DEPARTMENT OF COMPUTER SCIENCE

Research Issues Associated with Process Algebras and the
Object-Oriented Paradigm

P.N. Taylor

Technical Report No. 281

April 1997

i
|
|

Research Issues Associated with
Process Algebras and the
Object-Oriented Paradigm

P. N. Taylor.
Department of Computer Science, Faculty of Information Sciences,
University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9AB. U.K.
Tel: 01707 284763, Fax: 01707 284303, Email: p.n.taylor@herts.ac.uk

April 9, 1997

Abstract

In this paper I present a review of research issues raised by the application of process
algebras to the design of object-oriented systems. In particular, I concentrate upon the
difficulties associated with behavioral extension and the dynamic reconfiguration of systems
with a view to reuse; a concept for which object-oriented design provides many useful methods,
including inheritance and operator overriding. ’

From this review it is clear that several issues are poorly addressed by current languages;
these issues form the basis for my research. Basic languages such as CCS [9], CSP [4] and
LOTOS [5] and higher-order languages (i.e: CHOCS [14] and HOw [13]) are reviewed. My
research thus far suggests that elements required to make a formal model that matches closely
an object-oriented design are present, in part, in many of the reviewed formal languages but
are not all present in one language. This paper attempts to answer the question: ‘Which
features of the available formal languages for concurrent systems capture the essential features
of object-oriented design with a view to aiding the reuse of concurrent systems specification?’.

An overall picture of process algebras and how they map to object-oriented design issues
is presented, together with links between elements of the process algebra view of systems
design. Issues such as asynchronous communication and its influence on a system’s behavioral
modification, or the reuse of processes using inherited branch behaviour are discussed. I show
that synchronisation between processes hinders any attempt to modify the behaviour of a

system containing those processes.

I also show that new processes have the capability to influence the stability of the system
due to the dependence between processes enforced by synchronisation. If the systems in ques-
tion are modeled using an object-oriented design approach and inheritance between processes
is required (to aid reuse of components and simplify the model) then only strict inheritance
can be applied in a limited manner, based upon restrictions identified by Rudkin and his work
on LOTOS.

My work relates many issues which at first appear disjoint. I show that elements of a
process algebra need to be combined with other capabilities provided with certain languages

in order to enable a more complete formal model of an object-oriented system to be specified.

Introduction

The main aim of this paper is to review and address key issues surrounding the application of
process algebras available today to the formal capture of object-oriented systems. I present a
network diagram which helps with the identification of the key areas that are the focus of my
research. The aim of the research is to show how available process algebras can be used to capture
some, if not all, of the characteristics that we have come to expect from object-oriented design
and implementation.

A central theme of this paper is the modification of the internal structure of a process (i.e: be-
havioral modification) which is process-based, and the reconfiguration of a system’s environment
(i.e: system modification) which is system-based. Much of my work looks at inheritance and its
relationship with communication protocols. To help with the identification of the key issues of
my research the diagram in figure 1 was constructed. This diagram lists each area of interest
and then links those areas together to form a research network (known as the PARNET: Process
Algebra Research NETwork). The structure of this paper is based upon the network diagram
in figure 1. BEach branch on the network is discussed in the following sections. Languages that
provide a facility to meet the criteria of the branch in the appropriate table and subsequently
feature in the appropriate sections below. Links between branches are shown as double headed
arrows.

This paper is split into 3 parts. Part 1 introduces the problem domain associated with system
communication issues. Part 2 introduces the behavioral issues associated with object-oriented
design and its application to process algebra system specification. Where appropriate the links

between each section, shown as arrows in figure 1, are discussed. Part 3 underlines my research

Concurrency

System ———Behaviour.
—
——Connectability $—§~ ﬁ
Broadcast Skip Failure Recursion
CSP CSP - skip ccs
APT CSP - interrupi CSP
RPT APT - after APT
LOTOS APT - skip RPT
End-to-End Comms. ROOA RPT LOTOS
. - LOTOS - exit ROOA
Point-to-Point | |Bus Comms. LOTOS - disabld | |m-calculus
CHOCS
CSP APT
APT RPT Modify Process
Override
RPT LOTOS
LOTOS ROOA | | T
ROOA < 1 >ROOA
""""""""""""""""""" n-calculus
n-caleulus Communication Protocol CHOCS
OHOCS. e l v v ., 5 [HO-m
HO-n Synchronous Asynchronous Aj
v
ccs APT Inheritance
CsP RPT /
APT
RPT Incremental Casual Transitive
;%Lis CCS n-calculus CCS
calculus osP osP
n-
APT HO-n APT
E{%OCS RPT RPT
z LOTOS LOTOS
ROOA n-calculus
m-calculus |
CHOCS .
HO-nt

Figure 1: Object-Oriented Concepts and Process Algebras: A relational network

|

interests and draws conclusions from the current work. Part 3 also suggests future work to be

carried out, prior to the final submission of my thesis.

Part I

System

1 System Considerations

A system is a collection of processes that communicate with each other and the environment.
Only the interface to each process is considered in this section, rather than the intricacies of a
process’s internal behaviour. However, the communication protocols discussed are of concern to

the behaviour of the process.

2 Connectability

Connectability is concerned with whether processes connect along prescribed paths or make use
of a more general, shared, communications network. A shared network determines the route and
order of any message, leaving the process to simply send and receive those messages and not
concerning itself about the location of the receiver. Note that message routing is beyond the

scope of this paper and is not discussed further.

2.1 Point-to-Point Communication

Point-to-point communication implies that the sender and receiver are linked via a common port
or channel, or that the address of the receiver is known to the sender and is sent along with the
message so that the routing system that deals with the transportation of the message knows the
identity of the recipient. Examples of each type of point-to-point communication in the physical
world are: i) making a telephone call where a connection is made for the duration of the call, or ii)
posting a letter, where the postal service handles delivery based on the address on the envelope.

