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Abstract 
 
In a cryptosystem, a cipher's security is directly dependent on a key-schedule or Key-
Scheduling Algorithm (KSA) or that is used for both encryption and decryption. The random-
number-based KSA adds another layer of security and prevents hackers from performing 
cryptanalysis. Several previous studies have investigated the strength of a cipher's encryption 
process. The strength evaluation of the key scheduling process has received less attention, that 
can lead to weaknesses in the overall encryption process. This paper proposes a new framework 
consisting of cryptographic strength evaluation criteria for Random Number Generators (RNG) 
based KSAs. Our framework (CryptoQNRG) evaluates different key-schedules based on 
pseudorandom and quantum random number generators with a set of tests. There are test suites 
that compare the strength of KSAs for different block ciphers. To the best of our knowledge 
this is the first time that a framework is built to compare the strength of KSAs incorporating 
RNGs and various block ciphers. CryptoQNRG comprises of four tests: Frequency, 
Bit_Correlation, Bit_Interfold, and Bit_Entropy. The tests are used to explore cryptographic 
properties such as unpredictability, balance of bits, correlation, confusion, and diffusion in the 
subkeys generated by the RNG based KSA.  We have evaluated the most common KSAs with 
different block ciphers and a significant outcome of the proposed framework is the distinction 
between strong and weak RNG-based KSAs. 
 
Keywords: Pseudo Random Number Generator, Quantum Random Number Generator, Block 
Cipher, Key Schedule Algorithms 
 

1. Introduction 
 
In cryptography, encryption methods[1] and ciphers are used to ensure data security and 
prevent unauthorized access. An encryption algorithm combines plaintext with key information 
to generate a ciphertext, making the plaintext difficult for hackers to decipher. This process of 
encryption with a secret key can lead to a secure cipher by combining nonlinearity, propagation 
criteria, correlation, algebraic immunity and randomness [2][3].  
 

As part of an encryption process, the strength of the Key-Schedule Algorithm (KSA) 
directly impacts the security of an encryption algorithm. The KSA expands the secret key and 
generates subkeys according to the number of rounds of encryption required for a particular 
cryptographic algorithm. This generation and expansion of the secret key into multiple subkeys 
increases the robustness and complexity of the KSA. One of the potential flaws in this approach 



is the vulnerability in the key schedule expansion, which is characterised by the algorithm's 
resistance to cryptoanalysis attacks [4][5][6].  

 
Researchers have demonstrated that logical gates such as AND, NAND, XOR, and OR, 

as well as Boolean functions with symmetrical properties, can be used to achieve security in 
the key expansion [7]. In addition to that, quantum data generation by generating quantum 
random number bits can increase security. 
 

The best RNGs generate more random and unpredictable data to make keys resilient 
against a cryptanalysis attack. Randomness is generated using an entropy source, which can be 
either pseudo or quantum-based [8]. Pseudorandom number sequences are associated with an 
initial input seed, whereas the Quantum Random Number Generator (QRNG) [9] ensures high 
entropy from a quantum origin such as light or thermal noise for example.  

 
There are various studies related to QRNGs focusing on different features. Lunghi et 

al. [10] proposed a protocol for self-testing quantum random number generation, in which the 
user can monitor the entropy in real time. Hesong Xu et al.[11] proposed a QRNG using single-
photon avalanche diodes (SPADs) that produces a quantum random number without any post-
processing. Biasing is one of the critical features that researchers consider when generating a 
quantum number. R.C.Pooser et al. [12] used a tapered amplifier that consists of optical 
semiconductor devices and an array of random number registration techniques to create 
quantum-based random numbers. A photon arrival time selectively based high-quality bias-
free QRNG was introduced by Jian-min Wang et al.[13].  

 
Another aspect of quantum processes is the speed at which random numbers can be 

generated. Yu-Huai Li et al. [14] proposed quantum random number generation with an 
uncharacterized laser and sunlight that generates random numbers at 1 Mbps. Abellan et al. 
[15]  proposed an ultra-fast quantum random number generation accelerated phase diffusion in 
a pulsed laser diode observing 43 Gbps. 

 
Quantis [16], a QRNG developed by IDQ, generates random numbers using  light 

consists of elementary "particles" called photons [17][18]. The device allows live verification 
of its operation and provides a high level of entropy without requiring a post-processing 
function to increase its entropy rate. QRNG [19] is considered superior to traditional random 
number generators, as their source of randomness is invulnerable to environmental 
perturbations such as temperature, voltage, or current and considered highly secure random 
number generators [20] [21].   

 
An improvement in terms of RNG, from pseudo randomness to quantum randomness, 

will benefit a KSA. The focus of this article is to create a framework to evaluate the strength 
of cryptography KSAs generated by RNGs. In particular the concrete contributions of this work 
are: 
• Formulation of a test suite to evaluate the strength of cryptography KSAs generated by 

RNGs. This test suite consists of four parts: a bit-frequency test, a bit-correlation test, a 
bit-interfold test, and a bit-entropy test. 

• Applying the proposed criteria in the framework’s test suite to a number of different block 
ciphers’ key-scheduling algorithms. P-value is a measure of the statistical significance of 
a test result calculated by statistical computation. The test is based on statistics and 
provides a P-value and the probability of achieving a pass or fail result. A pass does not 



indicate that the cipher is secure against all attacks, however, a failure suggests that the 
algorithm is highly susceptible to attacks. 

