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ABSTRACT 

This paper presents the results of preliminary investigations of globular moss growth 

on the surface of Falljökull, a temperate outlet glacier of the Vatnajökull ice cap, 

Southern Iceland. Supraglacial debris has provided a basis for moss colonisation and 

several large (>500m2) patches of moss growth (Racomitrium spp.) are observed on 

the surface of the glacier. Each area of moss-colonised supraglacial debris shows a 

down-slope  increase in sphericity and moss cushion size and a decrease in percentage 

surface coverage of moss-colonised and bare clasts. 

 

It is suggested that moss growth on supraglacial debris allows preferential down-slope 

movement of clasts through an associated increase in both overall mass and sphericity. 

Thermal insulation by moss cushions protects the underlying ice surface from melt, 

and the resulting ice pedestals assist in down-slope sliding and toppling of moss 

cushions. The morphology and life cycle of supraglacial globular mosses is therefore 

not only closely linked to the presence and distribution of supraglacial debris, but also 

appears to assist in limited down-glacier transport of this debris. This research 

highlights both the dynamic nature of the interaction of mosses with supraglacial 

sedimentary systems and the need for a detailed consideration of their role within the 

wider glacial ecosystem. 
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INTRODUCTION 

This study describes the general characteristics and distribution of globular moss 

growth on the ice surface of Falljökull, a valley outlet glacier of the Vatnajökull 

icecap, southern Iceland. The spatial distribution and physical characteristics of 

globular moss growth are described, together with an assessment of potential 

relationships between moss growth and supraglacial sediment characteristics and 

distribution. It is hypothesised that the morphology and life-cycle of supraglacial 

globular mosses is closely linked to their action as an agent of supraglacial sediment 

redistribution, and evidence supporting this hypothesis is detailed. The potential 

importance of mosses to the ecology and nutrient cycle of the wider supraglacial 

ecosystem is briefly considered.  

 

For some considerable time, glaciers were incorrectly assumed to be largely abiotic 

environments and as a result, interest in the nature and dynamics of glacier 

ecosystems received scant attention until relatively recently. Recovery of micro-

organisms from deep ice samples in East Antarctica (Abyzov, 1993) stimulated great 

interest in the functioning of glacial ecosystems. Published work to date includes 

examination of nutrient budgets (e.g. Hodson et al., 2005), microbial assemblages (e.g. 

Skidmore et al., 2000; Säwström et al., 2002; Bhatia et al., 2006; Buford Price, 2007) 

and micro-invertebrates (e.g. De Smet and Van Rompu, 1994; Shain et al., 2001). A 

review of microbial habitats in glacial ecosystems is provided by Hodson et al., (in 

press).  

 

However, the distribution and potential role of vegetation in glacial systems has 

received even less attention, presumably due to a paucity of observational evidence. 

This is despite the fact that cyanobacteria in glacial ecosystems fix nitrogen and 

furnish the organic carbon for bacterial and other microbially-mediated processes in 

glacial environments (Kaštovská et al., 2005; Hodson et al., in press) providing the 

nutrient base necessary for plant life. Morainic and other glacially transported debris 

are known to provide a useful substrate for such activity (e.g. Sharp et al., 1999; 

Hodson, 2006), and thus also allow colonisation by vegetation on the glacier surface 

and at its margins.  
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Mosses are well suited to the colonisation of harsh glacial environments and the 

presence of mosses in nival and ice-marginal environments is well documented (e.g. 

Belland, 1982; Bergstrom and Selkirk, 1997; Collins and Callaghan, 1980; Hodkinson 

et al., 2003; Lewis Smith, 2005; Whinam et al., 2004). In glacial environments the 

primary limiting factors for plant growth are likely to be nutrient supply, dehydration 

during temperature minima, and freezing during extreme low temperatures. Many 

moss species however, show great tolerance to dehydration and desiccation, while the 

commonplace aggregation of mosses into globular or lenticular cushions increases 

evaporative resistance and reduces water losses (Longton, 1988). Many species also 

have modest nutrient requirements, while aggregation into cushions disrupts airflow 

and may allow more effective sequestration of airborne dusts and organic matter 

(Hodson et al., in press). Finally, the ability of mosses to maintain photosynthesis and 

respiration under conditions of both low temperature and low light, allows survival 

during winter snow burial and periods of sub-zero surface temperatures experienced 

in early spring and late autumn (Longton, 1988).  

