i
3
i
.

Person

name

address

Has

Account

balance

credit limit
type

Figure 3.13: Simple banking application object model

Person Account
name balance
address credit limit
Llype
person
operations operations

i) declare a pointer in a base class

Visibility need only be provided in one direction. Of course, such a decision immediately re-
moves some of the information about a relationship and reduces traccability. The model indic-
ates that an account must have one person associated with it, so the account class would declare
an instance of person. The model also indicates that the value of the instance of person must
never be NIL, that is it must always be assigned (o a person object. There are two alternative

Person Account
name balance
address credit limit
type
operations operations

A

Personal account

inherit account

person

operations

ii) declare a pointer

Figure 3.14: Implementing one way associations

ways Lo implement associations Lo give one way visibility.

— Option 1—declare a pointer in the base class
Implement the Person class with the attributes and methods defined in the analysis model.
The Account class is then implemented with an instance of Person as an additional at-
tribute. The methods required o access the person are also added to class Account. The
implemented Account class does not then maich the Account class in the analysis model
as is shown in figure 3.14(i). The Account class is bound to the Person class and cannot

be used in a system without including the Person class.

54

in a subclass

Person Account
name balance
address credit limit
type
account !
person
operations operations

i) declare pointers in the base classes

has-account elements

account

person

operations

a) elements

Person Account
name balance
address credit limil
type
operations operations

A

A

Account holder

Personal account

inherit Person

account

inherit Account

person

operations

operations

ii) declare pointers in subclasses

Has-Account

set of has-account elements

operations

b) association data store

iii) use a set Lo represent the association

Figure 3.15: Implementing two way associations

55

i

— Option 2—declare a pointer in a subclass
Implement both the Person and the Account classes as they appear on the analysis model.
A new subclass of Account is then defined 10 add an instance of Person as an instance
variable, This class could be called Personal Account. The classes Person and Account
both match those in the analysis model but a new class has been added Lo implement the
association. This gives three classes in the implementation, as shown in figure 3.14(ii),
when only two werc identified in the analysis model,

However, it is possible that the association must provide visibility in two directions. There are
several possible ways of providing this.

|

Option 1—use search routines
The association itself could be implemented using a one way link as indicated above. Search
routines would need to be provided o implement visibility in the other direction. This
method of implementation may require lengthy searches and reduces the speed of the sys-
tem,
— Option 2—declare pointers in cach of the base classes
Each class declares an instance of the other as an attribule in a reciprocal client-server rela-
tionship as shown in figure 3.15(i). This provides a one-to-one association between objects.
The classes do not have the same attributes as those in the analysis model and are bound
together.
- Option 3—declaring pointers in subclasses
The base classes are implemented as identified in the analysis model. Subclasses are then
declared to implement the association as shown in figure 3.15(ii). This results in four classes
instead of two being required.
- Option 4—implement the association as a set
A separate class can be added to implement the association, This class defines association
objects as sels of pairs of objects. For example, the Person has Account relationship could
be implemented as a set of has-account elements as shown in figure 3.15(iii). Each has-
account element would contain a pointer (0 a Person and a pointer to an Account. This
allows the classes modelled during analysis (o be directly implemented. The classes are
therefore traccable. However, the objects participating in a relationship have no knowledge
of the relationship so the association is not traceable via the objects involved.

The availability of the different possible representations of a one-lo-one association shows that
this relationship is not traceable in the implementation, The situation is more complicated when
one-to-many or many-10-many associations are implemented. In these cases, a data structure
must be declared to store the objects at the many end of the association.

[t was reported in section 2.2.1, that Lamb suggests that components be [actored to provide small,
simple components in order (o enhance reusability. This suggests that it is better Lo implement
the classes directly [rom the analysis model and then either add subclasses which implement the
associations between the classes or define a set o represent the association.

As mentioned in section 3.2.3, OMT allocates altributes Lo associations if required and also iden-
tifies qualified associations. These also need 1o be implemented. The guidance given is (o store
the attribute in either class involved in a one-lo-one association or in the class at the many end
of a many-lo-one association. In the case of a many-lo-many association, a distinct association

56

object should be introduced Lo allow the qualified associations to be implemented. The attributes
identified as qualifiers of an association arc implemented as altributes of the class they qualify.
The Responsibility Driven Approach does not model associations dircetly. They are converted
inlo collaborations before they are modelled, Collaborations are unidirectional. There isno men-
tion of how to deal with situations where a two way collaboration is required.

The availability ol aliernative mechanisms for implementing conceptual associations hampers
traceability,

e temporary association

The identity of individual objects involved in temporary associations is not significant. Tem-
porary associations are implemented by the simple client relationship. An instance of one class
becomes a parameter 10 a {unction provided by the other class. The required information can
therelore be obtained from or supplied to the object but there is no persisting record of the actual
instance involved.

Parameters are required for reasons other than the implementation of a temporary association so
this relationship is not readily traceable.

e instantiates

This relationship occurs when one object is responsible for creating an instance of another object.
This is another relationship implemented by the client-server relationship. The client class needs
to declare an instance of the class 1o be created or instantiated. This relationship is not easily
traceable.

o dependency

This relationship is implemented by the client-server relationship. The example of this relation-
ship given carlier, in section 3.3 is:

A minimum balance in an account (A) is maintained by transferring funds from another account
(B). This method is invoked on the basis of the balance in account A and causes a change in the
value of the attribute balance in account B.

Account A would declare an instance of account B to allow access (o the funds stored in B, The
reason for the relationship is hidden,

Table 3.6.2 summariscs the above conversions. The brackets indicate that the relationship is not
available in all object oriented languages. It shows that seven of the eight relationships identified dur-
ing analysis are converled into the client-server relationship for implementation. Six of these seven
relationships are implemented by the declaration of instance variables in the client class.

3.6.3 Subsystems

The implementation of subsystems is not directly supported by the languages investigated. However,
iLis possible Lo group classes ogether (o form subsystems.

In Eiffel, this can be done by declaring the classes which form a subsystem in one directory. The
grouping of classes in this way docs not alfect the interface of the classes. That is, the interfaces of the
classes form the interface Lo the subsystem. It is possible (0 add a class Lo represent the subsystem and
to use the Eiffel selective export feature (o ensure that the [eatures of the subsystem are accessed only
via the subsystem class.

57

analysis relationship] programming construct used

is-a inheritance

consists of (one) simple client (or expanded client) via instance variable(or
selective export,friend), inheritance

contains simple client (or generic client) via instance variable

uses simple client (or privileged client) via instance variable

conceplual association | simple client (or privileged client) via instance variable or extra class
temporary association | simple client via a procedure parameter

instantiates simple client (or privileged client) via instance variable
dependency simple client (or privileged client) via instance variable

Table 3.2: Conversion of relationships

The other three languages, C++, Oberon-2 and Modula-3, all allow more than one class t© be de-
clared in a file. This allows all the classes involved in a subsystem to be implemented in one file, A
class o represent the subsystem can also be declared. This class can be the only class exported, so
forming the interface Lo the subsystem.,

All the methods available for implementing subsystems allow them (o be identified in the imple-
mentation but involve restricting access 10 a class and its objects. This has the effect of reducing the
reusability of the individual classes because they are bound (o the class which implements the subsys-
tem, The implementation of subsystems therefore improves traceability but reduces the reusability of
classes.

3.7 Design gains and losses

This section completes the investigation into traceability of information through the process of object
oriented development. Section 3.6 showed that the designer has to make many decisions about which
mechanisms to use Lo represent the different types of information. This section discusses the effects of
the different design decisions on diflerent aspects affecting the reusability of the classes. The use of
inheritance and the implementation of subsystems are discussed first. The problems caused by using
the client-server relationship to implement many different types of implementation are then explained
with particular emphasis being placed on the implementation of conceptual associations.

The inheritance relationship is available in both analysis and implementation but the two constructs
are not used in the same way. In analysis, it is used for subtyping but in programming it is commonly
used for code reuse. The difference in meaning impairs understanding of the design and may reduce
the ability to extend the system,

Insection 3.6.3, several ways ol implementing subsystems were identified. The methods suggested
are useful in a single system but prevent the classes which form the subsystem being reused in a differ-
ent system, The designs used [or implementing subsystems therefore improve traceability but reduce
reusability,

Section 3.6.2 explained the decisions which designers were required to make in order to translate
the information contained in the cight relationships identified during analysis into the two constructs
provided by the implementation languages. Some of the information contained in the analysis model
is thereby lost. For example, the use of the client-server relationship to implement seven different re-
lationships makes it difficult o distinguish between attributes representing part of an object’s structure
and attributes representing the other relationships. Classes which are related because they are involved

58

in these other relationships arc bound together in the same way as classes which combine together (o
form a complex structure. The information (o distinguish between these dilferent constructs is lost with
the result that the implemented classes become less easily recognisable as models of the objects which
they represent. The loss of information occurs at different stages of development. The RDA method
identifics the relationships but converts them into programming language constructs before modelling.
Much information about the different relationships is therefore lost before the analysis model is pro-
duced, whereas in the Coad and Yourdon and OMT methods the information is lost during the design
stage.

Itis possible, when using Eiffel, C++ or Oberon-2 to implement the system, (o distinguish between
the structural components of an object and the associations in which it is involved. Eiffel, C++ and
Oberon-2 (but not Modula-3) allow objects to be declared either as instances (expanded objects), or as
pointers Lo an object. Structural components can be declared as expanded objects and associations as
pointers. The use of expanded objects has the advantage ol ensuring that one component cannot be part
ol two separate objects. For example, it would make it impossible for one wheel 1o belong to two or
more cars. Of course, there are situations in which it is desirable for one object 1o be part of two separate
objects. Ina document processing system, for example, it is possible that one figure may be required
in two documents. If figures are declared as expanded objects within a document on the grounds that
figures form part of the structure of a document, two copies of the figure would be needed. This could
cause problems if the ligure was updated. The use of expanded objects allows a distinction 1o be made
between structural components and other relationships between objects. There is some traceability of
information. This does not provide an ideal implementation because both structural relationships and
associations are implemented by variations of the client-server relationship so the classes involved are
still bound together. Reusability of the classes is not improved.

Section 3.3 suggested that many of the relationships identified during analysis come into the cat-
egory of conceptual associations. The representation of these relationships is therefore an important
issue. Several different methods of implementing a one-to-one conceptual association between two ob-
Jects were detailed in the previous section. The availability of several different implementation
lechniques impairs reusability by reducing the traceability of the information.

The different techniques can be thought of as three basic options. Each option can have different
detailed interpretations. The three basic options are:

1. declare an attribute in one or both of the base classes involved in the association,

2. declare an attribule in a subclass or subclasses,
3. add a data structure Lo store pairs ol associated objects.

Each one of these options affects the reusability of the implemented classes. It should be remembered
that reuse has been defined in this thesis to include reuse in an extension ol an existing system, It is
therefore necessary Lo consider the implications of using each technique when an extension to an ex-
isting system is required. These implications are explained by considering an extension Lo the simple
banking system discussed in scction 3.6.2. The extension adds the ability for a person to own shares
as shown in figure 3.16. Each of the basic options for implementation is discussed in turn.

1. Declare an attribute in one or both of the base classes

This method can be used Lo implement the association Lo allow access in one direction only by
adding an attribute to one of the base classes. The addition of an attribute and the extra operations
required (o access it reduces the correlation between the classes in the analysis model and those
implemented. That form of implementation also loses the bidirectional nature of the relationship

59

Person Account
name balance
Has
address credit limit
type
Owns
Share

company
type

Figure 3.16: Object model of extended system

and requires that the values of the associated objects are changed from the implemented end. For
example, if the association between a person and an account was implemented as a pointer from
the account (o the person, the attributes of the person would need (o be changed via the account
unless another association was provided (o allow updates.

The decision to implement a one-way association also restricts the extensibility of the system.
Using the above example, it is more difficult to add functions which require access to the account
via the person object. A scarch routine would need to be added to traverse the association in the
reverse direction, This type of routine is very expensive in computer time,

Another problem of this one-way implementation is that the class which implements the asso-
ciation is bound (o the class with which it is associated. It can be used only if both classes are
included in the system, The other class is, of course, independent of the association and can be
reused as required.

The same basic method can also be used to implement a bidirectional association by declaring
attributes in cach of the base classcs. This is also known as declaring converse pointers. The use
of this method binds both classes together so that neither can be used in a system without the
other. This restricts the reusability of both classes.

Another effect of this implementation is that the knowledge about the association is distributed
between two classes of object. The information about the association is not encapsulated. This
lack of encapsulation can lead to difficulties when maintaining the integrity of associations, The
developer must ensure that both values are maintained together in order (o avoid inconsistency.
This is known as maintaining referential integrity. The difficulties incurred by implementing
associations in both directions might be the reason that Shlaer and Mcllor [59] state that associ-
ations must be unidirectional not bidirectional.

As mentioned previously, consideration must be given Lo the consequences of using cach of the
implementation techniques when a system is extended. For this example, LwO-way associations
are implemented. The system has its functionality increased to provide the ability to own a share.

60

A share class must, of course, be added (o the system. This share class must contain an attrib-
ute person (o provide the association, It is then necessary 1o implement the association between
a person and the share owned. This association is implemented by declaring a subclass of per-
son as shown in {igure 3.17(i). This subclass declares an instance ol share and the operations
required o access this attribute. It is also necessary 10 ensure that the new classes contain the
code required (o maintain consistency between the objects involved in the association. This ex-
tra subclass reduces the correlation between the analysis model and the implemented system and
therefore reduces traceability. The number of classes in the system is also increased leading to
increased complexity. Further extensions (o the system can result in long inheritance hicrarch-
ies which can also reduce the understandability of the individual classes and, as mentioned in
section 2.2.7, may lead (o increased problems with corrective mainlenance.

It can be seen that the implementation of an association by declaring pointers in the base classes
impairs reusability in several ways, The classes in the analysis model and the implemented sys-
tem do not correlate so the information is not readily traceable. The classes become bound to-
gether so that both classes may be required in a system even if only one is intentionally being
reused. Implementing a two-way association does not provide encapsulation of the information
about associations. This means that the code (o maintain the correct valucs must be rewritien
for each class. A further consequence is that extensions (o the system can result in increased
complexity due to the increase in the number of subclasses.

. Declare an attribule in a subclass or subclasses

This method of implementation avoids binding the base classes together and therefore makes
them available for reuse in other systems. It was shown in figure 3.15(ii) that the number of
classes increases and that the correlation between the analysis model and the implementation
had been reduced. Thus this method reduces traceability and increascs design complexity.

The information about the association is again distributed if a two-way association is implemen-
ted. In this method, the information is distributed between subclasses instead of between base
classes. The same problems will still be encountered. .

Figure 3.17(ii) shows the class hierarchy produced if the banking system is extended to provide
the ability 1o own a share. The figure demonstrates that this method of representation produces
longer hierarchies when system functionality in increased. This also reduces the traceability of
information because the definition ol a class is distributed between the class itself and all of its
superclasses. This can increase the problems of understanding the full structure and capabilities
of a class.

The addition of attribules Lo subclasses rather than the base classes does provide some advantages
in that the basc classes are available for reuse but this method still distributes the information
about associations between the classes involved and may result in long inheritance hierarchies.