Two views of communication can be derived from the two main camps supporting process

calculi: 1) Hoare’s model (Oxford) and ii) Milner’s model (Edinburgh). Figure 2 helps to illustrate

the different view of process communication as modelled in CCS, CSP and their derivatives.

Communications Protocols
|

Milner view Hoare view

Hidden: bi-party communication Open: multi-party communication
Figure 2: Opposing Views of Process Algebra Communication

Specifically, point-to-point communication occurs between shared (complementary) ports in CCS,
channels in CSP or gates in LOTOS. Note that these terms all refer to the same point on
the interface and are used interchangeably. All of the review languages support point-to-point
communication.

The remaining paragraphs in this section introduce how point-to-point communication is
provided by the review languages. Examples are given to illustrate the syntax of the reviewed
languages when exercising point-to-point communication.

CCS defines point-to-point communication via complementary ports that are housed in each
communicating process. The interface to a process is defined by the ports that are visible to the
environment (i.e: exported entry points to a process). Other processes in the environment may
communicate only via complementary ports (i.e: of the form a < @) [9, p.38]. With each process
algebra presented here it should be noted that communication is atomic (i.e: there is no specific
send and subsequent receive) as both parties synchronise together at the same instance in time
(although time is not strictly modelled in either language under review).

CSP processes use a similar form of communication, although duplicate named ports are
preferred rather than complementary ports. The same port names appear in both processes
participating in a synchronised communication. CSP communication takes the form (a < a) [4,
p.133].

Asynchronous Process Theory (APT) [7] and Receptive Process Theory (RPT) [6] both use
CSP as their foundation language. Consequently, these two languages deal with process commu-
nication in a similar way to that of CSP, using similarly named ports in order to communicate.
It should be noted that the work on RPT is also built upon the work of Dill [3].

LOTOS uses gates to communicate which provide access to LOTOS processes in much the
same way as ports and channels provide access to CCS and CSP processes respectively [8, p.328].

The 7-calculus (a first-order process calculus) was developed from CCS but has the ability to

5

pass ports as parameters to processes instead of just values. Therefore, the 7-calculus can achieve
a large degree of mobility in terms of the systems that it specifies. Despite this mobility these
parameterised ports become static during communication. The communication itself is carried
out much the same as CCS or CSP. An illustration of the ability to pass a port as a parameter
to a process and then have that process continue to use the parameterised port is illustrated in
the mobile phone relay example in the w-calculus tutorial [9, p.12].

CHOCS (Calculus of High Order Communicating Systems) takes the semantics of the -
calculus one stage further by allowing whole processes to be passed as parameters to a process,
rather than just ports or values. With CHOCS, as with CSP, common ports are used to achieve
communication between parties that are composed together within the same environment [14,
p.15].

High-Orderr calculus (written as HO7) is another derivative of Milner’s m-calculus and like
CHOCS it too allows processes to be passed as parameters to a process [13]. The mobility of HOx
is rivaled only by CHOCS as both languages are highly mobile. HOx also requires commonly
named ports to be present in each communicating party for the communication to be successful.
The mobility of both CHOCS and HO7 and its application to modelling the concepts of the

object-oriented paradigm warrants further investigation.

2.1.1 Bus/Multi-party Communication

This section concentrates upon communication involving two or more parties, using the same
port. In the previous section specific ports where used to synchronise and communicate values.
Theoretically, bus or multi-party communication allow numerous processes to engage in commu-
nications across shared ports. CCS is excluded from this section because its communications are
limited to only bi-party and are also hidden from the environment which excludes further parties
from joining the communication. The 7 action in CCS signals that a synchronising communica-
tion has occurred but gives no information as to the nature of that communication [9, p.39]. In
CCS the only way that communication can be observed is by noting the change in state of the
participating processes; an implicit rather than explicit view of communication.

CSP differs from CCS as it does not hide its communications. These communications appear
in the action trace of a process, shown between angle brackets (e.g: (a,b,b,¢,d,...)) [4, p.142].
For example, (clv = P) || (c?z — Q(z)) = clv — (P || Q(v)). Note that clv (on the left side

of the equation)is an observable action, akin to tapping the wires of the system to log internal

6

communications as they occur.

With both APT and RPT their formal basis is that of CSP. Therefore, communication in
both of these language follows CSP primitives. Both APT and RPT can therefore share ports
and engage in multi-party communication.

LOTOS is a key language for sharing communication gates. Many examples of gate sharing
for multi-party communication in LOTOS exist [11, p.16]. LOTOS borrows much of its syntax
and semantics from CSP, hence the similarity between communication expressions in CSP and
LOTOS. The symbols 7 and ! are used to represent input and output respectively. In the ROOA
(Rigorous Object-Oriented Analysis) method a banking system is used to show port sharing
across several processes. The ROOA method attempts to map object-oriented concepts onto
LOTOS, therefore processes are treated as objects [11, p.16]. The semantics of communication in
LOTOS can be seen in [1, p.33]. Basically, a gate taking part in a communication is not hidden
and is available for subsequent communication and synchronisation.

It should be noted that all of the communications methods discussed so far require some
form of synchronisation. That is, the simultaneous joining of similar actions on common ports to
affect a communication. Processes that are not ready to engage in communication force the ready
processes to wait until such time as they can all synchronise together. With bus and multi-party
communication the problems with waiting are compounded because a series of processes may all
have to wait for a slow process to catch up. A chain reaction of waiting processes will eventually
deadlock the entire system. I refer to this chain reaction as domino waiting. The resolution of

domino waiting is one of the key areas that concerns my research.