In contrast to existing randomness tests such as CryptRndTest, NIST Random Number 
Generator test, Dieharder battery test, our proposed test suite evaluates the strength of the 
KSA’s subkeys [35], [36], [37], [38]. The tests of our framework are designed to evaluate the 
main properties of a Key-schedule such as unpredictability, balance, confusion, diffusion and 
correlation. Moreover, our proposed work compares two different RNG-based key schedules 
of the same block cipher simultaneously to distinguish their strength. 

 
The organisation of this paper is as follows: section 2 provides information about related 

work; section 3 introduces the structure and evaluation criteria of our framework; section 4 
presents the different RNG-based key-scheduling algorithms we use in our tests. The test 
results and analysis are presented in section 5, while in section 6 the conclusion can be found. 
  

2. Related Work 
 
The key generation is a process that creates a key and expands it based on logical 

operations to encrypt plain text. The strength of the KSA [7] can be evaluated on the different 
properties of the key. In 2019, Hakim and Nusrom [22] proposed a new algorithm for 
scheduling subkeys in the L-block cipher, as the Niaz correlation test concluded that the 
LBlock’s KSA generates keys with a high correlation. Kareem and Rahma [23] proposed a 
novel method for modifying the Twofish algorithm by implementing multi-level keys in the 
KSA to control the dynamic block bit sizes and multi-state tables. Using these keys allows for 
a greater complexity in the algorithm while incurring a relatively small amount of additional 
computational time. Sulaiman et al.  [24] proposed an enhancement of Rijndael’s KSA [35]. 
The analysis conducted by Sulaiman addresses the algorithm’s shortcomings and optimises the 
KSA in terms of frequency and Strict Avalanche Criteria. Huang et. al. [25] modified AES’s 
KSA by transposing its subkey matrix. According to the authors, the new KSA is immune to 
SQUARE, meet-in-the-middle, and related-key differential type attacks. Shahzadi et al. [26] 
proposed that 2D Chaotic maps enhance the strength of the generated keys in the KSA of RC5 
algorithm, making it difficult for hackers to decrypt the data. Their KSA work targets resource-
constrained environments and analyses the security mechanism for specific applications of 
critical clinical images.  

 
The security of the key generation process starts with the generation of bits based on a 

random number. Sahmoud et al. [27] proposed generating distinct subkeys from the AES real 
key using a Pseudo-Random-Number-Generator (PRNG) and encrypting the block with each 
subkey of KSA. Their research focused on the two techniques: first, preventing predictions of 
obtaining the sub-key from an available one, and second, presenting an initialisation method to 
speed up sub-key generation. Maram et al. [28] also used a PRNG and proposed a dynamic 
key-dependent S-box in KSA that achieved a better Avalanche effect with a cryptography 
algorithm.  

 
Rahul Saha et al. [29] took a different approach, proposing a Symmetric Random 

Function Generator (SRFG) as a cryptographic function generating randomness in the KSA of 
AES. The results indicate that their proposed work has a threefold improvement in terms of 
confusion property and avalanche effect over the original AES. In another study [30], the 
FORTIS algorithm developed by Vuppala et al. [22] for generating sub-keys of KSA was 
implemented on an FPGA and the authors analysed the algorithm’s resistance to a side power 
channel attack. Gaetan Leurent et. al. [31] presented a new representation for the AES’s KSA 



that efficiently combined the information from the first sub-key and the last sub-key to 
reconstruct the master key. Lauren et. al. [32] discussed the security properties of AES’s KSA 
and its vulnerability to published attacks. Also, based on the information principle introduced 
by Claude Shannon, they proposed a faster and more secure KSA for generating subkeys in an 
AES cipher.  

 
Afzal et al. [33] have recently published work that is closely related to our research. 

They proposed a Key-Schedule Evaluation Criterion (KSEC) to evaluate the cryptographic 
strength of subkeys of different KSA and establish  a distinction between weak and strong keys 
using four statistical [34] tests.  
 

They proposed a test suite consisting of a frequency test to analyse the balance of 0 and 1 
bits, Bit Independence tests for confusion and diffusion property, Bitwise Uncorrelation tests 
for correlation among subkeys, and High/low-density key tests for testing randomness of the 
subkeys. Their test suite compares the strength of KSA of different block ciphers. To the best 
of our knowledge this is the first time that a framework is built to compare the strength of KSA 
based on RNGs and various block ciphers. 
 

3. The CryptoQNRG framework 
 
A KSA generates subkeys based on the input of the user-defined key. A RNG-based KSA adds 
another layer of security to the subkeys. CryptoQNRG has a series of test criteria in order to 
evaluate the strength of an RNG-based KSA. 

 
Figure 1 illustrates an example of a basic scenario that we considered in our research. 

In this scenario personal data are stored on an internet server (cloud or a data center) so that 
they can be easily accessible from anywhere.  

 

 
Figure 1 Basic scenario of a secure communication 



The requirement is that the files must be encrypted before being sent over the network 
to make them secure, and when the user downloads them, they can be decrypted locally. 
Random Number Generator (RNG) plays a significant role as the KSA key comprises the bits 
of random numbers generated by an RNG to encrypt the contents. 