. Use a data structure to implement the association

The association is implemented as a class containing a group of objects. Each of the objects rep-
resents a pair of objects involved in an association. The new object is independent of either of
the participating objects. This method of implementation has the advantage that the classes of
objects involved do not need o be changed in any way. The association is a distinct entity and
provides encapsulation of the information about the association. The instances of the association
are stored in a new data structure, This data store must be searched in order 1o find the required

61

Person Account Share Person Account Share

account person person

Shareholder Accountholder Personal account Shareholder
L inherit Person inherit Account inherit Share
inherit person
share account person person
i) allributes declared in base classes Accountholder
and
Shareholder
inherit
accountholder
share

ii) attributes declared in subclasses

Figure 3.17: Extending a system

objects because the objects involved have no knowledge of the association. The search will in-
crease the access time required but as pointed out by Rumbaugh et al. [28], if a hash table is
used to store the details this decrease in efficiency will be minimal. However, two hash tables
would be required to allow access [rom cither end of the association, This type of implement-
ation technique would be particularly suitable in situations where few objects are involved in a
specific association,

The extension of a system doces not require new subclasses (o be declared (o allow extra asso-
ciations to be implemented which avoids the increased complexity and lack of traceability of
associations caused by the other methods of implementation. However, with this approach the
objects have no record of the associations in which they are involved. The objects no longer
encapsulate all the knowledge about themselves. Some of the information about objects is dis-
tributed between the associations in which they are involved.

None of the three basic options for implementing associations between objects provides traceability
ol all the information about the associations. The first two options involve the declaration of pointers
in the classes. These declarations could be accompanied by comments 1o explain the reason for their
declaration. This would improve traceability but would not prevent the classes being bound together,
The reusability of the classes would not be enhanced.

This section has shown that the translations required during the design process reduce the traceab-
ility of information and consequently reduce Lhe reusability of software components,

62

]
;
!
‘

3.8 Discussion

This section assesses the traceability of information during object oriented system development. Object
oriented analysis, design and implementation use many of the same terms, All three stages of devel-
opment use the terms class and object. The meanings of these terms are compatible. During analysis,
the lerm class is used to identily a group of objects with the same structure and behaviour. A class also
describes how 1o create the objects. During implementation, the term class is used to mean the (em-
plate from which objects are produced. Objects at all slages are defined (o be instances of classes and
to combine data and behaviour. The class and object concepts are therefore traceable through the de-
velopment process. The names of the classes of objects identified in the analysis stage of development
are identifiable in the implementation giving continuity of representation.

Analysis identifics many different relationships between these classes and objects. These relation-
ships are not traceable in the implementation of the system. They must be converted 1o the two rela-
tionships provided by programming languages, resulting in a loss of information. The stage at which
this conversion occurs depends on the methodology being followed. The RDA methodology identi-
fics many relationships but converts these 10 programming constructs before they are modelled. The
model therefore transfers into implementation without the need for translation. The information is lost
before the model is produced. The other two approaches examined, OMT and the Coad and Yourdon
approach, model several different relationships retaining the information until the design stage converts
them into the relationships available in implementation languages. The loss of information occurs dur-
ing the design phase.

One of the most common relationships between objects is the conceplual association. The use
of the client-server relationship to implement such associations may reduce the reusability of classes.
Classes which are involved in associations are tightly coupled in the same way as classes which form
the structure of another class. The developer is required Lo add attributes and operations, which effect-
ively adds structure and behaviour, (o the classes in the analysis model. The structure and behaviour
ol the classes are not then traccable [rom the analysis model (o the implemented class. The class in
the analysis model is simpler than the implemented class because the implemented class has become
application specific. In addition, the implemented classes are less like the original entitics they repres-
entand therefore harder (o understand. This makes the classes less reusable in another similar system
because they can only be rcused il they can be understood.

Traceability of information can, of course, be improved by the addition of comments (o the code.
These comments would give the details of the reason for including attributes in a class declaration, such
as structural or o implement an association. This does not, however, improve the actual correlation
between the classes in the analysis model and the implemented classes.

The tight coupling of the classes caused by using the client-server relationship to implement con-
ceptual associations results in a reduction in reusability because these classes depend on each other
for their implementation. As Kilian [52] notes, all the classes on which a class depends for its imple-
mentation must be included in the system. The reuse of a class which depends on many others for its
implementation therefore brings a lot of extra classes with it into a new system, thus increasing the size
ol the new system and causing extra work [or the developer in identifying the many dependencies.

Implementing conceptual associations by the addition of attributes (o classes does not provide en-
capsulation ol the information about associations. Rumbaugh [60] identifics a problem which arises
because of the Jack of encapsulation, The problem is that

“interactions are buried in the instance variables and methods of the classes, so that the
overall struciure of the sysiem is not readily apparent.”

63

The system is therelore less understandable than if the associations were implemented as separate con-
structs and traceable from the analysis 1o the implementation.

Difficulties also arise il the client-server relationship is used to implement conceptual associations
when a system is extended. The number of classes involved in a system increases Lo provide new as-
sociations even if the classes Lo be associated already exist in the analysis model of the system. This is
because a new subclass must be defined o implement a new association. I bidirectional implementa-
tion is required, two new subclasses must be declared. This may result in long inheritance hierarchies
which increase the complexity of the implemented system and reduce the traceability of information.

It is possible to implement conceptual associations without using the client-server relationship to
link the classes. This involves the use of a data structure to implement the association. The use of this
technique stores the association separately from the objects involved with the result that the objects do
not encapsulate all the knowledge about themselves. They encapsulate knowledge of their structure
and behaviour but not of the associations in which they are involved.

3.9 Summary

This section summarizes the conclusions about the traceability of information from analysis to imple-
mentation. From the previous sections, it seems clear the class construct is present in both analysis
and implementation. However, the two development stages define different relationships between the
classes. The analysis methods identify more types of relationship between classes than can be repres-
ented in the programming languages. The information about the analysed relationships is not traccable
in the implementation. This lack of traceability was shown Lo reduce the reusability of classes for one
or more reasons. These reasons include:

o The classes implementing an association may become bound together in the same way as classes
which represent the structure ol a complex object. This reduces reusability because classes can
only be reused if both classes are included in the system,

e The implemented classes may not correspond exactly with those in the analysis model. The lack
of correspondence may make the selection of a class for reuse more difficult.

e The information about the association may be distributed between the classes involved in the as-
sociation which makes the structure of the system difficult Lo understand. This can cause prob-
lems when maintaining or enhancing a system,

o Long inheritance hierarchies may be produced when classes are reused in an extension 1o an
existing system. This increases the complexity of the system and again reduces the correlation
between the analysis model and the implemented system. This may increase the difficulty of
providing further enhancements of system functionality.

o All the information about objects may not be encapsulated with the objects themselves. It may
be distributed between the objects and the sets representing relationships between objects.

Itis agreed by Rumbaugh and Kilian that providing traceability of conceptual associations by their
implementation as separale constructs in object oriented systems would both increase reusabilily and
improve the clarity of system design. The design method presented in the next chapter provides trace-
ability of conceptual associations from the analysis model to the implementation. The conceptual as-
sociations are provided as separale constructs. These become part of the structure of the objects in-
volved in the association without modilying their class definition. The separale constructs improve the

64

traceability of conceptual associations. This helps prevent the loss of information and improves the
understandability of the classes.

65

Chapter 4

Sociable classes—a novel design
technique for improving traceability

This chapter presents a novel design technique, called the Sociable classes technique. A short report
ol this technique is contained in [61]. The Sociable class technique provides a means of representing
conceptual associations between instances of classes. The representation of conceptual associations
improves the traceability of these relationships through the development process. The classes used in
the system are implemented dircetly from the analysis model which improves the reusability of the
classes.

A feasibility study into the use of the technique has been carried out. This involved implementing
the basic functionality of the required classes in several strongly typed object oriented languages. The
feasibility study indicates that the Sociable class design technique might be applicable in various object
oriented environments, The design presented in this chapter was developed using the Eiffel program-
ming language and then translated into the other languages. The implementations use current language
constructs. It is not necessary (o add new [eatures Lo the languages in order 10 adopt the design tech-
nique but the dilferent language [eatures affect the implementation.

Section4.1 outlines the problems caused by the lack of traceability of conceptual associations which
the Sociable class design technique is attempting to overcome. Section 4.2 details the perceived re-
quirements for a design technique which offers a solution to the problems. (Alternative methods are be-
ing developed by other rescarchers (o represent conceptual associations between objects. These meth-
ods do not atempt to meet the same design requirements. They are described in chapter 5.) Two new
types of classes are necessary [or a design (o meet the requirements listed in section 4.2. These two
types of classes are defined in section 4.3. Section 4.4 gives a specification for these classes and for
one subclass of each. Examples of the use of this echnique in the development of a new system and the
extension of an existing system are given in section 4.5, The features of system designed using the So-
ciable class design method are described in section 4.6. The language featurcs required (o implement
these classes are defined in section 4.7. The results of the feasibility study arc described in section 4.8,
These implementations and other alternatives are discussed in section 4.9. The feasibility study indic-
ates that the proposed design method might provide a viable method for improving the development
and usc ol reusable components. The principle points made in this chapter are summarized in section
4.10.

66

4.1 Problems to be addressed

The design technigue presented in this chapter atlempts (o address some of the problems which lead to a
reduction in the reusability of components in object oriented system development. The problems result
from the lack of traceability of different types of information. This lack of traceability arises from the
necessity o map several fundamentally different relationships identified during object oriented analysis
on Lo one relationship in object oriented programming languages. The problems are detailed in chapter
3. Briefly the problems are:

o classes which are involved in associations are lightly coupled in the same way as classes which
form the structure ol another class.

e the implemented objects become less like the entities in the analysis model which they represent
and therefore more dilficult to understand.

e the structure of the system is difficull to ascertain because the information about the associations
is distributed between classes and not encapsulated.

e cnhancement of system functionality may result in a large number of subclasses in long inherit-
ance hierarchies.

The overall effect of the lack of traceability is that reusability is decreased. The design technique
presented in this chapter provides a mechanism o implement conceptual associations as distinct con-
structs. This provides traccability of the information about the associations between objects from the
analysis model to the implementation,

4.2 Design requirements for a solution

This section identifies the design features required to allow information about conceptual associations
to be traceable through the development process into the implementation. A-solution to the above prob-
lems could be provided by introducing mechanisms to allow different degrees of binding between ob-
jects which are not related in an inheritance hierarchy. The different degrees of binding would provide:

e groups of objects which are tightly bound because they represent complex struclures or aggreg-
ations.

e objects which arc loosely coupled Lo other objects because they take part in conceptual associ-
ations. Conceptual associations are defined, for the purposes of this Lhesis, as logical relation-
ships between specific instances of objects, see 3.3.

The above design points are illustrated in figure 4.1 which shows a general object model using OMT
notation. The class AB describes an assembly object formed from objects of classes A and B. This
represents tight binding between objects forming a complex structure. Classes F and C are linked to the
class AB via labelled lines. These lines represent associations between objects. The objects involved
arc loosely coupled.

In class based object oriented development, objects are instances of classes. Complex objects such
as those defined by assembly class AB are produced by using the client-server relationship between
classes 10 add the attributes and structure of a class, Attributes and structure are then tightly bound
within the class to which they belong. For example, a car is an assembly of wheels, engine etc.. The
client-server relationship is also used Lo represent associations between objects. The classes involved

67

object F

la)

%

5
O
&
object associationl
AB object C

object A object B

Figure 4.1: General object model

in associations are then tightly bound together even though only loose coupling between the objects is
required.

In this suggested design, the client-server relationship is used to implement aggregations. Aggreg-
ations are then formed from classes which arc tightly bound together. The loose coupling between
objects is produced by adding associations between objects. For example, an association between a
person and an account is added to implement the association ‘a person has a bank account’, or an as-
sociation between a person and a car is added to implement the association ‘a person owns a car’. It is
not necessary for all objects of a class 1o be involved in all types of association.

In order for a design 1o meet the above requirements, the following lacilities should be provided:

o a means of explicitly implementing associations between objects rather than between classes of
objects.

e the ability for objects to take part in many different associations. These associations must be
added to objects without changing the definition or implementation of the classes of which they
are instances. Therefore, the classes should have no knowledge of the specific associations in
which any or all of its objects are involved.

e (he ability o add new logical relationships without producing subclasses of the classes involved.

Inaddition, to comply with the original aim of the project, the design must use current lan guage features
not require new features or a new language.

A system designed and implemented by following the above criteria would consist of classes which
are casily recognisable as definitions of the objects identified in the analysis model. The classes would
not be modified o provide associations with other classes of objects. New subclasses of objects would
be introduced only when extra attributes or structure need Lo be added (o existing classes. The im-
plemented system would be simpler and therelore easier to understand, maintain and enhance. The
classes would be readily available for use in other systems because application specific features would
not have been added. Classes define only those properties which are intrinsic (o all objects of the class.
The objects themselves store the information which is specific to them.

The remainder of this chapter describes the Sociable class design technique which attempts to meet
these design criteria.

68

{

Social

A
| |]

Person Account Dog, Car

Deposit Investment
Account Account

Figure 4.2: Sociable class hierarchy

4.3 The definition of Sociable classes and related constructs

The Sociable class design technique requires two types of classes 1o be developed. These classes are
Sociable classes and Association classes. This section describes the current definition of each of these
constructs. Other definitions of these constructs are possible. Some of these other possibilities are
discussed in scction 4.9.3

Sociable classes define objects which have the ability to take part in a potentially unlimited number
ol differentassociations. This ability is provided by declaring an abstract class, Social, which provides
[catures to add, retrieve and delete associations from an object inheriting these features. These features
arc inherited by all Sociable classes which, therefore, define objects with the ability to take part in
associations,

An example of a Sociable class hicrarchy is shown in figure 4.2, The figure shows that all Sociable
classes are derived from Social and that they can be used as the basis of further inheritance hierarch-
ies. For example, classes Deposit Account and Investment Account are subclasses of the Account
class. Sociable classes are identified in the analysis model by the fact that they take part in conceptual
associations,

As stated above, the Social class provides objects with the ability (o participale in associations.
There are many different types of association such as one-10-one and one-lo-many associations between
objects. The different types of association arc instances of subclasses of a second abstract class, Assoc.
This class defines the ability (o make and break associations between objects.

When an association is made, instances ol associations become linked to the part of the object which
was inherited from Social. Associations therefore become part of the objects involved in the associ-
ation. They remain part of the object until the association is broken, When an association is broken,
the object ceases o have any knowledge of that type of association. The lines labelled associationl
and association2 in igure 4.1 are instances ol Assoc subclasses.

Part of the association hicrarchy is shown in Figure 4.3, Each of the subclasses defines a general
type ol associalion such as a one-10-one or a one-lo-many association. The ability to make and break
associations must be redefined specifically for each subclass. There must be one class of association
for each general type. This ensures that the required type of association will always be available.

The general types of association, in the lower level of figure 4.3, implement the specific features
provided by associations of that type. Each general association must provide the ability for a specific

69

Assoc

One-to-one

One-to-one One-to-Many Many-to-many (one way)

Figure 4.3: Associalion class hierarchy

association Lo:

e associale the required objects,

o know which objects it links,

e provide [acilitics for accessing the objects involved in the association,
e break an association betwecen objects.

The genceral associations define the features required Lo form associations belween objects from un-
specified classes. In order to form specific associations between objects of specilic classes, a new class
ol association must be derived from the general association. This is done by replacing the unspecificd
class names in the general implementation of the association by the specific class names required.

Objects of the classes involved in an association are linked by using the association’s ability 1o
associate the required objects. Associations between objects are produced by creating a new instance
of the association. This new association is stored by the Sociable objects involved. Thus, an object
encapsulates the knowledge of its own associations in compliance with object oriented principles. The
association affects only those objects which are specifically linked. Other objects of the same class
have no knowledge of that type ol association.

The associations required in a system are identified by examining the analysis model. Each of the
lines representing a conceptual association requires a specific association (o be defined.

The general form of associations is shown in figure 4.4, This figure shows that one object of class
Social can be involved in nought or many associations. Objects involved in a system would be expecled
to, but are not required (o, participate in associations. The figure also shows that all associations must
involve at least onc object of class Social. This is because only Sociable classes have the ability to store
associations and thercfore (o access them, Class X represents classes which are not derived (rom class
Social. As the figure shows, itis possible [or objects of these classes to participate in associations. The
objects of class X cannot be used for accessing other objects with which they are associated because
they do not have the required features. Associations involving objects defined by classes like Class X
are onc way links between objects.

