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Abstract—
Background: The NASA Metrics Data Program data sets have
been heavily used in software defect prediction experiments.
Aim: To demonstrate and explain why these data sets require
significant pre-processing in order to be suitable for defect
prediction.
Method: A meticulously documented data cleansing process
involving all 13 of the original NASA data sets.
Results: Post our novel data cleansing process; each of the data
sets had between 6 to 90 percent less of their original number
of recorded values.
Conclusions:
One: Researchers need to analyse the data that forms the basis
of their findings in the context of how it will be used.
Two: Defect prediction data sets could benefit from lower level
code metrics in addition to those more commonly used, as
these will help to distinguish modules, reducing the likelihood
of repeated data points.
Three: The bulk of defect prediction experiments based on the
NASA Metrics Data Program data sets may have led to erroneous
findings. This is mainly due to repeated data points potentially
causing substantial amounts of training and testing data to be
identical.

I. INTRODUCTION

UTOMATED software defect prediction is a process where
A classification and/or regression algorithms are used to
predict the presence of non-syntactic implementational er-
rors (henceforth; defects) in software source code. To make
these predictions such algorithms attempt to generalise upon
software fault data; observations of software product and/or
process metrics coupled with a level of defectiveness value.
This value typically takes the form of a number of faults
reported metric, for a given software unit after a given amount
of time (post either code development or system deployment).

The predictions made by defect predictors may be continu-
ous (level of defectiveness) or categorical (set membership
of either: {‘defective’, ‘non-defective’}). The current trend
by researchers is typically to report the latter (categorical
predictions) only. However, this may not be the best approach,
as continuous predictions allow software units to be ranked
according to their predicted quality factor (this is known as
module-order modelling, see (Khoshgoftaar & Allen 2003)).
A software quality ranking system has the real world benefit
of producing an ordered list of the seemingly most error-prone
code units. These code units can then be subjected to some
form of further inspection, in descending order of predicted
level of defectiveness, for as long as resources allow.
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In order to carry out a software defect prediction experiment
there is naturally a requirement for reasonable quality data.
However, software fault data is very difficult to obtain. Com-
mercial software development companies often do not have
a fault measurement program in place. And, even if such a
process is in place, it is typically undesirable from a business
perspective to publicise fault data. This is particularity true
for systems where quality has been a serious problem, i.e.
where it would be most useful to publicise such data and give
researchers an opportunity to discover why this was the case.

Open-source systems are a good place for researchers to
construct their own fault data sets. This is simplest when
the system has been developed whilst using a bug tracking
system to record the faults encountered by developers. If
bug information has been correctly and consistently entered
into version control commit messages, it is then possible to
autonomously locate the fault-fixing revisions. From here it is
possible to (fairly accurately) map fault-fixing revisions back
to where the fault was first introduced (the bug-introducing
change, see (Kim, Zimmermann, Pan & Whitehead 2006)).
The major problem with constructing fault data from open-
source systems is that it can be a very time consuming task
to do accurately. This is because human intervention is often
required to check the validity of the automated mappings.

Thus difficulty in obtaining software fault data is the major
factor why public domain fault data repositories, such as
those hosted by NASAE] and PROMISEEL have become so
popular among researchers. These repositories host numerous
data sets, which require no data analysis and little or no pre-
preprocessing, before machine learning tools such as Wek
will classify them. The ease of this process can be dangerous to
the inexperienced researcher. Results can be obtained without
any scrutiny of the data. Furthermore, researchers may naively
assume the NASA Metrics Data Program (MDP) data sets are
of reasonable quality for data mining. This issue is worsened
by the hosting sites not indicating the main problems, and by
so many previous researchers using these data sets without
appropriate pre-processing. The aim of this study is to illu-
minate why the NASA MDP data sets require significant pre-
processing; or contextual data cleansing, before they become
suitable for data mining. It is hoped that this paper will
encourage researchers to take data quality seriously, and to
question the results of some studies based on these data sets.
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The NASA MDP repository currently consists of 13 data
sets explicitly intended for software metrics research. Each
data set represents a NASA software system/subsystem and
contains the static code metrics and corresponding fault data
for each comprising module. Note that ‘module’ in this case
can refer to a function, procedure or method. A substantial
amount of research based wholly or partially on these data sets
has been published over the last decade, including: (Menzies,
Stefano, Orrego & Chapman 2004), (Menzies & Stefano
2004), (Menzies, Greenwald & Frank 2007), (Menzies, Milton,
Turhan, Cukic, Jiang & Bener 2010), (Jiang, Cukic & Menzies
2008), (Jiang & Cukic 2009), (Khoshgoftaar & Seliya 2004),
(Seliya, Khoshgoftaar & Zhong 2005), (Lessmann, Baesens,
Mues & Pietsch 2008), (Boetticher 2006), (Mende & Koschke
2009), (Koru & Liu 2005), (Tosun & Bener 2009), (Bezerra,
Oliveira & Meira 2007), (Turhan, Menzies, Bener & Di
Stefano 2009), (Pelayo & Dick 2007), (Li & Reformat 2007)
and (Elish & Elish 2008).

