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Abstract

The prediction of cross sections for nuclei far off stability is crucial in the field

of nuclear astrophysics. In recent calculations the nuclear level density – as an

important ingredient to the statistical model (Hauser-Feshbach) – has shown

the highest uncertainties. We present a global parametrization of nuclear

level densities within the back-shifted Fermi-gas formalism. Employment of

an energy-dependent level density parameter a, based on microscopic correc-

tions from a recent FRDM mass formula, and a backshift δ, based on pairing

and shell corrections, leads to a highly improved fit of level densities at the

neutron-separation energy in the mass range 20 ≤ A ≤ 245. The importance

of using proper microscopic corrections from mass formulae is emphasized.

The resulting level description is well suited for astrophysical applications.

The level density can also provide clues to the applicability of the statisti-

cal model which is only correct for a high density of excited states. Using the

above description, one can derive a “map” for the applicability of the model

to reactions of stable and unstable nuclei with neutral and charged particles.

26.30.+k – 21.10.Ma – 24.60.Dr – 95.30.Cq

Typeset using REVTEX

1

http://arXiv.org/abs/astro-ph/9706294v1


I. INTRODUCTION

Explosive nuclear burning in astrophysical environments produces unstable nuclei, which
again can be targets for subsequent reactions. In addition, it involves a very large number
of stable nuclei, which are not fully explored by experiments. Thus, it is necessary to be
able to predict reaction cross sections and thermonuclear rates with the aid of theoretical
models. Explosive burning in supernovae involves in general intermediate mass and heavy
nuclei. Due to a large nucleon number they have intrinsically a high density of excited states.
A high level density in the compound nucleus at the appropriate excitation energy allows
to make use of the statistical model approach for compound nuclear reactions (e.g. [1,2,3]),
which averages over resonances. In this paper, we want to present new results obtained
within this approach and outline in a clear way, where its application is valid.

It is often colloquially termed that the statistical model is only applicable for intermediate
and heavy nuclei. However, the only necessary condition for its application is a large number
of resonances at the appropriate bombarding energies, so that the cross section can be
described by an average over resonances. This can in specific cases be valid for light nuclei
and on the other hand not be valid for intermediate mass nuclei near magic numbers. Thus,
another motivation of this investigation is to explore the nuclear chart for reactions with a
sufficiently high level density, implying automatically that the nucleus can equilibrate in the
classical compound nucleus picture.

As the capture of an alpha particle leads usually to larger Q-values than neutron or
proton captures, the compound nucleus is created at a higher excitation energy. Therefore,
it is often even possible to apply the Hauser-Feshbach formalism for light nuclei in the
case of alpha-captures. Another advantage of alpha-captures is that the capture Q-values
vary very little with the N/Z-ratio of a nucleus, for nuclei with Z≤50. For Z>50, entering
the regime of natural alpha-decay, very small alpha-capture Q-values can be encountered
for proton-rich nuclei. Such nuclei on the other hand do not play a significant role in
astrophysical environments, maybe with exception of the p-process. This means that in the
case of alpha-captures the requirement of large level densities at the bombarding energy is
equally well fulfilled at stability as for unstable nuclei. Opposite to the behavior for alpha-
induced reactions, the reaction Q-values for proton or neutron captures vary strongly with
the N/Z-ratio, leading eventually to vanishing Q-values at the proton or neutron drip line.
For small Q-values the compound nucleus is created at low excitation energies and also for
intermediate nuclei the level density can be quite small. Therefore, it is not advisable to
apply the statistical model approach close to the proton or neutron drip lines for intermediate
nuclei. For neutron captures close to the neutron drip line in r-process applications it might
be still permissable for heavy and often deformed nuclei, which have a high level density
already at very low excitation energies.

In astrophysical applications usually different aspects are emphasized than in pure nu-
clear physics investigations. Many of the latter in this long and well established field were
focused on specific reactions, where all or most ”ingredients”, like optical potentials for
particle and alpha transmission coefficients, level densities, resonance energies and widths
of giant resonances to be implementated in predicting E1 and M1 gamma-transitions, were
deduced from experiments. This of course, as long as the statistical model prerequisites are
met, will produce highly accurate cross sections.
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For the majority of nuclei in astrophysical applications such information is not available.
The real challenge is thus not the well established statistical model, but rather to provide
all these necessary ingredients in as reliable a way as possible, also for nuclei where none of
such informations are available. In addition, these approaches should be on a similar level
as e.g. mass models, where the investigation of hundreds or thousands of nuclei is possible
with managable computational effort, which is not always the case for fully microscopic
calculations.