This section has described the constructs required by the Sociable class technique to allow the im-
plementation of associations between specific objects. To summarize, Sociable classes are used in con-
junction with associations. The associations become part of the objects involved in the association, A
specification for the above classes is given in section 4.4.

70

Class X

Social P—'C Assoc

o s R s I s (R ¥

Figurc 4.4: General associations

4.4 Class specification

This section conlains a specification for classes required by the Sociable classes design technique. The
classes specified are Social, Person, Assoc and One_to_one2. Classes Social and Assoc are the two
abstract classes used by the Sociable classes design technique. Person is an example of a Sociable
class. The One_to_one2 class is a subclass of Assoc which is used Lo implement one to one associations
which are traversable in two directions.

Implementations of this design have been produced in four object oriented programming languages.
The different implementations are discussed in section 4.9,

4.4.1 Class Social

This class provides the ability (o add, retrieve and delete associations from an object. In order to provide
this ability, the class Social declares a collection of associations as a private atiribute and provides
features 1o access this attribute. The collection may be implemented by any appropriate data store such
as a linked list or an array., '

The specification shows that the features o access the private attribute are not made public. The
only classes which can access the attribute are Assoc and its derivatives. The access is limited in this
way Lo encapsulate knowledge of the implementation of associations, Classes which are derived from
Social do not need o access any of the features.

Class Name: Social
Description: Abstract base class from which all Sociable classes are derived
Super classes: None
Features:
Private Auribute
association : Collection of Assoc;
Attribute exported to class Assoc
association_found : BOOLEAN;
Methods exported Lo class Assoc
add_association(c: Assoc);
access-association(c: Assoc);

delete_association(c:Assoc);

71

Method descriptions

add_association(c: Assoc);

Adds an instance of class Assoc Lo the atlribute, association;

only one instance of each specific type of association must be allowed.
access_association(c:Assoc);

{inds and returns the instance of the required type of association,

set association_found to TRUE if found,

VOID returned if NOT association_found.
delete_association{c:Assoc);

removes an instance of an association from the association attribute

4.4.2 A Sociable class

This section gives the specification of a Sociable class. The example chosen is a simple Person class.
This class provides name, address and telephone number fields and defines the features required to
access the attribules.

The specification shows that the only design addition required by the class Person, or any other
Sociable class, is to declare Social as a superclass,

Class Name: Person
Description: Person with name address and Lelephone number
Super classes: Social
Features:
Public Attributes
name :String
address ; String
telephone_number: Integer
Public methods
add_name(String)—changes the name of the person
add_address(String)—changes the address of the person

add_telnumber(Integer)-changes the telephone number

get_name:String—returns the name of the person
get_address(String)—returns the address of the person

gel_telnumber(Integer)-returns the telephone number

4.4.3 Class Assoc

This base class is declared o allow all associations (o be assigned to the same data structure in instances
ol the class Social. The make-assoc and break_assoc features are defined by class Assoc to allow the
usc of polymorphism when making and breaking associations. These two [eatures represent the min-
imal functionality that must be provided by all subclasses. Both features require the objects which are
to be associated or disassociated to be passed 1o the method. The objects are passed in a list because
different types of association can involve dilferent numbers of objects. The list can be redefined by
derived classes 1o contain the desired number of objects, The variable number of objects involved in
associations means that different numbers of features are required to access the objects participating
in different forms of association. One access feature will be required for cach object involved. These
[eatures cannot therefore be defined in the base class.

72

Class Name: Assoc
Description: Abstract base class from which all association classes are derived
Super classes: None
Features:
Method available to descendant classes and other instances of same class
make_assoc(objects : List of objects);
break_assoc(objects @ List of objects);
Method deseriptions
make_assoc(objects : List of objects);
This feature must be redefined by subclasses.
The objects listed have an association added Lo their
collection of associations,
The parameter is declared as a list of objects of any
class lo allow associations to involve any number of objects
At least one of the objects must be derived from Social.
break_assoc(objects @ List of objects);
This feature must be redefined by subclasses.
The objects listed have the association removed from their

colleetion of associations.

4.4.4 Class One_to_one2

This class defines the general form ol a two way association between Lwo objects. A generic class is
used because it provides the mechanism required Lo replace general classes with specific ones to form
ancw type of object. The general classes are listed in the interface of the class and are called formal
generic parameters. The classes used Lo replace the formal generic parameters F and G must be Sociable
classes.

In order to simplify the use of associations, the public methods associate and disassociate take two
parameters, the Lwo objects which are (o be associated. The class One_to_one2{F,G] puts these objects
into a list which is used by its inherited method, make_assoc, 1o associate the objects.

Class Name: One_to_onc2
Class Interface: One_to_one2(F,G)
Description: Jeneric class to produce one Lo one associations between two
objects derived from Social.
Forms a two way link.
Super classes: Assoc
Features:
Private Auributes
object] : F;
object2 : G
Public Methods
associate(objeet] @ F; object2 :G);
makes an association between the two objects.
disassociate(objectl : F; object2 :G);
breaks an association between the two objects,
find_object1(object2 :G) : F;
returns an instance of the first generic parameter,

VOID if no associalion exists.

73

find_object2(objectl : F): G;
returns an instance of the second generic parameter,
VOID if no association exists.
Methods available to other instances of sume class
make_assoc(objects : List of objects);

redefined.

break_assoc(objects @ List of objects);
redefined.
Method descriptions
associate(objectl : F; object2 :G);
assign object] and object?2 1o a list (1) — object 1 as first element
object2 as second element,

create a new instance of the association,

call the make_assoc feature on the new association passing
the list (1) as the parameter,
disassociate(object] : F; object2 :G);
assign objectl and object2 to a list (1) — object 1 as first element
object2 as second element,
call the break_assoc [eature passing the list (1) as the parameter.
find_object1(object2 :G) : F;

use the access_Association [eature [tom class Social

to obtain the required association if it exists.
If the association exists, return the value of objectl
else return VOID.
find_object2(objectl : F): G;
use the access_Association feature from class Social
10 obtain the required association if it exists.
If the association exists, return the value of object2
else return VOID.
make_assoc(objects : List of objects);
requires two objects in the list (list 1 from feature associate)
— both objects must be instances of a Sociable class,
first element must be of class F,
second element must be of class G,
first clement assigned Lo attribute objectl,
second object assigned Lo object 2,
current instance of association added Lo the list of associations in cach object.
break _assoc(objects @ List of objects);

requires two objects in the list (list 1 from feature disassociate)

— both objects must be instances of a Sociable class,
find the association between the two objects,

remove this from each object’s collection of associations,

4.4.5 Other classes of association

|

|

|

!

; . N

| In order to make the technique usclul in all applications, many other classes of association need to

] |
| be provided. Figure 4.3 gives an idea of some of the general types of association necded. A class |
I . - v g s I . .

! 18 needed for each different type of association. The exact number and nature of the other types of I
|

|
| 74
|

UNCONDITIONAL FORMS (all instances participate)

O =0 &=

o1 1:'M M:M

CONDITIONAL FORMS (nonparticipaling instances
on one side)

(o=

1:le 1:MC M Me

BICONDITIONAL FORMS (nonparticipaling instances
on both sides)

O—© | OO | o=

le:le lc: Mc Mc : Mc

Figure 4.5; Ten lorms ol relationship from Shlaer and Mellor

Class A Class B from analysis model

Class A Class B

e —

in design model
Class A id

Figure 4.6: A formalized association from Shlaer and Mellor

association requires further investigation. This section gives some initial ideas concerning the variety
ol associations which may be defined.

An idea of the number of different classes required can be gained by identifying all the different
types of associations between objects. Shlaer and Mellor [59] have identified ten different forms of
associations between two objects, These are shown in figure 4.5. These ten forms are formalized into
relationships which can only be identified [rom one of the participating objccts not both,

[t can be seen from ligure 4.6 that objects of class A have no knowledge of their relationship with
objects of class B. It is possible that some applications may require an association to be traversed in
cither one or both directions. Allowing for this possibility increases the number of possible types of
association between two objects 1o twenty. The number of different types of associations is so large be-
cause they include both conditional and unconditional relationships. These conditions are application
specific. Using the Sociable Class design technique, these application dependent conditions could be
implemented by the programmer when the system is written, They need not be included in the declar-
ation of the association or the classes involved in the association. This leaves six distinct relationships

75

Accounl Customer
name
balance ‘ Has y
address

credit imit

type

i) part of banking application (ATM) object model from OMT method

1.DOGID| | owns 2. DOG OWNER
*Dog [D * Owner ID

o Dog Name R1 o Owner Name

o Sex o Address

° Breed ° Phone number

° Weight is owned by

if) Graphical representation of Dog owner owns dog and

Dog is owned by dog owner from Shlaer and Mellor.

Figure 4.7: Sample object models

between two objects. These are one-1o-one, one-to-many and many-to -many, all traversable in either
one or two direclions, ‘

However, more Lypes ol association can be identified. Some associations might be mandatory or
involve more than two objects. Each of these associations would need a general type to describe them.
Some of the associations identified by the OMT Lechnique have link attributes associated with them.
It might be possible (o provide subclasses which contain one or more altributes. These possibilities
suggest that a large number of classes of association need o be provided. The general types would
be provided in a library and so be readily available to programmers. Only a subsel of the possible
association types would be needed by most applications.

4.5 Using Sociable classes

It was shown in chapter 3 that some object oriented development methods produce models which in-
clude details of associations between objects. For example, figure 4.7 shows examples from the de-
scriptions of OMT [28] and Shlaer and Mellor object oriented analysis [59]. This diagram is also shown
in chapter 3 but is repeated here for convenience,

These relationships can be implemented unambiguously by using Sociable classes and the standard
types of associations described previously. The use of Sociable classes is demonstrated in two stages.
Section 4.5.1 explains how Lo develop a new system and section 4.5.2 shows how to extend the system.
The simple banking application described in chapter 3 is used to illustrate the process.

76

|
|
]
|
:
]
|

Person Account

balance
name Has
address credit limit
type

Figure 4.8: Simple banking application object model

4.5.1 Developing a new system

This section details the use of Sociable classes in the development of a simple banking system. The
analysis model is shown in chapter 3 but is repeated here, see figure 4.8 for case of reference. The
implementation of the system should proceed as follows:

o implement the Person and the Account classes.

Examination of the object model indicates that both these classes define objects which participate
in associations so they are both declared as subclasses of class Social. The other features of the
classes are implemented directly as defined by the analysis models without adding attributes 1o
provide associations with other objects.

Variables of these classes are declared in the application program in the usual way.
o implement the association,

The general type of association required must be chosen. In this example the model defines a
one o one relationship. This can be cither a one way or a two way association. The desired rep-
resentation is chosen, in this cxample a two way link is required. The general class for this type
ol association is identified from the class library. The new class of association is defined by sub-
stituting the general classes with the Person and Account. One variable of this new association
is declared in the application program. For example, using Eiffel syntax

has_account : One_to_one2 (Person, Account);.
This variable is then used to create, access and delele associations between the required objects.
The application class is declared as follows, using Eiffel syntax:

class BANK

feature
a,b : PERSON;
x,y : ACCOUNT;
has_account : ONE_TO_ONE2[PERSON,ACCOUNT];

Create is
do

--create and assign values to person and account variables
a.Create;

x.Create;

77

Person Account
name 1o balance
address credil limit

type
Owns
Share
company
type

Figure 4.9: Object model ol extended system

--create the association variable
has_account.Create;

-- associate the required objects
has_account.associate(a,x);

-- find the account belonging to person a
y := has_account.find_object2(a);

--the account can the be accessed via object y

-- find the person owning account x
b := has_account.find_object1(x);

—- the owner of account x can then be accessed via object b
-- rest of code
end;--Create
end --BANK
4.5.2 Extending a system

The same basic case study is used 1o describe the method of extending a system. The banking system
might need to be extended to allow the bank (o provide share dealing facilitics as shown in figurc 4.9,
The following steps are needed:
1. Implement the new Share class.

This class defines objects which can participate in associations so the Share class is declared as
a Sociable class, that is as a descendant of class Social,

Instances of the new class are declared in the application program.

78

|
| 2. Implement the new association,

Again, the object model is examined. It indicates that a one-1o-one lwo-way association is re-
quired. This is produced by substituting the general classes with the Person and Share classes.
One instance of this is declared in the application program. For example, using Eiffel syntax

ﬁ has_share : One_to_one2 (Person, Share);.
3. Add the new lines of code 1o create and access the instances of the new association.
The application program is declared as [ollows, using Eiffel syntax:

class BANK

feature

a,b : PERSON;

X,y : ACCOUNT;

m,n : SHARE;

has_account : ONE_TO_ONE2[PERSON,ACCOUNT];
has_share : ONE_TO_ONE2[PERSON,SHARE] ;

Create is
do

END

The variables are created and accessed in the same way as in the original system.,

4.6 Features of the Sociable class method

A system designed using the Sociable class technique consists of classes ol objects. The objects can
be linked by associations as well as by client-server relationships. The associations become part of the
object involved in the association, Thesc features have several benefits when considering the design
and implementation of conceptual associations.

| o The structure of the implemented system corresponds with the structure of the analysis model
because

1. the implemented classes are defined as they are identified during analysis. They are there-
fore recognisable as implementations of the ‘real world’ entities they represent.
2. the conceptual associations between objects are implemented as distinet constructs.

3. associations are formed between objects not between classes of objects. Only objects which
are involved in a particular type of association have any knowledge of that type of associ-
ation,

o The objects encapsulate all the knowledge aboul themselves because the associations become
| part of the objects.

g e The associations belonging Lo an objectare accessed via an instance of an association o maintain
simplicity.

| o Classes are only coupled together if they are related by an is-a or an is-part-of relationship.

79

e The code o implement associations is encapsulated and provided by reusable library classes.

e Itis not necessary to declare a new subclass to allow objects of the class to participate in a new
association. Thereflore, extending a system will not result in long hierarchies so the complexity
of the implemented system increases in proportion (o the complexity of the required system.

These [eatures suggest that a system implemented using the Sociable class design technique would
be simpler and casier Lo understand than a system developed using the current techniques for imple-
menting associations. The greater simplicity of the system should facilitate maintenance and enhance-
ment aclivities,

4.7 Desirable language features

The language [eatures required to implement the above specifications are inheritance, polymorphism,
generics, dynamic type checking and the ability to make (eatures available 1o selected classes of objecls.
The specification of class Assoc requires all classes to be derived from a common base class.

Inheritance is used Lo allow the classes (0 be derived from the base classes. Multiple inheritance
would allow the Sociable characteristics o be added Lo pre-existing classes.

Polymorphism, used here 1o mean the ability of an object to have more than one type, is required
to allow different types ol association 1o be stored in the same data structure. Polymorphism is also
required to allow different versions ol the make-assoc feature to be defined.

Genericily is required to permit general classes o be declared from which specific classes of asso-
ciation can be defined. This is not a required feature of object oriented languages but is desirable for
this design. Other language featurcs can be used to mimic this behaviour as demonstrated in section
3.4.5. In some of the generic types, it is necessary that the classes named in the declaration can only
be replaced by a restricted range of classes. For example, in the specification of class One_to_one2 the
actual parameters used to replace F and G must be derived from class Social. This is known as con-
strained genericity. If such a restriction is not available within the language, checks must be made Lo
cnsure that the requirement is met by all instantiations.

Dynamic type checking is required 1o permit the correct Lype of association (o be retrieved from the
collection. Dynamic type checking is not provided by all languages but can be implemented by adding
aficld o an object’s class o contain the type identifier. The value of this type field can then be checked
by the code Lo ensurc that an instance of the correct type is retrieved from the data store. The correct
instance must then be assigned (o a variable of its dynamic type. This involves assigning variables in
the opposite direction o that allowed by normal assignment rules.