It is widely accepted by the data mining community that in
order to accurately assess the potential real world performance
of a classification model, the model must be tested against
different data from that upon which it was trained (Witten
& Frank 2005). This is why there is a distinction between a
training set and a testing set. A testing set is also referred to
as an independent test set; as it is intended to be independent
from the training set (i.e. models should be tested against
unseen data, see (Witten & Frank 2005)). This is very basic
data mining knowledge, and is no surprise to the defect
prediction community. In 2004 Menzies et al. state: “if the
goal of learning is to generate models that have some useful
future validity, then the learned theory should be tested on data
not used to build it. Failing to do so can result in a excessive
over-estimate of the learned model...” (Menzies et al. 2004).
Despite this fact being well known, numerous studies based
on the NASA MDP data sets (henceforth, NASA data sets)
have potentially had high proportions of identical data points
in their training and testing sets. This is because the NASA
data sets contain varied quantities of repeated data points; i.e.
observations of module metrics and their corresponding fault
data occurring more than once. Thus, when this data is used in
a machine learning context, training and testing sets potentially
have large proportions of identical data points. This will result
in the aforementioned excessive estimate of performance, as
classifiers can memorise rather than learn.

In this study we develop and carry out a meticulously
documented data cleansing process involving all 13 of the
original NASA data sets. The purpose of this data cleansing
is both to make the data sets suitable for machine learning,
and to remove noise (i.e. inaccurate/incorrect data points, see
(Liebchen & Shepperd 2008)). We show that after this process
each of the data sets had between 6 to 90 percent less of
their original recorded values. We then discuss at length the
problems caused by repeated data points when data mining,
and why using lower level metrics in fault data sets (such as
character counts) may alleviate this problem, by helping to
distinguish non-identical modules.

The rest of this paper is presented as follows: in the next
section we discuss related work; papers where issues with
the NASA data sets have been documented or discussed. In
Section [[1If we document our novel data cleansing process in
incremental stages. Section contains our findings, which
include a demonstration of the effect of repeated data points
during an artificial classification experiment. Our conclusions
are presented in Section

II. RELATED STUDIES

The major issue with the original NASA data sets is that
when they are used in a machine learning context, repeated
data points may result in training data inadvertently being
included in testing sets, potentially invalidating the experiment.
This is not a new finding. However, we believe it needs
spelling out to researchers, as previous studies mentioning
this issue seem to have been ignored. In this section the most
relevant studies surrounding this issue are discussed.

The earliest mention of repeated data in NASA data sets
that we can find was made in (Kaminsky & Boetticher 2004).
In this study the authors state that they eliminated “redundant
data”, but give no further explanation as to why. The data set
used in this study was NASA data set KC2, which is no longer
available from the NASA MDP repository. Although this data
set is currently available from the PROMISE repository, we
did not use it in our study in an effort to use only the original,
unmodified data.