 

It is therefore unsurprising that extensive moss growth has been observed at the 

margins of glaciers and ice sheets. However, although not studied in detail, moss 

growth has also been previously observed on the surfaces of Hrútárjökull, Kvíárjökull 

and Breiðamerkurjökull by Eythórsson (1951) who christened the observed 

supraglacial globular moss cushions “Jökla-mys”, which translates from the Icelandic 

as “glacier mice”. Globular moss growth has also been observed on the surface of 

Matanuska Glacier, Alaska (Benninghoff, 1954). Theoretically, supraglacial water 

and direct atmospheric deposition will provide nutrient supply during the summer 

months to sustain growth, while the insulating properties of many moss species, 

together with water and nutrients from snow pack melt are likely to allow survival 

during annual winter burial (Longton, 1988). This combination of factors provides the 

potential for moss communities to thrive where supraglacial debris and a source of 

colonising material (spores and/or vegetative fragments) are both present. 

 

FIELDSITE 

Falljökull is an outlet glacier of the Vatnajökull ice cap, southern Iceland. The glacier 

is fed in its upper reaches by the Oræfajökull ice dome via an extensively crevassed 

icefall and has a south-west orientation. For the last 5.5 km, the glacier splits into two 
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lobes, separated by the Rauðikambur rock ridge; the western tongue becomes 

Virkisjökull, while the eastern tongue retains the name Falljökull (Figure 1). 

 

In common with other glaciers in the area, Falljökull is currently undergoing rapid 

retreat, together with thinning in the lower reaches of the ablation zone. The glacier 

surface in the study area is characterised by numerous dirt cones, and an extensive 

network of supraglacial streams, the largest of which is deeply incised into the South-

eastern margin and marks the edge of a large area of debris-covered dead ice and 

morainic material. While not selected for detailed study, this area also exhibits 

extensive moss coverage and is a potential source for wind-blown spore dispersal onto 

the surface of the glacier.  

 

Fieldwork was undertaken in August 2005. The annual average temperature that year 

at the closest meteorological station (Skaftafell, approximately 11 km to the West and 

in a similar katabatic setting) was 5ºC, with a summer maximum of 15.1ºC recorded 

in late July and winter minima of -6ºC recorded in early February. In the 

Skaftafell/Vatnajökull area, daily mean air temperatures generally become 

consistently positive from mid-April. Similarly, daily mean air temperatures become 

consistently negative from early October.  

 

The geology of the Vatnajökull area comprises Tertiary basalts, Upper Pleistocene 

formations comprising subaerial lava flows, subglacial pillow lava, hydroclastic tuffs, 

breccias, basalt and andesite lava flows (Thordarson and Hoskuldsson, 2002). 

Extensive Holocene morainic and fluvio-glacial sandur deposits are a characteristic 

feature of the Vatnajökull area. Clastic debris on the surface of Falljökull in the study 

area comprises fragments of amorphous, fine-grained basaltic lava.   

 

METHODS 

Four areas of moss coverage were found on the surface of Falljökull in the lower 

reaches of the ablation zone (Figure 2). Sampling revealed that Racomitrium 

fasciculare (Hedw.) Brid., and Racomitrium ericoides (Brid.) Brid. had grown on 

supraglacial clastic debris. Proportionally less Racomitrium ericoides (Brid.) Brid. 

was observed in samples taken from the field. However, on-site species identification 

was not possible and so the relative abundance of these two species (that display a 
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similar growth habit) across the study site is not discussed here. In many cases moss 

coverage had completely encompassed the clast, the internal clast only being visible 

when deliberately teased out from within the moss cushion (Figure 2, inset A). 

Fragments of moss and associated detritus were also observed in proglacial streams 

down-glacier of the main areas of moss coverage. 