Itis desirable to make the features defined in class Social available only to objects of class Assoc
to ensure that the correct access is made. Again, this feature is not provided by all object oricnted
languages so the mode of access would need (o be clearly documented.

The ideal languages for implementing the Sociable class design method would provide inherit-
ance, polymorphism, generics, dynamic type checking, the ability to make [catures available (o se-
lected classes of objects and a base class for all objects. The feasibility study assesses whether the
specifications can be met by the chosen languages and also identifics alternative mechanisms where
the language fcatures are less than ideal.

80

4.8 Feasibility study

The feasibility study involved the implementation of the classes required by the Sociable class design
method. Four programming languages were used. The languages are Eiffel v2.3.4, C++ (compiled us-
ing the gnu compiler, g++), Modula-3 v 2.11, and Oberon-2. All the languages support object oriented
programming and therefore provide inheritance and polymorphism. There are significant differences
in the details of the implementations of these [eatures. These differences are highlighted in this section
where necessary. They were explained more {ully in section 3.4.

Eiffel was used [or the original implementation of the design. The Oberon-2 and Modula-3 im-
plementations are basically translations of the final Eiffel code. The translations were performed to
investigate the applicability of the specification (o different languages. The C++ version implements
improved specifications. Itis possible that better designs and implementations could be developed for
the different languages. Some of the possibilities are discussed in section 4.9.

4.8.1 Eiffel

The Eiffel language provides inheritance, polymorphism, seleclive exports, generics with the ability
to constrain generic types and a base class, ANY, from which all classes are derived. It also provides
three techniques for dynamic type checking. These are:

1. the conforms 1o function rom class ANY,
2. the reverse assignment attempt ? =,
3. the dynamic_type function [rom the kernel class INTERNAL.

The provision ol these features by the language should allow the implementation of Sociable classes
directly as specified. Constrained genericity was used Lo ensure that all instantiations of class One_to_one
involve only classes derived from Social. Selective export was used to make the [eatures of class Social
sclectively available o class Assoc and its derivatives. It was discovered, however, that the dynamic
type checking does not distinguish between different instantiations of generic classes. The evidence
for this is explained (ully in Appendix G,

The following comments describe the current Eiffel implementation of class Assoc, generic class
One_to_one2, class Social and Sociable class Person. The classes are described in this order because
the need (o provide manual dynamic type checking class Assoc and its derivatives affects the imple-
mentation of class Social.

The code for the Eiffel implementation can be found in appendix A

o class Assoc

The need 1o implement a manual form of dynamic type checking means that this class cannot
implement the specifications in scction 4.4 exactly. The code used to implement this class can
be found in appendix A.1. Dynamic type checking is required Lo allow a specific type of asso-
ciation o be retrieved from a collection in order (o provide access (0 a particular association.
The type checking had to be implemented in the classes themselves. An extra field, declared-
type : STRING, was added (o the base class Assoc to provide the required type checking. The
create procedure for this class assigns the desired type name to the declaredtype field. In Eiffel,
create features of base classes are not passed on o descendants so all subclasses must rename
the base class creale feature and call this create in their own create feature. All instances of a

81

subclass have the same declaredtype because the client code creates one instance of each asso-
ciation. This instance is then used 10 create, access and delete all other instances as required.
This implementation does not allow associations of one type to be created via an instance of the
base class Assoc and so does not involve polymorphism and dynamic binding. The make-assoc
and break-assoc features were included in the specification and implementation of class Assoc
to allow polymorphic creation of associations between objects. This feature cannot be used in
this implementation so the class Assoc could be simplified o provide a declarediype field and
access features only. A final pointabout this manual dynamic type checking is that the declared-
type feature is exported to class Social only,

The Eiffel implementation of class Assoc needs Lo export the make_assoc feature (o itself, that is
t class Assoc. This is becausc the object defines the scope of features. In order for an object to
call a feature which is declared by the class on another object of the same class, the feature must
be exported Lo the class itself,

e generic class One_to_one2
This class is implemented as specified in section 4.4, As mentioned before, the create feature
must be supplied with a parameter ol type String which is used to define the dynamic type of a
specific association,
Again, some ol the [eatures must be exported to the class itself o allow access of one object by
another object of the same class. The code for this class can be scen in appendix A.2.

e class Social
The code used Lo implement class Social can be seen in appendix A.3. In this implementation
of class Social, the collection is implemented as a LINKED LIST. In order to prevent duplicate
entries, code should be added o check for duplicates in order to meet the specification. The list
ol associations is declared as an expanded (ield. This is Lo ensure that the list is created whenever
an instance ol the class is declared. Descendant classes do not need (o create this data structure
or 10 access it so0 do not require any knowledge of the inherited features.
The code which implements the accessAssociation leature of this class has Lo check the value of
the dynamictype field in order Lo find the required association. The dynamictype field contains a
string variable. Strings in Eiffel are implemented as references to objects. The code to compare
the fields must check the values of the ficlds not the value of the references. The function equal,
provided by class ANY, is used lor the comparison.

e class Person

The class Person is an example ol a Sociable class. The code for this class can be seen in ap-
pendix A.4. This class declaration states that class Person inherits from class Social. The other
features of the class arc derived (rom the analysis model,

The Eiffel tanguage permits classes Lo be declared as deferred which allows (eatures to be specified but
notimplemented. This type of class is commonly used for defining abstract base classes. In this syslem,
neither of the abstract basc classes can be declared as deferred. 1tis not permissible to declare instances
ol deferred classes because they contain features that are not implemented so deferred classes cannot
have create (catures. The class Assoc declares a create feature which is used to assign the required
value to the dynamic type ficld of the objects to ensure that all descendants provide this ficld. All the
features of class Social arc fully implemented. The class does not contain deferred features so cannot
be a delerred class cither.

The Eilfel implementation fuliills the functional requirements but has required an additional field
to be added o the abstract base class Assoc. This field is required to distinguish between the different
instantiations of the generic associations. The requirement for this feature means that this implement-
ation cannot use the polymorphic features provided by class Assoc.

4.8.2 Modula-3

Modula-3 does not provide all the desirable language features. In particular, Modula-3 provides single
inheritance only so the class Social must be at the base of the class hierarchy if it is to be used as de-
scribed in the specification. The ability to define abstract classes is not supported. Generic types are
provided but constrained generics is not supported. There is no selective export but cach module can
supply several interfaces. Modula-3 does support dynamic type checking,

Each class involved in the system is implemented by one module pair, The objects are implemented
as opaque object types. This means that all objects declared by a client module must have their type
declared as the type made publicly available in the interface module. In all classes the public type is
declared as T. Objects are therefore declared as x @ Modulename.T. The code used for the current
implementation can be seen in appendix B. The implementation of each class is discussed in turn.

o class Assoc

The modules used Lo implement this class can be seen in appendix B.1. This class defines one
method makeAssoc. This feature is defined to specify the minimum functionality of all classes.
Of course, a break Assoc [calure is required by the specification but has not yet been implemen-
ted. The makeAssoc feawre requires an REF ARRAY OF ROOT as a parameter. ROOT is the base
class of all objects in Modula-3,

e gencric class One-to-one2

The modules used o implement this class can be seen in appendix B.2. Modula-3 provides gen-
eric types. The generic class declaration acts as a template for the instantiated types. A generic
class is not compiled until actual generic paramelers are provided. This means that different code
is produced for cach instantiation. It is not possible (o limit the interfaces which can be used to
instantiate a generic interface so it is not possible o ensure that only derivatives of class So-
cial are supplicd as actual interfaces. However, the procedures supplicd by the generic class use
features from class Social so altempts 10 compile new instantiations with classes without these
fcatures fail. The inability o constrain the interfaces does not seem (o be a problem.

In the implementation of class One_to_one2, the procedure make_one_to-one2 is assigned to the
make_assoc method inherited from class Assoc. This inherited method requires a list of type
REF ARRAY [1..5] OF ROOT as onc of its parameters. The compiler does not allow changes in
the type of paramelters so this parameler must remain as an ARRAY of ROOT in all subclasses
of Assoc. In class One_to_one2, the actual type of parameter required is Social. T which is a sub-
type of ROOT. This supertype parameter does not pose a significant problem however because,
as mentioned earlier, the implementation of the procedure requires fcatures which are supplied
by Social.T. The class will not compile if classes other than descendants of Social. T are used.
Unless, ol course, that class supplics features with identical signatures 1o those of Social.T. The
requirement for class One_to_one2 (o be instantiated with classes derived from Social must be
clearly documented.

The above problem could be avoided by redeclaring the make-assoc feature in each subclass.
The redeclared feature would specify the required Lype of parameter. This was not done because

83

redeclaration in Modula-3 docs not provide polymorphic features.
¢ class Social
The modules used Lo implement this class can be secn in appendix B.3.

Dynamic type checking is available for all wraced types. Traced type is the default type. (Un-
traced types are usually only nceded for systems programming so are not considered here.) When
objects are crealed, they are automatically tagged with a type tag. This tag is permanently as-
signed to an object. The type tag can be accessed by any of the type checking features. These are
ISTYPE, NARROW, TYPECASEand TYPECODE. In the implementation of class Social, the TYPECODE
[eature is used to ensure that the correct type is returned from the procedure access-Assoc.

The collection of associations declared in Social is an ARRAY. This is not a reference type so
does not need (o be dynamically created. The descendant classes only need to import the inter-
face 1o Social and list the type Social.T as an ancestor. The collection was implemented as an
ARRAY 10 provide a simple means of representation. Again, checks must be made to prevent
duplicate associations being added.

The deleteAssociation method has not yel been implemented.

o class Person

The modules used o implement this class can be seen in appendix B.4. Both modules imple-
menting this class must import the module Social, The interface module declares class Person
to be a descendant of class Social. The other features are implemented directly as defined by the
analysis model.

The implementation [ulfills all the functionality of the design. It falls short of the specification in
that the requirement for [eatures of class Social 1o be available only Lo instances of class Assoc is not
met. This must therefore be documented in the class description. The inability (o restrict the classes
supplied as actual parameters to the generic modules also reduces the safety of the implementation
in this language compared to Eiffel. It would be possible for programmers 1o use the generic classes
without using class Social but it would require a lot of extra work.

4.8.3 Oberon-2

Oberon-2 does not provide all the desirable language [eatures. The features supplied by Oberon-2 are
inheritance, polymorphism and dynamic type checking. However, the dynamic type checking provided
is only useful for distinguishing between known subtypes. Genericily, the ability to make features
available o selected classes only and a common base class for all classes are not supported. In com-
mon with Modula-3, Oberon-2 provides single inheritance so class Social must be the base class for
the hierarchy. Despite these deficiencics, a reliable implementation can be produced.

The code used for the current implementation can be scen in appendix C. The implementation of
cach class is discussed in (urn.

e class Assoc

A type field was added Lo class Assoc to provide dynamic type checking of unknown types of
associations. This (eature is exported as a read-only field. The value of this field is checked by
the access-Association feature in class Social 10 ensure that the correct Lype of association is
accessed. The only other feature of this class is a procedure Lo assign a value (o the type ficld.
The implementation of this class can be seen in appendix C.1.

84

There are two ways to overcome the problem of not having a common base class. The base class
is required by the make_assoc and break assoc [eatures in class Assoc. These features require
a list of objects as a parameter 1 allow subclasses Lo redefine the list to fit their own function.
These [eatures also permil leatures of the class Assoc Lo be called polymorphically. The casiest
solution is to remove the make_assoc and break_assoc features from class Assoc. These methods
are included in the specification of class Assoc o define the minimum behaviour required by
associations and allow for the use of polymorphism when creating associations. As stated in
section 4.8.1, the requirement [or a type ficld means that polymorphism cannot be used so these
features do not need (o be included in class Assoc.

An alternative method is to declare a class Object from which class Social is derived. Class
Object is implemented as an abstract class with no features, that is it is a pointer to an empty
record. Thisclass is then used as the type of the parameter required by the features in class Assoc.

The current implementation of class Assoc does not provide either make_assoc and break_assoc
features,

class One_to_one2

The implementation of this class can be seen in appendix C.2.

The specification of class One_to_one2 requires the use of generics which are not available in
Oberon-2. This problem was overcome by writing a template for the class. The template class
must be edited by programmers when an instance ol a new type of this association is required.
In order to minimize the number of changes that need (o be made, the template uses the ability
to rename imported modules. In class One_to_one2, the module Social is imported twice. It is
renamed as both A and B. The module is written in terms of the classes exported by modules
A and B. The specification of class One_to_one2 shows that an instance of each class involved
in the association must be declared. All modules used to replace Social in the import list must
declare a common type if the number of editing changes are to be limited. Hence, class Social
and all Sociable classes define the type as T.

When specilic associations of type One_to_one2 are required they can be produced by copying
the template and changing (our words, These are

- the module name at the beginning and end of the module,

= the two occurrences of the word Social in the import list of the module.

The new module can then be compiled producing the code required to implement the association.
Classes which are not derived [rom Social are highly unlikely to have the correct features so
cannolt be used to replace Social in the import list.,

The type of reuse involved in using such templates is ofien known as white box reuse because the
source code is changed. I is possible Lo introduce errors when editing code in this way. Such
changes are thercfore not as safe as the black box reuse involved in Eiffel generics where the
source code is unchanged. The underlying operating system could be used to ensure that the only
changes made were (o the four words required which would improve the safety of the template
class.

class Social

Class Social is implemented in a module called Social and declared as type T which is a pointer
to arecord called SocialDesc. All Sociable classes are implemented by a module with the same

85

|

name as the class being implemented. The type declared is type T. Only one Lype called T can
be exported by a module so in this implementation modules become equivalent to classes. The
AddAssociation and AccessAssociation features are implemented as type-bound procedures. The
current implementation of this class can be seen in appendix C.3.

e class Person

This class is implemented in a module called Person. The class is declared as type T. This type is
declared as a pointer to a record called PersonDesc which is derived from the record SocialDesc.

The extra attributes are those defined by the analysis model. The current implementation of this
class can be scen in appendix C.4,

484 C++

C++ does not provide all the language features listed, in section 4.7, as desirable for implementing the
Sociable class design method. It provides multiple inheritance, generics via templates and polymorph-
ism but does not provide dynamic type checking or a base class from which all user defined classes are
derived. Tam grateful to Bob Dickerson for writing the C++ implementation.

The current implementation can be scen in appendix D. The implementation of each class is dis-
cussed in turn,

o class Assoc

The class Assoc has been simplified. In the specification of class Assoc, the make_assoc and
break-assoc leatures are included to permit dynamic binding and polymorphism. The specilic-
ation of these [eatures requires the provision of a base class from which all objects are derived.
These two class features are not defined in the C++ implementation. There are two reasons for
this. The first is that C++ does not provide a mechanism for determining the dynamic type of
objects. A tag ficld must be used. This means that the associations cannot be created by an in-
stance of the base class so polymorphism cannot be used. The second reason is that C++ does
not provide a base class for all user defined classes. The class Assoc, as defined in C++, provides
afield to store the name of the association. This is a tag field used Lo determine the dynamic type
of the association, The current implementation of this class can be scen in appendix D.1.

e class One_to_one2

Some improvements have been made to the class One_to_one2 with respect to its specification.
The functionality and data as defined in the specification has been divided into two separate
classes. Both classes are template classes. The code can be seen in appendix D.2. One class
called One_to_one2, provides the [unctionality as defined by the methods in the specification
and provides the name of the association in the field inherited from class Assoc. A second class,
One_to_one2node, is usced to provide the data about the association, that is it provides ficlds to
store pointers to the objects involved and a field o store the name of the association. When the
associate method of the instance of class One_to.one2 is called, an instance of class
One_to_one2node is created. This instance is added to the list of associations of the object to
be associated. The change Lo the original specification of class One_to_one2 removes data areas
from the objectof the One_to_one2 class declared in the application program. These data arcas in
this object were unused, Data was assigned o these attributes in the instances created by the ob-
Ject declared in the application program only. The same improvements could probably be made
10 the implementations in the other languages.