2.2 Broadcast Capability

The ability to broadcast a message is linked implicitly with the type of communication adopted
by the particular formal language; namely synchronous or asynchronous communication. To
broadcast a message one must not care about receiving an acknowledgment from any message
recipient. To do so could entail an infinite wait while all recipients confirm that they have received
the original broadcast; analogous to a lecturer waiting for each student to signal understanding
before moving on to the next piece of information—a timely exercise!

Note that only some of the reviewed languages can cope with broadcasting and it is still not
clear as to the success of their applicability to this particular type of communication.

Asynchronous Process Theory (APT) [7] and Receptive Process Theory (RPT) [6] are likely

7

candidates for a process algebra that can supply a broadcast communication primitive. However,
because they are based on CSP it is not clear whether the asynchronous process algebras supply
all of the elements required for broadcast communication. In theory, in APT and RPT the
waiting time endured by CSP during synchronisation should not occur as acknowledgments are
not required in either RPT or APT as they can send and receive at will.

The visibility of communication in both APT and RPT remains the same as that of CSP,
allowing further processes to engage in an asynchronous (speed independent) communication

along common shared channels.

3 Communication Protocols

By far the most common form of communication protocol is synchronous communication. CCS,
CSP and languages derived from them (i.e: LOTOS, APT, RPT, CHOCS and HOm) are all based
on synchronous communication. Although APT and RPT offer asynchronous communication via
unbounded buffers the buffers themselves still synchronise with the target of the communication.

Synchronous communication have the potential to stall the execution of a process, insisting
upon a common state between communicating parties before allowing communication to com-
mence. Alternatively, asynchronous communication do not require the participation of other
processes. Processes may send communications without the requirement to first wait until all
parties are ready to receive the message. In theory, an asynchronous process may send as many
messages as fast as it wishes. In practice both APT and RPT offer synchronisation with a

personal unbounded buffer which is always ready to synchronise with its parent process.

3.1 Synchronous Communication

In CCS, processes P and @, when composed together with the composition operator |, will
communicate on the common ports that they both share. Formally we express this notion via
the intersection of the sorts of P and) which are sets holding the actions contained in each
process. Described formally as: L£(P) N £(Q), where communication occurs across the ports

contained in the resulting set. Consider the definitions of processes P and Q:

P ¥ Lbzp

Q9 ¥ Fb.cQ

In this example, (P | Q) forces P and @ to synchronise via a and ¢. The port b will not be used
between P and @ as it is not complementary (i.e: not of the form b ¢ b).

CSP uses a similar synchronisation technique to CCS, except the language of CSP does not
complement its ports [4, p.66]. Ports (known as channels in CSP) with the same name are used
to determine the synchronisation points between processes. These points become active when
the processes are composed together in the same environment. If the previous CCS example
were transformed into CSP then P and @ would synchronise on «, b and ¢. The complementary
port symbol @ would be removed from the actions of P and @ as the language of CSP does not
support the concept of a complementary channel name. As with CCS, the intersection of each
participating process’s alphabet yields those ports eligible to engage in communication. With
CCS the expression («P Na()) defines the common ports between the communicating processes.
An alphabet () of a process in CSP is the same as the sort (£) of a CCS agent. CSP allows
more than two processes to engage in a synchronising communication as it does not hide the
communication from the surrounding environment.

LOTOS processes also synchronise on common gates [8, p.328]. A common gate in numerous
LOTOS processes will be used to synchronise all of the processes together provided that each
process is in a fit state to receive the communication. If any participating process is not ready
then the communication’s initiator will have to wait until all processes are ready to synchronise,
only then can communication commence.

APT is primarily an asynchronous process algebra but it can be used to model synchronous
communication. To perform this transformation an acknowledgment to each message is built into
the communicating system. By removing the unbounded buffers from the output ports on an
APT process we effectively reduce its capability to that of a CSP process [7, p.5].

In the m-calculus, once the mobility of the system has been defined communication between
processes occur in much the same way as those between CCS agents [10, p.6]. A sending agent
may send a signal across a named port. However, it may be unclear as to the identity of the
receiver. In the m-calculus mobile phone example [10, p.12] the use of one base station over
another does not affect the success of the message getting through to the receiving vehicle, only
the route of the message.

In CHOCS processes may also be passed as parameters to be used at some later stage. Note
that ports are also valid parameter types. Synchronisation occurs across shared ports that are

labeled with a direction of communication, similar to ? and ! in CSP. See [14, p.143] and [10,

i
1
{
|
|

|
i
|

p.12]

3.2 Asynchronous Communication

One may think of asynchronous communication as supplying the foundations from which syn-
chronous communication ‘is built. Indeed, the synchronous communication that was discussed
in the previous section can be thought of as two asynchronous communications combined to-
gether, one part for send and another for acknowledge. However, it would be unfair to think of
asynchronous communication in this way because all of the synchronous communications in the
reviewed process algebras that we have already seen occur at the same instance in time. Both
parties come together to form the communication rather than one initiator followed by a reply.

Asynchronous communication can be modelled in a synchronous communication environment
by adding buffers of infinite size on each input and output channel of a process. The resulting
system’s processes can then send countless messages, synchronising with the buffer which is always
ready to receive the process’s messages. Recipients synchronise with the buffer when they are in
a fit state to receive.

