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ABSTRACT: The identification of the modal parameters from frequency response functions is a subject that is not new. 

However, the starting point often comes from the equations that govern the dynamic motion. In this paper, a novel approach is 

shown, resulting from an analysis that starts on the dissipated energy per cycle of vibration. For lightly damped systems with 

conveniently spaced modes, it produced quite accurate results in comparison to the direct application of the method of the 

inverse, for the numerical examples shown. It also is a simple technique that can be used to produce quick estimates of the 

modal damping factors. Furthermore, this is also a contribution to further developments on modal analysis and identification 

methods as, up to today, the developed technique has not yet been proposed. 

KEY WORDS: experimental modal analysis (EMA); modal identification; method of the inverse; dissipated energy. 

1 GENERAL GUIDELINES 

Modal identification seeks to obtain the global and local 

characteristics of vibrating structures using experimental data. 

This technique may be used either just to obtain the global 

characteristics (natural frequencies and damping), to directly 

derive a mathematical model of the structure or to improve a 

previously built finite element model through what is 

frequently called updating. The interest of this procedure is 

acknowledged by the scientific community and many authors 

have addressed this problem, mainly since the early seventies 

of the past century [1]. The proposed modal identification 

procedures cover different levels of sophistication and, in 

almost all cases, need the use of special software that may not 

be easy to obtain. 

In the past few years, attention has been more focused on 

Operational Modal Analysis (OMA) rather than in the more 

traditional Experimental Modal Analysis (EMA). Examples of 

later developments in OMA identification methods can be 

found, for instance, in [2-5]. In terms of EMA, later 

publications are more concerned with Engineering 

applications, as can be seen, for instance, in [6-7]. OMA deals 

with operational deflection shapes and many often make use 

of output-only measurements, this meaning that excitation 

loads are unknown. EMA makes use of both input forces and 

output responses in order to determine modal parameters and 

mode shapes. Numerous modal identification algorithms have 

been developed in the past thirty years [8]. However, even if 

in the past recent years not many advances have been seen in 

terms of EMA modal identification methods, there are still a 

few interesting results that can be derived. 

If the objective is the determination of only the global 

modal characteristics, it is possible to use simpler approaches 

producing quick estimates of the desired information. This 

issue is addressed in this paper where a new simple method is 

proposed, based on the energy dissipated per cycle of 

vibration. The proposed methodology showed to be a robust 

estimator provided the systems under analysis are not heavily 

damped and the modes are sufficiently separated so that their 

mutual interference may be assumed as negligible. 

This paper presents the proposed new methodology and 

applies it to numerical examples, showing that it yields 

reasonably accurate results. 

2 THEORETICAL DEVELOPMENT 

2.1 Definitions 

The concept of a complex stiffness in vibration problems with 

viscous or structural (hysteretic) damping is something that 

has been known for decades. Most often the complex stiffness 

is defined as the sum of the stiffness itself ( , real part) and 

the damping coefficient ( , imaginary part): 

         (1) 

To find the real and imaginary parts of the complex 

stiffness, it is easier if the more conventional viscous damping 

model is firstly introduced. The well-known second order 

differential equation of motion - for a single degree of 

freedom system - is given by: 

                  (2) 

where   is the mass,   is the viscous damping coefficient,   

is the stiffness,   is the amplitude of the oscillatory force and 

  is the time variable. When excited by an harmonic force at 

frequency  , it can easily be proven (and most fundamental 

texts on vibration theory show it, for instance [1,9]) that for 

each vibration cycle the system dissipates – through its 

viscous damper – a quantity of energy directly proportional to 

the damping coefficient, the excitation frequency and the 

square of the response amplitude  : 
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       (3) 

where        is the time period of oscillation. However, 

experimental evidence from tests performed on a large variety 

of materials show that the damping due to internal friction 

(material hysteresis) is nearly independent of the forcing 

frequency but still proportional to the square of the response 

amplitude [10], i. e.: 

           (4) 

where   is a constant. Therefore, from equations (3) and (4) 

the equivalent damping coefficient is: 

   
 

  
 

 

 
 (5) 

In such conditions, equation (2) can be re-written as: 

     
 

 
            (6) 

As        for a harmonic vibration, the previous equation 

may be re-written as: 

                   (7) 

where 

       (8) 

is known as the hysteretic damping ratio or damping loss 

factor. The quantity: 

            (9) 

is the same complex stiffness as initially described in 

equation (1).  

