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Abstract

This paper describes a hybrid vision system 
which, following initial user interaction, can detect and 
track objects in the visual field, and classify them as 
human and non-human. The system incorporates an active 
contour model for detecting and tracking objects, a method 
of translating the contours into scale-, location- and 
resolution-independent vectors, and an error-
backpropagation feedforward neural network for shape 
classification of these vectors. The network is able to 
generate a confidence value for a given shape, determining 
how ‘human’ and how ‘non-human’ it considers the shape 
to be. This confidence value changes as the object moves 
around, providing a motion signature for an object. 
Previous work has accommodated lateral pedestrian 
movement across the visual field; this paper describes a 
system which accommodates all angles of pedestrian 
movement on the ground plane.

Keywords: Snake, Active contour model, Pedestrian, 
Human, Shape classification, Neural network, Omni-
directional, Axis crossover vector, Ground plane.

1. Introduction

Object classification is a common requirement of 
computer vision and target-based tracking systems. 
Different techniques exist for estimating an object's 
position and location within an image [1, 2, 3], which 
can generally be divided into Marr’s low- and high- level 
categories [4], or combined active vision techniques. Low 
level 'data-based' vision techniques are only able to 
identify the shape of the object. Higher level 'model-based' 
techniques are able to estimate what type of object is 
being tracked from that shape based on apriori model 

information, but this process typically places much 
computational load on the task due to the necessary 
template matching and / or model manipulating stages of 
the technique which, by necessity, have to operate at 
runtime. Similarly, active vision techniques which 
combine both low and high level techniques are subject to 
the same pitfalls, although the process is often less 
computationally intensive due to heuristic information 
gathered from the low level technique which decreases the 
high level process’ search space [3, 2].

In this paper we present a computationally cheap, 
and reasonably accurate technique for detecting and 
tracking moving objects, and for determining whether or 
not those objects are human. The technique involves three 
stages. Firstly an active contour model [5] is used to 
detect and track an object in a sequence of images and to 
obtain, for each frame, the object's shape as a contour. 
Secondly, axis crossover vectors [6] are used to re-
represent the contour as a scale-, location-, resolution- and 
control point rotation-invariant vector. Finally a 
feedforward error backpropagation neural network is used 
to classify the axis crossover vector as 'human' or 'non-
human'.

The particular issue examined in this paper is the 
extent to which the technique described in [7] allows the 
classification of human shapes to be undertaken when the 
motion of the human is in an arbitrary direction with 
respect to the viewer.

2. Detecting and Tracking Moving Objects

In order to detect objects in the visual field, an 
active contour model is employed. Our model is based on 
the Fast Snake model [8] as it was the most suitable for 
the purposes of automated pedestrian detection [9], 
although in theory any active contour model would fit 
into the technique we present.



The video image is preprocessed using a series of 
image convolutions [8, 9] involving motion detection, 
blob removal, edge enhancement, and gradient 
normalisation (Fig. 1). This in turn makes the active 
contour model’s task simpler by reducing potential local 
minima present in the energy space.

 
Figure 1. Preprocessing the image 
improves the performance and accuracy of 
the active contour model. [Left] The video 
image prior to preprocessing. [Right] The 
same image following preprocessing; most 
of the image has been removed with the 
exception of the 2 moving objects and 
slight artefacts around the borders of the 
objects.

Figure 2. An active contour model 
detecting and tracking a pedestrian. The 
active contour is itself operating on 
preprocessed versions of the video 
frames, (Fig. 1), but is shown on the raw 
video frames here for visualisation 
purposes.

The user places an initial contour around an 
object of interest early in the video sequence and the active 
contour model closes in on the object until it relaxes 
around the object (Fig. 2). It does this by minimising a 
predetermined energy function which attracts the snake 
towards areas of interest in the image. Once the active 

contour has minimised its energy and settled in a 
particular position within the image, it uses this position 
as a starting point in the next frame of the video, from 
which it once again minimises its energy to achieve a new 
position in the new frame. Using this iterative approach 
the active contour is able to continue tracking an object 
through a video sequence. The result is a sequence of 
contours which depict the object’s silhouette during the 
video frames (Fig. 3).
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Figure 3. Resultant contours following the 
tracking of a pedestrian through a video 
sequence using an active contour model. 
The frame numbers are shown below each 
frame.

At the end of each frame of the video, the active 
contour is stored as a vector of (x,y) coordinates, one for 
each control point on the contour. These (x,y) coordinates 
are measured in the image’s coordinate system, thus the 
vector not only includes the number and order of control 
points on the contour, but also their location in the 
image, and subsequently the size of the contour.