 
Figure 2 shows the block diagram of CryptoQNRG for evaluating the strength of RNG-

based KSA. The two keys, 𝐾𝐾1 and 𝐾𝐾2, are subkeys of individual KSAs generated using two 
different RNGs. The 𝐾𝐾1 and 𝐾𝐾2, are then passed to the proposed Key Schedule Evaluation 
Criterion – 𝐾𝐾𝐾𝐾𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) and tested for the cryptographic properties. The criterion 
includes four statistical tests. The first test, Frequency test 𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2), calculates the frequency 
of 0’s and 1’s and checks how balanced their distribution is. The second test, Bit_Correlation 
𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) test, measures correlation, whereas, Bit_Interfold 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2), the third test, 
checks for the confusion and diffusion properties. The last test is called Bit_Entropy 
𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) test and examines the unpredictability of the bit stream generation. Based on the 
evaluation of each test, the strength of KSA is considered.  The strength of KSA of 𝐾𝐾1 and 𝐾𝐾2 
is strong if 𝐾𝐾1 and 𝐾𝐾2 pass all the tests of the 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2); otherwise, the KSA is weak. 
The proposed criterion, CryptoQNRG, which also compares 𝐾𝐾1 and 𝐾𝐾2 with the Bit_Entropy 
test. 
 
The strength of KSA (STKSA) and difference of KSA (DFKSA) are defined as follows: 

STKSA = �Strong,   𝑖𝑖𝑖𝑖 (𝐾𝐾1,𝐾𝐾2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2)
Weak,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

DFKSA = �𝐾𝐾1 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐾𝐾2,   𝑖𝑖𝑖𝑖  𝐾𝐾1 >  𝐾𝐾2 𝑖𝑖𝑖𝑖 𝐵𝐵𝐵𝐵𝐵𝐵 (𝐾𝐾1,𝐾𝐾2) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾2,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

 

 

Figure 2 Block diagram of CryptoQNRG 

 



We use the following notation in the equations below: 
 𝐾𝐾𝐾𝐾𝐾𝐾 ... user-defined key 
 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ... the bitstring generated by RNG i, with 𝑖𝑖 ∈ {1,2} 
  𝐾𝐾𝑖𝑖 ... the subkey of length 𝐿𝐿, obtained with the KSA based on RNG i using multiple 

          iterations (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), with 𝑖𝑖 ∈ {1,2}: 

𝐾𝐾𝑖𝑖  =  𝐾𝐾𝐾𝐾𝐾𝐾(𝐾𝐾𝐾𝐾𝐾𝐾, 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝐿𝐿) 

 𝐾𝐾𝑖𝑖,𝑗𝑗 ... the j-th bit of subkey 𝐾𝐾𝑖𝑖: 1 ≤ 𝑗𝑗 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)  for 𝑖𝑖 ∈ {1,2} 
 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖) ... number of bits in 𝐾𝐾𝑖𝑖 , with 𝑖𝑖 ∈ {1,2} 

                 (note that for all keys 𝐾𝐾𝑖𝑖 the length 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
 
a. Frequency Test – 𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2) 

 
The first test to be performed is the frequency test which checks that the number of ones 

and zeroes in a sequence are the same in order to avoid biasing in the 𝐾𝐾𝑖𝑖. The test measures the 
distribution of bits in the RNG-based key-schedule algorithms. The sequence is a set of secret 
subkeys of different block ciphers. A subkey that fails the frequency test is considered weak as 
it fails the fundamental requirement of randomness, and there is no need to investigate other 
weaknesses based on the remaining tests. The 𝐾𝐾1 and 𝐾𝐾2 are balanced if it satisfies the key bits 
as; 

 

𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2)  =  ∀𝐾𝐾𝑖𝑖  ∈ {𝐾𝐾1,𝐾𝐾2}.   � � 𝐾𝐾𝑖𝑖,𝑗𝑗
𝐾𝐾𝑖𝑖,𝑗𝑗∈ 𝐾𝐾𝑖𝑖 ∧ 𝐾𝐾𝑖𝑖,𝑗𝑗 = 0

� == � � 𝐾𝐾𝑖𝑖,𝑗𝑗
𝐾𝐾𝑖𝑖,𝑗𝑗∈ 𝐾𝐾𝑖𝑖 ∧ 𝐾𝐾𝑖𝑖,𝑗𝑗 = 1

� ==
𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)

2
 

 
                      1 

where, 𝐾𝐾𝑖𝑖 is the key obtained with the KSA based on RNG (KSARNG i) with 𝑖𝑖 ∈  {1,2} 
 
b. Bit_Correlation Test – 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) 

 
The second test is the Bit- Correlation test which measures the correlation of bits in the 

𝐾𝐾𝐵𝐵. This evaluation is divided into two parts, the Rogers-Tanimoto distance measure 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) 
and the Pearson’s Correlation 𝑟𝑟𝐾𝐾1,𝐾𝐾2. 
 
The first part computes the dissimilarity index between the two different RNG key-schedules 
with the Rogers-Tanimoto distance measure 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) [35]: 
 

𝑅𝑅(𝐾𝐾1,𝐾𝐾2) =
𝑇𝑇

𝐶𝐶11 + 𝐶𝐶00 + 𝑇𝑇
 2 

 
where, 𝐶𝐶𝑝𝑝𝑝𝑝 is the number of corresponding pairs of elements in 𝐾𝐾1 and 𝐾𝐾2 respectively equal 
to p and q.  
and 𝑇𝑇 = 2(𝐶𝐶10 + 𝐶𝐶01) 
 
The second part calculates the Pearson’s Correlation 𝑟𝑟𝐾𝐾1,𝐾𝐾2 [36]. Based on that we test whether 
the key schedules 𝐾𝐾1, 𝐾𝐾2 are independent (null hypothesis 𝐻𝐻0) or dependent (alternative 
hypothesis 𝐻𝐻𝐴𝐴).  
 