In (Boetticher 2006) five NASA data sets were used in
various classification experiments. The author states that “data
pre-processing removes all duplicate tuples from each data set
along with those tuples that have questionable values (e.g.
LOC equal to 1.1).” Interestingly, it is only the PROMISE
versions of the NASA data sets that contain these clearly
erroneous non-integer LOC values. The author goes into detail
on repeated data points, stating that “to avoid building artificial
models, perhaps the best approach would be not to allow
duplicates within datasets.” One of the experiments carried out
in this study was intended to show the effect of the repeated
data in the five NASA data sets used. This was in the context
of a 10-fold cross-validation classification experiment with
a C4.5 decision tree. The claimed result was that the data
sets with the repeats included achieved significantly higher
performance than those without. Although this result is to be
expected, there was an unfortunate technical shortcoming in
the experimental design. When reporting the performance of
classifiers on data sets with imbalanced class distributions,
‘accuracy’ (or its inverse: ‘error rate’) should not be used
(Nickerson, Japkowicz & Milios 2001). In addition to this,
care is required when performing such an experiment, as the
proportion of repeated data in each class is not related to the
class distribution. Therefore, post the removal of repeated data
points, the data sets could have substantially different class
distributions. This may boost or reduce classifier performance,
because of the class imbalance problem (see (Chawla, Japkow-
icz & Kolcz 2004)).



Classification experiments utilising probabilistic outputs
were carried out in (Bezerra et al. 2007). Here the authors
used all 13 of the original NASA data sets and state that
they removed both “redundant and inconsistent patterns”.
Inconsistent data points are another of the problems when data
mining with the NASA data sets. They occur when repeated
feature vectors (module metrics) describe data points with
differing class labels. Thus in this domain they occur where the
same set of metrics is used to describe both a module labeled
as ‘defective’ and a module labeled as ‘non-defective’. We
believe the removal of such instances was first carried out in
(Khoshgoftaar & Seliya 2004).

The work described here differs from that previously de-
scribed, as it is not based on classification experiments. It is
instead based on the analysis and cleansing of data. This study
demonstrates: the poor quality of the NASA data sets; the
extent to which repeated data points disseminate into training
and testing sets; and the effect of testing sets containing seen
data during classification experiments.

III. METHOD

The NASA data sets are available from the aforementioned
NASA MDP and PROMISE repositories. For this study we
used the original versions of the data sets from the NASA
MDP repository. Note however that the same issues also apply
to the PROMISE versions of these data sets, which are for the
most part simply the same data in a different format.

A. Initial Pre-processing: Binarisation of Class Variable &
Removal of Module Identifier and Extra Error Data Attributes

In order to be suitable for binary classification, the error
count attribute is commonly reported in the literature (see
(Menzies, Greenwald & Frank 2007), (Lessmann et al. 2008)
and (Elish & Elish 2008) for example) as being binarised as
follows:

defective = (error_count > 1)

It is also necessary to remove the ‘unique module identifier’
attribute as this gives no information toward the defectiveness
of a module. Lastly, it is necessary to remove all other error
based attributes to make the classification task worthwhile.
This initial pre-processing is summarised as follows:

attributes = | MODULE, ERROR_DENSITY,
ERROR_REPORT IN_6_MON,
ERROR_REPORT_IN_1_YR,
ERROR_REPORT_IN_2_YRS ]

for dataSet in dataSets:
for attribute in attributes:
if attribute in dataSet:
dataSet = dataSet - attribute
dataSet.binarise (error_count)
dataSet.rename (error_count, defective)

The NASA data is often reportedly used in defect prediction
experiments post this initial pre-processing. We therefore
present an overview of each data set in Table[l} In this table the
number of original recorded values is defined as the number
of attributes (features) multiplied by the number of instances
(data points). For simplicity we do not take missing values into
account. We use the number of recorded values as a method
of quantifying how much data is available in each data set. We
shall come back to these values post data cleansing to judge
how much data has been removed.

B. Stage 1: Removal of Constant Attributes

An attribute which has a constant/fixed value throughout
all instances is easily identifiable as it will have a variance
of zero. Such attributes contain no information with which to
discern modules apart, and are at best a waste of classifier
resources. Each data set had from O to 10 percent of their
total attributes removed during this stage, with the exception
of data set KC4. This data set has 26 constant attributes out
of a total of 40, thus 65 percent of available recorded values
contain no information upon which to data mine.