The statistical model approach has been employed in calculations of thermonuclear re-
action rates for astrophysical purposes by many researchers [4,5,6,7], who in the beginning
only made use of ground state properties. Later, the importance of excited states of the
target was pointed out [8]. The compilations [9,10,11] are presently the ones utilized in large
scale applications in all subfields of nuclear astrophysics, when experimental information is
unavailable. Existing global optical potentials, mass models to predict Q-values, deforma-
tions etc., but also the ingredients to describe giant resonance properties have been quite
successful in the past (see e.g. the review by [12]). The major remaining uncertainty in all
existing calculations stems from the prediction of nuclear level densities, which in earlier cal-
culations gave uncertainties even beyond a factor of 10 at the neutron separation energy [13],
about a factor of 8 [10], and a factor of 5 even in the most recent calculations (e.g. [11]; see
Fig.3.16 in [12]). In nuclear reactions the transitions to lower lying states dominate due to
the strong energy dependence. Because the deviations are usually not as high yet at low
excitation energies, the typical cross section uncertainties amounted to a smaller factor of
2–3.

We want to show in this paper, after a short description of the model and the required
nuclear input, the implementation of a novel treatment of level density descriptions [14,15],
where the level density parameter is energy dependent and shell effects vanish at high ex-
citation energies. This is still a phenomenological approach, making use of a back-shifted
Fermi-gas model, rather than a combinatorial approach based on microscopic single-particle
levels. But it is the first one leading to a reduction of the average cross section uncertainty
to a factor of about 1.4, i.e. an average deviation of about 40% from experiments, when only
employing global predictions for all input parameters and no specific experimental knowl-
edge. The degree of precision of the present approach will give astrophysical nucleosynthesis
calculations a much higher predictive power. In order to give a guide for its application,
we also provide a map of the nuclear chart which indicates where the statistical model
requirements are fulfilled and its predictions therefore safe to use.

II. THERMONUCLEAR RATES FROM STATISTICAL MODEL

CALCULATIONS

A. The basic procedure

A high level density in the compound nucleus permits to use averaged transmission
coefficients T , which do not reflect a resonance behavior, but rather describe absorption
via an imaginary part in the (optical) nucleon-nucleus potential [2]. This leads to the well
known expression
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σµν
i (j, o; Eij) =

πh̄2/(2µijEij)

(2Jµ
i + 1)(2Jj + 1)

×
∑

J,π

(2J + 1)
T µ

j (E, J, π, Eµ
i , Jµ

i , πµ
i )T ν

o (E, J, π, Eν
m, Jν

m, πν
m)

Ttot(E, J, π)
(1)

for the reaction iµ(j, o)mν from the target state iµ to the exited state mν of the final nu-
cleus, with a center of mass energy Eij and reduced mass µij . J denotes the spin, E the
corresponding excitation energy in the compound nucleus and π the parity of excited states.
When these properties are used without subscripts they describe the compound nucleus,
subscripts refer to states of the participating nuclei in the reaction iµ(j, o)mν and super-
scripts indicate the specific excited states. Experiments measure

∑

ν σ0ν
i (j, o; Eij), summed

over all excited states of the final nucleus, with the target in the ground state. Target states
µ in an astrophysical plasma are thermally populated and the astrophysical cross section
σ∗

i (j, o) is given by

σ∗
i (j, o; Eij) =

∑

µ(2J
µ
i + 1) exp(−Eµ

i /kT )
∑

ν σµν
i (j, o; Eij)

∑

µ(2J
µ
i + 1) exp(−Eµ

i /kT )
. (2)

The summation over ν replaces T ν
o (E, J, π) in Eq. 1 by the total transmission coefficient

To(E, J, π) =
νm
∑

ν=0

T ν
o (E, J, π, Eν

m, Jν
m, πν

m)

+

E−Sm,o
∫

Eνm
m

∑

Jm,πm

To(E, J, π, Em, Jm, πm)ρ(Em, Jm, πm)dEm . (3)

Here Sm,o is the channel separation energy, and the summation over excited states above the
highest experimentally known state νm is changed to an integration over the level density ρ.
The summation over target states µ in Eq. 2 has to be generalized accordingly.

