DEPARTMENT OF COMPUTER SCIENCE

Concrete Examples for Templates and Their Children

P.N. Taylor

Technical Report No. 279

April 1997




Concrete Examples for Templates and Their Children

P.N. Taylor
Department of Computer Science, Faculty of Information Sciences,
University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9AB. U.K.
Tel: 01707 284763, Fax: 01707 284303, Email: p.n.taylor@herts.ac.uk

April 4, 1997

Abstract

This paper explains the concepts of template, class, object and type using concrete ex-
amples from the theory of sets and natural numbers. The descriptions of these concepts are
taken from the Reference Model of ISO’s Open Distributed Processing document (RM-ODP)
10746 (Part 2).

The concepts of subtype/supertype and subclass/superclass are also explained in terms of
their ODP definitions with simple examples, together with the differences between subtype

and subclass.

Introduction

The International Standardization Organization’s (ISO) work on the Reference Model for Open
Distributed Processing (RM-ODP) is provided to give developers a standard foundation and
definition of object-oriented concepts.

In this paper the ODP definitions for template, class, object, type, subtype and subclass are
reviewed. We then provide examples of each term. The descriptions for these concepts are taken
from the ODP document itself [5] and its interpretation by both Rudkin [10] and Cusack [2].

It is our intention that this paper shall provide the reader with concrete examples of the
concepts addressed by ODP in relation to object-oriented design and applied to the notation of
CSP-like process algebras [3]. The only prerequisites for an understanding of these concepts, as

presented in this paper, are a basic understanding of set and number theory.




Section 1 of this paper introduces the ODP definitions of template, class, object (instance),
type, subtype and subclass as they appear in the work of the ODP [5], Rudkin [10] and Cusack
[2].

Section 2 presents simple concrete examples of each of the ODP object-oriented definitions
listed in section 1 using natural number examples.

Section 3 illustrates what is meant by subtype, supertype, subclass and superclass and dis-
tinguishes the differences between these concepts.

Section 4 shows how the ideas of object-oriented specification, as shown in the previous
sections, can be applied to process algebra notation to permit the reuse and expansion of existing
defined behaviour.

Section 5 presents conclusions and future work from this study with application to the exten-

sion of process algebra specifications.

1 ODP Definitions of Object-Oriented Concepts

The following object-oriented definitions are in use by the ODP standard to enforce consistency
between developers and specifiers; such is the nature of standardisation. In this paper we concen-
trate on the following terms together with their ODP definitions (taken from ODP [5], Rudkin
[10] and Cusack [2]):

e Template: The specification of the common features of a collection of bbjects. A template
is an abstraction of that collection. Templates may be combined according to some calculus.
The precise nature of the combination is determined by the specification language used (in
this paper logical conjunction is used to expand existing Boolean predicates associated with

each template).

o Class (of objects): The set of all objects obtained from a given template (known as
the class template) by a process of instantiation. Each object is an instance of the class

template.

e Object (instance): An object is an instance of a class when it is related to the class
template via some chosen membership relation (i.e: it conforms to the predicate of the

class template).




e Type: A type is defined to be a predicate which determines the instances of a class. An

object is an expression of the type if the predicate of the class template holds for the object.

e Subtype/Supertype: If one type implies another then the first type is a subtype of the
second type. The second type is a supertype of the first. If every = which satisfies the first
type also satisfies the second type then the first type is a subtype of the second type.

e Subclass/Superclass: One class is a subclass of another class if the type of the first
class is a subtype of the second class. The second class is a superclass of the first class in
that case. The relationship between subtypes and subclasses is explained in more detail in

section 3.

Each of these concepts can now be illustrated using simple examples from the theory of sets

and natural numbers.

2 Concrete Examples of Object-Oriented Concepts

This section presents simple examples of the terms defined in section 1, using elements from the

set of natural numbers.

Template
A template T can be defined as a predicate. For example, a simple rule over the set of natural
numbers (N) is defined:

7> 5, where n : N (1)

Another template T can be defined in a similar way:

T, % n > 10, where n: N (2)

Class

With the two templates T} and T3 a class is defined as a set, the elements of which are objects

conforming to the rules of their associated template.