With an asynchronously communicating process any inherited behaviour that results in failure
(i.e: unstable behaviour leading to deadlock) need not crash the entire system. I look upon the
potential of an asynchronous communication protocol as one possible solution to the problem of

maintaining a system. This maintenance problem can be categorised as:

1. dynamic (i.e: processes and interface points being added ‘and removed from the original

specification)

2. subject to modification via inherited processes to replace original ones (i.e: processes re-
maining externally similar (accepting port replacements/additions) but their internal be-

haviour changes)

Asynchronous Process Theory (APT) also offers asynchronous communication and uses buffers
of infinite size on each input and output channel [7]. APT processes can be converted into CSP
processes by the removal of these buffers. Alternatively, CSP processes can be converted into
APT processes by placing an infinite buffer on each input and output channel. By using CSP
as the foundation language and enabling APT and CSP processes to be viewed as equivalent
(using APT — CSP conversion) one may then use CSP language constructs to prove properties

about an APT specification. Consequently, many of the theoretical results gained using CSP

10

remain valid for APT [7, p.1]. The problems associated with using CSP as a model are that any
misgivings that CSP has will be carried over into APT; these misgivings are inevitable due to
the equivalences between the two languages.

Comments associated with APT in the previous paragraph also hold for Receptive Process
Theory (RPT). Synchronisation can be defined using a send/receive protocol [6]. A receptive
process is viewed as a triple (1,0,F), where I = input alphabet, O = output alphabet and F C
(I U O)* which denotes the set of failures for the process.

Part 11

Behaviour

The behaviour of a process relates to its defined sequence of actions. These action sequences
provide a service to the process’s environment. Each process algebra offers such a sequence of
actions, including both behavioural choice and recursion. Choice may be deterministic (where
the environment influences then choice) or nondeterministic (where the process influences the
choice). The interface to a process is defined by its action sequence, where each action is a point

of entry into the process.

4 Behavioral Considerations

Many aspects of communication between processes will be covered during this section. It is
normal practice for a process to execute actions sequentially (i.e: in the order that they are
stated in the process’s behavioral definition). I view this ordering as a constraint w.r.t object-
oriented behavioral modification (via inheritance). Basically, once a process has started down a
sequential path of actions then that path must be completed before the system can execute some
other branch of that process’s behaviour. All of the process algebras under review insist upon

completion of their current execution path.

4.1 Skip Failure Redundancy

Due to the possibility of domino waiting, where a collection of processes are all waiting on

deadlocked actions, a method of bypassing a halted process action would be of benefit. I hope

11

to avoid a situation where, eventually, the entire system may halt with all processes waiting on
an initial event that has failed to occur. My work will attempt to address the issue of domino
waiting.

The languages CSP, RPT and APT offer a way for a process to continue processing and
therefore continue executing rather than wait (possibly) indefinitely for a deadlocked action.
This section contains descriptions of those languages and how they attempt to provide a service,
regardless of the availability of some of their actions for communication.

CSP offers the an interrupt operator, represented by the symbol =, which does not wait for
the successful termination of a process but instead forces execution of the next process in the
expression [4, p.180]. For example, the expression (P~) denotes that P is interrupted by the first
event of @; P is never resumed. The trace of events for (P~ Q) is simply the trace of P followed
(at some arbitrary point when the interrupt occurs) by the trace of @. Successful termination
(denoted by the symbol v') must not exist in the set of aP to ensure that @ interrupts P. It
may prove useful for a process to interrupt a hung process using the ~ operator so that domino
warting does not entail; particularly if a modified object has caused the system to crash as it can
then be avoided in future.

CSP also offers the catastrophe operator (represented as a lightning bolt symbol) and the
restart operator (]3) [4, p.181]. The use of the catastrophe operator means that a process behaves
like P until a catastrophe occurs, after which it behaves like Q.

The restart operator in CSP, as its name suggests, restarts a process’s behaviour in the event
of catastrophe. After each catastrophe P behaves like P did originally (i.e: from the beginning
of its definition) [4, p.181].

LOTOS offers the exit operator which allows a process to terminate successfully, passing a
value to the environment when doing so. The ROOA method uses exit functionality in an example
to implement the superclass/subclass relationship [11, p.28]. Note the following definition of a

superclass which passes its methods to the environment:

process Superclass[g] (state:StateSort) : exit(StateSort) :=

g!selectori!GetID(state) ...;

exit(state);

(]

12

g'modifier2!GetID(state) ...;

exit (Fi1(state))
d

endproc

LOTOS also provides a disable operator (denoted by the symbol [>), which denotes that in the
expression (B1[> B2) process B1 may be disabled by B2. The LOTOS designers required such
a notation in case the normal course of actions in a system became disrupted. The semantics for

[> are defined below:

Rule 1: B1-5 B1'implies (B1[> B2) % (B1'[> B2)

Rule 2: B1-% B1 implies (B1[> B2) 5 BY/

+

n

.|.
Rule 3: B2% B2 implies (B1[> B2) % B

B1 may (rule 1), or may not (rule 2) be interrupted by the first action of process B2. Control
is irreversible in rule 1 as B2 gains control over B1. In the rule 2 B1 performs an action; if the
action is not that of successful termination (using rule 1) then B2 survives. If the action of B1
is that of successful termination (using rule 2) then B2 disappears as the process that B2 was
expecting to interrupt has disappeared, thus disabling the disabling process B2 [1]. It is clear
that disabling in LOTOS is taken from the CSP interrupt operator as the rules governing its use
are the same. Only the actual symbol used in the language is different, the semantics remain the
same.

Asynchronous Process Theory (APT) provides us with an after operator [7, p.17]. The process
(P/a.v) behaves like P after v has been communicated by the environment on channel a. The
infinite buffer attached to the input channel of P maintains the value v until P is ready to use
it. Effectively, by using after we can specify the behaviour of a system before and after a specific
action occurs.

The operator Skip is also available to Receptive processes (RPT) processes due to the foun-
dations of RPT being based on CSP [6, p.18]. The semantics for Skip, when used in RPT, are
the same as for CSP [4, p.171].

13

Receptive Process Theory (RPT) provides skip guarded choice which means that the process
(Skip — P |7z — @) eventually chooses to behave like P unless the process’s environment

supplies it with some input z, earlier, whereupon it behaves like @, [6, p.23].