3. Classifying an Object’s Shape

Active contour models are unable to provide any 
higher level information concerning the class of object 
detected, which is often of use in the domains of 
surveillance and target-based tracking. Consequently, an 
additional stage is needed to analyse the contour’s shape 
and classify the type of object being tracked. As this extra 
task is vector classification, a neural network is an 
appropriate tool for this purpose.

In order to use a neural network to discriminate 
differences in shape, the shapes have to be represented in 
an appropriate manner. Here, an axis crossover vector [6] 
is used to map contours onto fixed-length vectors in such 
a way that the representation is scale-, location-, 
resolution- and control point rotation-invariant. Fig. 4 
shows how the mapping takes place.

Each element of the axis crossover vector is fed 
in as input to a corresponding input neuron (Fig. 5). 
Therefore to use the axis crossover representation it is 



necessary to determine the appropriate number of axes, 
and therefore the length of the representational vector, as 
this dictates the size of the input layer. Previous 
experiments  showed optimal performance for classifying 
human and non-human contours when using 16 axes [6].

Axes distances =
{180,  72,  95,  82, 
    41,  118,  59,  76}

Normalised vector =
{1.00, 0.40, 0.53, 0.46,
     0.23, 0.66, 0.33, 0.42}

F i g u r e  4 .  T h e  a x i s  c r o s s o v e r  
representation. [Left] A contour has 
several axes projected from its centrepoint 
to its edges. [Middle] The distance (in 
pixels) from the centre to the furthest 
edge, along those axes, are stored in a 
vector, which is then normalised. [Right] 
The axis crossover vector depicted as a 
polygon, indicating the shape information 
which is retained in the vector.

‘Human’ ‘Non-human’
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{1.0,   0.40,   0.53,  0.46,   0.23, ... }

Figure 5. The neural network architecture. 
The axis crossover vector feeds into the 
input layer of the neural network. The two 
output units are trained to fire mutually 
exclusively, to indicate that the given 
shape is either ‘human’ or ‘non-human’.

A feedforward neural network with one hidden 
layer of 13 units, found from experimental investigation 
[6], was trained using error backpropagation to classify 
axis crossover vectors as ‘human’ or ‘non-human’, as 

shown in Fig. 5. The network has two outputs which 
were trained to fire mutually exclusively, so that the 
confidence in a classification can be calculated as the 
difference between the two outputs. If only one output 
unit were present, then it becomes difficult to determine 
whether a midrange output  was caused by the contour 
containing both ‘human’ and ‘non-human’ qualities, or by 
it containing neither.

4. Experiments & Results

Previous experiments using the axis crossover 
vector representation showed that, with a training set 
containing only computer generated (CG) images of 
humans and other shapes, a neural network could 
accurately classify previously unseen examples of both 
real and CG objects [7]. All objects in these experiments 
were moving orthogonally to the camera, i.e. from side to 
side, as in Fig. 3.

In addition to correctly classifying unseen 
examples of previously seen object classes (human, horse, 
dog), the network was able to classify a previously unseen 
object class (velociraptor) as being neither very human nor 
very non-human. Prior to classifying the velociraptor 
shapes the network had only experienced one bipedal class 
during training (humans); all non-human classes in the 
training set were of quadrupeds (horses, dogs) or were of 
inanimate objects (trees, cars etc.). It is therefore 
promising that the 16-axis crossover vector could encode 
sufficient shape information that the network could 
segregate different biped classes.

It was interesting to test this same network’s 
capabilities of classifying objects whose motion is at a 
fixed arbitrary direction to the camera, as in for example 
the pedestrian in Fig. 1. To this end, a test set was formed 
which contained unseen examples of both real and CG 
humans and non-humans moving in fixed arbitrary 
directions on the ground plane. This showed, 
unsurprisingly, that the neural network found it 
progressively more difficult to correctly classify objects as 
their direction of motion moved away from that of their 
corresponding object class’ examples in the training set. 
Thus, objects moving directly away from or towards the 
camera, were poorly classified (Fig. 6). Also of note is 
that classification of the unseen velociraptor object class 
was also affected by this phenomenon.
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Figure 6. Neural network classification of 
objects moving in fixed arbitrary directions. 
When the object is moving at 0° it is 
moving from the left side of the image to 
the right (as in Fig. 3); when the object is 
moving at 90° it is facing the camera. Each 
value on the graph is the mean 
classification of 20 different unseen 
examples of the given object class at the 
given angle. A confidence of +1.0 denotes 
maximum confidence that a given shape is 
‘human’; a value of -1.0 denotes maximum 
confidence that a given shape is ‘non-
human’. A value of 0 denotes ambiguity in 
a given object’s shape. Classification is 
maximally inaccurate at 90° and 270°.
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Figure 7. Neural network classification of 
objects moving in fixed arbitrary directions. 
When the object is moving at 0° it is moving 
from the left side of the image to the right 
(as in Fig. 3); when the object is moving at 
90° it is facing the camera. Each value on 
the graph is the mean classification of 20 
different unseen examples of the given 
object class at the given angle. A 
confidence of +1.0 denotes maximum 
confidence that a given shape is ‘human’; a 
value of -1.0 denotes maximum confidence 
that a given shape is ‘non-human’. A value 
of 0 denotes ambiguity in a given object’s 
shape. The network is able to correctly 
classify unseen objects also moving in 
arbitrary directions.