Cy {6,7,8,...}, taken from template T}

Cy {11,12,13,...}, taken from template T3

3




Object

Each element of either of the two sets C) or Cj is an object instance. Therefore, a class is defined
to be a set of object instances which conform to a class template (i.e: conform to the template’s
predicate). For example, consider the element 7, drawn from the class C;. Objects of class ¢}
are related to template T;. The predicate for T is defined as n > 5 and 7 meets this criteria,

hence 7 is a valid instance of a class described by template T;.

Type

A type is also defined to be a predicate, hence template and type are related. According to the
definition of type ‘an object is an expression of the type if the predicate of the class template holds
for the object’ (as can be seen for 7 being a valid object for template 77). An object template
(like T1) together with some chosen membership relationship (as defined by the predicate of T;)
is a type.

3 Subtype/Supertype and Subclass/Superclass Relationships

In our simple example T5 implies T} because any object instance that conforms to the predicate
n > 10 must also conform to the predicate n > 5, therefore, by definition, T, is a subtype of
Ty (Ty is by implication a supertype of T3). We can write the subtype relationship formally as

follows:
Ty = T4, implies that Ty Esubtype Ty

If we look at the contents of the sets denoting the instances of objects for the classes related to
Ty and T, we can use the subset operator to prove the subtype relationship. Indeed, 7T} is a

subset of Ty (T3 C T3). In extension we would write this as follows:
{11,12,13,...} € {6,7,8,...}

With the use of set notation to describe objects of a certain class we can also use the numerous
set theory operators to manipulate the expressions of a class set of object instances, as is the case

with the subset relationship defined above over subtypes.




3.1 Incremental Modification and Inheritance

Given that Cy C C) we can further restrict 7) using incremental modification of the predicate
defined in T;. The reader is referred to the work of Wegner [11] for an in-depth discussion on

incremental modification and inheritance. A restriction of 77 is defined as T5:

T3 € Ty A Q, where Q% > 10 (3)

The associated class for T3, namely Cs, is now represented as {11,12,13,...}, the same as that
of (3. Consequently, T5 = T, which allows us to substitute T3 for T3 in places where T, was
originally expected.

Further incremental modification denotes further conjunction between the templates and

predicates. For example:

Ty Ts AR, where R n>12and Ty=Ts=Ti A QAR (4)

Substitution is discussed in more detail in section 3.3 below. This section continues with a focus
on the incremental modification of template definitions, namely strict inheritance.

In the first example in this section the template 73 is defined as an incremental modification
of Tj, using logical conjunction with the predicate . Within the realm of natural numbers
inheritance is implemented using logical conjunction. Incremental modification itself can be
referred to as inheritance (or strict inheritance to be more precise). The inheritance hierarchy

for the existing templates is shown as follows:

T4 —inherits T3 —inherits T2 inherits Tl

Having established the inheritance hierarchy the subtype relationship between the three templates

canh now be written:

T4 L subtype T3 =subtype T2 - subtype Tl

Again, using the subset operator a concrete example of the subtype relationship can also be

expressed:
CiCGCG,CG
The previous expression is written in extension as:
{13,14,15,...} € {11,12,13,...} C {11,12,13,...} C {6,7,8,...}

5




As each incremental modification is added to the predicate of the template (by logical conjunction)
the object instances in the class set become more restricted. The cardinality of the class sets are
therefore reduced. Increased specialisation is not guaranteed as a new predicate in conjunction

with an existing predicate may have no effect. For example, given that T} &f > 5 and

T def Ty A n > 10 then the addition of T4 def T3 A n > 7 will not change the contents of Cj
which remains unchanged as {11,12,13,...}.

So, as you can see, it is not guaranteed that incremental modification will reduce the scope of
object instances in a template’s class set. What is guaranteed is that incremental modification

will not increase the scope of the number of objects captured by a class template.

3.2 Contradiction within Predicates

A contradiction in the predicates of a class template will serve to discount any object instances
from the class set. The empty set serves as the bottom of ordered object instances and represents
the set of objects that meet the criteria of the template’s conjunct predicate; namely no objects
whatsoever.