 

The largest (approximately 575 m2) of the four moss areas identified was selected for 

preliminary study during August 2005 (Figure 2). A transect just under 30m long was 

taken through the centre of this moss area and where a moss-cushion encasing a clast 

abutted the transect line, its long, intermediate and short axis sizes were recorded. The 

internal clast was then teased out and cleaned, and its long, intermediate and short 

axis size recorded (these clasts are subsequently referred to as “internal clast/s”). 

Average surface slope of the study area was 9.6º.  

 

Sphericity was calculated for both moss cushions and internal clasts following the 

analysis of Krumbein (1941): 

 

3
2a

bc
=ψ  

 

where ψ is sphericity ranging from 0-1.0 (a true sphere having a value of 1.0), and a, 

b and c are long, intermediate and short axes lengths respectively. 

 

In order to calculate and identify any down-slope trends in percentage cover of moss-

free clasts and moss cushions, vertical digital photographs were taken of one metre 

square areas of the glacier surface at the top and bottom of the central 30m transect, 

and at four equi-distant intermediate areas down the transect. The outline of all moss-

free clasts and moss cushions were manually digitised from these photographs using 

Erdas Imagine® software and total area of moss cushions, moss-free clasts and clear 

glacier ice calculated. Finally, samples of moss cushions from the top, middle and 

bottom of the transect were assessed for organic matter content using the loss by 

ignition technique. 
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MOSS-DEBRIS ASSOCIATIONS ON FALLJÖKULL 

Initial visual inspection of the transect revealed a down-slope increase in size of moss 

cushions, but a down-slope decrease in the surface coverage of both moss cushions 

and non-colonised clasts (Figure 3). Subsequent quantitative analysis of vertical 

photographs confirmed that in the down-slope direction, percentage surface coverage 

of both moss-free clasts and moss cushions decreases, while percentage clear ice 

cover increases (Table 1).  

 

Non-colonised clastic elements make up over 10% of the surface cover at the top of 

the transect and only 0.2% at the foot (Table 1). Similarly, moss cushions comprise 

22.4% of the surface cover at the top of the transect and 11.8% at the foot. There are 

in fact considerably more moss-free clasts than moss cushions at the head of the 

transect (Table 1), the surface cover percentages being influenced by the larger size of 

the moss cushions relative to moss-free clasts. However, by the foot of the transect the 

situation has reversed and absolute number of moss cushions exceeds number of 

moss-free clasts (Table 1). Percentage clear ice cover within each metre square area 

increases from 67.2% at the top of the transect, to 88% at the base (Table 1). 

Although the overall trend is for percentage moss cushion coverage to reduce down-

glacier, the trend is not systematic. An initial increase in coverage in the down-glacier 

direction is apparent, with percentage cover rising from 22.4% at the top of the 

transect to 26% at point three, before then showing a systematic decline to 11.8% at 

the base of the transect (Table 1). 

 

Moss cushion intermediate-axis size shows an increase in the down-slope direction 

(Figure 4). A correlation of r=+0.70, statistically significant at 95%, exists between 

moss cushion intermediate-axis size and distance down-slope and although removal of 

the obvious outlier shown in figure 4 reduces the correlation coefficient slightly to 

+0.67, the correlation remains statistically significant at 95%. This is not matched by 

the relationship between internal clast intermediate-axis size and distance down-slope, 

which has a weak correlation of r=+0.2, statistically insignificant at 95%.  

 

Although clearly there is a trend of increasing sphericity of moss cushions in the 

down-slope direction (Figure 5), formal statistical testing only yields a moderately 

strong correlation of r=+0.5, significant at the 95% level. Sphericity of internal clasts 
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shows no relationship with distance down-slope, testing yielding a very weak 

correlation of r=-0.1 statistically insignificant at the 95% level.  

 

In order to further investigate any potential relationship between internal clast 

characteristics and moss cushion characteristics, a simple estimate of the thickness of 

the moss ‘envelope’ can be gained by subtracting moss cushion intermediate axis size 

from internal clast intermediate axis size. When this envelope thickness is correlated 

against internal clast intermediate axis size a very weak correlation of r=+0.04 is 

yielded, statistically insignificant at the 95% level. Thus, there is no relationship 

between internal clast size and moss envelope thickness. 