86

e class Social
Class Social declarcs a variable which is a linked list of Assocs and provides the required access
features. The Sociable classes are derived [rom Social using public inheritance. This ensures
that all subclasses of Social display the behaviour they inherit from Social.

The code used to implement this class can be seen in appendix D.3

e class Person

This class uses the public mode of inheritance (o inherit the characteristics of class Social. The
other [eatures are declared as defined by the analysis model. The code used (o implement this
class can be scen in appendix D 4.

4.9 Discussion

This section discusses the main advantages and disadvantages of the Sociable class technique as im-
plemented in the feasibility study. Alternative implementations are also discussed.

4.9.1 The technique

The Sociable class technique for implementing conceptual associations allows these relationships to be
traced from the analysis model to the implementation. Italso permits associations (o be added to objects
without changing the definition of the class [rom which they are produced, The classes can thercfore
deline the intrinsic data and behaviour required by objects of that class without the need (o consider
the actual application in which the objects are 10 be used. Sociable Classes provide the ability to take
partin associations as part of their intrinsic behaviour. It should then be possible Lo assemble systems
by declaring associations between classes and writing the application specific code. The classes and
generic associations can be thoroughly tested prior (o system assembly. The only part of the system
which should require testing is the actual linking provided by the associations and the code used to
provide the application dependent [unctionality. '

In the systems developed for the feasibility study, the Sociable classes are newly developed classes
derived from class Social. Tt may be possible 0 add this ability Lo existing classes and gain benefits
when an existing system is extended. The use of multiple inheritance is the simplest method of con-
verting an ordinary class into a Sociable class. For example a Sociable-Person class could be derived
{rom classes Social and Person. This would be possible in Eiffel and C++. The other two languages
used in the feasibility study, Oberon-2 and Modula-3, provide single inheritance. It might be possible
to add the functionality of class Social to an existing class Person. This might be done by deriving the
Sociable-Person class from Person and adding an attribute of type Social. This is a possible area for
[urther research,

4.9.2 Current implementations

This section discusses the current implementations of the Sociable class design. Similarities and dif-
ferences between the implementations are noted. The limitations of the current implementations and
possible ways o overcome them are discussed.

The implementations in the different languages have different characteristics. The Eiffel language
provides most of the required features. The only feature lacking is the in-built ability to distinguish
between differentinstantiations of generic types. The Eiffel version implements the specifications most
closely and provides the most reliable implementation.

87

Modula-3 and Oberon-2 both require Lthe use of lemplates 1o provide the generic classes. Modula-
3 provides generic templates as a built-in concept. However, the code is not compiled until the type
is instantiated with actual classes. This appears 10 mean that the source code must be supplied. The
Oberon-2 lemplates also require that the source code is supplied. The result is that programmers can
change the source code and therefore potentially reduce the reliability of the system.

The use of templates cnsures that dilferent code is produced for each instantiation. Modula-3
provides the required dynamic type checking. It is possible (o check that two objects have the same
type. This means that it would be possible Lo use the make_assoc and break_assoc features of class
Assoc in a polymorphic procedure as originally intended. This might allow a different, more efficicnt
implementation of the design to be produced when using Modula-3.

The C++, Modula-3 and Oberon-2 implementations produce different code for each instantiation of
class One_to_one2. This means that it is possible 1o have two different Lypes of association between the
same classes. For example, a ‘parent of” and a ‘married (0’ association might be required in the same
system. In fanguages, such as Eiffel, where the same code is used, a type identifier would be needed
to distinguish between the two types of association. This suggests that a type identificr is a necessary
feature in Eiflel association classes.

The class One_to_one2 has been specified (o make, access and break two-way associations between
objects. Two-way associations can Iead 10 problems ol data consistency when changes are made 1o the
objects which are associated. For example, i a person changes their bank account both objects must
reflect the change. [Lmay be possible for the One_to_one2 class and the other classes representing two-
way associalions (o provide this functionality and [urther reduce the risk of errors in the application
code. Other [unctionality might also be provided. For instance, many applicalions are developed as
distributed systems. This results in associations being formed between objects located on different
processors. Accesses to these objects require more complex code than accesses (o objects on the same
site. It may be possible Lo include at least some of the complexity in the generic classes defining the
types of association.

The ability o lake part in associations is provided by deriving Sociable classes from a base class
called Social. This class declares a data structure in which 1o store the instances of associations. This
appears 10 be the only method of providing this ability. The data structure chosen can be any structure
which stores elements. The structure used in the (casibility study is either an array or a linked list.
The choice of structure was made on the basis of the availability of the structure in the language or its
libraries. Clearly, the choice of data structure will affect the efficiency of the system. The performance
characteristics should be examined. The most efficient representation would depend on lactors such as
the maximum number of associations entered into by any one object. It is anticipated that the number
will be small because cach object in a system is likely o be involved in only a few different types of
associations.

In the implementations described carlicr, the classes representing the different types of association,
suchas one-lo-one, are library classes derived [rom class Assoc and encapsulate the information needed
to implement associations. Ideally, these sub-classes of Assoc are generic or template classes. The
required associations are formed by instantiating these generic classes. In languages such as Oberon-
2 which does not provide gencrics, this implementation of the Sociable class technique requires class
definitions for each type of association to be written as textual templates. These definitions must be
edited to produce the required association, Such implementations which require the editing of source
code are not as reliable as implementations using the generic facilities provided by a language.

In order to form an association involving objects of onc or more Sociable Classes, an instance of
the required association is declared and created. This instance is used o make, access and delete asso-

88

ciations of that type from the required objects. The knowledge of associations is encapsulated within
associations and can only be accessed via an association. Encapsulating the knowledge in this way has
some disadvantages. Some of which are:

1. A layer of indircction is introduced during access (o associations. This can be seen from the
example in section 4.5, The find object2 method of the has_account object is invoked. This
method requests the required information from the named object and returns the value into a
variable of correct type. The speed of execution of the system is therefore decreased when com-
pared with a system employing direct access.

2. Itis not possible, at the moment, to request that an object returns a list of all the objects with
which it is associated. Nor is it possible to request that an object can list the nature of the
associations in which it is involved. If these are found o be necessary features, it may be possible
to add such ability o class Social and hence 10 all Sociable classes.

3. The [catures find_object] and find objeci2 are used Lo access objects involved in an association.
Object! and object2 refer Lo the order in which the classes were declared in the instantiation of the
association. The names of these features are not as intuitive as, for instance get_person. The use
of the find_objectl and find_objeci2 featwres is simplified by giving the association a name which
highlights the order. For instance, the name has-account implies a relationship going from a
person Lo an account. The generic class is therefore instantiated with person as the first object
and account as the sccond. Tt would be possible to use the inheritance and renaming facilities
in Eiffel 1o change the names of the access features. The process is more difficult in the other
languages. The use of renaming is a process which could be examined.

These disadvanlages suggest that it might be better 10 provide access (o the encapsulated knowledge
in a dilferent way. Alternative methods of implementation are discussed in the next section.

The feasibility study indicates that the Sociable class design method would provide a viable mech-
anism for implementing associations as visible constructs. This should improve both the rcusability of
the developed classes and the extensibility of the system. Improvements hwy also be possible in the
reliability of systems if more functionality can be incorporated into the association classes.

4.9.3 Alternative implementations

The following section discusses alternative ways (o implement the Sociable class design.

The difficulties associaled with the indircet access of the objects involved and the naming of the
features might be solved il the associations were accessed via the objects involved which could be
thoughta more natural approach. For example, it is possibly more natural 10 think of adding funds 10 a
person account using code such as person. account . addFunds (10) rather than to ask an association
to return the account and then add the funds.

Attempts were made 1o provide access to an association via the objects involved. This required
Sociable Classes 1o possess an additional attribute Lo hold the association being accessed. This attribute
was provided by declaring an altribute as active_association : Assoc in the base class Social,
This attribute was declared as the base type Lo allow any association type (o be assigned to it. When
an association needed Lo be accessed, the object was requested Lo activate a specific association by
retrieving the association [rom its list and assigning it (o the active_association attribute. That is
amessage such as

person.activate(has_account)

89

was sent Lo the object. The intention was o access the features of the active association via the object
by using code such as,

account := person.active_association.find_object2;
This was not possible because the static type checking systems only permit access to the features de-
clared in the base class Assoc. The leatures of specific associations, such as the find_object2 method
of class One_to_one2, cannot be accessed,

Scction 3.4.4 described mechanisms for accessing the features available in the dynamic type of an
object but not provided by the static type. These [catures are designed for use with whole objects not
on the ficlds of objects, so cannot be used (o access features in the different types of association. It was
not therefore possible to access an association by using code such as,

account := person.active_association.find_object2;

There are two alternative ways ol approaching this problem. The first is (0 redefine the type system
to allow dynamic type checking on the types of the (iclds. This solution does not allow the method to be
used with current languages so is not considered in this thesis but is a solution worthy of consideration
as an extension o existing languages. (The dynamic type checking and reverse assignment in Modula-
3 may allow this bul the [eature is specific o the language so has not been investigated.) The other
solution is 1o find a mechanism to work round the restriction. The only way currently available which
provides access Lo the features of the active association is to return the association into a variable of the
correct type and then 1o ask the association (o return the instance required. The code required, using
Eiffel syntax, might be:

has_account_association 7= person.active_association;
if not has_account_association.void
then
account := has_account_association.find_object2(person);
-- code to access account as required
else
-- error code

end;
This adds another step Lo the process. Accessing the required object now requires three stages:
e ask the known object Lo return the association into a variable of the correct type
e ask this association to return the required object
e access the object

The code required 1o access associations in this way is more complex than the code required when the
knowledge was encapsulated in and accessed via the associations. This method also requires the object
to hand control of its associations (o a client module which breaks the principle of encapsulation.

The conclusion drawn from this is that although it is possibly more natural Lo access an association
via the objects involved rather than via an instance of the association, present Lype checking systemns
do not allow this to be done easily and reliably. However, it may be possiblc o incorporate the idea of
Sociable Classes into a language and then provide a Lype checking system which allows access (o any
association in which an object is involved. This alternative implementation would have the effect of
making the object interfaces more complex so may not be an improvement.

The design and implementation of the dilferent types of associations presented in this chapter re-
quire the use of emplates or gencrics. Generics is not available in all languages and the alternative

90

method of using source code templates is a potential source of errors. An alternative implementa-
tion has been investigated. This implementation requires Sociable classes to be declared as described
carlier. The base class Assoc is again used. The difference is in the way cach association is implemen-
ted. Each association required in a system is implemented as a direct descendant of Assoc. This class
provides the features required to associate, aceess and disassociate the required objects. For example,
in a has-account class, a find-person [cature is supplied o access the owner of a specified account.
All the code to implement an association has Lo be written by the application developer. It cannot be
supplied as a library class.

The second alternative implementation encapsulates the code required for the implementation of
cach association. This implementation has all except one of the features of the previous
implementation. The missing feature is the provision of library classes of the code required o im-
plement the different basic types of conceptual association. This second aliernative implementation
has the advantage that the names ol these [eatures are more clearly identifiable than in the previous
implementation. The original implementation of associations specified in section 4.4 is felt to be the
better of these two possibilities because more of the code is supplied in reusable library classes. This
should provide more reliable systems.

4.10 Summary

This chapter has presented a design Lechnique which allows the implementation of conceptual associ-
ations as they appear in the analysis model., The information contained in the associations is therefore
traceable through the development process. This avoids some of the problems encountered when ex-
tending systems reusing classes in new systems. The technique involves providing objects with the
ability to participate in an unknown number of associations. This abilily is provided by declaring the
classes from which they are produced as subclasses of class Social. These subclasses are called Soci-
able classes. Associations between objects are produced by using instantiations of generic classes. The
associations required in a system are produced by instantiating the correct generic association with the
required classes. Associations can then be added 10 objects as required during system exccution.

Sociable classes define the intrinsic propertics of objects such as the structure and ability to parti-
cipate in associations. The client-server relationship is used to implement the structural attributes and
properties of classes of objects. Inheritance is used to provide the ability to participate in associations.
Each object stores its own associations and so encapsulates all its own data and maintains an object
oriented structure.,

The generic associations encapsulate knowledge about that type of association. This encapsulates
the information about associations. An association belonging 1o an object is accessed via an instance
ol the the association not via the object itsell.

The main features of the Sociable class technique are:

o Implemented classes define the intringic structure and propertics of objects.
e Associations are formed between objects not classes.

o Classes arc less coupled.

®

Objects encapsulate all the information about themselves. The structure is defined by their class.
The associations in which an object participates are stored in a list which forms part of their
structure,

91

e New associations can be implemented without adding new subclasses to define the object in-
volved.

e The association classes encapsulate all the knowledge about associations. This knowledge is not
spread between two classes or stored in one of the classes involved.,

e Associations can be traced from the analysis model Lo the implementation.

e Systems can be assembled [rom pre-tested units reducing the amount of system testing required.

The feasibility study indicates that the design can be implemented in a variety of object oricnted
languages. The most reliable implementation is produced using Eiffel. The other implementations
require more documentation and require developers to follow more guidelines when using the method.
These implementations therefore provide more opportunities for mistakes.

The results of the feasibility study suggest that this design method represents a possible alternative
mechanism for implementing conceptual associations between objects. During the developmentof the
method and the feasibility study, several areas have been identified in which more research is required.
The lollowing paragraphs summarize possible research into aspects of the different classes.

e Class Social

1. This class requires a data store 10 hold the instances of associations in which the objcct is
involved. This data store could be represented by a variety of structures. The most efficient
structure depends on many factors including the number of elements to be stored. These
factors should be identified and investigated in order (o select the most efficient represent-
ation.

2. The process of retricving associations from the data store involves dynamic type checking.
The effect of this on the efficiency of the completed system should be investigated.

3. Class Social as defined in scction 4.4.1 provides the abilily to add, access and delete as-
sociations. It may be advantagcous Lo increase this functionali[y, for example, Lo allow an
object 1o return a list of the associations or a list of the types of association in which it is
involved.

4. The possibility of adding the feawures of Sociable classes (o existing classes could be in-
vestigated.

o Class Assoc
This class is specified o allow the make-assoc and break-assoc features Lo be polymorphic. The
usc of these [catures complicales the implementation of the generic classes. This ability has not
been used in the feasibility study. Tt might be possible to simplify this class by removing the
polymorphic functions with the result that the implementation of the generic classes could be
simplified. The C++ and Oberon-2 implementations of class Assoc do not provide make-assoc
and break-assoc [catures.

e Types of association

Scction 4.4.5 identificd the existence of many basic types of association. The exact number and
nature of these should be established 10 allow the required classes 1o be specified and implemen-
ted.

92

The specification of class One_to_one provides basic make, access and break functions. The pos-

|
|
|

sibility of increasing the [unctionality Lo ensure the integrity of associations and provide facilities
to simplify the implementation of distributed systems could be investigated.

[t might also be possible to develop classes ol associations which also define attributes which
arc required 1o qualily the association.

The design method appears Lo have the potential o improve the reuse of components identified during
analysis. This improvement applics both o extensions of existing systems and (o new systems. In ad-
dition, Sociable classes and the different Lypes of associations can be implemented using current object
oriented languages. It is necessary Lo develop library classes but not to introduce new features into the
languages.