For illustrative purposes consider the following example of a contradictory template definition:

Ts ¥ n'> 10 A n < 10, where n: N (5)

The class template for which is shown as C5 = {} which denotes that there is no value in the set

of natural numbers that meets the proposition defined by the predicate of 7.

3.3 Substitution

In section 3.1 the concept of substitution was introduced. This section expands on that intro-
duction. Template T3 was capable of replacing template 75 due to their class sets being equal.
What would be the situation if 77 was used to replace T5?

Certainly, 77 contains all of the elements of T3 as C; 2 C,. Using our natural number
example it is easy to see that all instances of C; are also instances of Cj.

Put simply, C; is more restrictive than €y which means that Cy is contravariant in relation
to Cy (i.e: Cy cannot provide all of the facilities of Cj).

Contravariance between C; and C; is acceptable to us but is does highlight the fact that C;
cannot be used to substitute C; in its original state; C3 is required for the substitution of C, as

it will only offer less-than-or-equal functionality over Cj.

6




3.3.1 Contravariance and Covariance

As an aside, let us consider the terms contravariance and covariance and find simple examples

from the domain of natural numbers to illustrate them.

Definition 1 Contravariance: Arguments of the subtype must be less-than-or-equal to argu-

ments of the supertype.

Consider two types defined as functions which return the square of any input value; fa(n) and

fo(n). The functions are defined as begin capable of receiving arguments in the following ranges:

fa(n:N|n>5)
fo(n :N|n > 10)

We can define a set of possible returned values from each function given the full range of input

values.

fa(6,7,8,...) — {36,49,64,..}

fb(11,12,13,..) — {121,144,169,...}
N ——7
Contravariance

If fb is said to be a subtype of fa then the input arguments of fb are contravariant because the

range of fb is only 121,144,169, ... and does not allow for the full range of inputs found in the

supertype fa.
Definition 2 Covariance: Results of the application of the subtype must be less-than-or-equal
to the results obtained from the supertype, given the same arguments.

Consider again the example of inputs to outputs for each defined type in view of covariance:

fa(6,7,8,...) —s {36,49,64,...}
fb(11,12,13,.. ) — {121,144, 169,.. .}

Covariance

The output range of the subtype fb is covariant in relation of fa and is therefore safe. Invalid
subtypes result from the contravariant arguments in function subtypes (i.e: more restrictive
arguments).

In our simple example, if variables of types fa and fb are defined and type assignment is

attempted then subtyping will fail due to contravariance. Consider the final example in this




section:

a : fa// variable declaration

b : fb// variable declaration

a = b // type assignment

The application of a(6) will fail as a is assigned b of type fb, where the valid input range of
function fb is only {11,12,13,...}. Whereas a(6) is valid before the assignment (a := b) it fails
immediately after the assignment. Contravariance is responsible for this failure as it has restricted

a to an input range of {11,12,13,...}.

3.4 Defining Subtype and Subclass Relationships

The subtype relationship between T and T3 has been defined. We have shown that T5 Cypeype
T; and consequently that Co C Cj. This section resolves the issue of subtype and subclass
relationships between Ty, Ty and Ts.

It is not always the case that objects related by a subtype relationship are necessarily also
related by a subclass relationship. Consider the diagram in figure 1 which illustrates a partial

network of the set of natural numbers. The bold set of numbers in figure 1 represents the famous

N (h=0)

(n>5) {1,2,3,5,8,13,...}

(n>10)

{1,3,5,7,9,...}
{

Figure 1: The Set of Natural Numbers

Fibonacci sequence. We have chosen this particular set of values because it represents a valid
subtype of natural numbers but not a subclass of the templates Ty and 75 as defined by their
respective predicates.

Each set present in figure 1 is type compatible as they are all drawn from the set of natural

numbers. According to our earlier examples these sets can also be subtype compatible provided

8




that one is a subset of the other. However, subclass relationships between the sets only apply to
all separate sets that meet the requirements of the predicates 77 and T5. Hence the exclusion
of the set of Fibonacci numbers from the subclass of either Ty or T,. The set of odd and even
numbers are also excluded from the subclass relationship in this example.

