasing
number of available final states for γ -decay. This gives rise
to a maximum in the emission energy. A realistic example is
shown in Fig. 5 for two Sn isotopes. Interestingly, calcula-
tions across the nuclear chart have shown that the maximum

is almost always located about 2–4 MeV below Sn, except
very close to the dripline or for nuclides with magic neu-
tron numbers for which the compound nucleus model is not
applicable [30].

As mentioned before, the astrophysically relevant neu-
tron energy E is negligible compared to Sn for the major-
ity of applications. This is not correct anymore, however,
when approaching the dripline as in the case of the r-process
because of the strongly decreased Sn. Nevertheless, the neu-
tron energy E remains low by nuclear physics standards also
in the r-process and this implies that the compound nucleus
is formed at low excitation energy. As a consequence, the sta-
tistical model may not be applicable anymore and individual
resonances and direct capture have to be taken into account.
This complicates the prediction of reaction rates for these
nuclides as well as their measurement. It is only consequen-
tial, however, in cold r-process scenarios with competition
between neutron captures and β−-decays whereas in a hot
r-process rates for nuclides close to the dripline do not have
to be known [31,32]. As indicated in Sect. 3.1, an equilib-
rium is established in a hot r-process and the calculation of
the equilibrium abundances only requires the knowledge of
Sn along with T and nn [7].

4 Summary and conclusions

It is important to keep in mind that methods developed to
determine reaction rates for low-T nucleosynthesis may not
be applicable to processes at high T . This is because reactions
on nuclei in excited states dominate the astrophysical reac-
tion rates, involving many more transitions than reactions on
nuclei in their ground states. This also limits the usefulness
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of the MACS, which was developed for a direct experimen-
tal determination of neutron capture rates for the s-process,
especially because it was found that even at s-process tem-
peratures thermally excited states contribute more to the rate
than previously assumed. Moreover, different nuclear prop-
erties (such as resonance energies and widths) may be of
higher or lower importance depending on the reaction mech-
anism. Going to even higher temperature and higher mass
number of the involved nuclides, these circumstances con-
spire to simplify a theoretical treatment (with exception of
reactions on magic nuclei and close to the driplines) and
complicate an experimental constraint of astrophysical rates.
The many transitions (from target states to final states, mostly
via compound states) involved in explosive nucleosynthesis
lend themselves to the use of averaged quantities in their pre-
diction. On the other hand, the large number of transitions
restricts the applicability of direct and indirect experimen-
tal approaches studying a few transitions, as usually applied
in the study of light nuclei, even when dealing with stable
nuclides.

In experimental investigations, it has to be made sure that
astrophysically relevant properties are studied and these may
be different at low and at high temperature because the reac-
tion mechanism may be changing. The cited systematic sen-
sitivity studies and g.s. contributions to the astrophysical
rate can help to guide experiments. Regarding theory, pre-
dictions are simplified for high-T rates by being able to aver-
age over many transitions and apply the Hauser-Feshbach
model, which has been successful in describing a large num-
ber of reaction cross sections. Nevertheless, considerable
challenges for nuclear theory remain. First, nuclear structure
models have to be improved to be able to reliably predict the
nuclear properties (such as nuclear spectroscopy, NLD, or
γ -strength functions) required for the astrophysical reaction
cross section prediction. Another major challenge to theory
is to accurately describe the competition between direct, res-
onant, and statistical reaction mechanisms for nuclei close to
magic numbers and close to the driplines. Some first attempts
have been made to combine direct and Hauser-Feshbach
cross sections for neutron-rich nuclei [6,33] but currently
a reliable prediction of individual resonances and their inter-
ference (which nevertheless may be very important also for
magic nuclei and close to driplines) is beyond the reach of
theory.
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