In addition to the ingredients required for Eq. 1, like the transmission coefficients for
particles and photons, width fluctuation corrections W (j, o, J, π) have to be employed. They
define the correlation factors with which all partial channels for an incoming particle j and
outgoing particle o, passing through the excited state (E, J, π), have to be multiplied. This
takes into account that the decay of the state is not fully statistical, but some memory
of the way of formation is retained and influences the available decay choices. The major
effect is elastic scattering, the incoming particle can be immediately re-emitted before the
nucleus equilibrates. Once the particle is absorbed and not re-emitted in the very first
(pre-compound) step, the equilibration is very likely. This corresponds to enhancing the
elastic channel by a factor Wj. In order to conserve the total cross section, the individual
transmission coefficients in the outgoing channels have to be renormalized to T ′

j . The total
cross section is proportional to Tj and, when summing over the elastic channel (WjT

′
j) and all

outgoing channels (T ′
tot−T ′

j), one obtains the condition Tj=T ′
j(WjT

′
j/T

′
tot)+T ′

j(T
′
tot−T ′

j)/T
′
tot.

We can (almost) solve for T ′
j

T ′
j =

Tj

1 + T ′
j(Wj − 1)/T ′

tot

. (4)
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This requires an iterative solution for T ′ (starting in the first iteration with Tj and Ttot),
which converges fast. The enhancement factor Wj has to be known in order to apply Eq. 4.
A general expression in closed form was derived [16], but is computationally expensive to
use. A fit to results from Monte Carlo calculations gave [17]

Wj = 1 +
2

1 + T
1/2
j

. (5)

For a general discussion of approximation methods see [3,18]. Eqs. 4 and 5 redefine the
transmission coefficients of Eq. 1 in such a manner that the total width is redistributed by
enhancing the elastic channel and weak channels over the dominant one. Cross sections near
threshold energies of new channel openings, where very different channel strengths exist, can
only be described correctly, when taking width fluctuation corrections into account. Of the
thermonuclear rates presently available in the literature, only those by Thielemann et al. [11]
include this effect, but their level density treatment still contains large uncertainties. The
width fluctuation corrections of [17] are only an approximation to the correct treatment.
However, it was shown that they are quite adequate [19].

The important ingredients of statistical model calculations as indicated in Eqs. 1 through
3 are the particle and gamma-transmission coefficients T and the level density of excited
states ρ. Therefore, the reliability of such calculations is determined by the accuracy with
which these components can be evaluated (often for unstable nuclei). In the following we
want to discuss the methods utilized to estimate these quantities and recent improvements.

B. Transmission Coefficients

The transition from an excited state in the compound nucleus (E, J, π) to the state
(Eµ

i , Jµ
i , πµ

i ) in nucleus i via the emission of a particle j is given by a summation over all
quantum mechanically allowed partial waves

T µ
j (E, J, π, Eµ

i , Jµ
i , πµ

i ) =
J+s
∑

l=|J−s|

Jµ
i

+Jj
∑

s=|Jµ
i
−Jj |

Tjls
(Eµ

ij). (6)

Here the angular momentum ~l and the channel spin ~s = ~Jj + ~Jµ
i couple to ~J = ~l + ~s. The

transition energy in channel j is Eµ
ij=E − Sj − Eµ

i .
The individual particle transmission coefficients Tl are calculated by solving the

Schrödinger equation with an optical potential for the particle-nucleus interaction. All
early studies of thermonuclear reaction rates [4,6,8,7,9,10] employed optical square well po-
tentials and made use of the black nucleus approximation. We employ the optical poten-
tial for neutrons and protons given by [20], based on microscopic infinite nuclear matter
calculations for a given density, applied with a local density approximation. It includes
corrections of the imaginary part [21,22]. The resulting s-wave neutron strength function
< Γo/D > |1eV = (1/2π)Tn(l=0)(1eV) is shown and discussed in [23,12], where several phe-
nomenological optical potentials of the Woods-Saxon type and the equivalent square well
potential used in earlier astrophysical applications are compared. The purely theoretical
approach gives the best fit. It is also expected to have the most reliable extrapolation prop-
erties for unstable nuclei. A good overview on different approaches can be found in [24].
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Deformed nuclei were treated in a very simplified way by using an effective spherical
potential of equal volume, based on averaging the deformed potential over all possible angles
between the incoming particle and the orientation of the deformed nucleus.

In most earlier compilations alpha particles were also treated by square well optical
potentials. We employ a phenomenological Woods-Saxon potential [25] based on extensive
data [26]. For future use, for alpha particles and heavier projectiles, it is clear that the best
results can probably be obtained with folding potentials (e.g. [27,28,29]).