The Pearson’s Correlation 𝑟𝑟𝐾𝐾1,𝐾𝐾2  will be calculated as follows: 



 

𝑟𝑟𝐾𝐾1,𝐾𝐾2 =
∑ �𝐾𝐾1,𝑗𝑗 − 𝐾𝐾1�����𝐾𝐾2,𝑗𝑗 − 𝐾𝐾2����
𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)
𝑗𝑗=1

�∑ �𝐾𝐾1,𝑗𝑗 − 𝐾𝐾1����
𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)
𝑗𝑗=1 �∑ �𝐾𝐾2,𝑗𝑗 − 𝐾𝐾2����

𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)
𝑗𝑗=1

 3 

 
 
where 𝐾𝐾�𝑖𝑖 is the mean value of 𝐾𝐾𝑖𝑖,𝑗𝑗 with j = 1 … 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖). 
 
Performing the Hypothesis Test based on the P-value generated by 𝑟𝑟𝐾𝐾1,𝐾𝐾2: 

• Null hypothesis 𝐻𝐻0:  𝐾𝐾1 and 𝐾𝐾2 are dependent on each other 
 

𝐻𝐻0 = �𝑟𝑟𝐾𝐾1,𝐾𝐾2 ≤ 0.1� 4 

 
• Alternative hypothesis HA:  𝐾𝐾1 and 𝐾𝐾2  are independent of each other 
 

𝐻𝐻𝐴𝐴 = �𝑟𝑟𝐾𝐾1,𝐾𝐾2 > 0.1� 5 

 
The Bit_Correlation Test 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) combines the two parts and is calculated as follows: 
 
 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐻𝐻0  ∧  ( 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) ≤ 0.5 )
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  6 

 
 
The advantage of using 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) to compute dissimilarity is that it calculates the value of 
symmetric binary attributes. Symmetric binary attributes mean when both attributes have the 
same significance. It means the input to this test; both the bits 0 and 1 are equally significant. 
If 𝐾𝐾1 and 𝐾𝐾2 passes the frequency test, then only 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) is computed. The next part 
𝑟𝑟𝐾𝐾1,𝐾𝐾2  determines the exact extent of the linear corelation between 𝐾𝐾1 and 𝐾𝐾2. Linear 
relationships occur when one variable change proportionally with another.  
 
Therefore, 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) combines the linearity and dissimilarity test for 𝐾𝐾1 and 𝐾𝐾2. The 𝐾𝐾1 and 
𝐾𝐾2 are considered to be acceptable if the dissimilarity index of the 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) is greater than or 
equal to threshold value of 0.5 and it is not linearly dependent on any each other subkey.  
 
c. Bit-Interfold Test – 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) 

 
The third test is the Bit-Interfold test 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2), which measures the confusion and 

diffusion in the 𝐾𝐾1 and 𝐾𝐾2, which is an important cryptographic property. This test is divided 
into two parts. 

The first part is the calculation of the Hamming Distance 𝐻𝐻(𝐾𝐾1,𝐾𝐾2) between the two 
subkeys 𝐾𝐾1and 𝐾𝐾2. The Hamming Distance is a dissimilarity distance [37]. 
𝐻𝐻(𝐾𝐾1,𝐾𝐾2) is calculated as the number of bit positions 𝐾𝐾1,𝑗𝑗 in 𝐾𝐾1 that are different to those 𝐾𝐾2,𝑗𝑗 
in 𝐾𝐾2, divided by the subkey length: 
 

𝐻𝐻(𝐾𝐾1,𝐾𝐾2) =
� �𝐾𝐾1,𝑗𝑗   |   𝐾𝐾1,𝑗𝑗 ≠ 𝐾𝐾2,𝑗𝑗 ∧ �0 ≤ 𝑗𝑗 < 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾1)�� �

𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾1)  7 



 
 
The Inverse Hamming Distance 𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������, which is the inverse of 𝐻𝐻(𝐾𝐾1,𝐾𝐾2), i.e., counting 
the number of equal bit positions, is calculated as follows: 
 

𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������ = 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾1) − 𝐻𝐻(𝐾𝐾1,𝐾𝐾2) 8 

𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������ refers to whether the bits' position will produce the same proportion of confusion 
and diffusion in 𝐾𝐾1 and 𝐾𝐾2. Confusion refers to the process of combining subkey bits with plain 
text make a cipher. Diffusion refers to the change in a plaintext resulting in changing the bit 
order in the subkeys 𝐾𝐾1 and 𝐾𝐾2. To analyse this proportion of similar bits leading to complex 
subkeys in 𝐾𝐾1 and 𝐾𝐾2 that are the basis of confusion and diffusion, the second part Z-Proportion 
[38] statistics hypothesis, is introduced. 
 
In the second part, we use the calculated Inverse Hamming Distance 𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������ to evaluate the 
Z-Proportion [38] statistics hypothesis. The analysis checks whether the confusion and 
diffusion will be similar or not by 𝐾𝐾1 and 𝐾𝐾2. 
 
The Z-proportion test is calculated as follows: 
 

𝑍𝑍(𝐾𝐾1,𝐾𝐾2) =
𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������ − 𝑘𝑘0

�𝑘𝑘0(1−𝑘𝑘0)
𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾1)

 9 

 
where k0 is the hypothesized value of population proportion in the null hypothesis, i.e., it is the 
acceptance threshold of the Hamming Distance. n is the sample size. 
The value of k0 is 0.7 as at least 70 percent of bits differ in 𝐾𝐾1 and 𝐾𝐾2 to justify the bits 
responsible for confusion and diffusion, and KSA is considered strong. 
 