Note: The empty set appears in figure 1 as the set of natural numbers for which no predicate
holds. Consider the empty set to be the bottom (L) of the set of natural numbers. The set
governed by the predicate (n > 0) represents the entire set of natural numbers (i.e: the top of
N,{0,...,}).

Successive incremental modifications of a template, as with T3, will still not capture some of
the sets in the natural number tree represented in figure 1. Extra predicates will enforce more
restriction upon the proposition of the template. Logical conjunction is considered to be the basis
of incremental modification, with each new additional predicate further specialising the scope of

the set of class object instances.

4 Application to Process Algebra Notation

This paper has so far provided a concrete foundation of the principles behind ODP’s definitions
of template, class, object, type, subtype and subclass. This section relates these concepts to our
research work which concentrates upon process algebras and object-oriented specification.

We aim to improve the object-oriented modelling capabilities of CSP-based process algebras
by extending a CSP-like language to allow the concepts of template, class and object to be
captured. We also intend to address the issue of communications between processes (treated as
objects) which must become resilient should synchronisation between such processes fail.

Process algebras such as CCS [9], CSP [3] and LOTOS [4] all pre-date object-oriented design
concepts. Naturally, there is no provision for these concepts in such formal languages.

Work is being carried out to address such issues as inheritance [10] to enable formal speci-
fications to benefit from encapsulation and reuse, as object-oriented designed systems currently
benefit from such techniques.

Our particular area of interest is inheritance and reuse and the effect that these two areas have
over process communication. As we have seen in previous sections, a process (which is treated as
an object) has a type. A process definition is specified as a template and therefore a collection

of objects conforming to a class template is in fact a collection of processes in a process algebra.




|
|
|

Conformance states that one process must conform to the other if the first process is to replace
the second process. If the first (replacement) process fails after some sequence of actions then
the original process must also have failed at that point. A formalisation of conformance can now

be given.

Definition 3 Conformance

Let @) and P be processes.

(Q conf P) iff
Vs € Traces(P).Y A C L(P) If @ fails to offer an action a (after sequence
if3Q eVacAe Q2 QA s) then P must also fail to offer the same

then 3P eVac Ae P2 P A action ¢ (after the same sequence s).

If the conformance rule is satisfied then a new process can replace an original process in all
places where the original process was expected !. The environment of the original process will
be unaware of the exchange as each function offered by the old process will also be offered by the
new process. Conformance guarantees at least the same behaviour as was originally present in
the environment before the substitution took place.

In CSP notation, conformance between the behaviour of process definitions can be defined

via the following rules [1, p.135]:
Law 1 : aP C a(.

Law 2 : if (s, X) is a failure of Q with s € traces(P), then (s, X) is a failure of P.

A tuple (s, X) is made up from a trace s of P and a refusal set of P (X) (after s). A trace

is a sequence of (observable) actions for a process.

Law 3 : (divergences(Q) N traces(P)) C divergences(P).

The sequence divergences(P) are the traces of P after which P behaves like CHAOS ? and

can do anything or refuse to do anything; being the most non-deterministic of all processes.

4.0.1 CSP Example of Conformance

A CSP example of conformance and its proof is now given [1, p.135].

aP = a@=aR={aq,b}

Lsubstitution is discussed further in section 3.3.
2CHAOSAa=puX : AX

10




= (a—= STOP)N (b— (a — STOP) O (b — STOP))
= a— STOP
R = (a— STOP)O (b— (a — STOP)N (b — STOP))

Process () conforms (reduces) to P and R conforms (extends) to @. The failure of R ({b), {b})
is not a failure of P because (b) is a trace of both R and P, which confirms that R does not
conform to P [1, p.135].

Given that conformance must be present for substitution to result in a stable system we can
see the importance of establishing a valid inheritance, subtype and subclass hierarchy, as was

shown in the earlier sections of this paper.

4.1 Process Synchronisation

In a process algebra such as CSP processes communicate upon synchronisation between common
channels that they both share. When each process is in a position to communicate they will do
so together across the shared channel.