C. Stage 2: Removal of Repeated Attributes

In addition to constant attributes, repeated attributes occur
where two attributes have identical values for each instance.
This effectively results in a single attribute being over-
represented. Amongst the NASA data sets there is only one
pair of repeated attributes (post stage 1), namely the ‘number
of lines’ and ‘loc total’ attributes in data set KC4. The
difference between these two metrics is poorly defined at the
NASA MDP repository. However, they may be identical for
this data set as (according to the metrics) there are no modules
with any lines either containing comments or which are empty.
For this data cleansing stage we removed one of the attributes
so that the values were only being represented once. We chose
to keep the ‘loc total’ attribute label as this is common to all
13 NASA data sets.

TABLE I
DETAILS OF THE NASA MDP DATA SETS POST INITIAL PRE-PROCESSING.

Recorded % Defective

Name Language Features Instances Values Instances
CM1 C 40 505 20200 10
M1 C 21 10878 228438 19
KCl1 C++ 21 2107 44247 15
KC3 Java 40 458 18320 9
KC4 Perl 40 125 5000 49
MCl C & C++ 39 9466 369174 0.7
MC2 C 40 161 6440 32
MW1 C 40 403 16120 8
PC1 40 1107 44280 7
PC2 C 40 5589 223560 0.4
PC3 40 1563 62520 10
PC4 40 1458 58320 12
PC5 C++ 39 17186 670254 3




D. Stage 3: Replacement of Missing Values

Missing values may or may not be problematic for machine
learners depending on the classification method used. How-
ever, dealing with missing values within the NASA data sets
is very simple. Seven of the data sets contain missing values,
but all in the same single attribute: ‘decision density’. This
attribute is defined as ‘condition count’ divided by ‘decision
count’, and for each missing value both these base attributes
have a value of zero. In the remaining NASA data set which
contains all three of the aforementioned attributes but does not
contain missing values, all instances with ‘condition count’
and ‘decision count’ values of zero also have a ‘decision
density’ of zero. This appears logical, and it is clear that
missing values have occurred because of a division by zero
error. Because of this we replace all missing values with zero.
Note that in (Bezerra et al. 2007) all instances which contained
missing values within the NASA data sets were discarded. It
is more desirable to cleanse data than to remove it, as the
quantity of possible information to learn from will thus be
maximised.

E. Stage 4: Enforce Integrity with Domain Specific Expertise

The NASA data sets contain varied quantities of correlated
attributes, which are useful for checking data integrity. Ad-
ditionally, it is possible to use domain specific expertise to
validate data integrity, by searching for theoretically impos-
sible occurrences. The following is a non-exhaustive list of
possible checks that can be carried out for each data point:

o Halstead’s length metric (see (Halstead 1977)) is defined
as: ‘number of operators’ + ‘number of operands’.

o Each token that can increment a module’s cyclomatic
complexity (see (McCabe 1976)) is counted as an oper-
ator according to the NASA MDP repository. Therefore,
the cyclomatic complexity of a module should not be
greater than the number of operators + 1. Note that 1 is
the minimum cyclomatic complexity value.

o The number of function calls within a module is recorded
by the ‘call pairs’ metric. A function call operator should
be counted as an operator, therefore the number of
function calls should not exceed the number of operators.

These three simple rules are a good starting point for
removing noise in the NASA data sets. Any data point which
does not pass all of the checks contains noise. Because the
original NASA software systems/subsystems from where the
metrics are derived are not publicly available, it is impossible
for us to investigate this issue of noise further. The most viable
option is therefore to discard each offending instance. Note
that a prerequisite of each check is that the data set must
contain all of the relevant attributes. Six of the data sets had
data removed during this stage, between 1 to 12 percent of
their data points in total.

During this stage it may be tempting to not only remove
noise (i.e. inaccurate/incorrect data points), but also outliers.
A module which (reportedly) contains no lines of code and no
operands and operators should be an empty module containing
no code. So at this stage of data cleansing, should such a
module be discarded? As it is impossible for us to check the
validity of the metrics against the original code, this is a grey
area. An empty module may still be a valid part of a system,
it may just be a question of time before it is implemented.
Furthermore, a module missing an implementation may still
have been called by an unaware programmer. As the module
is unlikely to have carried out the task its name implies, it
may also have been reported to be faulty.