The gamma-transmission coefficients are treated as follows. The dominant gamma-
transitions (E1 and M1) have to be included in the calculation of the total photon width.
The smaller, and therefore less important, M1 transitions have usually been treated with the
simple single particle approach (T ∝ E3 [30]), as also discussed in [9]. The E1 transitions are
usually calculated on the basis of the Lorentzian representation of the Giant Dipole Reso-
nance (GDR). Within this model, the E1 transmission coefficient for the transition emitting
a photon of energy Eγ in a nucleus A

NZ is given by

TE1(Eγ) =
8

3

NZ

A

e2

h̄c

1 + χ

mc2

2
∑

i=1

i

3

ΓG,iE
4
γ

(E2
γ − E2

G,i)
2 + Γ2

G,iE
2
γ

. (6)

Here χ(= 0.2) accounts for the neutron-proton exchange contribution [31] and the sum-
mation over i includes two terms which correspond to the split of the GDR in statically
deformed nuclei, with oscillations along (i=1) and perpendicular (i=2) to the axis of ro-
tational symmetry. Many microscopic and macroscopic models have been devoted to the
calculation of the GDR energies (EG) and widths (ΓG). Analytical fits as a function of A and
Z were also used [9,10]. We make use of the (hydrodynamic) droplet model approach [32]
for EG, which gives an excellent fit to the GDR energies and can also predict the split of
the resonance for deformed nuclei, when making use of the deformation, calculated within
the droplet model. In that case, the two resonance energies are related to the mean value
calculated by the relations [33] EG,1 + 2EG,2 = 3EG, EG,2/EG,1 = 0.911η + 0.089. η is the
ratio of the diameter along the nuclear symmetry axis to the diameter perpendicular to it,
and can be obtained from the experimentally known deformation or mass model predictions.

See [12] for a detailed description of the approach utilized to calculate the gamma-
transmission coefficients for the cross section determination shown in this work.

III. LEVEL DENSITIES

A. The Back-Shifted Fermi-Gas Model

While the method as such is well seasoned, considerable effort has been put into the
improvement of the input for statistical Hauser-Feshbach models (e.g. [12]). However, the
nuclear level density has given rise to the largest uncertainties in the description of nuclear
reactions [12,9,11,34]. For large scale astrophysical applications it is also necessary to not
only find reliable methods for level density predictions, but also computationally feasible
ones.

Such a model is the non-interacting Fermi-gas model [35]. Most statistical model cal-
culations use the back-shifted Fermi-gas description [13]. More sophisticated Monte Carlo
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shell model calculations [36], as well as combinatorial approaches (see e.g. [37]), have shown
excellent agreement with this phenomenological approach and justified the application of
the Fermi-gas description at and above the neutron separation energy. Here we want to
apply an energy-dependent level density parameter a together with microscopic corrections
from nuclear mass models, which leads to improved fits in the mass range 20 ≤ A ≤ 245.

Mostly the back-shifted Fermi-gas description, assuming an even distribution of odd and
even parities (however, see e.g. [38] for doubts on the validity of this assumption at energies
of astrophysical interest), is used [13]:

ρ(U, J, π) =
1

2
F(U, J)ρ(U) , (7)

with

ρ(U) =
1√
2πσ

√
π

12a1/4

exp(2
√

aU)

U5/4
, F(U, J) =

2J + 1

2σ2
exp

(

−J(J + 1)

2σ2

)

(8)

σ2 =
Θrigid

h̄2

√

U

a
, Θrigid =

2

5
muAR2 , U = E − δ .

The spin dependence F is determined by the spin cut-off parameter σ. Thus, the level density
is dependent on only two parameters: the level density parameter a and the backshift δ,
which determines the energy of the first excited state.

Within this framework, the quality of level density predictions depends on the reliability
of systematic estimates of a and δ. The first compilation for a large number of nuclei was
provided by [13]. They found that the backshift δ is well reproduced by experimental pairing
corrections. They also were the first to identify an empirical correlation with experimental
shell corrections S(N, Z)

a

A
= c0 + c1S(N, Z) , (9)

where S(N, Z) is negative near closed shells. Since then, a number of compilations have
been published and also slightly different functional dependencies have been proposed (for
references, see e.g. [12]), but they did not necessarily lead to better predictive power.

Improved agreement with experimental data was found [11,34] by dividing the nuclei
into three classes [(i) those within three units of magic nucleon numbers, (ii) other spherical
nuclei, (iii) deformed nuclei] and fitting separate coefficients c0, c1 for each class. In that
case the mass formula in Ref. [39] was used. For the backshift δ the description

δ = ∆(Z, N) (10)

was employed, deriving ∆(Z, N) from the pairing correlation of a droplet model nuclear
mass formula with the values

∆even−even =
12√
A

,

∆odd = 0 , (11)

∆odd−odd = − 12√
A

.
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With this treatment smaller deviations were found, compared to previous attempts [13,9].
However, the number of parameters was considerably increased at the same time.