93

Chapter 5

A comparison of the Sociable class
technique with other techniques

This chapter compares the Sociable class technique with several other design techniques which can be
uscd to represent conceptual associations. The purpose of the comparison is to evaluate the effect of
cach method on the reusability of the components developed. The techniques are selected from various
branches of object oricnted sysiem development and include current programming techniques used in
class based languages, database design methods as well as research methods. The Sociable class tech-
nique was developed (o improve the traceability of information from the analysis model to the imple-
mentation of the system. On the analysis model, conceptual associations are bidirectional structures.
This information should be retained in the implementation so all the methods used in the comparison
produce bidirectional associations. The methods selected for comparison are:

o The Sociable class design lechnique

e The addition of attributes (o the base classes

e The addition of attributes 10 subclasses

e The usc of a data structure Lo represent the association

¢ Object oricnted database design methods [62]

e A combination of object oriented and logic paradigms [63]
e The combination of inheritance hierarchies [64]

e The DSM system [60, 65)

e The use of role types [52]

o Design pallerns [66)]

The Sociable class lechnique was described in chapter 4. The Eiffel implementation is used for compar-
ison in this evaluation. The use of attributes in base classes or subclasses and the use of data structures
lo represent associations are current design methods and were described in chapter 3. The other tech-
niques are explained in section 5.1, The comparison is carried out o assess the viability of different
approaches and their cffect on the reusability of classes.

94

Traceability was identified in chapter 2 as an important [cature in improving the reusability of soft-
ware components. Improving traccability of conceptual associations was the major consideration when
developing the Sociable class lechnique. Traceability is therefore the main criterion by which the tech-
niques are compared. The method used for the comparison and the results are presented in section 5.2,
Itis important that an improvement in one factor which increases reusability does not adversely af-
[ect other factors and lead to a reduction in reusability. The techniques are therefore compared against
other features which are important for improving reusability. The methods used and results obtained
arc presented in section 5.3

The results of all the comparisons are discussed in section 5.4. to identify the effect of the design
techniques on the reusability of the resulting components. Section 5.5 draws conclusions about which
approaches present the most opportunitics for the development and use of reusable components.

5.1 Alternative design techniques

This scction describes the design technigues which are used in this comparison but have not been de-
scribed carlier. These extra design techniques were selected from literature and discussions with col-
leagues. All of the methods appear (o offer possibilitics for improving the implementation of associ-
ations. The methods sclected for use in this comparison are:

o Object oricnted database design methods [62]

e A combination ol object oriented and logic paradigms [63]
e The combination of inheritance hierarchies [64]

e The DSM system [60, 65]

e The usc of rolc Lypes [52]

Design patterns [66]

This section explains the mechanisms used by cach of the methods and their relevance o the rep-
resentation of associations. The nature and number of classes and other constructs required by cach
method to implement the simple banking application and its extension are identified. The number of
classes and other construets identified includes only those specified by the programmer. It does not
include any of the library classes needed (o support the specified classcs.

S.I.1 Object oriented databases

Object oriented database design techniques are included in this comparison because relationships
between objects are very important in database applications. Some object oriented databases such as
ONTOS [62] are based on object oricnted data models which are similar 1o the OMT models [28] de-
scribed in chapter 3. It was considered that the mechanisms used to represent relationships in such
databases may be suitable for adaptation into programming language constructs.

The term relationship is used in object oriented databases 1o encompass the relationships identified
as ‘consists of”, ‘contains’ and ‘conceptual associations’ in section 3.3. The ‘consists of’ relationship
is provided by user defined aggregation relationships and is thus implemented by a distinct construct.

One mechanism is used 1o represent both the “contains’ relationship and ‘conceplual associations’,
Binary forms arc represented [62] by adding reference attributes 10 each type in the same way as in
programming languages. Many object oriented databases such as ONTOS provide referential integrity

95

|
|

to ensure that an update 1o an altribute in one of the objects is reflected in the other object. This avoids
the problems encountered when using converse pointers in object oriented programming languages.

Ternary relationships are implemented by creating new object types or classes to represent the re-
lationships. The classes participating in the relationship are then amended (o contain a reference (0 a
relationship object and so become bound (o the class which defines the relationship. One benefit de-
rived from using this approach rather than simply defining a data structure (o represent the association
is that the relationship becomes part of the objects involved and is accessed via any of the objects.

The approach used for implementing (ernary associations in object oriented databases can be used
in object oriented programming languages for the representation of binary associations. This is used
for comparison in this chapter. This design technique is referred to as the object oriented data base
method in this thesis,

The simple banking application implemented by following this method would require four classes
Person, Account, has-account and a root or driver class. The system would consist of four classes.
The extension of the system would require three additional classes for Share, Shareholder and own-
shares. The extended system would consist ol seven classes.

5.1.2 Combining object oriented and logic paradigms

This method was devised o provide a more effective means of implementing associations between ob-
jects. Ttuses concepts not readily available in object oriented programming but is included 1o ascertain
whether the ideas could be adapted or ranslated for use in object oriented programming languages.

Gollried Razek [63] has carried oul work which aims (o combine the object oriented paradigm
with the logic paradigm. He states that there arc two types of knowledge concerning objects which
represent aspects ol the real world. One Lype of knowledge concerns information about objects. The
object oriented paradigm is considered o provide a model of this information. The other type of in-
formation concerns the relationships between objects. The relationships referred (o in the cited paper
correspond to the conceptual association defined in section 3.3. Such relationships are modelled by
the logic paradigm. Razek proposes that an integrated model can be produced by.combining the two
paradigms.

Razek developed an experimental language called OOLog. It is an extension of Prolog which is a
language based on logic. A simple Prolog system [67] stores a series of facts as a database. The Prolog
system has search routines built in which allow it Lo respond Lo queries about the facts by searching the
store and locating the required answer,

The OOLog language is a prototype based language not a class based language. In a prototype
based language everything is an object. Objects are used as prototypes or lemplates from which new
objécts are created. For instance, il the system requires person variables, a prototype person object
is first declared. The required state variables and access methods are declared for this prototype. The
person variables are then created from the prototype object. Any object can redefine any of the methods
inherited from its prototype. There are no classcs involved in this type of language.

OOLog is clearly very different from the class based languages discussed in chapter 3 and used for
the implementation of Sociable classes in chapter 4. Despite these differences the approach suggested
by Razek is included in this comparison because it was felt that similar conceplts might be applicable
(o class based languages. The method is described first in terms of the prototype object language and
then converlted into class based programming terms. The grammar and syntax ol OOLog are not dis-
cussed here as it is the principles of the approach which are important rather than the details of the
implementation,

96

‘The mechanism used (o provide associations between objects in OOLog involves creating proto-
type relation objects. These relation objects store tuples (lists of objects involved in a specific relation)
in state variables and provide query, add and delete methods. The Luples stored can contain any number
ol objects so this prototype can be used as the basis for relationships belween any number of objects.
Specilic relationships are created from the prototype. The methods provided by the template can be
overridden to include constraints such as * a person may have no more than two accounts’,

The effect of crealing a specific relationship is 10 defline a data structure Lo store instances of rela-
tions between objects. The data structure is accessed by the objects involved. This access is achicved
by adding methods (o the prototypes of the objects which will be involved in the relationship. The
following example describes how the has-account association defined in chapter 4 might be imple-
mented in OOLog.

o Objects are defined which act as templates for person and account variables.
e The has-account relation is created using the relation object as a prototype.

e The query, add and delete methods are redefined as necessary, for example, to define the actual
prototype objects involved in the relationship.

e New methods are added to the person and account template objects (o give access to the has-
account relationship.

This method therefore provides associations as separate data structures but accesses the data struc-
tures via the objects involved in the association. The methods which access the data structures are
simple 1o write because they rely on the underlying logic paradigm to return the result of the call.

Translating the above scheme into a class based language the prolotype object, relation, would be a
class, Relation, which has a set of tuples as an attribute. Subclasses of class Relation would be defined
to provide associations between the required objects, such as the one between Person and Account,
These subclasses could be provided by generic classes in the same way as in the Sociable class method
to simplify the provision of specific relationships. Subclasses of the generic classes could be defined
to provide any constraints such as ¢ a person may have no more than two accounts’.

Classes Person and Account would then be extended 1o provide access Lo the has-account as-
sociation. The code required to implement the methods would be more complex in the class based
languages than in OOLog because the object oriented paradigm does not provide the required mech-
anisms.

The simple banking application implemented by following this method would require four classes
Person, Account, has-account and a root or driver class. The system would consist of four classes.
The extension of the system would require three additional classes for Share, Shareholder and own-
shares. The extended system would consist of seven classes.

This translation of the OOLog mechanism is used for comparison in this chapter and is referred Lo
as the OOLog method. This design method is similar to the method used in object oriented databases
in that the client code used Lo access the relationships would be very similar, However, the underlying
implementations arc different. The OOLog design creates a data structure (o store the instances of the
relationship whereas the databasc design stores the relationships with the objects involved.

5.1.3 Combination of inheritance hierarchies

Ossher and Harrison [64] propose that additional behaviour could be added to objects by combining
base class hierarchies with extension hierarchies. The base class hierarchy consists of the class declar-
ation as originally defined by the programmer. The extension hicrarchy consists of the code which is

97

required to add behaviour to a class. The code [or each hicrarchy is stored separately in a library. Sys-
tems are produced by merging the base classes with the required extensions. Itis stated that this method
can also be used Lo add instance variables and Lo modify existing behaviour, for example, Lo correct an
error in the code. The classes used o produce the objects can, therefore, be extended by adding new
behaviour without adding new subclasses.

The ability o add state variables and behaviour by merging base classes with extensions might
provide an alternative method for implementing associations between objects. As an example, con-
sider the implementation of the ‘person has account’ association. The person and the account classes
could be provided as base classes. These would be implemented exactly as defined by the analysis
model. The extensions required to implement the association could be declared as extensions to both
classes. The system would be assembled by combining the required base and extension hierarchies.
The implemented system would have the following characteristics:

e The person and account classes would appear 1o the developer (0 have had the extra attributes
added o them,

e The association would be accessed via cither object.

e The final implementation would be the same as if the association was implemented by adding
pointers to the base class.

A difficulty with merging base classes and extensions has been identified by Ossher. This difficulty
relates (0 possible conflicts between the extension and the base class. Such conllicts are most likely to
oceur il the extensions access existing methods or attributes. It appears that conflicts should not be
a problem when implementing the above association because the new behaviour will not affect any
existing attributes or methods, Neither should conllicts occur when a system is extended by the addition
of new associations.

The simple banking application implemented by following this method would require two base
classes, Person and Account, two class extlensions, has-account and accqunt-lms-()wner and a root
or driver class; that is the system would consist of five parts. The extension of the system would require
one additional class, Share, and two additional extensions own-shares and share-has-owner. That is
the extended system would consist ol eight parts.

Hierarchy combination appears (o provide a viable mechanism for implementing conceptual as-
sociations. However, this method requires compiler support so cannot be readily applied Lo existing
languages and therefore cannot be assessed.

5.1.4 DSM

The DSM [60, 65] is a programming development system. It is an extension of C (o provide object
oriented features. The system also provides other features. The feature which is important in this
thesis is that it supports inter-object relations. Relations are declared by using a keyword sequence,
DEFINE <name> RELATION. The declaration of a relation between two classes of objects generates
access [eatures for the relation. These [eatures are added automatically to cach class involved in the as-
sociation thus modifying the class interface without changing the class definition. The original class is
unchanged and available for reuse. However, as far as the programmer is concerned, the class definition
appears (o have been modificd. The objects in the system have different propertics from those defined
by their classes. These additional features scem (o be restricted Lo the features required 1o access the
relationship. New relationships can be added (o a system without adding subclasses. The relations can
be accessed, that is created, questioned, modilied or deleted, via the objects concerned.

98

,1,

In the small banking system, the Person and Account classes would be declared as defined in the
analysis model. A relation would be defined (o form the association between the two classes. The
declaration would take the form:

DEFINE has_account RELATION

person 1-1 account

The Person and Account classes would then automatically have features added to them to allow access
to the relation. For example, the Person class would have a gel_account feature added o it. This feature
would return the account belonging Lo the person into another account variable. This variable would
then be used 1o access the person’s account. It appears that features of the account object cannot be
accessed directly via the person objecl.

When a relationship is defined two hash lables are created. Each lable represents one direction
of the association, for example, onc Lable implements Person has Account and another implements
Account owned by Person. Hash tables are used o provide maximum cfliciency for accesses (o the
tables of relations. The implementation adds data structures which are not present in the analysis model
but these structures are hidden from the programmer. The system appears to the programmer, Lo involve
objects and relationships which reflect the application.

From the above description it can be seen that the simple banking application implemented using
the DSM system would require three classes, Person, Account and a root or driver class, and one rela-
tion, has-account. The system would consist of four parts. The extension of the system would require
one additional class, Share, and one additional relation, own-shares. The exiended system would con-
sist of six parts.

The implementation of relations in DSM appears Lo create similar structures to those employed
in the OOLog design in that both provide data slores of objects involved in the association and add
access methods to the class interfaces. DSM was specifically designed to implement both the ‘consists-
of” relationship and concepual associations. The concepts used cannot be added to other languages
without changing the nature of the languages by adding features to the compiler or implementing a
preprocessor 1o supply the necessary [eatures.

There are some similarities between the DSM system and the Sociable class technique., The simil-
aritics arc that systems developed by cither method can be extended without the addition of subclasses
and that relation between objects are visible in the implemented system. However, in DSM, relation-
ships are used to implement both the ‘consists of” relationship and conceptual associations. The re-
lation construct was not designed 1o be used to distinguish between these two different types of rela-
tionship. However, this distinction could be achieved by representing the ‘consists of” relationship
by instance variables. Instance variables in DSM are only used (o optimise relationships in which
traversal is important in one direction only. In the following evaluation it is assumed that the DSM

RELATION constructis used to implement conceplual associations and instance variables are used to
represent the “consists of” relationship. This distinction between the representation of the two types of
relationship allows greater traceability of information.

There arc other significant differences between the Sociable class technique and the DSM system.

e Inthe Sociable class technique, the objects themselves store Lheir associations whereas, in DSM,
the associations between objects are stored in tables, The objects in DSM do not, therefore, en-
capsulate all the information aboul themselves.

99

@ Account

Role Type Role Class

Figure 5.1: Model showing role types involved in the simple banking system

e In the Sociable class technique, only objects involved in a conceptual association know of the
existence of that type of association. In DSM, the features required Lo access the relation con-
struct are added automatically to the class definition. All objects of that class therefore know
aboul the association.

e The Sociable class design technique can be applied to a variety of languages. The DSM system
consists ol a pre-processor and a subroutine library for the C language. It might be simpler 1o
write the library classes required by the Sociable class technique than (o develop a pre-processor
for each language.

The DSM system provides the ability to implement relations as separate constructs but as described
by its developers docs not distinguish between the “consists-of” relationship and conceptual associ-
ations. If the RELATION constructis used only for conceptual associations, the DSM system appears
Lo meet some ol the requirements listed in scction 4.2, Specifically it provides a means to add new lo-
gical relationships without requiring new subclasses (o be defined. However, the classes involved do
have knowledge of the specific associations in which any or all of its objects are involved. The ob-
Jjects do not store their own associations. Also, a new feature has been a(ldcd to an cxmmg language.
Similar additions might not be possible in other languages.

S.1.5 Role-types

Kilian [52] suggests that the ability to define role types should be added to object oriented program-
ming languages. The role types would not be part of the normal type hicrarchy but would specify the
minimum behaviour which must be displayed by objects if they are to perform that role. Any class
which has the required eatures as part of its interface would be usable where the role type is expected.
Compatibility with the role type could be checked statically during compilation,

The use of role types during the development ol a system can be demonstrated using the simple
banking application. The relationship between a person and the account is first gencralised to an owner
relationship, that is , the ‘person has account’ relationship is generalised to ‘owner has account’. The
relationship between an owner and an account is shown in figure 5.1. The owner Lype is an example
ol'arole type. This role Lype specilies that any owner of an account must provide a Ger-Name feature
which returns a string variable

The Account class then defines the Assign-owner [cature, This feature requires a parameter which
is a variable of typc Owner. The Assign-owner fealure can then be used by any class which has a
[cature Ger-Name returning a string variable, The Account class is available for use by unanticipated
classes which provide the required interface. It is not bound to a specific class and its descendants.