4.2 Process Behavioral Modification

In most cases the behaviour of a process is regarded as static. However, under certain circum-
stances this behaviour can be modified. The simplest form of modification is behavioral extension
where new branches of behaviour are added to the existing behaviour of the process. This type
of process modification is referred to as incremental modification. In object-oriented texts this

form of modification via reuse is known as strict or incremental inheritance.

4.3 Inheritance

Inheritance allows the creation of new encapsulations of behaviour out of old, previously defined,
behaviors. In other words, inheritance permits the reuse of components in a specification in order
to define a new specification. For example, a process P is defined thus: P e b.c.P + d.e.f.0.
Using strict inheritance we can define a new process) which uses the behaviour of P and then
extends it: @ f p + z.y.2.Q). Certain issues arise which we must address in order to confirm
that @ inherits from P. Does () behave like P if branch a or d is chosen? Also, how is the
recursion defined if branch a or z is chosen, given that P is defined as the target of the recursion
in the original branch a.b.c.P and @ for z.y.27 Recursion is an important issue w.r.t inheritance.
Consequently an entire section of this paper has been devoted to the study of recursion.

Other forms of inheritance are shown in the following list, each item of which is discussed in

the sections that follow:

e Incremental Inheritance. Also known as strict inheritance. Behaviour is reused and

(optionally) extended and behavioural compatibility is guaranteed.

e Casual Inheritance. Branch behaviour in a process is modified so that the branch itself
changes. Behavioural compatibility is not guaranteed. A central theme of my research is

to investigate methods for achieving casual inheritance in existing process algebras.

e Transitive Inheritance. A hierarchy of inheritance can be defined. P is the parent class

of (), which is the parent class of R. Therefore, P is a parent class of R and so on. Ancestral

14

relationships between classes can be defined provided that transitive inheritance is present.

Restricting inheritance to just one generation denies this type of inheritance (a restriction

imposed in ROOA, [11, p.28]).

e Multiple Inheritance states that a child class can have more than one parent class. The
behaviour of each parent is present in the child. The child may also, if required, extend that

behaviour with some of its own specific behaviour, therefore becoming more specialised.

4.3.1 Incremental Modification

The simplest form of inheritance or modification that current process algebras can provide is
incremental modification. As illustrated in the introduction to this section, a process’s behaviour
can be extended by using the process name in another process’s definition. The new definition
would normally contain more choices of behaviour in order to offer an extended behaviour to the
environment than that of the original. Note that choice extension is not necessary. One reason
for leaving the behaviour the same and simply copying the original process behaviour is to enable
the specification to use that behaviour under a different name, to enhance the readability of an
inherited class in a certain part of the specification.

In order to qualify as a valid subclass (i.e: the inherited child of some parent) the behaviour
of the child must conform exactly to that of the parent. If the parent fails to provide some
action a at a certain point then the child must also fail to provide the same action at that same
point during execution. Also, if an action is provided then it must also be provided by the child.
Basically, the child must be capable of substituting the parent under all circumstances; success

or failure. This notion of replacement is known as conformance and has been formalised in [2

p.11]:

)

Definition 1 Conformance

Let) and P be processes.

(Q conf P) iff
Vs € Traces(P).YA C L(P) If @ fails to offer an action a (after sequence
if3Q eVacAe Q2 Q A s) then P must also fail to offer the same
then 3P’ eVac Ae P 5 P' A action a (after the same sequence s).

A common failing of each of the review languages is that neither of them provides for recursive

15

definitions in inherited processes without some form of syntactic and semantic modification. The
hard-coded process names that appears at the end of a behaviour branch (such as P def a.b.c.P)
must be replaced with a generic pointer that can be substituted for the calling process’s address
at run-time. We shall return to this important language restriction in the section on recursion;
namely the creation of a self operator.

Using LOTOS, Rudkin presents some good examples of strict inheritance. Consider the

following simple examples taken from [12, p.416-417].

process Buffer4[in,out] (q:queue) :self(queue) :=
in?x:element; self(x appends q)

1
[q ne empty] -> out!hd(q); self(tl(q))

end proc

process Buffer[in,out,flush,delete] (q:queue) : self(queue) exit(nat) :=
Buffer4[in,out](q)
(]
flush;self (empty)
]
delete;exit(length(q))

endproc

The primitive selfis used in the buffer example to enable Buffer4 and Buffer to return to the
calling procedures rather than get stuck in an infinite recursive loop. selfis instantiated with the
new name of the caller so that recursion is correctly defined.

The m-calculus allows for the definition of extended behaviour by including any new behaviour
as a parameterised name to a process. Consider the mobile telephones example, given in [10,
p.12], as a basis from which inheritance could be defined.

Both CHOCS [14] and HOx provide the same features for defining processes by using existing
process behaviour as part of their definitions. Further work will determine the extent to which

these high-order calculi can be put regarding object-oriented specification.

16

4.3.2 Casual Inheritance

To my knowledge casual inheritance is not supported by any process algebra to date. I define

casual inheritance as follows:

The ability to inherit behaviour from some template parent class and then modify actions

sequences embedded within the inherited behaviour.

In effect, to alter the sequence of events defined as a branch of behaviour in the parent class. To

illustrate further what I mean by casual inheritance consider the following examples:

et b Pt defo

def P[R/a)+ z.y.2.Q

Process @) inherits the behaviour defined in P, extends that behaviour with z.y.2.Q and then
modifies the branch a.b.c.P with some new behaviour defined in R. Process R is defined as:

R a.b.k.Q). Process () can be written out in full as:

Q¥ bk Q+def0tey.20

From this simple illustrative example many aspects of my research can be seen. Questions arising

from my work so far on casual inheritance can be identified as:
1. How is recursion defined when the target of the inheritance is unknown?
2. What rules govern the syntax and semantics of the P[R/a] modification?
3. How is the new process verified as being a valid subtype of the inherited parent class?