 

Logistical constraints in the field necessitated that samples for organic matter 

assessment were randomly gathered from one metre-square grids in the top, mid and 

slope foot sections of the transect rather than systematically down the whole transect. 

Prior to ignition, air-dried weight of samples ranged from 23.4 to 99.8 g (slope foot, 

n=10), 10.7 to 39.4 g (mid slope, n= 7) and 5.3 to 25.1 g (top slope, n=10). In terms of 

absolute mass of organic matter, slope foot moss cushions showed the highest mass 

with an average of 6.2 grams (range 2-10.5 grams). Mid slope samples comprised an 

average of 2.7 grams (range 1.3 to 4.3 grams), while top slope samples comprised an 

average of 1.7 grams (range 0.6 to 2.8 grams) organic matter (Figure 6). These figures 

reflect the increasing size of moss-envelopes with distance down-slope. However, 

despite this trend, the down-slope decrease in total cover of both clasts and moss 

cushion means that there is a negative trend in the total mass of both organic and 

inorganic material down-slope. 

 

DISCUSSION 

Qualitative observation in the field showed that many moss cushions were lenticular 

in shape, with a flat bottom and domed top (Figure 2, inset B). It was also apparent 

that many moss cushions had “rolled” into an inverted position with the domed 

section lying on the ice surface and the flat section uppermost. This corresponds with 

observations of moss growth on glaciers elsewhere (Eythórsson, 1950; Benninghoff, 

1954). The presence of easily removed organic and inorganic detritus on the 

uppermost surface of some moss cushions suggests that ‘rolling’ and inversion has 

been relatively recent, with a lesser amount of moss growth present on the uppermost 
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flat surface when compared to other, more spherical, cushions that had apparently 

rolled and experienced a longer period of growth on the exposed upper surface. Small 

pedestals of ice were evident beneath both larger moss-free clasts and moss cushions. 

It seems plausible that moss cushions shield the underlying ice from melt, with the 

majority of samples having an overall intermediate axis size greater than the critical 

threshold of 0.005-0.01m below which glacier surface debris will conduct heat 

sufficiently rapidly to accelerate melt of the underlying ice surface (Østrem, 1959). 

 

Movement of moss cushions 

Given the evidence for recent inversion of moss cushions, it is suggested that the 

formation of ice pedestals may be responsible for eventually “toppling” moss 

cushions and initiating “rolling”, “sliding” and general down-slope motion (Figure 7). 

This down-slope movement will likely be enhanced by a greater degree of sphericity 

and overall mass as moss growth progresses. Larger and more spherical moss 

cushions may therefore experience greater degrees of net down-slope movement.  

 

While pedestal formation does not inevitably mean a down-slope movement of either 

clastic debris or moss cushions (up-slope or cross-slope movement from a pedestal is 

also possible), gravity will tend to skew movements down-slope. Observations in the 

field showed that recently exposed ice pedestals generally have an upper surface 

angled down-slope, while upturned lenticular moss cushions were generally found on 

the down-slope side of recently exposed ice pedestals. Furthermore, the relatively 

steep (average 9.6°) angle of the glacier surface is likely to be a factor in enhancing 

toppling and rolling from ice pedestals in the down-slope direction.  

 

The degree to which the presence of moss acts to accelerate the speed of ice pedestal 

formation relative to moss-free clasts is unclear. However, moss growth clearly 

results in an increase in overall intermediate-axis size relative to moss-free clasts. 

Radiative shielding of the underlying ice is therefore likely to be increased in spatial 

extent where moss exists, and this will create an increased likelihood of pedestal 

formation and down-slope movement. The increased proportion of large moss 

cushions lower down the slope, despite the lack of a down-slope trend in internal clast 

size, certainly suggests that mosses are active in enhancing the general movement of 

 8



supraglacial clasts down-slope, although, as discussed below, other processes may 

contribute. 