100

As mentioned above, a class which represents potential owners, such as Person, must supply the
required Get-Name feature. In order Lo provide a two-way association, the definition of the Person
class uscs the Assign-owner feature provided by Account. The Person class is therefore bound to the
Account class and is not available for reuse without the Account class.

The simple banking application implemented by following this method would require three classes,
Person, Account and a root or driver class, and one role type, Owner. The system would consist
of four parts. The extension of the system would require two additional classes, Share and Share-
holder(an extension of person). The extended system would consist of six parts.

The use of role Lypes appears to remove the binding between classes in one direction only, so does
not improve the reusability of all classes involved. The provision of role types in languages such as
those discussed in chapter 3 would require changes to the type systems.

S.1.6 Design patterns

Design patterns [66] have been proposed by Gamma et al. as a mechanism for identifying reusable
micro-architcctures. They are used Lo identily common abstract structures found in object oriented
designs. The use of design patterns would allow system designs to become standardised.

Design patterns arc language independent. They describe the structure and interactions of a class or
group ol classes, the functions the class or group provides and how the pattern can be used in a system.

The catalogue ol design patlerns was examined for patterns which could be used to add attributes
and features 10 a class, It was found that all the patterns involved redefinition of [eatures, as defined in
scetion 3.4.3. This redefinition allowed new attributes to be added within an existing feature. None of
the patterns added features o the interface of the classes. Additional interface features are necessary
in the current implementations of conceptual associations.

It was considered that the design patterns currently available could not be adapted to be used in the
implementation of associations. However, it is possible Lo think of the Sociable class technique as a
design pattern, Forexample, the technique is language independent. It relies on the common factor that
object oriented systems contain classes of objects which can take part in associations. These classes
are represented by Sociable classes. The interactions between the classes are the various types of as-
sociations which arce provided by the generic library classes. The Sociable class technique is not a
micro-architecture but a property of the whole of the system.

5.2 Traceability

Traceability ol information was identified in chapter 3 as an important feature of systems which, if
present, allows users of classes 1o understand their structure and behaviour. The understanding ob-
tained promotes the possibility ol reuse. This section compares the traceability of the information about
conceptual associations provided by the Sociable class technique with the other implementation tech-
niques. Traceability has been assessed by comparing the object model produced during analysis with
an object model derived [rom the implementation. The correspondence between the analysis model
and the implemented system is used as the measure of traceability.

5.2.1 Results

Use of the Sociable classes technique allows conceptual associations (o be visible in the implementa-
tion. The implemented classes contain the same attributes and behaviour as those detailed in the ana-

101

lysis model. The object model derived from the implementation should be the same as the original
analysis model. This technique provides traceability.

As stated previously in chapter 3, implementing associations by adding attributes to cither base
classes or subclasses does not provide traceability. An object model derived from an implementation
would be very different from the original analysis model. The implementation of associations by de-
{ining a data structure of elements provides a separate construct for associations but the objects have
no knowledge of the association. The association construct is therefore traceable bul the objects have
lost some of their traceability o the analysis model.

In object oriented database and OOLog design methods, associations are visible as separate con-
structs in the implementation. However, the class definitions are changed so object models derived
{rom the implementations would be different from the original analysis model.

The implementation of conceplual associations by using a combination of inheritance hierarchies
would give some traceability ol the base classes in a system, The classes which form the base hier-
archy would be traceable back Lo the classes in the object model. The code in the extension hierarchy
could be traced back to the conceptual associations. The traceability of the associations is performed
indirectly by examining the hierarchics. However, if the extension hierarchy is used for other purposes
such as to modify existing behaviour, the traceability of associations via the extension hierarchy is lost.
Traccability could be maintained by storing the code for conceptual associations in a separate extension
hierarchy.

The DSM system was designed (o allow visibility of relationships. Assuming that instance vari-
ables are used to implement the ‘consisis-of” relationship and the RELATION construct used o imple-
ment conceptual associations, the DSM system docs provide traceability. The object model derived
from the implementation should be the same as the original analysis model. However, the classes in
the implemented system appear o have more [catures than the class in the analysis model.

The introduction of role types into a system would not allow conceptual associations to be visible
in the implementation. None of the classes involved in a conceptual association would correspond to
the analysis model. The passive class, in the banking system example this would be the account class,
has an instance of the role type added. The implementations of the active class or classes, such as the
Person class, involved in conceptual associations would contain extra atributes and methods. The
object model derived [rom the implementation would be different from the original analysis model.
Designing with role types docs not appear Lo provide traceability of conceplual associations.

5.2.2 Conclusion

The results of the evaluation show that differing degrees of traceability are obtained by the different
design techniques. Traceability of the information concerning conceplual associations is maintained
by the Sociable class technique. Traceability can be maintained by hierarchy combination and DSM.
The use of data stores gives some traceability but this is nol as complete as with the other methods
because the objects have no knowledge ol the associations in which they are involved.

5.3 Other factors

This section compares the systems produced by the different techniques for implementing associations
against other criteria which affect the reusability of components. The choice of the criteria is based
on the factors which were identified in chapter 2 as affecting reusability. The criteria chosen for this
evaluation are:

102

e Information hiding
e Understandability
o Standardisation

e Reliability

e Design complexity
¢ Product cfficiency
e Extensibility

e Language support

The design methods do not directly address the problem of component compatibility. This factor is
excluded from the comparison. Itis assumed that the same method is used for developing and extending
the system which avoids compatibilily problems.

It should be remembered that the evaluation is based on the design techniques used to implement
conceptual associations. Any differences between the analysis models and the implementation which
are needed [or other reasons are not considered. The criteria are evaluated in order to give an indication
of the [eatures of the design methods. ILis beyond the scope of the thesis Lo investigate fully all the fa-
cets of the design methods. A simple design metric used in traditional engincering [27] has been used
for this evaluation. In the future, more detailed comparisons could be made by using metrics such as
the law of Demeter [29] o compare design efficiency. Product efficiency could be more ace urately as-
sessed by finding out the CPU time required for accessing associations. However, only methods which
can currently be implemented could be investigated in this way.

Each of the selected criteria are compared in separate sections. Each section first defines how the
criteria is evaluated and then presents the results and conclusions drawn from the comparison.

5.3.1 Information hiding

This feature is assessed by ascertaining the amount of information which must be understood by the
programmer when using the design technique, Complete information hiding, in this context, implics
that the method provides conceptual associations as encapsulated units. The conceptual associations
are then implemented automatically by the system when declared by the programmer. The details of
the implementation of associations arc hidden from the programmer. Lack of information hiding in this
contextis defined to mean that the programmer is responsible for all the coding required to implement
conceptual associations and no details of the implementation are hidden.

The method used Lo assess information hiding is (o identily the translations that are required to
transform analysis models into programming constructs and the amount of new code that must be writ-
ten when implementing an association. It gives an indication of the difficulties which may be en-
countered by programmers using the design techniques.

Results

The Sociable class design technique allows programmers Lo define which associations are required.
The features required (o access the associations are provided by the gencric association classes. The
programmer docs not need to write code to implement the associations.

103

Current programming language design techniques and database design techniques require program-
mers 1o decide on the mechanism Lo be used for implementing conceptual associations. The program-
mers must translate conceptual associations into one of several possible representations. The program-
mer is responsible [or writing all the code required Lo access each association in the system.

Using the translation of the OOLog design gives automatic generation of the data structures to store
the relationships but leaves the programmer 1o add the code required to access the data store and hence
access the relationship.

The implementation of conceptual associations by combining base and cxtension hierarchies re-
quires Lthe programmer Lo write all the code (o create and access the associations and therefore docs not
provide encapsulation.

The DSM system provides relations as semantic constructs and provides automatic aceess (o rela-
tions via the objects involved. The mechanism used (o implement associations is therefore transparent
to users of the language.

A designer using role types must first define the role Lo be played in an association. This role lype
is then defined. Classes which can ke on the role must supply the correct interface and also define
the code needed to perform the role. The programmer is responsible for writing all the code concerned
with the association.

Conclusion

Information hiding is provided only by the Sociable class technique and DSM.

5.3.2 Understandability

In this context understandability is used (o mean the ease with which implementation classes can be
recognised as implementations of classes identified during analysis. The names of the classes are as-
sumed Lo be the same in both instances giving initial understandability. This evaluation examines the
details of the classes such as the attributes and methods provided. This criterion is evaluated by estab-
lishing the correlation between the classes defined in the analysis model and the implemented classes.

Results

Designing a system using Sociable classes allows the classes in the analysis model to be implemented
directly without any changes. The lines in the analysis model which represent associations between
objects of the class are implemented by instantiations of the required type of association,

It was shown in section 3.6 that current design methods do not provide a good correlation between
the analysis model and the implemented system. Following such methods has one of the following
results.

1. "The base classes have additional auributes and methods because the client-server relationship
has been used (o implement conceptual associations between objects.

2. Subclasses of the classcs in the analysis model are defined to add the extra attributes needed
to implement conceptual associations between objects. These subclasses cannot have the same
name as the classes in the analysis model,

3. Relation classes are added (o store the information. The implemented classes are identical to
those in the analysis model. The objects of these classes have no knowledge of any associations.

104

The use of the database or OOLog technique results in extra relation classes and modified class
definitions. The implemented classes do not correlate with those in the analysis model.

Hierarchy combination utilises two hierarchies of classes. The base classes would be direct imple-
mentations of the classes in the analysis models. The extension hierarchy would contain the additional
code required to implement associations, The base classes would be readily understood.

The DSM system is designed o allow classes to be implemented directly from the analysis model.
The code required Lo access associations is automatically generated and added to the class definitions
when the DEFINE <name> RELATION construct is used.

The use of role type allows some of the classes Lo be implemented directly [rom the analysis models.
Other classes however require the addition of attributes and methods so do not correlate (o the analysis
models,

Conclusion

The Sociable class design technique and the DSM system allow a direct correlation between the classes
in the analysis model and the implemented classes. These two methods result in increased understand-
ability of the classes when compared with the other methods,

5.3.3 Standardisation

The standardisation of the representation of conceptual associations is also taken into account. The
number of ways which can be used Lo implement associations affects the understandability of the sys-
tem. A standard method of implementing associations ensures that systems are simpler and easier (o
understand.

Results
The Sociable class design method provides standard representations for all types of conceptual asso-
ciations as library classes.

Currently, three distinet methods of implementation are used. Variations also occur within the three
methods. The implementation of conceptual associations is not standard at present.

The object oriented database, OOLog, hicrarchy combination, role types and the DSM system all
provide a standard representation for conceptual associations.

Conclusion

Standardisation could be improved by using the Sociable class design method, the object oriented data-
base method, the OOLog method, hicrarchy combination, role types or the DSM system. However,
these standards are all different and are not compatible with cach other.

5.3.4 Reliability
Two main aspects of reliability are considered. They are:

1. Type checking

In section 3.4, it was stated that type checking is considered an essential requirement for the
production of reusable code. This is, therefore, a major consideration when comparing the design
choices. All the languages investigaled during the research provide static type checking. The

105

investigation into this criterion concentrates on establishing any requirements for dynamic type
checking which affects the speed of execution of the system.

B

Testing requirements

This criterion is assessed by comparing the nature and number of tests that need to be carried out
when using the different design methods. The aspect of design being considered is concerned
with the representation ol conceptual associations. The classes which are to be associated are
assumed to be available as pre-lested units,

Results
1. Type checking

Consideration of type checking requirements suggests that the only design technique which re-
quires dynamic type checking is the Sociable class technique. Dynamic type checking in that
technique is required o retrieve the correct type of association from a heterogencous data store.
The requirement for dynamic type checking reduces the efficiency of the product, that is the im-
plemented system.

2. Testing requircments

The testing requirements for the code written to implement conceptual associations are closcly
related 1o the amount ol information hiding in the design method used. The methods which give
information hiding, that is Sociable class design technique and the DSM system, will require
less testing. Ttis assumed that the underlying constructs have been fully tested. The only testing
required when assembling such sysiems should be (o ensure that each association is declared and
accessed correctly.

The other methods which do not provide information hiding will require more testing. For in-
stance, implementing the association by declaring converse pointers in the classes involved re-
quires the use of inheritance w add subclasses. The subclass must be tested Lo ensure that

e the new code does not conllict with the base class code, for example, (0 ensure that the new
feature names do not correspond with existing feature names.

e the code implementing the association is correct.

Conclusion

Dynamic type checking is required by the Sociable class design technique and may reduce its efficiency.
The testing required when using the DSM system or the Sociable class technique should be less

than when using the other methods,

3.3.5 Design complexity

Several differentmethods of assessing design clficiency or design complexity were identified in chapter
2. None of the methods is accepled as a definitive metric for assessing object oriented software. The
basic principles underlying measurements of enginecring design complexity rely on a combination of
several [actors. These include:

1. the number of parts,

2. the interfaces between the parts,

106

3. the number of types of parts,

These factors can be assessed for object oriented systems so they have been used in this comparison.
Each of these factors is informally assessed by analysing the perceived implementation requirements
of the simple banking application using cach design method. The features of the designs which are
concerned with the implementation of conceptual associations are considered in the assessment. The
following design metric suggested by Pugh [27] is used to formalize the comparison. The following
lormula [27] is used to compare the complexity of the designs.

complexity factor = 3/NpxNt xNi

where Np is the number of parts, Ntis the number of types of parts and Ni is the number of interfaces. It
is suggested by the metrics used in engineering, that simple designs use fewer parts, fewer types of parts
and have smaller interfaces. A lower figure for the complexity factor indicales a less complex design.
This metric is intended to give an indication of design complexity not 1o give a definitive answer.

Results

Table 5.1 gives the results of assessing the different design methods with respect to the number of parts,
size ol interface and the types of parts.

The number of parts in the system includes the class required as the driver or root of the system. It
can be seen that the number of parts varies from 3 10 5. The simple system used is 0o small to show
significant differences. Larger systems would need Lo be developed to show significant difference in
this factor.

Inorder to arrive at a figure for the number of interfaces, some simplifying assumptions were made.

e The classes are all the same size with the same original number of features in the interface. This
number is assumed o be 10,

o When a class is extended by the addition of a pointer o a variable of another class its interface is
assumed (o be extended Lo provide access (o all the features of that class. This doubles the size
ol its interface. The figure used is the maximum size of interface of any one part. The figurc for
the number of interfaces is therelore 10 or 20,

The size of the class interfaces differs between the various design methods. Most of the design
methods resull in an increased class interface. The only methods which do not increase the class in-
terface and can be used with current object oriented languages are the Sociable class technique and
the use of data stores Lo represent the association. The identification of the interface size of the classes
implemented in the DSM system is problematical. The classes as implemented have the same sized
interface as the classes in the analysis model but when they are included in the system the interface is
increased. This increase occurs because the DEFINE <name> RELATION construct automatically adds
the required access [catures Lo the classes involved. The results table, Table 5.1, shows the values for
the interface size of the actual classes not as they appear in the system. Because ol the automatic in-
crease in class interface, the real figures for the design complexity of the system implemented in DSM
are probably rather higher than the figure recorded.