The Null Hypothesis (H0) and Alternative Hypothesis (HA) based on a P-value computed by 
𝑍𝑍(𝐾𝐾1,𝐾𝐾2) are as follows: 

𝐻𝐻0 = Confusion and Diffusion is similar in 𝐾𝐾1 and 𝐾𝐾2. 
 

𝐻𝐻0 = 𝑍𝑍(𝐾𝐾1,𝐾𝐾2) ≤ 0.7 10 

 
𝐻𝐻𝐴𝐴 = Confusion and Diffusion is not similar in 𝐾𝐾1 and 𝐾𝐾2. 
 

𝐻𝐻𝐴𝐴 = 𝑍𝑍(𝐾𝐾1,𝐾𝐾2) > 0.7 11 

 
The Bit_Interfold Test 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) is calculated as: 
 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐻𝐻𝐴𝐴
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝐻𝐻0

 12 

 
The advantage of using 𝐻𝐻(𝐾𝐾1,𝐾𝐾2) to compute dissimilarity is that it calculates the value of the 
exact number of different bits in 𝐾𝐾1 and 𝐾𝐾2. The inversion of 𝐻𝐻(𝐾𝐾1,𝐾𝐾2), i.e., 𝐻𝐻(𝐾𝐾1,𝐾𝐾2)������������ is given 
to the 𝑍𝑍(𝐾𝐾1,𝐾𝐾2) to analyse the proportion of bits responsible for generating similar confusion 



and diffusion by 𝐾𝐾1 and 𝐾𝐾2. 𝐾𝐾1 and 𝐾𝐾2 pass the Bit-Interfold Test if the confusion and diffusion 
with threshold value is not similar in both the KSAs, i.e., the 𝑍𝑍(𝐾𝐾1,𝐾𝐾2) results in Alternative 
Hypothesis (HA). 

 
d. Bit-Entropy Test – 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) 

 
The entropy is a measure of a random variable's uncertainty, and it plays a critical role 

in information theory. The higher the entropy, the greater is the uncertainty in predicting the 
value of an observation. There are various definitions available for entropy. In this work we 
use the Shannon entropy [39] (or entr for short) and the BiEntropy [40] (or BiEn for short).   

The entr calculates the entropy as the amount of information conveyed when 
identifying a random outcome. The BiEn is a weighted average of the Shannon entropies of the 
string and the first n − 2 binary derivatives of the string.  

The entr is advantageous for the larger value of binary strings, whereas the BiEn 
calculation is helpful for the smaller length of binary strings. 

 
The entr 𝐸𝐸(𝐾𝐾𝑖𝑖) of 𝐾𝐾1 and 𝐾𝐾2, that takes values from the set A={𝐾𝐾𝑖𝑖,𝑗𝑗, 𝐾𝐾𝑖𝑖,𝑗𝑗+1,…, 𝐾𝐾𝑖𝑖,𝑛𝑛} with 
probability Pr (X=𝐾𝐾𝑖𝑖) = 𝐾𝐾𝑖𝑖,𝑗𝑗  for 𝑖𝑖 ∈ {1,2} (keys 𝐾𝐾1,𝐾𝐾2) and 𝑗𝑗 ∈ {1,2, … , 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾1)} is defined as: 
 

𝐸𝐸(𝐾𝐾𝑖𝑖) = − � 𝑝𝑝�𝐾𝐾𝑖𝑖,𝑗𝑗�
𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)

𝑗𝑗=1

𝑙𝑙𝑙𝑙𝑙𝑙2�𝐾𝐾𝑖𝑖,𝑗𝑗� 
13 

 
The BiEn 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) is calculated as follows for 𝐾𝐾1 and 𝐾𝐾2 distinctly. The BiEn value 

ranges from 0 to 1. When the disorder is more significant in a binary string, the BiEn value will be 
higher. 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) = (1 (2𝑛𝑛−1 − 1)⁄ ) ���−𝑝𝑝(𝑏𝑏). 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝(𝑏𝑏) − �1 − 𝑝𝑝(𝑏𝑏)�. 𝑙𝑙𝑙𝑙𝑙𝑙2�1 − 𝑝𝑝(𝑏𝑏)��. 2𝑏𝑏
𝑛𝑛−2

𝑏𝑏=0

� 14 

 
where, 𝑝𝑝(𝑏𝑏) is the proportion of 1’s in 𝐾𝐾1 and 𝐾𝐾2. 
 
The Bit-Entropy Test 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) is calculated as follows: 
 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) = �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐸𝐸𝐾𝐾𝑖𝑖 ≥ 1.0 ∧ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) ≥ 0.1)
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 15 

 
The, 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) combines 𝐸𝐸𝐾𝐾𝑖𝑖 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) to test entropy along with relative and disorder 
bits of any length in 𝐾𝐾1 and 𝐾𝐾2.  The 𝐾𝐾1 and 𝐾𝐾2 are considered to be pass if the 𝐸𝐸(𝐾𝐾𝑖𝑖) is greater 
than threshold value of 0.1 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖)is greater than 1.0. 
 
e. RNG-based Key Schedule Evaluation Criterion -  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) 

 
The four tests: Frequency-𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2), Bit_Correlation-𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2), Bit_Interfold-

𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) and Bit_Entropy-𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) together form a test suite – 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) - to 
evaluate the strength of the KSA based on RNG.  
 