The latter formulation (7) leads to the conclusion that the 

dissipated energy per cycle of vibration is independent of the 

forcing frequency. 

2.2 A novel approach to the determination of the hysteretic 

damping coefficient in SDOF systems 

The experimental measurement of the hysteretic damping 

factor can be carried out by means of cyclic force-

displacement tests in the elastic domain [11]. Following the 

reasoning presented earlier, it is easy to show that the energy 

dissipated per cycle of oscillation is given by the ellipse area 

of the force-displacement plot during a complete cycle. 

Rearrangement of equations (3), (5) and (8) lead to: 

            (10) 

This area, the integral of the force along the displacement, 

corresponds to the non-conservative work done per cycle. In 

other words, in a plot of force vs displacement at a given 

frequency, damping can be seen as a mechanism that 

introduces a lag between force and displacement and shows 

up as an elongated ellipsis [10,11]. In fact, from [12], it can 

also be shown that the dissipated energy can be written as: 

               (11) 

where θ is the phase angle between the force and the 

displacement response. From equations (10) and (11) a 

relationship between the hysteretic damping coefficient, the 

displacement, the force and the phase angle can be established 

as: 

   
 

 
        (12) 

For harmonic motion, the ratio between the force and the 

displacement is a transfer function often referred to as 

Dynamic Stiffness [1]. Usually, in experimentation, one 

measures the Receptance instead, which is the inverse of the 

Dynamic Stiffness: 

      
    

    
 (13) 

The quantities      and      are the complex response 

and force with amplitudes      and       respectively, both 

a function of the angular frequency  . If the amplitude of the 

receptance is represented by     , then equation (12) can be 

re-written more conveniently as:  

               (14) 

This equation suggests that the hysteretic damping 

coefficient   can be simply determined from the measurement 

of the amplitude and phase of the receptance. Once the 

stiffness is known, equation (8) allows determining the 

hysteretic damping factor  . 

2.3 Determination of the damping factor from the damping 

coefficient in SDOF systems 

Considering a SDOF system, the receptance (13) may be 

written as [1]: 
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 (15) 

If the method of the inverse is applied, one obtains: 

 
 

    
            (16) 

Where the imaginary part is: 

    
 

    
    (17) 

Equation (17) is an alternative form to the equation (14) 

presented in this paper and will be used for comparison 

purposes. This equation has been represented in [9] on the 

Argand plane and a least-squares best fit of a straight line was 

suggested to be constructed through the data points in order to 

estimate the damping parameter from the interception of the 

line with the imaginary axis. 

Consider, now, the real part of equation (16): 

    
 

    
        (18) 

This equation (18) is a straight line of the real part of the 

dynamic stiffness with respect to   , with a negative slope   

and the interception of the line with the  -axis leads to  . 

Once these values are known, the damping factor can finally 

be determined from (8) – whether the damping coefficient has 

been determined by (14) or (17) - and the natural frequency 

can be estimated from: 

     
 

 
 

(19) 

 

2.4 Generalisation to MDOF systems 

The previous approach is not very useful since most real 

systems are MDOF, so it must be generalised. It is well 

known that, in an MDOF, the overall receptance is the sum of 

each individual DOF contribution: 

       
     

      
     

 

 (20) 

where     is the modal constant for mode   and each mode 

has its own modal stiffness   , modal mass    and modal 

damping coefficient   . 

A few simplifications are now convenient. First, consider 

that the numerator on equation (20) can be assumed as a real 

quantity. At the vicinity of a resonance, equation (20) is 

mostly dominated by the corresponding mode and is, 

approximately: 

       
    

      
     

     (21) 

in which     is a complex constant that takes into 

consideration the influence of all the other modes at the 

vicinity of mode  . Also, consider that the modes are 

sufficiently spaced and that the receptance is available at 

points that are far away from nodal lines. In such a case, the 

influence from other modes is small when compared to the 

resonant mode and the following approximation can be made: 

       
    

      
     

 (22) 

Equation (22) resembles the equation of a SDOF with a real 

modal constant. 