 

Size and sphericity variations 

The increase in size and sphericity of moss cushions down-slope, without a 

concomitant increase in the size or sphericity of the internal clasts indicates that the 

morphology of the mosses is not closely controlled by clast size or shape. Indeed, as 

noted above, there is no apparent relationship between the size of clasts and the 

thickness of the moss envelope. Although no data were collected in the field on the 

relative proportions of the two Racomitrium species in the down-slope direction, the 

size increase of moss cushions with down-slope distance and the general similarity of 

growth habit of the two species argues against any systematic down-slope variation in 

the relative proportions of the two species being a significant factor in the down-

glacier size distribution of moss cushions. Furthermore, the relatively short length of 

the down-glacier axis of the moss patch (~30m) and the limited change in ice surface 

morphology suggests microclimatic variations are an unlikely explanation for the 

observed down-glacier increase in size of moss cushions. 

 

The progressive size increase of moss cushions down-slope is likely to signal an 

increase in moss cushion age and/or preferential movement of the larger moss 

cushions. Clearly the source of supraglacial clastic debris may be significant here. If 

supraglacial debris is being supplied from an englacial source, any age-related trend 

in overall moss cushion size could be explained by earlier melt-out and colonisation 

of clasts lower down the slope. However, such a hypothesis necessitates additional 

mechanisms to explain the lower concentration of clasts lower down the slope/first 

melting from the ice. An alternative explanation is that the clasts are melting out of 

the ice and slowly moving down-slope under gravity with no influence from moss 

cushion growth, Again however, additional mechanisms would be required to explain 

the lack of any down-slope trend in clast size and the lower concentration  of clasts at 

the foot of the transect. 

 

The observed down-slope increase in moss cushion sphericity indicates that more 

complex processes are at work than extended growth-times down-slope and, indeed, 

also supports the notion that simple microclimate or nutrient-controlled growth-rate 
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variations are unlikely to offer an explanation for the down-glacier increases in size. 

In non-supraglacial environments larger moss cushions tend to be lenticular in cross-

profile due to a lack of movement (e.g. Beck et al. 1986). In contrast, on Falljökull 

larger moss cushions tend to be more spherical than lenticular, suggesting regular 

movement rather than prolonged in situ growth. 

 

A comparison of the moss size distributions at either end of the transect might be 

expected to distinguish between models of development centred on age and those 

centred on preferential movement. For example, the presence of the largest moss 

cushions at the transect head might have argued against time since melt-out being 

important. However, here the data are inconclusive as the largest size fraction of 

moss-cushions is missing at the slope-head and this could equally be the situation in 

either scenario. The down-slope increase in the proportion of clasts that are moss-

covered (Table 1) therefore fits more than one potential model of development. 

Nevertheless, while factors like melt-out and movement of moss-free clasts may have 

played a role in developing the observed distribution of moss cushions, the most 

parsimonious explanation for the evidence is that larger mosses allow for easier 

transport down-slope. This explanation requires no complex sedimentary history and 

fits the observed morphology of the moss cushions well. 

 

Clearly any form of moss growth on the glacier surface is limited by the presence and 

extent of supraglacial debris cover and moss will only colonise areas where the 

sedimentary, structural and flow characteristics of the ice are developed to supply 

such material. However, even with a relatively short growing season and harsh 

environmental conditions it is apparent that abundant moss growth is possible on 

glacier surfaces where clastic debris is present and that moss growth has some 

capacity to enhance the transport of that debris. The dynamic nature of supraglacial 

mosses indicated by the results of this study also provides considerable potential for 

the redistribution of both organic matter and nutrients around the glacier surface. The 

presence of supraglacial moss coverage may enhance both the nitrogen fixing 

capacity of the wider supraglacial ecosystem and the production of organic carbon for 

heterotrophic bacterial activity. This potential capacity to enhance primary and 

heterotrophic production in supraglacial environments therefore demands further 

consideration from an ecological perspective, especially as the very presence of 
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mosses suggests the existence of a more complex supraglacial ecosystem than hitherto 

appreciated.  