It is my intention to attempt to answer each of these questions as part of this and future papers.
For now, I will briefly discuss the issues associated with each of the three questions.

To answer the first question, a mechanism known as self can be introduced. self permits
recursion within process definitions where the initiator of the action sequence is instantiated at

run-time. Think of self as a pointer variable instantiated with the address of the process that

“called the servicing process. More on self can be found in [12, p.415] w.r.t LOTOS. The notion

of self can be equally applied to the other process algebras that are reviewed within this paper.
The second question requires that a form of action renaming or relabelling be carried out to

permit our chosen process algebra to enable us to modify processes. At this time work in this

17

area is in the initial stages and the mechanics of casual inheritance cannot yet be reported. Later
work will provide details as to how a process can be modified dynamically or in small increments.

The third and last question relies upon conformance (@ conf P) being met by the newly
modified process. Actions that are permitted by the parent must be made available by the child
process. Actions that are prohibited by the parent must also remain so for the new child process.
The example process @, from the previous section, appears to fail the conformance test, as defined
by the rule on page 15. Certainly, some of the actions in the original branch a.b.c have been
replaced (i.e: k replaces c). Perhaps one further question may help to clarify what is meant by

conformance.

Is conformance met if only the actions present in the original behaviour are met when
those actions also appear in the new child behaviour, rather than any new actions that

appear in the action sequence?

4.3.3 'Transitive Inheritance

Provided that some form of law for recursion can be found to cope with inheritance (i:e self)
then transitive inheritance is achievable in the review languages. The requirement is for the
method caller to be made known to the method owner (a method being perceived as a branch of
behaviour). The notion of self has already been introduced and I shall leave it for a later section
on recursion to explain fully the implications for using self.

A process R can be defined as transitively inheriting from P using the following definitions:

p & a.b.c.P+d.e.f.0
' P10+g.hiQ
R Q+z.y.2.R

The definition of @) inherits from P and in turn, R inherits from . The subtype relationship
between P, () and R can be written thus: P C,upype @ Csubtype B. Process R can then be written

in full:
R qb.c.P+ de.fO0+g.hi.Q+z.y.2.R

CCS offers a facility to transitively inherit from a superclass by using the same procedure as that

used for strict inheritance. The extension to the language in terms of self is still required but

18

if we assume that CCS can cope with self then the syntax of including an agent definition in
another agent definition is valid [9, p.20].

CSP also includes the facility to inherit and therefore reuse behaviour. Transitive inheritance
is again defined using inheritance as illustrated above [4, p.106].

APT and RPT are both based on CSP and if either of these asynchronous languages can be
defined in terms of CSP then the semantics for CSP also apply [7, p.14].

The semantics of LOTOS [1] offer the ability to define one LOTOS process in terms of
another. In the ROOA method the LOTOS processes that are used to define inheritance use ezit
functionality to define the exit condition of a process which is treated as an object. ROOA insists
that a superclass must terminate successfully and that a child subclass must be non-terminating
[11, p.28]. A dilemma results where transitive inheritance is concerned. A subclass that is itself
a parent of a subclass, further down the inheritance hierarchy is required (by the rules of exit
functionality used in ROOA) to maintain both exit and noexit functionality. The reader should
recognize that a process in LOTOS cannot be defined with two different exit functionalities, hence
ROOA does not support transitive inheritance.

The mobility of specifications offered by the m-calculus [10], CHOCS [14] and HO# [13] all
allow strict inheritance. As they are all based on the same set of semantics so we assume that

these process calculi also allow transitive inheritance to occur.

4.3.4 Multiple Inheritance

The theory behind multiple inheritance is that more that one parent class is used to create a
new child class which then houses all of the attributes of those parents. The new child class
can extend or overwrite the inherited methods of its parents if required but the behaviour of the
process must not be compromised in any way (i.e: the conformance rule must hold: (Q conf P)).
To achieve multiple inheritance the target process being defined must include references to all of
the required superclasses.

In CSP we can define multiple inheritance syntactically thus: R = P O @, where P and @
are defined elsewhere. R now behaves like P or) and the choice of behaviour is made by the
environment. CCS and the remaining calculi under review (i.e: APT, RPT, m-calculus, CHOCS
and HO7), which conform to similar semantics, also allow deterministic choice between process
behaviour.

In ROOA, Moreira mentions that multiple inheritance is a future goal. However, we may

19

assume that the same methods found in [11, p.27] will be used again for multiple inheritance (i.e:

exit functionality).

4.4 Behavioral Overriding

In object-oriented programming languages function overriding is used to modify an existing func-
tion that existed in the parent class; in process algebras we call this behavioral overriding. In-
stances of type child with the new overridden method will use the new version of the method
when required. Instances that used strict inheritance as a means of getting access to the parent’s
original methods are bound to the parent when the required method is requested; they have no
alternative (local) method with the same name to call upon.

Behavioral overriding entails the complete redefinition of some pre-defined behaviour. Some
process P may be defined to behave in a certain way according to the choice branches offered by
the process. To override a process’s behaviour we are required to redefine the complete behaviour
of that process. Ideally, we would wish to redefine only the branch that changes; the task assigned
to casual inheritance. The ability to override a part of some behaviour enhances reuse and yields
a more accurate system than can be achieved by overriding a complete process description.