F. Stage 5: Removal of Repeated and Inconsistent Instances

As previously mentioned, repeated/redundant instances oc-
cur when the same feature vectors (module metrics) describe
multiple modules with the same class label. While this situ-
ation is clearly possible in the real world, such data points
are problematic in the context of machine learning, where
is it imperative that classifiers are tested upon data points
independent from those used during training (see (Witten &
Frank 2005)). The issue is that when data sets containing
repeated data points are split into training and testing sets (for
example by a x% training, /-x% testing split, or n-fold cross-
validation), it is possible for identical instances to appear in
both sets. This either simplifies the learning task or reduces
it entirely to a task of recollection. Ultimately however, if the
experiment was intended to show how well a classifier could
generalise upon future, unseen data points, the results will be
erroneous as the experiment is invalid.

Inconsistent instances are similar to repeated instances,
as they also occur when the same feature vectors describe
multiple modules. The difference between repeated and in-
consistent instances is that with the latter, the class labels
differ, thus (in this domain) the same metrics would describe
both a ‘defective’ and a ‘non-defective’ module. This is again
possible in the real world, and while not as serious an issue as
the repeated instances, inconsistent data points are problematic
during binary classification tasks. When building a classifier
which outputs a predicted class set membership of either
‘defective’ or ‘non-defective’, it is clearly illogical to train such
a classifier with data instructing that the same set of features
is resultant in both classes.

Adding all data points into a mathematical set is the simplest
way of ensuring that each one is unique. This ensures classi-
fiers will be tested on unseen data. From here it is possible
to remove all inconsistent pairs of modules, to ensure that
all feature vectors (data points irrespective of class label) are
unique. The proportion of instances removed from each data
set during this stage is shown in Figure [T} All data sets had
instances removed during this stage, and in some cases the
proportion removed was very large (90, 78, and 74 percent
for data sets PC5, MCI1, and PC2, respectively). Note that for
most data sets the proportion of inconsistent instances removed
is negligible.
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Fig. 1. The proportion of instances removed during stage 5.

IV. FINDINGS

Figure [2] shows the proportion of recorded values removed
from the 13 NASA data sets (after basic pre-processing, see
Table [[) post our 5 stage data cleansing process. Stages 1 and
2 of this process can remove attributes, stage 3 can replace
values, and stages 4 and 5 can remove instances (data points).
This was the motivation to use the number of recorded values
(attributes xinstances) metric, as it takes both attributes and
instances into account. Figure [2] shows that between 6 to 90
percent of recorded values in total were removed from each
data set during our data cleansing process.

The purpose of our data cleansing process is to ensure that
all data sets are suitable for machine learning (stages 1, 2, 5,
and to some extent stage 3), and to remove or repair what can
be confidently assumed to be noise (stage 4, and to some extent
stage 3). Note however that there are almost certainly noisy
data points in the NASA data sets that can not be confidently
assumed to be erroneous using such simple methods. But, as
the data sets are based on closed source, commercial software,
it is impossible for us to investigate the potential issues further.
For example, the original data set MC1 (according to the
metrics) contains 4841 modules (51% of modules in total)
with no lines of code.

Of the data cleansing processes with the potential to reduce
the quantity of recorded values, it is the removal of repeated
and inconsistent instances (stage 5) that is responsible for the
largest average proportions of data removed (see Figure [I)).
This raises the following questions: Is the complete removal
of such instances really necessary? Why are there so many
repeated data points and what can be done in future to avoid
them? What proportion of seen data points could end up in
testing sets if this data was used in classification experiments?
What effect could having such quantities of seen data points
in testing sets have on classifier performance? Each of these
questions are addressed in the sections that follow.
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Fig. 2. The proportion of recorded values removed during data cleansing.

A. Is the complete removal of repeated and inconsistent in-
stances prior to classification really necessary?

Our data cleansing method is a work in progress. Post data
cleansing, researchers will be able to use off the shelf data
mining tools (such as Weka) to carry out experiments that yield
meaningful results (or at least, far more meaningful results
than had the issues described not been addressed). However,
not every part of the cleansing process will be required in all
contexts. In this section we describe the issues that researchers
should be aware of with regard to addressing the repeated and
inconsistent instances.