The back-shifted Fermi-gas approach diverges for U = 0 (i.e. E = δ, if δ is a positive
backshift). In order to get the correct behavior at very low excitation energies, the Fermi-gas
description can be combined with the constant temperature formula ( [13]; [3] and references
therein)

ρ(U) ∝ exp(U/T )

T
. (12)

The two formulations are matched by a tangential fit determining T .

B. Thermal Damping of Shell Effects

An improved approach has to consider the energy dependence of the shell effects which
are known to vanish at high excitation energies [14]. Although, for astrophysical purposes
only energies close to the particle separation thresholds have to be considered, an energy
dependence can lead to a considerable improvement of the global fit. This is especially true
for strongly bound nuclei close to magic numbers.

An excitation-energy dependent description was initially proposed by [40,15] for the level
density parameter a:

a(U, Z, N) = ã(A)

[

1 + C(Z, N)
f(U)

U

]

, (13)

where

ã(A) = αA + βA2/3 (14)

and

f(U) = 1 − exp(−γU) . (15)

The values of the free parameters α, β and γ are determined by fitting to experimental level
density data.

The shape of the function f(U) permits the two extremes: (i) for small excitation energies
the original form of Eq. 9 is retained with S(Z, N) being replaced by C(Z, N), (ii) for
high excitation energies a/A approaches the continuum value obtained for infinite nuclear
matter. Previous attempts to find a global description of level densities used shell corrections
S derived from comparison of liquid-drop masses with experiment (S ≡ Mexp − MLD) or
the “empirical” shell corrections S(Z, N) given by [13]. A problem connected with the
use of liquid-drop masses arises from the fact that there are different liquid-drop model
parametrizations available in the literature which produce quite different values for S [43].

However, in addition the meaning of the correction parameter inserted into the level
density formula (Eq. 13) has to be reconsidered. The fact that nuclei approach a spherical
shape at high excitation energies has to be included. Actually, the correction parameter C
should describe properties of a nucleus differing from the spherical macroscopic energy and
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include terms which are vanishing at higher excitation energies. The latter requirement is
mimicked by the form of Eq. 13. Therefore, the parameter should rather be identified with
the so-called “microscopic” correction Emic than with the shell correction. The mass of a
nucleus with deformation ǫ can then be written as [44]

M(ǫ) = Emic(ǫ) + Emac(spherical) . (16)

Alternatively, one can write

M(ǫ) = Emac(ǫ) + Es+p(ǫ) , (17)

with Es+p being the shell-plus-pairing correction. The confusion about the term “microscopic
correction”, which is sometimes used in an ambiguous way, is also pointed out in [44]. Thus,
the above mentioned ambiguity follows from the inclusion of deformation-dependent effects
into the macroscopic part of the mass formula.

Another important ingredient is the pairing gap ∆, related to the backshift δ. Instead
of assuming constant pairing (cf. [41]) or a fixed dependence on the mass number A (cf.
Eq. 11), we determine the pairing gap ∆ from differences in the binding energies (or mass
differences, respectively) of neighboring nuclei. Thus, for the neutron pairing gap ∆n one
obtains [42]

∆n(Z, N) =
1

2

[

2EG(Z, N) − EG(Z, N − 1) − EG(Z, N + 1)
]

, (18)

where EG(Z, N) is the binding energy of the nucleus (Z, N). Similarly, the proton pairing
gap ∆p can be calculated.

At low energies, this description is again combined with the constant temperature formula
(Eq. 12) as described above.

C. Results

In our study we utilized the microscopic correction of a most recent mass formula [44],
calculated with the Finite Range Droplet Model FRDM (using a folded Yukawa shell model
with Lipkin-Nogami pairing) in order to determine the parameter C(Z, N)=Emic. The
backshift δ was calculated by setting δ(Z, N)=1/2{∆n(Z, N)+∆p(Z, N)} and using Eq. 18.
In order to obtain the parameters α, β, and γ, we performed a fit to experimental data on
s-wave neutron resonance spacings of 272 nuclei at the neutron separation energy. The data
were taken from a recent compilation [14]. Another recent investigation [43] also attempted
to fit level density parameters, but made use of a slightly different description of the energy
dependence of a and different pairing gaps.