Pure object oriented system designs consist only of classes. The number of types of parts used
in such systems is therelfore one. Systems designed using Sociable classes, altributes in base classes,
autributes in subclasses, data store, OO database or OOLog translation are considered 10 be pure object
oriented systems and o be comprised only of classes. Systems designed using DSM consist of classes
and relations. Systems designed using role types consist of classes and role types. Systems designed

107

Method | No. of parts [max interface size | types of parts | complexity]
Sociable classes 4 10 classes 342
attributes in base classes | 3 20 classes 3.91
altributes in subclasses 5 2() classes 4.64
data store 4 10 classes 342
00 dalabase 4 20 classes 431
OOLog translation 4 20 classes 431
hierarchy combination 5 10 classes + extensions | 4.64
DSM 4 10 classes + relations 4.31
role Lypes 4 20) classes + role types | 5.43

Table 5.1: Design complexity

using hierarchy combination consist of classes and extensions. The last three design techniques all
have two types of parts,

The figures [or the design complexity are given in the last column of table 5.1. These figures give an
approximate measure of complexity only. More and larger systems would necd to be examined fully to
establish the validity of these results. The comparison used above considers the interface provided by
the class. No estimate is made for the number of classes required o support the classes in cach design
method.

Conclusion

The results of this comparison using the complexity factor as a metric suggests that the use of the Soci-
able class technique and the use of data structures (o represent the associations result in the least com-
plex designs.

5.3.6 Extensibility

One of the perceived benefits of using object oriented techniques is that systems arc extensible. This
criterion is included (o ensure that mechanisms aimed at improving traceability and reusability do not
impair extensibility.

Extensibilily is assessed by defining the increase in complexity when a system is extended. The
assessment is based on the extension of the simple banking system described in chapters 3 and 4.

Results

It was shown in section 4.5.2 that extending a system developed using the Sociable class technique
requires the programmer (o declare a new association and if necessary include a new class in the sys-
tem. Subclasses of the classes involved in the association do not need to be declared. The complexity
of the implemented system, as measured by the number of parts involved in the system, increases in
proportion to the complexity of the required system.

It was mentioned in section 3.6 that the use of the client-server relationship to add attributes when
implementing associations can result in deep inheritance hierarchies if a system is extended. These
hierarchies can be difficult to understand and increase the complexity of the system. Similar increases
in complexity would be produced by following the object oriented database and OOLog techniques
because methods to access the new relation objects are added to the classes involved. This requires
declaring a new subclass of the class.

108

| Mcthod | No. ol parts | max interface size | types of parts | complexity |

Sociable classes 6 10 classes 391
atlributes in base classes | 5 30 classes 5.31
altributes in subclasses 8 30 classes 6.21
data store 6 10 classes 391
OO0 databasc 7 30 classes 5.94
OOLog translation 7 30 classes 594
hierarchy combination 8 10 classes + cxtensions | 5.43
DSM 6 10 classes + relations 493
role types 6 30 classes + role types | 7.11

Table 5.2: Design complexity of extended system

The extension ol a system by using dala structures Lo store associations is achieved by the declar-
ation of another structure (o store the newly associated objects. It is not necessary to implement sub-
classes of the classes involved in the association.

Extending a system which implements conceptual associations by combining inheritance hierarch-
ics appears (o require the addition ol one extension for each new association and a new base class 10
the base hierarchy il the association involves objects of classes not already in the system.

Systems implemented using the language DSM are readily extended without adding subclasses to
implement the extra associations. A new relationship is defined. The features o access this relationship
arc automatically added o the classes involved. The classes as stored in the library therefore keep their
original interface size. As mentioned in section 5.3.5, the size of the interface of a DSM class is a
difficult measure (o assess.

The addition ol role types to languages allows for anticipaled changes. This can be demonstrated
by using the simple banking system as an example. The role type ‘owner’ could be used Lo generalize
the association between person and account. This allows new classes of owners, such as companies,
Lo be introduced into the system without changing any of the classes already involved. However, if the
system is extended (o provide the ability [or a person (o own shares, the person class must be extended
1o add the required features. This would require a new subclass and result in an increase in complexity.
The role type ‘owner’ could of course be reused when implementing the Share class.

Table 5.2 shows the design complexity for the banking system extended to include the ability of
customers to own shares. The figures obtained here use the same assumptions that were made when
comparing the original complexity. Again the figures obtained are intended to give a gencral indication
rather than be delinitive values.

Table 5.3 compares the design complexity of the original and extended system. The final column
in the results table shows the percentage increase in complexity after the system is extended.

Conclusion

Examination of the values in the Table 5.3 shows that the increase in complexity is least when using
the Sociable class technique, a data store, hicrarchy combination or the DSM system. The increase in
complexity when extending a system using these methods is 17% or less. The other design methods
result in at least a 30% increase in complexity of the implemented system.

109

Method | original system | extended system [% change |

Sociable classes 342 3.91 14.3
attribules in base classes | 3.91 5.31 35.8
allribules in subclasses 4.64 6.21 338
data store 3.42 3.91 14.3
00 database 4.31 5.94 37.8
OOLog translation 4.31 5.94 37.8
hierarchy combination 4.64 5.43 17.0
DSM 431 493 14.4
role types 543 7.11 30.9

Table 5.3: Comparative design complexity of original and extended system

5.3.7 Product efficiency

This criterion gives an indication of the processing efficiency of the different designs; that is the speed
ol exccution of systems,

Product efficiency is cvaluated by considering the number and nature of the feature calls required
1o add money o a known person’s account. This takes inlo account the type of data structures 1o be
accessed after the person object has been selected. Many of the design methods are theoretical and not
possible with current languages so il is not possible 10 obtain an accurate comparison of all designs.

Results

The use of Sociable classes in the design of systems requires access of a dala structure to locate the
correct association before the account can be retricved and the required [cature accessed. Dynamic
binding is also required. The data structure storing the association is expected to be small because ob-
jects will be involved in a limited number ol associations. As was mentioned in chapter 4, further work
needs o be carried out (o establish the most efficient storage structure. The requirement for dynamic
binding also reduces the elficiency of the system.

Systems implemented by adding atributes to the base classes or subclasses, result in feature calls
such as person.account.addFunds(amount). Such [cature calls involve two levels of redirec-
tion but no searching of data structures. Such methods are currently used for implementation and are
therefore considered sulliciently efficient.

Using cither a data structure (o store the relations or the OOLog method require a search of the
data structure used to represent the association. The efficiency of these design methods depend on
the data structure used and the number of entries stored. This search is in addition to the call o the
required feature of the account object. These methods of implementation would be expected to lower
the clficiency of the system. This reduction in efficiency is not necessarily significant.

The object oriented database method accesses values of the relations via the objects involved. The
access time and hence product efficiency would be expected o be similar to that obtained with the other
methods currently used.

Use ol hicrarchy combination might be expected Lo produce similar results 1o current methods be-
cause alter the hicrarchies are combined the systems should be very similar.,

The DSM system uses Lables of relations but the author of the language claims in [60] that hash
tables provides an clficient mechanism for representing associations.

Role types are a compile time notion so would also be expected to give similar efficiency to current

110

methods.

Conclusion

From this simple comparison, it appears that most of the design methods would produce efficient sys-
tems. A system designed using the Sociable class technique is likely to be the least efficient.

5.3.8 Language support

This criterion is included in order o assess the general applicability of the design technique to current
languages. This is considered important because techniques which rely on new language features can-
not readily be adopted by industrial users. This criterion is a simple measure of whether the method
can or cannot be used in current object oriented languages,

Results

Many of the design methods described in section 5.1 can be employed using current language con-
structs. The Sociable class design technique has been shown to be usable with four current languages.
The provision of generics in a language simplifies the implementation of associations and increases
the reliability of the system bul is not a prerequisite. This technique also requires the ability to assign
a subclass variable contained in a superclass variable to a variable of its own class. Clearly, current
design techniques used in language and database implementations require only current object oricnted
features. The OOLog method can be translated for use in current object oriented programming lan-
guages.

The use of combination of inheritance hicrarchies and role types requires compiler support so can-
not be used with current object oricnted languages.

DSM has the [eatures required o implement conceptual associations built in (o the language. The
concepts used require language support which is not available in other object oriented languages.

Conclusion

The Sociable class design method, current design methods, the OO database method and the OOlog
translation can all be implemented using current object oriented languages. Hierarchy combination,
DSM and role types all require extra support [rom the languages and so cannot be used with current
object oriented languages.

5.4 Discussion

This section discusses the results in the wider context of reusability. The effect of the different design
approaches on the reuse potential of the classes is assessed. Table 5.4 summarises the results of the
comparison.

The form of the results recorded in the table requires explanation. Many of the results are given as
yes or no. This indicates that the [ealures are, or are not, considered o be shown by a design method.
In all cases, a yes answer shows that the design method has a feature which is required for enabling
reuse. In the ‘language’ column, yes signilies that the method can be used with the class based lan-
guages discussed in section 3.4. The results for testing are not included because the only indication
of the testing requirement was found to be the provision of information hiding. The results for design
complexity are copied {rom tables 5.1 - 5.3. A lower number for design complexity indicates a simpler

111

| Method

traccability [info hiding | understandability | standardisation]

Sociable classes yes yes yes yes
altributes in base classes | no no no no
attributes in subclasses no no no no
dala stores yes no no yes
00 database no no no yes
OOLog translation no no no yes
hierarchy combination yes no no yes
DSM yes yes yes yES
role types no no no yes
complexity
Method original | extended | % increase | efficiency | language
Sociable classes 342 391 14.3 ? yes
attributes in base classes | 3.91 5.31 35.8 yes yes
attributes in subclasses 4.64 6.21 33.8 yes yes
data stores 3.42 391 14.3 yes yes
00 database 431 5.94 37.8 yes yes
OOLog translation 4.31 5.94 37.8 ? yes
hierarchy combination 4.64 543 17.0 ? no
DSM 431 4.93 14.4 yes no
role types 543 7.11 30.9 ? no

Table 5.4: Results summary

design. The results for the extension ol a system are the percentage change in complexity from table
5.3. The results of the comparison of product efliciency gives some entries as 7 because this feature
has not been assessed. Design methods which are currently used are assumed (o give an acceptable
level of efficiency. ,

The discussion is based on the premise that reusability of components can be improved by in-
creasing traceability, information hiding, understandability, standardisation, reliability and product ef-
ficiency whilst at the same time decreasing design complexity. It should be remembered that the DSM
system is assumed (o have been modified slightly. The DEFINE <name> RELATION is used only for
the implementation of conceptual associations. A [urther assumption concerns the combination of in-
heritance hicrarchies. The assumption is that the extensions used o implement conceptual associations
are kept in a separate hicrarchy,

The results of this evaluation indicate that the provision of conceptual associations as separate con-
structs demonstrates some ol those characteristics. This can be seen by comparing the results of using
the Sociable class design technique, the addition of data stores (o represent the association, the com-
bination of inheritance hicrarchics or the DSM system which allow conceptual associations to be im-
plemented separately [rom the classes involved in the association. The characleristics shown by cach
of these four methods are: ‘

1. Improved traccability

The implemented classes provide the attributes and behaviour defined in the analysis model. The
classes can therefore be traced rom the analysis through Lo the implementation and identificd as
representations of the same entitics. The associations are visible in the design as distinct con-
structs and are not embedded in the classes. They are also raccable.

112

|
]
{
!

The OOLog technique and object oriented database design method also provide the associations
as separale constructs but both methods require changes to be made in the base classes thus not
improving traccability. The other design methods embed the associations in the classes. The
classes are not readily identifiable as implementations of the classes in the analysis model and
the associations are distribuled between classes.

2. Simpler design
The results show that these methods result in classes with interfaces which match the
corresponding classes in the analysis model. The other methods all result in classes with in-
creased interface size. Classes with smaller interfaces are easier 10 understand resulting in a
simpler system design.
Both the original sysiem and the extended system under consideration are small, The design
complexity of the extended system indicates that the increase in design complexity using the
Sociable class design Lechnique, the addition of data stores (o represent the association, the com-
bination of inheritance hierarchics or the DSM system is less than with the other methods. The
percentage increase in complexity lor each of these methods is 17% or less. It seems likely that
the design complexity figures lor larger systems developed using one of these techniques would
be significantly less than the corresponding figures for systems developed using other methods.
The complexity of the design as measured in this comparison shows that the Sociable class tech-
nique and the use of a data store to represent the association result in the simplest designs. This
is because those techniques use one type of part whereas the other techniques use two types of
parts.

3. Understandability
The improved traceability and reduced design complexity provided by the explicit implementa-
tion of associations results in greater understandability of the classes and the whole system.

Other desired characteristics arc shown by two of the methods. DSM.and Sociable classes both
provide:

1. Increased information hiding
The Sociable class technique encapsulates the knowledge about associations in generic classes.
An instantiation of one of these generic classes encapsulates the knowledge about a specific as-
sociation. The instances of the association are stored with the related objects.
The DSM system automalically generates the code required to access the associations and at-
taches this code (o the relevant classes. The information required to implement associations is
encapsulated within the DEFINE <name> RELATION construct.
The programmer has very little code o write in order 1o provide associations by either of these
two methods. In all the other methods the programmer is responsible for writing all the code to
implement and access each association,

2. Increased standardisation

Both the Sociable class technique and the DSM system provide the basic relationships as pre-
delined constructs. This allows a standard implementation of associations which also contributes
to the understandability of the design.

The use of role types, hierarchy combination, the object oriented database and OOLog methods
all implement associations in a standard way but require the programmer to write all the code.

113

3. Increased reliability
Both the Sociable class technique and the DSM system improve reliability by providing pre-

tested design constructs. The use of these design constructs reduces the amount of code 0 be
writlen and therefore reduces the amount of testing required.

It can be seen from the above discussion, that both the Sociable class design method and the DSM Sys-
tem provide many [eatures which improve traceability and may enhance reusability. However, only the
Sociable class technique has all these features combined with the ability o be implemented in current
objcct oriented languages.

The only factor not yet addressed is the question of product efficiency, The structures used Lo im-
plement the relation construct in the DSM system have been stated by Rumbaugh to give an efficient
system. Thus providing all the factors for increasing the reusability of design components. The effi-
ciency of designs implemented using the Sociable class technique has not been ascertained. This is an
arca for future work.

5.5 Conclusions

The major conclusion drawn {rom this comparison is that the use of the Sociable class design tech-
nique has the polential to enhance the possibilities for reuse. This potential enhancement is achicved
by increased traceability which leads Lo improved information hiding, understandability, reliability and
standardisation of representation of conceptual associations, In addition, the complexily of the designs
is reduced when compared Lo current methods of implementation and the system can be readily ex-
tended Lo provide increased functionality. The increase in functionality includes the addition of fea-
tures which were not anticipated when the system was originally developed. The other methods do not
provide all these features.

The DSM system provides most of the above [eatures but produces a more complex design because
a separate Lype ol part is used to implement the associations and the access features are automatically
added to the interfaces. The DSM system also has the disadvantage that the principles cannot be ap-
plied Lo the current languages without the need for pre-processors or changes in the type systems. Pre-
liminary investigations indicate that the Sociable class technique can be used with a variety of current
languages.

Both the Sociable class design technique and the DSM system allow conceptual associations Lo be
visible in the implementation and do not require the definitions of the classes to be changed when as-
sociations are added. These two methods therefore avoid binding classes together which are involved
in a conceptual association that is relevant because of the application and not because of the intrinsic
properties of the classes. Class implementations written using either of these two techniques are avail-
able [or reuse in a different system. However the use of the relation construct in the DSM system (o
implement both the ‘consists of” relationship and conceplual associations loses some of the informa-
tion about structures. This could be overcome by using instance variables o represent the structure of
objects and relations Lo represent conceptual associations between objects. Both of these methods al-
low unanticipated changes Lo be made in the system’s functionality without a disproportionate increase
in the complexity of the implemented system.,

The object oriented database and OOLog methods do not appear 1o be significantly better than cur-
rent methods. The only benefit is that il one of the methods were adopted there would be a standard
representation of associations. This benefit would also be oblained by using the declaration of sets of
associated objects as the standard mechanism for the implementation of all associations.

114