Figure [I] shows that the proportion of inconsistent in-
stances removed during stage 5 is negligible. This is partly
a consequence of repeated instances being removed before
inconsistent ones however, as it is possible for a data point to
be both repeated and inconsistent. The complete removal of
inconsistent instances prior to classification may not always
be necessary or desirable. Because defect prediction data
sets typically have an imbalanced class distribution (Menzies,
Dekhtyar, Distefano & Greenwald 2007), some researchers
may wish to retain each inconsistent minority class data
point, in order to keep as much data as possible regarding
the minority class (typically modules labeled as ‘defective’).
During training, some learning methods (such as various prob-
abilistic learners) may be able to robustly handle conflicting
information. Therefore, the inclusion of inconsistent instances
in training sets would not be problematic in this context.
During testing, some researchers may feel that it is more
appropriate to include inconsistent data points, as they may
occur in the real world. Note that the inclusion of inconsistent
data points in testing sets would typically introduce an upper
bound on the level of performance achievable.



The training of learning methods on data containing re-
peated data points is typically not overly problematic. For
example, a very simple oversampling technique is to duplicate
minority class data points during training. Using training sets
which contain repeated data points is reasonable, as long as
no training data points are included in the testing set. The
same also applies if researchers feel that testing sets should
include repeated data points. There are potentially serious
issues to be aware of when training sets contain repeated
data points however, as pointed out in (Kotcz, Chowdhury
& Alspector 2003). When optimising model parameters us-
ing a validation set (a withheld subset of the training set)
that contains duplicate data points, over-fitting may occur,
potentially harming performance during assessment. It is for
this reason that (Kotcz et al. 2003) recommend “tuning a
trained classifier with a duplicate-free sample”. Note that this
also applies when using multiple validation sets, for example
via n-fold cross-validation. Kolcz et al. also point out that
feature selection techniques can be affected by duplicate data
points. An approach to repeated data points proposed by
(Boetticher 2006) is to add an extra attribute: number of
duplicates. This will ensure data points are unique, and help
reduce information being lost.

B. Why so much repeated data and how can it be avoided?

As previously stated, the NASA data sets are based on
closed source, commercial software, so it is impossible for
us to validate whether the repeated data points are truly a
representation of each software system/subsystem, or whether
they are noise. Despite this, a probable factor in why the
repeated (and inconsistent) data is a part of these data sets
is because of the poor differential capability of the metrics
used. Intuitively, 40 metrics describing each software module
seems like a large set. However, many of the metrics are simple
equations of other metrics. Because of this, it may be highly
beneficial in future to also record lower level metrics, such
as character counts. These will help to distinguish modules
apart; particularly small modules, which statistically result in
more repeated data points than large modules. Additionally,
machine learners may be able to utilise such low level data
for helping to detect potentially troublesome modules (in terms
of error-proneness).

C. What proportion of seen data points could end up in testing
sets if this data was used in classification experiments?

In order to find the answer to this question, a small Java
program was developed utilising the Weka machine learning
tool’s libraries (version 3.7.1). The Weka libraries were cho-
sen because they have been heavily used in defect predic-
tion experiments (see (Menzies, Greenwald & Frank 2007),
(Boetticher 2006) and (Koru & Liu 2005), for example). In
this experiment a standard stratified 10-fold cross-validation
was carried out. During each of the 10 folds, the number of
instances in the testing set which were also in the training set
were counted. After all 10 folds, the average number of shared
instances in each testing set was calculated. This process was

repeated 1000 times with different pseudo-random number
seeds to defend against order effects. For this experiment we
used the NASA data sets post basic pre-processing (see Table
). We did this because it was as representative as possible of
what will have happened in some previous studies. It is for the
same reason that we chose 10-fold cross-validation, the Weka
Explorer default. The results from this experiment are shown
in Figures [3] and ] From these figures can be seen that for
each data set, the proportion of seen data points in the testing
sets is larger than the proportion of repeated data points in
total. Additionally, this relationship can be seen in Figure [
to have a strong positive correlation. It is worth emphasising
that in some cases the average proportion of seen data points
in the testing sets was very large (91, 84, and 82 percent for
data sets PC5, MCl1, and PC2, respectively).
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Fig. 3. Proportions of repeated data and seen data in testing sets.
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Fig. 4. Proportions of repeated data verses seen data in testing sets.