As a quantitative overall estimate of the agreement between calculation and experiment,
one usually quotes the averaged ratio [13,14]

g ≡
〈

ρcalc

ρexp

〉

= exp





1

n

n
∑

i=1

(

ln
ρi

calc

ρi
exp

)2




1/2

, (19)

with n being the number of nuclei for which level densities ρ are experimentally known.
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As best fit we obtain an averaged ratio g = 1.48 with the parameter values α = 0.1337,
β = −0.06571, γ = 0.04884. The ratios of experimental to predicted level densities (i.e.
theoretical to experimental level spacings) for the nuclei considered are shown in Fig. 1.
As can be seen, for the majority of nuclei the absolute deviation is less than a factor of
2. This is a satisfactory improvement over the theoretical level densities previously used
in astrophysical cross section calculations, where deviations of a factor 3–4 [11,34], or even
in excess of a factor of 10 [12,9] were found. Such a direct comparison was rarely shown
in earlier work. Mostly the level density parameter a, entering exponentially into the level
density, was displayed. Closely examining the nuclei with the largest deviations in our fit,
we were not able to find any remaining correlation of the deviation with separation energy
(i.e. excitation energy) or spin.

Although we quoted the value of the parameter β above (and will do so below) as we
left it as an open parameter in our fits, one can see that it is always small and can be set to
zero without considerable increase in the obtained deviation. Therefore, it is obvious that
actually only two parameters are needed for the level density description.

As an alternative to the FRDM mass formula [44], in Fig. 2 we show the results when
making use of the well-known mass formula by Hilf et al. [39] which turned out to be
successful in predicting properties of nuclei at and close to stability. The parameter set
α = 0.0987, β = 0.09659, γ = 0.05368 yields an averaged ratio of g = 2.08. It can be seen
from Fig. 2 that not only the average scatter is somewhat larger than with the FRDM input,
but also that this mass formula has problems in the higher mass regions. Only an artificial
alteration by about −3 MeV or more of the microscopic term in the deformed mass regions
80 ≤ N ≤ 86 and 103 ≤ N ≤ 113 can slightly improve the fit but the remaining scatter still
leads to g = 1.85. The difference in the calculated level density from the FRDM and the Hilf
mass formulae is plotted in Fig. 3. The latter mass formula leads to a significantly higher
level density (by about a factor of 10) around the neutron magic number N = 82, whereas
the level density remains lower (by a factor of 0.07) close to the drip lines for N > 115.

A fit comparable to the quality of the FRDM approach can be obtained when employing a
mass formula from an extended Thomas-Fermi plus Strutinsky integral model (ETFSI) [45].
In order to extract a microscopic correction for this already microscopic calculation, we
subtracted the FRDM spherical macroscopic part Emac (see Eq. 16) from the ETFSI mass
and took this difference to be the ETFSI microscopic correction. The pairing gaps were
calculated as described above. This leads to a fit with g = 1.61, yielding the parameter
values α = 0.12682, β = −0.03652 and γ = 0.045. However, although the fit is closer to
the one obtained with FRDM than the Hilf result, the deviations for unstable nuclei are
somewhat larger. The maximum deviation is a factor of about 38 for ETFSI, as compared
to a factor of 16 for the Hilf approach. Both formulae yield lower level densities than the
FRDM for nuclei close to the dripline with N > 130 and higher level densities for neutron
rich nuclei close to the magic shell at N = 82. The ratios of the level density from the
ETFSI approach to those of the FRDM are shown in Fig. 4.

Different combinations of masses and microscopic corrections from other models (droplet
model by Myers and Swiatecki [46], Cameron-Elkin mass formula and shell corrections [47])
were also tried but did not lead to better results. Our fit to experimental level densities is
also better than a recent analytical BCS approach [48,49] which tried to implement level
spacings from the ETFSI model in a consistent fashion.
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To see the effect of the new level density description (utilizing FRDM input) on the
calculated cross sections, 30 keV neutron capture cross sections from experiment [50] are
compared to our calculations in Fig. 5. Plotted are only nuclei for which the statistical model
can be applied to calculate the cross section, using the criteria derived in the next section.
An improvement in the overall deviation can be seen, compared to previous calculations [12].
However, one systematic deviation can clearly be seen in the A ≃ 90 region. That “peak”
is not caused by a deficiency in the general level density description but by the microscopic
input. The FRDM model overestimates the microscopic corrections close to the N = 50
shell [44].

We see that the uncertainty in level density translates into a similar uncertainty of the
neutron capture cross sections which are used here as a representative example for applica-
tions to capture cross sections. Although this does not seem to be a dramatic improvement
for the experimental cross sections of stable nuclei over the previous approach [11,34], the
purely empirical and also artificial division of nuclei into three classes of level density treat-
ments could be avoided. The reason is that the excitation energy dependence was treated in
the generalized ansatz of [15], ensuring the correct energy dependence which will also yield
correct results when the adjustment is not done at the typical separation energy of 8–12
MeV for stable nuclei but also for nuclei far from stability with smaller separation energies.