If the method of the inverse is, again, applied, and because 

the simplification that the modal constant is a real number, 

one obtains: 

 
 

    
 

       

    
  

 

    
 (23) 

where the real part is given by: 

    
 

    
  

  

    
   

  

    
 (24) 

The natural frequency can now be determined in a similar 

away as with (19) and is independent of the modal constant: 

     
         

         
  

  

  
 (25) 

Thus, as long as the modes are sufficiently spaced in 

frequency and the modal constant is real (or its imaginary part 

is small in comparison to its real counterpart), this method 

suggests that the natural frequencies can be determined with a 

reasonable degree of accuracy. 

For the determination of the damping coefficient, the 

reasoning is similar. Again, it is assumed that an MDOF can 

be described as the sum of the contribution from several 

independent SDOFs. In such a case, and taking into 

consideration (11), the overall dissipated energy at each 

frequency   is: 

 

                    

 

                      

 

 

(26) 

For lightly damped SDOF systems, the phase      has a 

value close to zero before the resonance and 180° after the 

resonance. In any of these cases,            . However, at 
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the resonant frequency the phase       switches from 0° to 

180° assuming values close to 90°, which means that, at the 

resonant frequency,             . In other words, near a 

natural frequency, the dissipated energy (26) assumes a form 

that resembles the one of a SODF: 

 
        

                        
(27) 

in which   is a constant that takes into consideration the 

energy that is being dissipated by other modes. For lightly 

damped systems             and   can be assumed close 

to zero. 

This behaviour of           also suggests that equation 

(14) can be used to determine the damping coefficient with a 

certain degree of accuracy in the vicinity of a mode, at least 

for lightly damped systems and as long as the mode shapes are 

sufficiently spaced. 

3 NUMERICAL EXAMPLES 

3.1 Numerical Setup 

The performance of equation (14) was compared to equation 

(17). For a matter of simplicity, these methods are going to be 

referred as method of the “slope” and method of the 

“intersection” throughout this paper, respectively. In both 

cases, the modal hysteretic damping factors were determined 

using (8). The modal stiffness and modal mass were estimated 

from a least-squares best fit from equation (24), in which the 

stiffness parameter is estimated from the interception of the 

line with the imaginary axis and the modal parameter is 

estimated from the slope of the line. 

A set of different numerical examples were built using 

equation (20), but covering different scenarios. The different 

cases are described in table 1: 

 Case 1 is a SDOF with real modal constant 

 Case 2 is a 2DOF with real modal constants 

 Case 3 is a 2DOF with complex modal constants and a 

heavily damped mode 

In the following sections, the results for the identification of 

the hysteretic damping factors are going to be discussed. In 

particular, four types of pictures are going to be analysed: 

 Plot of the amplitude of the receptance vs frequency 

 Plot of        vs the amplitude of the receptance 

(equation (14)) 

 Plot of the imaginary part vs the real part of the the 

dynamic stiffness 

 

Table 1: Modal properties used in the numerical examples. 

Case 

Mode 1 Mode 2 

Modal 

Constant 1         

Modal 

Constant 2         

Real Imag Real Imag 

1 10e3  20 0.05 - - 50 0.01 

2 10e3  20 0.05 -5e3 -5e3 50 0.01 

3 10e3 10e3 20 0.5 -5e3 -5e3 50 0.01 

 

3.2 Case 1 – SDOF with real modal constant 

 

Figure 1: Numerical results of an SDOF with a real modal 

constant -        and       . 

 

The results for the numerical example of an SDOF with a real 

modal constant are presented in figure 1. First of all, it can be 

observed that the plot of           vs the amplitude of the 

receptance (top right plot) is a straight line intersecting the y-

axis at the origin. This suggests that the hysteretic damping 

coefficient   in equation (14) actually is the slope of this line, 

which can be estimated constructing a least-squares best fit 

through the data points. The hysteretic damping factor is then 

determined from (8). 

For this numerical example, both the “slope” and 

“intersection” methods produced exact solutions, although the 

method of the “intersection” looks to be slightly sensitive to 

numerical instability. 