D. What effect could having such quantities of seen data
points in testing sets have on classifier performance?

To answer this question we do not use the NASA data sets
because of the point regarding class distributions mentioned
in Section [l Instead, we construct an artificial data set.
This data set has 10 numeric features and 1000 data points.
The numeric features were all generated by a pseudo-random
number generator and have a range between 0 and 1 inclusive.
The data set has a balanced class distribution, with 500 data
points representing each class.

Using the Weka Experimenter, we ran 10 repetitions of
a 10-fold cross-validation experiment with the data set just
described, and the following variations of it:

e 25% repeats from each class, an extra copy of 125

instances in each class, 1250 instances in total.

e 50% repeats from each class, an extra copy of 250

instances in each class, 1500 instances in total.

e 75% repeats from each class, an extra copy of 375

instances in each class, 1750 instances in total.

e 100% repeats, two copies of every instance, 2000 in-

stances in total.

We used a random forest meta decision tree learner for this
experiment, with 100 trees and all other parameters set to
the Weka defaults. The results from this experiment showed
accuracy levels for each data set: original, 25% repeats, 50%
repeats, 75% repeats and 100% repeats of 48.30, 65.20, 80.47,
87.49 and 93.50. This clearly shows that repeated data points
can have a huge influence on the performance of classifiers,
even with pseudo-random data. As the proportion of repeated
information increases, so does the performance of the classi-
fier. It is worth pointing out that the severity of repeated data
points is algorithm specific. Naive Bayes classifiers have been
reported to be fairly resilient to duplicates (Kotcz et al. 2003).

V. CONCLUSIONS

Regardless of whether repeated data points are, or are
not noise, it is unsuitable to have seen data in testing sets
during defect prediction experiments intended to show how
well a classifier could potentially perform on future, unseen
data points. This is because having identical data points in
training and testing sets can result in an excessive estimate
of performance, occurring because classifiers can, to varying
degrees, memorise rather than learn. There is an important
distinction between learning from and simply memorising
data: only if you learn the structure underlying the data can
you be expected to correctly predict unseen data.

Some researchers may argue that as it is possible for
modules with identical metrics to be contained within a
software system, such data points should be tolerated rather
than removed. While the initial part of this argument is true,
if, in the real world, you happen to have a data point in your
testing set which is also contained in your training set, chance
is on your side. However, it is not scientific for chance to be
on the side of every researcher experimenting with the NASA
data sets, as when unseen data is presented to the classifiers,
performance may plummet from the expected.

If researchers believe that repeated data points are a correct
representation of the software system (i.e. not noise), there
are two options available. Firstly, it is possible to use data
containing repeated data points, so long as there are no
common instances shared between training and testing sets.
This may lead researchers to designate the task of ensuring no
seen data is contained within testing sets to machine learning
software (i.e. during the data separation process; for example
during cross-validation). Note however that this complicates
the task of stratification. The second option, proposed in
(Boetticher 2006), is to use an extra attribute: number of
duplicates. This will help to ensure that information is not
lost, and is most useful when data sets are believed to be of
high quality.

A possible reason why there are so many repeated (and
inconsistent) data points within the NASA data sets is because
of the poor differential power of the metrics used. It may be
highly beneficial in future to also record lower level metrics
(such as character counts), as these will help to distinguish
non-identical modules, reducing the likelihood of modules
sharing identical metrics.

Data quality is very important during any data mining
experiment, time spent analysing data is time well spent. We
believe the data cleansing process defined in this paper will
ensure that the NASA data sets become suitable for machine
learning. This process may also be a good starting point when
using other software fault data sets. Experiments based on the
NASA data sets which included the repeated data points may
have led to erroneous findings. Future work may be required
to (where possible) repeat these studies with appropriately
processed data. Other areas of future work include extending
the list of integrity rules described in stage 4 of the cleansing
process, and analysing other fault data sets to see whether the
proportions of repeated data points in the NASA data sets are
typical of fault data sets in general.
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