The remaining uncertainty in the extrapolation is the reliability far off stability of the
nuclear-structure model from which the microscopic corrections and pairing gaps (and the
masses) are taken. However, recent investigations in astrophysics and nuclear physics have
shown the robustness of the FRDM approach [51]. Recently improved purely microscopic
models have exhibited similar behavior towards the drip lines [52] but there are no large
scale calculations over the whole chart of nuclei available yet which include deformation.
Therefore, the FRDM model used here is among the most reliable ones available at present.

IV. APPLICABILITY OF THE STATISTICAL MODEL

Having a reliable level density description also permits to analyze when and where the
statistical model approach is valid. Generally speaking, in order to apply the model correctly
a sufficiently large number of levels in the compound nucleus is needed in the relevant energy
range which can act as doorway states to forming a compound nucleus. In the following
this is discussed for neutron-, proton- and alpha-induced reactions with the aid of the level
density approach presented above. This section is intended to be a guide to a meaningful
and correct application of the statistical model.

The nuclear reaction rate per particle pair at a given stellar temperature T is determined
by folding the reaction cross section with the Maxwell-Boltzmann (MB) velocity distribution
of the projectiles [54]

〈σv〉 =

(

8

πµ

)1/2
1

(kT )3/2

∫ ∞

0
σ(E)E exp

(

− E

kT

)

dE . (20)

Two cases have to be considered: Reactions between charged particles and with neutrons.
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A. The Effective Energy Window

The nuclear cross section for charged particles is strongely suppressed at low energies due
to the Coulomb barrier. For particles having energies less than the height of the Coulomb
barrier, the product of the penetration factor and the MB distribution function at a given
temperature results in the so-called Gamow peak, in which most of the reactions will take
place [53]. Location and width of the Gamow peak depend on the charges of projectile and
target, and on the temperature of the interacting plasma.

When introducing the astrophysical S factor S(E) = σ(E)E exp(2πη) (with η being the
Sommerfeld parameter), one can easily see the two contributions of the velocity distribution
and the penetrability in the integral:

< σv >=

(

8

πµ

)1/2
1

(kT )3/2

∫ ∞

0
S(E) exp

[

− E

kT
− b

E1/2

]

, (21)

where the quantity b = (2µ)1/2πe2Z1Z2/h̄ arises from the barrier penetrability. Taking the
first derivative of the integrand yields the location of the Gamov peak E0 [53,54],

E0 =

(

bkT

2

)2/3

= 1.22(Z2
1Z

2
2µT 2

6 )1/3 keV , (22)

with the charges Z1, Z2 and the reduced mass µ of the involved nuclei at a temperature T6

given in 106 K. The effective width ∆ of the energy window can be derived as

∆ =
16E0kT

3

1/2

= 0.749(Z2
1Z

2
2µT 5

6 )1/6 keV . (23)

In the case of neutron-induced reactions the effective energy window has to be derived
in a slightly different way. For s-wave neutrons (l = 0) the energy window is simply given
by the location and width of the peak of the MB distribution function. For higher partial
waves the penetrability of the centrifugal barrier shifts the effective energy E0 to higher
energies, similar to the Gamov peak. For neutrons with energies less than the height of the
centrifugal barrier this can be approximated by [56]

E0 ≈ 0.172T9

(

l +
1

2

)

MeV, (24)

∆ ≈ 0.194T9

(

l +
1

2

)1/2

MeV. (25)

The energy E0 will always be comparatively close to the neutron separation energy.

B. The Criterion for the Application of the Statistical Model

Using the above effective energy windows for charged and neutral particle reactions, a cri-
terion for the applicability can be derived from the level density. For a reliable application
of the statistical model a sufficient number of nuclear levels has to be within the energy
window, thus contributing to the reaction rate. For narrow, isolated resonances, the cross
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sections (and also the reaction rates) can be represented by a sum over individual Breit-
Wigner terms. At higher energies, with increasing level density, the sum over resonances
may be approximated by an integral over E [56].