An RNG-based key schedule evaluation criterion  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) is illustrated in Table 1. 
The table shows the required data generation for each test and the corresponding value for the 
threshold. The table also summarizes the cryptographic properties and the random keys 
associated with each test. During the test, a key size column specifies the length of the key in 
bits. In the next session, we have described the RNG-based KSA and data generation to 
evaluate their strength. 
 
Table 1 Performed Tests with the RNG-based Key Schedule Evaluation Criterion – 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) with Key Size 𝐿𝐿 = 2𝑁𝑁 with 𝑁𝑁 ∈ {6,7,8} 

Test Type Number 
of Keys 

Cryptographic 
Property Threshold level 

Frequency 
Frequency 500 Balance of 0 and 1 𝑙𝑙𝑙𝑙𝑙𝑙(𝐾𝐾𝑖𝑖)

2
 

Bit_Correlation 
Rogers-Tanimoto 
Pearson Correlation 

500 Correlation 
 

0.5 
0.1 

Bit_Interfold 
Hamming Distance 
Z Proportion 

400 Confusion & Diffusion 0.7 

Bit_Entropy 
BiEntropy: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) 
entr: 𝐸𝐸(𝐾𝐾𝑖𝑖) 

 
50 
500 

 
Unpredictability 

 
0.1 
1.0 

 
In the next session, we have described the RNG-based KSA and data generation to evaluate 
their strength. 
 

4. The RNG-based KSAs tested with CryptoQNRG 
 

We analysed the KSA of the following five Block ciphers from a symmetric 
cryptosystem for an experimental purpose: AES, DES, CAST, Camellia, and GOST. The block 
cipher encrypts data in blocks of specified key size. The KSA key size taken is 128 bits for 
AES, Camellia, and CAST, 64 Bits for DES, and 256 bits for GOST. The sub keys are extended 
using the key expansion function of the KSA. These ciphers are proposed by different authors 
and with different KSA key size. 

 
Rijndael [41] proposed an Advanced Encryption Standard (AES) with three variants 

AES-128, 192 and 256 based on KSA key length sizes of 128, 192, and 256 respectively, all 
of which were approved by National Institute of Standards and Technology(NIST). Endre 
Bangerter et al. [42] were able to recover AES-128 encryption keys in 2010. The second block 
cipher, DES [43] with KSA key size of 64 bits, is based on the Balanced Feistel structure and 
was proposed by IBM. Biham and Shamir [6] proposed a differential cryptanalysis attack on 
complete rounds of DES. 

 
CAST [44], is based on the Feistel Network (FN) with a KSA key size of 40 to 128 bits. 

The fourth cipher, Camellia [45], was developed by Mitsubishi Electric and NTT of Japan, 
based on the FN algorithm with a KSA key size of 128, 192 or 256 bits. The final cipher, 
GOST [46], supports KSA key sizes of 256 bits. Nicolas Courtois et al. [47] proposed a 
Contradiction Immunity to attack the complete 32 - rounds of GOST cipher in 2011. 

 



The RNG-based key-schedule also depends on different entropy based on its generator. 
In our set up we have taken CSPRNG and QRNG to evaluate the cryptographic strength. The 
entropy within the system is used to provide pseudo-random bits for the key-schedule (KSAPK) 
that is required to create the keys. In QRNG, photons are used to generate quantum random 
bits for the key schedule (KSAQK). The bits length of the generated random key depends on the 
key size of the KSA. The subkeys are generated using the cryptol [48] language. The results 
will demonstrate the strength of KSA in terms of cryptographic parameters for each block 
ciphers. 
 
We use the same notation for result analyses: 
 𝐾𝐾1 ... the subkey obtained with the KSA based on QRNG 
 𝐾𝐾2 ... the subkey obtained with the KSA based on PRNG 
To generate subkey 𝐾𝐾1 of size 𝐿𝐿 we take the bitstream of the QRNG and combine it with the 
user-defined key (Key) with multiple KSA iterations (rounds): 

𝐾𝐾1  =  𝐾𝐾𝐾𝐾𝐾𝐾�𝐾𝐾𝐾𝐾𝐾𝐾, 𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝐿𝐿� 

Analogously, to generate subkey 𝐾𝐾2 of size 𝐿𝐿 we take the bitstream of the PRNG and combine 
it with the user-defined key (Key) with multiple KSA iterations (rounds): 

𝐾𝐾2  =  𝐾𝐾𝐾𝐾𝐾𝐾(𝐾𝐾𝐾𝐾𝐾𝐾, 𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝐿𝐿) 

In our experiment we use KSA with 11 iterations (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and subkey-size 𝐿𝐿 = 2𝑁𝑁 with 𝑁𝑁 ∈
{6,7,8}: 

𝐾𝐾1  =  𝐾𝐾𝐾𝐾𝐾𝐾�𝐾𝐾𝐾𝐾𝐾𝐾, 𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 , 11, 2𝑁𝑁�   | 𝑁𝑁 ∈ {6,7,8} 

𝐾𝐾2  =  𝐾𝐾𝐾𝐾𝐾𝐾(𝐾𝐾𝐾𝐾𝐾𝐾, 𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , 11, 2𝑁𝑁)   | 𝑁𝑁 ∈ {6,7,8} 

where the subkey-size 𝐿𝐿 = 2𝑁𝑁 depends on the concrete block cipher length, so for DES we 
have 𝑁𝑁 = 6 (𝐿𝐿 = 26 = 64), for AES, Camellia, and CAST we have 𝑁𝑁 = 7 (𝐿𝐿 = 27 = 128), 
and for GOST we have 𝑁𝑁 = 8 (𝐿𝐿 = 28 =256). 
 