Problems associated with behavioral overriding occur when a leading action is duplicated and
synchronisation with other processes is lost due to the removal of some synchronising action.
For example a port name may change and deadlock may be introduced. Any references to other
process’s ports in a process that has altered will need to be reviewed. Tn a dynamic system the
integrity of the links between processes is under constant review as each process checks to see
if the synchronisation links to other processes are still valid. Consider the following example of

behavioral overriding:
P abepr+ defO0+2.y.2.0

The new behaviour, using current methods, would require the following expression:
P abePtdef0+azy.zP

Note that the last branch of behaviour in P has been redefined as recursive, back to the process
P.
The complete redefinition of P is unnecessary and increases the chance of error during any

copying of the original definition. Assuming that the original specification for P was validated a

20

simple copying error whilst redefining P could result, leaving P in an unstable state. Also, the
new behaviour defined for P could cause an error, possibly causing deadlock with some other
component in the system. Whereas P was originally considered to be stable, it is not necessarily
the case that P’ is to be considered stable.

In the earlier section on casual inheritance the same problems were faced. Indeed, it is the
goal of casual inheritance to enable us to be able to perform behavioral overriding on a process
with the minimum of effort. ROOA documentation provides a means of redefining a process’s
behaviour [11, p.29]. In ROOA the elimination of the services to be redefined takes place before
new versions of those services can be defined.

An auxiliary superclass is used to hold the services that are still required. A new subclass
is then defined which includes the auxiliary class and also the original superclass, synchronising
on a common port with the auxiliary class to restrict the services available from the superclass
(i.e: only the intersection (aP N a@) of services in the super and auxiliary classes are used).
New services can then be added as usual. To illustrate this description the LOTOS specification

extract, adapted from [11, p.29], is presented.

process ModifyRBUFFER2[in,out,delete] (q:queue) :exit(queue):=
RBUFFER[in,out] (q)
(1
delete; exit(length(q))
endproc
process RedefineRBUFFER2[in,out,delete,flush] (q:queue):noexit:=
(RBUFFER[in,out,delete] (q) I[in,out,delete]l
ModifyRBUFFER2[in,out,delete] (q)
]
flush; exit(empty)
) >> accept q:queue in RedefineRBUFFER2[in,out,delete,flush](q)

endproc

Note that the process RBUFFER2 adds a new function flush to the set of available initial actions.
Due to the parallel composition across specific channels, as defined by the parallel composition
operator (I[...]11) between the processes RBUFFER2 and ModifyRBUFFER2, the scope of RBUFFER2

is restricted as it cannot engage in any actions not present in ModifyRBUFFER2 and vice versa.

21

Due to the mobility of its process definitions the 7-calculus can achieve a degree of behavioral
overriding. The example given in [10, p.12] shows how a mobile car radio system can first receive
new channels as parameters and then use those channels in future communications. Also, the
ability for a process to modify itself and effectively switch from being a ‘live’ process to being
an ‘idle’ one is illustrated. Obviously, these changes occur during run-time. For a specification
change we are restricted by the same constraints that encompass each of the review languages.

CHOCS, with its ability to pass process around as parameters seems to offer a powerful way for
processes to be redefined. Like the 7-calculus, CHOCS performs these redefinition tasks during
run-time. However, normal inheritance mechanisms would again restrict CHOCS to redefining
whole processes at a time rather than in part.

HO7 is similar to CHOCS and although it too offers the ability to dynamically alter a process
by adopting some behaviour passed to it as a parameter the same problems of modifying a subset
of the complete behaviour are present [13, p.32].

It is clear that some new language construct that can benefit from object-oriented design and
implementation practices is required to enable current process algebras to be reused with more
efficiency than is currently the case. My research is seeking to find such a mechanism that can be
adopted by a language (as yet undefined) and be used to prove that modification has occurred and
that the resulting behaviour is stable and free from error. At the very least the resulting behaviour
should conform to those actions that were present in the original process (unless directly affected

by the behavioral modification) and offer actions that were offered previously.

5 Recursion

Recursion is the final section describing the PARNET. In many ways recursion is the most im-
portant topic discussed in this paper. Without recursion we are reduced to specifying simple
processes that are not capable of modelling objects in the real world. Therefore, without recur-
sion we cannot attempt to apply process calculi specifications to real problems; this relegates
process algebras to strictly an academic pursuit.

Inheritance (in its many forms) and recursion are closely linked. The use of the recursion
operator self in many object-oriented languages (including LOTOS [12]) enables inheritance to
return control to the calling function. Under normal circumstances recursion is defined with the

specific name of the process ‘tagged’ onto the end of the process definition. However, to overcome

22

the problems of becoming trapped in a recursive loop (which results from the ‘hard-coded’ process
name appearing at the end of the description) we require some operator with much more power
to keep track of the process that initiated the current branch that the recursion is on and return
to that process afterwards. Each of the review languages carry a recursive operator and use it in
much the same way; explicitly stating the process to execute at the end of the behaviour branch.
In practice a generic modifiable reference variable is needed to substitute the explicit reference
used in a process’s definition. My research has already examined Rudkin’s self for LOTOS [12,
p.415] and thus far no other operator has been proposed. Work continues in this area.

CCS and CSP both define recursion in the same way, by explicitly naming the continuing
process [9, p.57], [4, p.27]. As APT and RPT are based on CSP the syntax and semantics of
their recursive operator are similar [6].

Work on LOTOS tends to illustrate the standard form of recursion using explicitly named
processes [1, p.35]. However, ROOA documentation uses the >> accept state:StateSort in
SomeClass[g] (StateSort) value passing format to yield control from a class process to some
calling process [11, p.29]. Unfortunately ROOA cannot build transitively inherited processes due
to the restrictions of exit and noexit functionality, where a process can only hold one type of
functionality depending upon whether it is a superclass or subclass. The inability to support
transitive inheritance reduces LOTOS’s capability to model all types of object-oriented systems.
Only a change to the language of LOTOS (and hence a change to the LOTOS ISO standard) will
permit more flexibility to be incorporated into its specifications; like the use of self.