It was therefore necessary to amend the training 
set to include humans and non-humans moving in fixed 



arbitrary directions on the ground plane. A neural network 
containing the same architecture was trained, again using 
only CG images of humans and non-humans. In this 
experiment, however, the objects in the training set were 
moving in all directions along the ground plane. The 
training set contained 600 CG humans, 300 CG dogs, 
300 CG horses, and 200 CG inanimate outdoor objects, 
such as trees and cars, and the network was trained to 
within 5% error. Again, the velociraptor class was 
omitted from the training set in order to test the network’s 
generalisation skills. The test set contained 20 previously 
unseen examples of each of the animate object classes, 
including velociraptors, in each of the 16 directions 
measured (0°, 22.5°, 45°, ..., 337.5°).

Video Sequence (1 pace in duration)
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Figure 8. Neural network classification of 
objects moving in fixed arbitrary directions 
over a time period of one pace of their 
motion. The confidence value is measured 
by subtracting one output unit’s value from 
the other’s. A confidence of +1.0 denotes 
maximum confidence that a given shape is 
‘human’; a value of -1.0 denotes maximum 
confidence that a given shape is ‘non-
human’. A value of 0 denotes ambiguity in 
a given object’s shape. For each object 
shown, two consecutive paces have been 
overlaid to illustrate the cyclical nature of 
the network’s c lassi f icat ion during 
repetitive motion.

As can be seen from Fig. 7, this more 
representative training set results in a more robust 
classification of unseen shapes by the neural network, 
irrespective of the angle of viewing / object motion. Both 

the CG and real human shapes obtained a strong ‘human’ 
classification, whereas the CG dog and CG horse shapes 
obtained a strong ‘non-human’ classification. As with the 
previous experiments the ‘near miss’ bipedal CG 
velociraptor object class obtained a ‘more human than 
non-human’ classification. Nevertheless it is still 
consistently weaker than the CG and real human 
classifications, in all 16 directions.

Fig. 8 shows that, as with previous experiments 
[7], the new network classifies a given object in a cyclical 
fashion when the object travels in a straight line along the 
ground plane. The cycle repeats once with each pace taken, 
and is independent of the object’s direction of motion 
along the ground plane, provided it is in a straight line. 
The graph shows the network’s classifications of 2 
consecutive paces overlaid for a number of objects, each 
object walking in a fixed arbitrary direction. The two 
paces are overlaid on the graph, to show their similarity. 
As with Fig. 7, the network can be seen to classify 
moving human objects differently to moving non-human 
bipeds and quadrupeds.

5. Discussion

This paper details an experimental evaluation on 
the use of active contour models in a video sequence. The 
resulting series of contours can be translated into shape-, 
location-, resolution- and control point rotation-invariant 
vectors. These vectors can in turn be used to train a neural 
network to classify different classes of object shapes.

The neural network architecture from previous 
experiments has been trained using an extended training 
set, containing shapes of each object class viewed from 
arbitrary angles. Consequently, the neural network can 
correctly classify previously unseen objects moving in 
arbitrary directions around the ground plane.

Despite being trained using only computer 
generated shapes, the neural network is able to accurately 
classify real human shapes, as well as unseen CG 
examples of humans, horses and dogs. In addition, when 
presented with CG examples of an entirely new object 
class (velociraptor), the network is able to classify these 
shapes as being neither very ‘human’ nor ‘non-human’, 
without affecting its ability to classify the previously 
experienced object classes.

By combining an active contour model with a 
neural network, the only processing that needs to happen 
in real time is the active contour relaxing its energy, and 
the resulting contour being passed through the (previously 
trained) neural network. Potential applications of this 



technique include target-based tracking scenarios, and other 
vision-based surveillance domains where processing 
overhead demands that only part of the video image be 
processed rather than the entire video image. 
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