If one process is not ready to communicate then the other party will wait until such time as
both parties are ready. If one process has died then the other party will wait indefinitely. The
entire system may become unstable and deadlock because one component has failed. Clearly, the
power to disrupt an entire system should not always be given to each process. However, in an
environment of synchronous communications the power to disrupt the execution an entire system
is exactly what happens. The nature of the system will determiﬁe which processes are essential
for the survival of the system and which processes are merely service providers of low priority
(such as a print spooler).

We seek to change the method of process communication by introducing a variant of asyn-
chronous communicating processes, using concepts first discussed in the work of Jifeng, Hoare
and Josephs [6, 8, 7].

The details of this work on asynchronous communications between processes is beyond the
scope of this paper but the concepts of template, class, object and type have far reaching con-
sequences for our own work, hence this discussion. Our main observation is that in order for a
process to be modified inheritance must play a part in that modification. Therefore, the mecha-

nisms surrounding inheritance (i.e: incremental modification) must be fully understood.

11




5 Conclusions and Future Work

This paper has presented concrete examples of object-oriented concepts as defined by ODP’s
reference model (RM-ODP) and supplemented by the work of both Rudkin [10] and Cusack [2].

Simple examples using sets and natural numbers have been used throughout this paper to
illustrate these ODP concepts with a view to providing an easier introduction to the material.
The goal of this work has been to provide a firm foundation from which to build up a model of
process algebra reuse and the modelling of inheritance.

Our research work uses the concept of inheritance and the asynchronous communications
between processes to aid reuse in communicating systems specifications whilst increasing the sur-
vivability of those systems should components fail to synchronise. Synchronous communication
within a system can lead to domino waiting as one process after another fails to provide synchro-
nisation for further processes in the system. Eventually the system becomes wholly unstable and
breaks down (i.e: deadlock).

Classifying the concept of a template and then subtypes between class instances, followed by
the further classification of subclasses between templates helps in our attempts to successfully
model a system that contains inheritance and maintains stability in spite of that inheritance.
Hence the importance of this work in ensuring that future work carried out in this area of object-
oriented process algebra research starts from a simple, concrete firm foundation which then leads

to a flexible unified model.

Acknowledgements

We are am grateful to David Smith for his supervision and insight into the concepts of template,
class and type. The example model using natural numbers to illustrate the points made in
this paper are based on his observations and our discussions with him. We are also grateful to
Mary Buchanan for various discussions on types and subtypes, together with her explanation of

contravariance and covariance using the simple example that appears in this paper.

References

[1] E. Cusack. Refinement, Conformance and Inheritance. BCS Formal Aspects of Computing,
3(2):129-141, 1991.

12




[2] E. Cusack, S. Rudkin, and C. Smith. An object-oriented interpretation of LOTOS. In The
2nd International Conference on Formal Description Techniques (FORTESY), December
1989.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

[4] Information Processing System Open Systems Interconnection. LOTOS~a formal description
technique based on the temporal ordering of observational behaviour. Technical Report DIS

8807, International Standardization Organisation, 1987.

[6] Transfer ISO/IEC Information Retrieval and Management for OSI. Basic Reference Model of
Open Distributed Processing - Part 2: Descriptive Model. Technical Report ISO/IEC DIS
10746-2, International Standardization Organisation, June 1991. Section 9: Specification

Concepts.

[6] H. Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asynchrony. In
M. Broy and C.B. Jones, editors, Programming Concepts and Methods, IFIP, pages 459-478.
Elsevier Science Publishers B.V: North Holland, 1990.

[7] M.B. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

(8] M.B. Josephs, C.A.R. Hoare, and H. Jifeng. A theory of asynchronous processes. Tech-
nical Report PRG-TR-6-89, Programming Research Group, University of Oxford, Oxford
University Computing Laboratory, 11 Keble Road, Oxford. OX1 3QD, 1989.

[9] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

[10] S. Rudkin. Inheritance in LOTOS. In K.R. Parker and G.A. Rose, editors, Formal Descrip-
tion Techniques, volume VI, pages 409-423. Elsevier Science Publishers B.V: North Holland,
1992.

[11] P. Wegner and S.B. Zdonik. Inheritance as an Incremental Modification Technique or What
Like is and Isn’t Like. In Proceedings of ECOOP’88, pages 5577, Oslo, Norway, August
1988. ECOOP.

13