In this study, we use two sets of data, one for the Frequency and Bit_Entropy test, where we 
used random subkeys, and another set for Bit_Correlation and Bit_Interforld, where we used 
the samples of subkeys to test the hypotheses. 

Finally, the key schedule evaluation criterion 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾1,𝐾𝐾2) is used to evaluate the 
cryptographic strength of 𝐾𝐾1 and 𝐾𝐾2. 
 

5. Results and Analysis 
 

The results and data are covered in this section, where the result is drawn on the strength 
of the KSARNG. We have used the following hardware and software to implement the proposed 
framework. 
Hardware: Quantis [49]– A USB-based Quantum random number generators developed by 
IDQ Its general specifications include - Random bit rate 1 : 4 Mbit/s ± 10% (Quantis-USB-
4M), Thermal noise contribution: < 1% (Fraction of random bits arising from thermal noise), 
Storage temperature : - 25 to + 85°C, USB specification 2.0 and Power Via USB port 

Computer - Processor: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz   1.50 GHz, 
RAM: 8.00 GB, System type: 64-bit operating system, x64-based processor 
Software: Java – Netbeans with JDK 1.8.0 
 
 



a. Frequency Test 
 

Table 2 displays the results of the frequency test. The number of bits is balanced in both 
𝐾𝐾1 and 𝐾𝐾2. The numbers of bits in the Quantum 𝐾𝐾1  and Pseudo-based 𝐾𝐾2 key-schedule 
integrate the equal number of 0’s and 1’s. The table shows that the 𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2) of each block 
cipher passes the frequency test. However, the frequency test alone cannot predict the strength 
of the RNG-based key-schedule. 

 
Table 2 Frequency analysis 𝐹𝐹𝐹𝐹(𝐾𝐾1,𝐾𝐾2) of Bits in 𝑲𝑲𝟏𝟏 and 𝑲𝑲𝟐𝟐 Schedule of five block ciphers. 

 AES Camellia CAST DES GOST 
Ratio of Percentage 

of 0:1 in 𝐾𝐾1  50:50 50:50 50:50 50:50 50:50 

Ratio of Percentage 
of 0:1 in 𝐾𝐾2  50:50 50:50 50:50 50:50 50:50 

The Number of 0’s and 1’s is compared in 𝐾𝐾1 and 𝐾𝐾2 schedules of five different block ciphers. The 
statistical analysis shows the bits are balanced in 𝐾𝐾1 and 𝐾𝐾2 for all the ciphers. 

 
b. Bit – Correlation Test 

 
Bit correlation tests the strength in terms of the correlation while taking the Pearson’s 

correlation hypothesis test in conjunction with the Rogers-Tanimoto distance measure. The 
graph in Figure 3 shows the changes in the Rogers-Tanimoto distance measure in 𝐾𝐾1 and 𝐾𝐾2. 
The results show that the dissimilarity index of CAST is the lowest of all, whereas the GOST 
key-schedule shows the highest. The index of DES is slightly less then Camellia and AES with 
0.66589. 

 

 
Figure 3 Rogers-Tanimoto distance measure 𝑅𝑅(𝐾𝐾1,𝐾𝐾2) of five block ciphers. 
The dissimilarity index of 𝐾𝐾1 and 𝐾𝐾2 is compared for five different block ciphers. Statistical analysis 
shows the bits are nearly thirty percent similar in both the key-schedule for four ciphers and forty 
percent in CAST; among all the ciphers. 

:  
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Table 3 shows the Pearson’s Correlation hypothesis testing result of each block cipher. The 
values of the 𝑟𝑟𝐾𝐾1,𝐾𝐾2 correspond to P-value statistics. The P-value of AES, Camellia, DES and 
GOST subkeys passes the threshold value of 0.1; therefore, we reject the null hypothesis that 
the 𝐾𝐾1 and 𝐾𝐾2 key-schedules are dependent on each other for these ciphers. On the other hand, 
CAST subkeys are failed to pass the threshold value. This means the 𝐾𝐾1 and 𝐾𝐾2 are dependent 
of each other and do not pass the Bit Correlation – 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2)  test. This shows that CAST 
keys are weak and susceptible for key-dependent [5] and correlation [50] attacks with both, 
Quantum and Pseudo random number-based key-schedules. 
 
Table 3 Correlation of bits of 𝐾𝐾1 and 𝐾𝐾2 of five block ciphers based on Pearson’s Correlation 
Hypothesis Test. 

 AES Camellia CAST DES GOST 

𝑟𝑟𝐾𝐾1,𝐾𝐾2 0.979 0.889 0.076 0.745 0.808 

𝐻𝐻0 or 𝐻𝐻𝐴𝐴  Independent Independent Dependent Independent Independent 
 

 
c. Bit – Interfold Test 

 
Table 4 shows the results of the Bit-Interfold test. The test first calculates the Hamming 

Distance of the 𝐾𝐾1 and 𝐾𝐾2 based on a 64, 128 and 256-bit key size with a sample of 400 keys. 
The result of the Hamming Distance measures dissimilarity between the 𝐾𝐾1 and 𝐾𝐾2, and the 
inverse of which is then passed to one Z-Proportions hypothesis testing and the corresponding 
P-values are calculated. 