Recursion in the 7-calculus is the same as for CCS, with an explicit process name being
defined as the last action in a process description; that process name obviously being the same
as the process in which it is defined [10, p.12].

Both HO7 and CHOCS use a similar format for recursion and this format follows all of the
languages seen previously in this paper. The same semantic model is used for the vast majority
of process calculi. One may argue that there are only a limited number of ways of formalising

concurrency in a mathematical context.

23

Part II1

Summary and the Future

The work presented here has laid the foundations for a rich and full investigation of how present
process algebras can be put to more productive use in the context of object-oriented specification.
The final part of this paper concentrates upon the direction of my research and the results that

can be expected from it in order to add to the foundations of knowledge in this area.

6 Future Work

At present no formal language has shown its suitability for being directly mapped onto an object-
oriented specification. Many languages reviewed in this text claim to support object-oriented
concepts but, as I have shown, few actually deliver their promises. Indeed, some of the languages
under review do not claim any object-oriented support whatsoever, still, this should not stop us
from attempting to use them to specify systems that contain reuse and extendibility.

I hope to provide a basis for continued study into the suitability of present languages (with
minimal syntactic and semantic modification) that can be adapted for use with object-oriented
specification whilst still remaining robust. Ideally, a language such as CSP and LOTOS would be
likely candidates as these languages have a full operational semantics. CSP is quite complete in
terms of the facilities that it offers. LOTOS has one advantage over CSP, it is the subject of ISO
standardisation [5]. Obviously, changes to either of these languages are not a trivial undertaking
and would require lengthy discussions with other formal language practitioners in order to justify.
The question is not whether we can change the language to incorporate object-oriented concepts

but whether we should change the language!

7 Summary and Conclusions

In this paper I have identified and highlighted a correlation between certain aspects of process
algebras and both process communication and behaviour. My main concern throughout this text
has been the reuse and extendibility of existing process specification. It seems clear that we
should try to make some of the concepts of the object-oriented paradigm available to the formal

languages used to specify concurrent systems.

24

I have shown that two main categories of a communicating system exist, system and behaviour
“(see figure 1). Within the category ‘system’ communication between processes is the key issue.
With reuse and extendibility the nature of communication is affected when synchronisation points
between processes change (possibly due to inheritance). To shown that a new process is based
on the behaviour of an existing process and can replace that older process we must ensure that
the behaviour of the new process conforms to that of the old, hence the use of conformance [12,
p.420].

Different types of inheritance require different issues to be raised. Each type of inheritance
requires recursion to be addressed. Recursion has been a recurrent theme throughout this paper
and is central to the inheritance issue. I intend to expand my work in the area of process
definition, reuse and recursion with a view to inheritance.

High-order process calculi seem to offer assistance to aid my research. Certainly, passing
new channels and even processes themselves can help to remove some of the problems of static
interfaces between processes. Further work on the application of these high-order languages to
object-oriented specification, particularly inheritance, will help to determine whether the original
low-order languages, such as CSP and LOTOS may be supplanted by the newer, more dynamic
formalisms of CHOCS or HOx. Clearly, more work is required before a definite decision is made
regarding the correct approach to capturing object-oriented specification.

Finally, a brief word on the links between the PARNET main themes; system and behaviour.
My work thus far shows that when one makes changes to the behaviour of a process a knock-
on effect occurs. I argue that the areas identified in the PARNET diagram (figure 1) help to
make the distinction between which areas are affected. PARNET keeps the reader aware of the
consequences of alterations in any part of the system. I found that corroborating the details
pertaining to each review language made me aware of the similarities that each language has
and also how those languages are related across the boundaries that are, normally, regarded as

separate issues.

References

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14(1):25-59, 1987.

25

[2] E. Brinksma and G. Scollo. Formal notations of implementation and conformance in LO-
TOS. Memorandum INF-86-13, Department of Informatics, University of Twente, The
Netherlands, 1986,

(3] L.D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed Independent Cir-
cuits. ACM Distinguished Dissertation. MIT Press, Cambridge: MA, 1988.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

[5] Information Processing System Open Systems Interconnection. LOTOS-a formal description
technique based on the temporal ordering of observational behaviour. Technical Report DIS

8807, International Standardization Organisation, 1987.
[6] M.B. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

[7] M.B. Josephs, C.A.R. Hoare, and H. Jifeng. A theory of asynchronous processes. Tech-
nical Report PRG-TR-6-89, Programming Research Group, University of Oxford, Oxford
University Computing Laboratory, 11 Keble Road, Oxford. OX1 3QD, 1989.

[8] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to LOTOS: learning by examples.
Computer Networks and ISDN Systems, 23(1):325-342, 1992.

9] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

[10] R. Milner. The polyadic 7-calculus: A tutorial. LFCS Report, Department of Computer
Science, University of Edinburgh, October 1991. ECS-LFCS-91-180.

[11] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Analysis Method. Tech-
nical Report CSM-109, Department of Computing Science and Mathematics, University of
Stirling, 1993.

[12] S. Rudkin. Inheritance in LOTOS. In K.R. Parker and G.A. Rose, editors, Formal Descrip-
tion Techniques, volume VI, pages 409-423. Elsevier Science Publishers B.V: North Holland,
1992.

[13] D. Sangiorgi. Fazpressing Mobility in Process Algebra: First-Order and Higher-Order
Paradigms. PhD thesis, Department of Computer Science, University of Edinburgh, Scot-
land, May 1993. ECS-LFCS-93-266 (CST-99-93).

26

[14] B. Thomsen. A calculus of high-order communicating systems. In ACM 6th Annual Sympo-

|

| sium on the Principles of Programming Languages. ACM Press, January 1989.

27