 

CONCLUSION 

Preliminary inspection of globular moss growth on the surface of Falljökull supports 

the notion that the down-slope transfer of supraglacial debris is assisted by the 

presence and growth of mosses. Moss cushion growth not only shields the underlying 

ice surface from melt, thereby allowing pedestal formation to initiate motion, but also 

increases sphericity and total mass relative to non-colonised clasts, allowing more 

effective down-slope movement. This process is embodied in a down-slope increase 

in both intermediate axis size and sphericity of moss cushions. The very presence of 

mosses in supraglacial environments points to the need for a detailed consideration of 

the role of vegetation in the wider glacier ecosystem.  
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FIGURE CAPTIONS 
 
Figure 1. Location map of the Őræfajökull ice dome and Falljökull outlet glacier. 
Smaller map shows the snout area of Falljökull and approximate location of the main 
moss areas. The largest of the four areas shown on the map was selected for detailed 
investigation. 
 
 
Figure 2. Area of moss-colonised clasts on the surface of Falljökull. Glacier flow 
direction is from left to right. Inset A shows a moss cushion that has been teased apart 
to reveal the internal clast around which the moss has grown. Inset B shows a profile 
view of a lenticular moss cushion. The long and short axes are visible in this 
photograph, the moss cushion having been deliberately placed on its side. Long axis 
length is approximately 0.11m. 
 
 
Figure 3. a) Glacier surface at the top of the transect. Note the relatively denser 
surface coverage compared with figure 3b, and the prevalence of moss-free clasts. b) 
Glacier surface at the foot of the transect. Note the almost complete absence of moss-
free clasts and the relatively large area of exposed glacier ice. Each photograph 
shows an area approximately 1m2. 
 
 
Figure 4. Plot of moss cushion intermediate axis against down-slope location. A 
strong correlation is apparent (r=0.7, significant at 95%). Upper and lower 95% 
confidence and prediction limits are denoted by the dotted and dashed lines 
respectively. 
 
 
Figure 5. Plot of Krumbein sphericity against down-slope location for moss cushions. 
A moderately strong (r=0.5 significant at 95%) correlation is apparent. Upper and 
lower 95% confidence and prediction limits are denoted by the dotted and dashed 
lines respectively. 
 
 
Figure 6. Organic matter content by weight of moss cushion samples from the top, 
mid and slope-foot areas of the transect. Shaded bars indicate the range, while the 
black horizontal line denotes the average mass of organic matter in grams. Note the 
increase in both range and average organic matter content in the down-slope 
direction. 
 
 
Figure 7. Conceptual model illustrating a potential mechanism for down-slope 
movement of moss cushions. Intermediate axis size of sampled moss cushions ranges 
from 0.03 to 0.16m. At time 1 the moss cushion rests on the glacier surface protecting 
the underlying ice from melt. At time 2, this protection from melt has allowed an ice 
pedestal to form beneath the moss cushion. By time 3, the pedestal has reached some 
critical height or angle such that the moss cushion either slides or rolls from the 
elevated pedestal position to rest once more on the ice surface. The cycle can then 
begin again, the end result being a net down-glacier movement of moss cushions. 
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TABLES 
 
Table 1. Percentage coverage of clear ice, moss cushion coverage and moss-free clast 
coverage down the transect. Absolute numbers of moss cushions and moss-free clasts 
within each 1m2 sample area are in parentheses. Distance from top-slope to slope-
foot is approximately 30m. 
 

 % clear ice % moss 
cushion 
coverage 

% moss-free clast 
coverage 

1. TOP-SLOPE  67.2 22.4 (144) 10.4 (397) 
2. 67.4 23.5 (111) 9.1 (202) 
3. 68.6 26.0 (127) 5.4 (109) 
4. 80.6 16.3 (110) 3.1 (126) 
5. 86.3 12.9 (31) 0.8 (7) 
6. SLOPE- FOOT 88.0 11.8 (17) 0.2 (1) 
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Porter et al., FIGURE 1 
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Porter et al., FIGURE 2 
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Porter et al., FIGURE 3 
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Porter et al., FIGURE 4 
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Porter et al., FIGURE 5 
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Porter et al., FIGURE 6 
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Porter et al., FIGURE 7 
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