Numerical test calculations were made in order to find the average number of levels per
energy window which is sufficient to allow the substitution of the sum by an integral over
the HF cross section. Fig. 6 shows the dependence of the ratio between sum and integral [56]
on the number of levels in the energy window. To achieve 20% accuracy, about 10 levels
are needed in the worst case (non-overlapping, narrow resonances). Usually, neutron s-wave
resonances are comparatively broad and thus a smaller number of levels could be sufficient.
However, applying the statistical model (i.e. integrating over a level density instead of
summing up over levels) for a level density which is not sufficiently large, results in an
overestimation of the actual cross section, as can be seen in Fig. 6 and was also shown in
Ref. [55]. Therefore, in the following we will assume a conservative limit of 10 contributing
resonances in the effective energy window for charged and neutral particle-induced reactions.

Fixing the required number of levels within the energy window of width ∆, one can
find the minimum temperature at which the above described condition is fulfilled. Those
temperatures (above which the statistical model can be used) are plotted in a logarithmic
color scale in Figs. 7–8. For neutron-induced reactions Fig. 7 applies, Fig. 9 describes proton-
induced reactions, and Fig. 8 alpha-induced reactions. Plotted is always the minimum stellar
temperature T9 (in 109 K) for the compound nucleus of the reaction. It should be noted
that the derived temperatures will not change considerably even when changing the required
level number within a factor of about two, because of the exponential dependence of the
level density on the excitation energy.

This permits to read directly from the plot whether the statistical model cross section can
be “trusted” or whether single resonances or other processes (e.g. direct reactions) have also
to be considered. (However, this does not necessarily mean that the statistical cross section
is always negligible in the latter cases, since the assumed condition is quite conservative).
The above plots can give hints on when it is safe to use the statistical model approach
and which nuclei have to be treated with special attention for specific temperatures. Thus,
information on which nuclei might be of special interest for an experimental investigation
may also be extracted.

V. SUMMARY

In the first part of the paper we described the most recent approaches being used for the
application of statistical model calculations in astrophysical applications. In the second part
we focussed on the level density description which contained the largest error when using the
properties described before. We were able to improve considerably the prediction of nuclear
level densities by employing an energy-dependent description for the level density parameter
a and by properly including microscopic corrections and back-shifts. All nuclei can now be
described with a single parameter set consisting of just three parameters. The globally
averaged deviation of prediction from experiment of about 1.5 translates into a somewhat
lower error in the final cross sections due to the dominance of transitions to states with low
excitation energies. This will also make it worthwile to recalculate the cross sections and
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thermonuclear rates for many astrophysically important reactions in the intermediate and
heavy mass region.

Finally, we also presented a “map” as a guide for the application of the statistical model
for neutron-, proton- and alpha-induced reactions. Figs. 7, 9, 8 (as well as Figs. 3, 4) as
full size color plots can be obtained from the first author. The above plots can give hints
on when it is safe to use the statistical model approach and which nuclei have to be treated
with special attention at a given temperature. Thus, information on which nuclei might
be of special interest for an experimental investigation may also be extracted. It should
be noted that we used very conservative assumptions in deriving the above criteria for the
applicability of the statistical model.
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FIGURES

FIG. 1. Ratio of predicted to experimental [14] level densities at the neutron separation energy.

The deviation is less than a factor of 2 (dotted lines) for the majority of the considered nuclei.

FIG. 2. Ratio of predicted to experimental [14] level densities at the neutron separation energy

when using microscopic corrections from the Hilf mass formula [39].

FIG. 3. Ratio of the level density at the neutron separation energy calculated with microscopic

corrections from Hilf et al [39] to those calculated using corrections from FRDM [44].

FIG. 4. Ratio of the level density at the neutron separation energy calculated with microscopic

corrections from ETFSI [45] to those calculated using corrections from FRDM [44].

FIG. 5. Ratio of theoretical to experimental [50] neutron capture cross sections at 30 keV.

Cross sections for light nuclei (A < 30) are not plotted because the statistical model cannot be

applied in that region for neutron-capture reactions (compare Fig. 7).

FIG. 6. Deviation of the integration over the level density from the exact sum over levels,

depending on the number of levels in the energy window. The full line describes a “worst case”

with narrow resonances, the dotted line applies for broader resonances (e.g neutron s-waves).

FIG. 7. (Color) Stellar temperatures (in 109 K) for which the statistical model can be used.

Plotted is the compound nucleus of the neutron-induced reaction n+Target. Stable nuclei are

marked.

FIG. 8. (Color) Stellar temperatures (in 109) for which the statistical model can be used.

Plotted is the compound nucleus of the alpha-induced reaction alpha+Target. Stable nuclei are

marked.

FIG. 9. Stellar temperatures (in 109) for which the statistical model can be used. Plotted is

the compound nucleus of the proton-induced reaction p+Target. Stable nuclei are marked.
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