3.3 Case 2 – 2DOF with real modal constants 

For a 2 DOF system with real modal constants, the results 

presented in figure 2 show that it is not possible to make the 

identification of the modal parameters using the whole 

frequency span at the same time as it was for a SDOF. This 

problem is not new and has been circumvented in many other 

methods by zooming in around the natural frequencies’ 

bandwidth. However, one interesting feature of the method of 

the “slope” is that the two modes are visible on the upper right 

corner plot. This is due to the modal constants having 

opposing signals and, as a consequence, the slopes have 

opposing signals as well. 

Figures 3 and 4 are close-ups at 20Hz and 50Hz, the two 

resonances respectively. In these two cases the hysteretic 

damping factor and natural frequency are determined, again, 

with a very high degree of accuracy (<1% error), regardless of 

the method used. 
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It is important to notice, however, that a different number of 

points was selected for the modal identification from 

identification in figures 3 to figure 4. One of the reasons is 

that the bottom-left corner plot in figure 4 is not “as linear” as 

the corresponding one in figure 3. Also, the top-right corner 

plot in figure 4 is not “as sharp” as the corresponding one in 

figure 3. This is because of the influence of the modes in each 

other. Because of this lack of sharpness in the “slope” method, 

the identification was carried out centred at the natural 

frequency (same number of data points to the left and to the 

right). These suggest that the method of the “slope” is more 

sensitive to the experience of the user than the method of the 

“intersection”, as the latter one does not need to be centred at 

the natural frequency. 

 

 

 

Figure 2: Numerical results of an MDOF with real modal 

constants -        ,        ,         and        . 

 

 

Figure 3: Numerical results of an MDOF with real modal 

constants, close to the 1st resonance -         and    
    .  

 
 

Figure 4: Numerical results of an MDOF with real modal 

constants, close to the 2nd resonance -         and 

       . 
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3.4 Case 3 – 2DOF with complex modal constants and a 

heavily damped mode 

One of the problems associated to many of the modal 

identification methods – and the one presented herein is not 

exempt from this – is that they are mostly effective for lightly 

damped systems. In this section, an MDOF with complex 

modal constants and a heavily damped mode (mode 1 at 20Hz 

with a hysteretic damping factor 10x greater than in the 

previous sections) is discussed. Figures Erro! A origem da 

referência não foi encontrada. and Erro! A origem da 

referência não foi encontrada. are close-ups at 20Hz and 

50Hz, the two resonances respectively. Again, the method of 

the “slope” produced much better results (10% error) than the 

method of the “intersection” (93% error). The error was even 

smaller than the one obtained for the estimate of the 1st 

mode’s natural frequency (15% error), which typically is the 

most accurate quantity to determine. 

 

4 CONCLUSIONS 

A novel method for the identification of the modal damping 

factor from FRFs was presented. It is based on the dissipated 

energy per vibration cycle and on the well-known method of 

the inverse. For lightly damped systems with conveniently 

spaced modes, it allows determining the modal damping 

factors in a simple way from the receptance FRFs and with a 

reasonable degree of accuracy. Due to lack of a better term, it 

was called method of the “slope” within the context of this 

paper. 

In comparison to the traditional method of the inverse, in 

which the damping coefficient is determined from the 

imaginary part of the dynamic stiffness (herein called method 

of the “intersection”), the method of the “slope” seemed to be 

slightly sturdier to numerical instability. Also, this method 

seemed to be much less sensitive to the modal constants, 

especially when these are complex quantities with large 

imaginary parts. Both methods work better for lightly damped 

systems, although the method of the “slope”, again, seemed to 

perform better with more heavily damped systems. However, 

in terms of limitations, the method of the “slope” is more 

sensitive to the experience of the user than the method of the 

“intersection”, because the number of points chosen to the 

right or to the left may have a strong influence on the quality 

of the identification, whereas for the method of the 

“intersection” this is not as relevant. 

 

 

 

Figure 5: Numerical results of an MDOF with complex modal 

constants, close to the 1st  resonance (heavily damped) - 

        and       . 

 

Figure 6: Numerical results of an MDOF with complex modal 

constants, close to the 2nd resonance -         and 

       . 
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