 
Camellia and CAST result in the alternative hypothesis-𝐻𝐻𝐴𝐴 (taken from below result 

Table 3), which means they pass the Bit-interfold test. Any KSA that fails this test will create 
a weak cipher which is vulnerable to an easy cryptoanalysis. For example, AES, DES and 
GOST failed the 𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2) test and showed that they are weak and vulnerable to attacks such 
as related-key and side-channel [51] attacks. 

 
Table 4 Confusion and Diffusion of 𝐾𝐾1 and 𝐾𝐾2 of five block ciphers based on Hamming 
Distance and Z - Proportion Hypothesis Test  

 AES Camellia CAST DES GOST 

H(𝐾𝐾1,𝐾𝐾2) 27661 28502 31676 25623 27461 

𝑍𝑍(𝐾𝐾1,𝐾𝐾2) H0 HA HA H0 H0 

 
d. Bit – Entropy Test 

 
The most critical parameter for a key in order to be secure is unpredictability. The 𝐾𝐾1 

and 𝐾𝐾2 are tested with two different entropy tests. The 𝐾𝐾1 shows better entropy than the 𝐾𝐾2, as 
shown in Figure 4 and Figure 5. The variations in entropy resulted in different values with the 
entr and Bi_Entropy tests, one for each 𝐾𝐾1 and 𝐾𝐾2, and same were analysed against the 
threshold value. The distinct entropy values of each block cipher exceed the threshold value of 
1.0 for entr and 0.1 for Bi_Entropy; hence, all the 𝐾𝐾1 and 𝐾𝐾2 pass the entropy test – 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾1,𝐾𝐾2). 



 
 

 

Figure 4 Entropy analysis entr 𝐸𝐸(𝐾𝐾𝑖𝑖) for 𝐾𝐾1 and 𝐾𝐾2 using five block ciphers.

 

 

Figure 5 Bi_ Entropy analysis 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐾𝐾𝑖𝑖) for 𝐾𝐾1 and 𝐾𝐾2 using five block ciphers. 
The 𝐾𝐾1 and 𝐾𝐾2 of five different block ciphers are compared with the 500 and 50 different subkeys using two entropy 
tests: entr and Bi_Entropy. Statistical analysis shows that the key-schedule generated by quantum random bits 
are more unpredictable than pseudo random for all the block ciphers. 

The analysis also proves that the quantum random number-based(𝐾𝐾1) key-schedule is 
more unpredictable than the pseudo-random(𝐾𝐾2) one. Unpredictability increases the 𝐾𝐾1 
schedule's strength, making it strong and hard to do cryptanalysis to partially access the key 
with Related-Key and Fault-Injection Attacks[52]. 
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e. Encryption Time 
 

The encryption time for all of the block ciphers was calculated to evaluate the impact of the 𝐾𝐾1 
and 𝐾𝐾2. We used two different file sizes, 8 MB and 16 MB, to illustrate the time required to 
convert plain text to ciphertext. The encryption time for each file size can be seen in Figure 6. 
DES takes the longest time to encrypt, while GOST takes the second-longest time. The 
minimum time computation is by AES in both the 𝐾𝐾1 and 𝐾𝐾2 schedules. The analysis also 
shows that quantum and pseudo-based key-schedules are taking nearly the same time for 
encryption. All the ciphers showed nearly the same transformation time with 𝐾𝐾1 and 𝐾𝐾2, with AES 
taking the least time among all the ciphers for both the schedules. 

 
    𝐾𝐾1    𝐾𝐾2    𝐾𝐾1     𝐾𝐾2   𝐾𝐾1     𝐾𝐾2      𝐾𝐾1     𝐾𝐾2   𝐾𝐾1  𝐾𝐾2 

AES Camellia CAST DES GOST 

Figure 6 Encryption Time of plain text with 𝐾𝐾1 and 𝐾𝐾2 with file size of 8 MB and 16 MB. 
The time of converting plain text to cipher text with the help of Quantum and Pseudo based key-
schedule is measured in nanoseconds. 

 
6. Conclusion 

 
We proposed CryptoQNRG, a new framework in order to evaluate the strength of RNG-

based Key Schedules using four tests: Frequency, Bit_Correlation, Bit-Interfold, and Entropy. 
The test suite evaluates the resilience of subkeys of KSA in terms of the balance of 0 and 1’s, 
correlation of bits, confusion and diffusion, and an essential parameter of security, uncertainty. 

 
The proposed CryptoQNRG evaluates and assesses the subkeys of the most common 

KSA with quantum and pseudo-random numbers. The main focus of the paper is to compare 
the strength of KSA based on RNGs, as compared to Afzal et al. [33], who evaluated the 
subkeys without considering them. The results indicate the strength of Quantum- and Pseudo-
based key-schedules and their cryptographic properties. The results show that CAST did not 
pass the Bit_Correlation test, and keys are prone to cipher attacks. The analysis also indicates 
that the AES, DES, and GOST did not pass the Bit-Interfold test, whereas CAST and Camellia 
did. However, the computational time required to generate a cipher with a quantum random 
number-based(𝐾𝐾1) key-schedule and pseudo-random(𝐾𝐾2) of AES is much faster than the 
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others. The results also revealed that a quantum-based key is less predictable than a pseudo-
random number-based key. 
The future work of the study includes testing the KSA of lightweight cryptographic algorithms 
that play a major role in the field of the internet of things (IoT). 
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