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Abstract

This short paper is intended to highlight the focus and direction of my research work to
date. Its purpose is to illustrate the course of future studies that I intend to undertake during
my last year of research, leading up to the submission of my Ph.D thesis in September 1997.

My research has concentrated upon the modelling of object-oriented communicating pro-
cesses using process algebras. Behavioural reuse and the modification of process behaviour
within an environment have been central to my research so far.

I have identified certain shortfall in the ability of current process algebras to model a sys-
tem based on objects. Modelling inheritance between processes and maintaining the stability
of communications between those processes has proved difficult given the facilities of exist-
ing process algebras. Process substitution and modification (via inheritance) can introduce
deadlock into a previously stable system.

I propose a variant of process algebras that use an asynchronous communications model
(known as Resilient Process Theory—RsPT). My theory permits the modelling of a stable
object-oriented communicating system which can allow the behaviour of processes (viewed as
objects) to be reused and extended. Processes in my proposed formal model are less likely to
fail if synchronising communications do not occur. A resilient process can continue to execute
provided that inputs to the process are still available; outputs do not effect a process’s ability

to execute as these are placed in a buffer of infinite size.




Introduction

My research work has concentrated upon the specification of communicating systems which have
an underlying object-oriented model. I am specifically interested in the behavioural reuse and
modification of processes in a communicating system. Particularly with the exchange of a process
for a new version of itself (via some form of inheritance) whilst maintaining the stability of both
the process and the system being modified.

So far, my research has shown that existing mainstream process algebras, such as Milner’s
CCS [9] and Hoare’s CSP [4], do not contain the declarative power to enable them to model
objects and inheritance. For example, a class definition in CSP is not abstract, it is visible and
can be treated as any other process. The ability to access an abstract definition differs from
that of a pure object-oriented view of a class where access is restricted to only instances of a
class. Consequently, child processes do not contain a copy of their parent’s behaviour. Instead,
that behaviour is referenced via inter-process communication. To attempt to capture the pure
object-oriented view of inheritance this communication between parents and their siblings must
be restricted from the view of the environment. This restriction is required to stop any influences
that the environment might have over such inter-process communications.

Modelling inheritance in existing process algebras has, so far, only been done by process
reference rather than by an implied knowledge of the behaviour of the parent process, as passed
down to the child. Therefore, the parent and child are treated as separate entities. In an example
with multiple child processes each child will explicitly reference the behaviour of its parent,
causing delays in the responsiveness to every other child as the parent is bound to each child
until it terminates its current sequence of actions. Object-oriented design and implementation
does not operate in such a way as each child contains a copy of the information of the parent.
From my research, it is clear that existing process algebra’s attempts to model inheritance do
not offer a clear representation of either objects or inheritance.

During my research I have identified three different types of inheritance that I would like to

model in a process algebra.

1. Strict Inheritance. The straight forward copying of behaviour and the extension of choice
within an existing process definition. Process P 4t 4be.P + d.e.) and process @ def
P+ j.k.1.Q). The rules governing a process algebra’s attempts to model strict inheritance

are given by Rudkin in his theory of objects and inheritance in LOTOS ([11, p.413]), a
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formal language for specifying network protocols that is derived from both CCS and CSP
[5].

Note that @ will need to modify the recursive process references at the end of each action
sequence for it to offer those actions again. To solve the recursion problem Rudkin also
introduces self as a generic variable that is instantiated with the name of the process’s
calling function [11, p.416]. Without self @ would perform the actions of P and then
be trapped in the recursion defined in the original specification of P, being unable to

offer any further actions of ¢). The revised process definitions for P and @ are therefore:

pY a.b.c.self 4+ d.e.) and process Q L p + 7.k.lself

2. Casual Inheritance. The ability to insert new behaviour into an existing sequence of actions
defined as a branch of behaviour in a parent process. Process P def a.b.c.self + d.e.) and
process @) def P[0/f.g.self], such that the full definition of @ is now Q dof a.b.c.self* +
d.e.f.g.self*. Note™: self is again used to solve the problem of recursion in behavioural
inheritance. Action renaming is used in this example to show that §) is replaced by f.g.self.
However, at this time no formal definition of casual inheritance exists. Renaming is used in
this example as a brief guide to the requirements of casual inheritance without expressing

exactly how it is to be achieved.

3. Transitive Inheritance. Process P & a.b.c.self + d.e.) and process @ & p + 7.k.1.self.
Therefore, process R def @ also inherits the behaviour of P by the definition of transitivity
over process behavioural inheritance. The ROOA method [10] develops an object-oriented
model for LOTOS specifications to adopt. However, due to the restriction in LOTOS that
parent (superclass) processes must provide exit functionality and child processes must not
there is no allowance for a LOTOS process in ROOA to straddle both a parent and child
class definition, being the parent of one process and child of another (as @ is defined to be
above). A LOTOS process cannot be defined to have both exit and noexit functionality.

Therefore the ROOA method breaks down if transitive inheritance is attempted.

My research interests, w.r.t the reuse of process behaviour by capturing inheritance, have high-
lighted further problems aside from the unsatisfactory modelling of inheritance.

The stability of a system which substitutes parent for child processes is another facet of
my research which has grown out of the original problems associated with process behavioural

inheritance (as described above).
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Behavioural reuse by substituting P for ¢ can lead to an unstable system as a result of the
substitution. Process @ may fail to synchronise with some other process R that the previous
parent process P did not originally synchronise with. In effect, ) extends the behaviour of P
by requesting a synchronisation with R and at the same time also weakens the system. Let us
assume that R is busy or has failed. Consequently, at some time later in the execution of the
system () must wait for R; a situation that did not occur in the original system. Process Q
suddenly has the power to crash the entire system by influencing processes that are not party to
its own failed communications.

According to the definition of conformance, which Rudkin states is the criteria processes
must meet in order to be deemed as suitable replacements ([11, p.412]), process @ is a valid
replacement for P. Conformance states that one process may be substituted for another, in a
system where the first process was expected, if (and only if) the replacement process fails to offer
certain actions that the original process also failed to offer. Formalisation of the conformance

law is now presented [1, p.11]:

Definition 1 Conformance

Let @ and P be processes.

(Q conf P) iff
Vs € Traces(P).Y A C L(P) If @ fails to offer an action a (after sequence
if3Q eVacAde Q2 QA s) then P must also fail to offer the same
then 3P eVac Ao P 5 P A action « (after the same sequence s).

From the previous argument, @ has brought instability to the system even though it was a valid
substitution for P. It is not possible to predict the effect that modifying or reusing a process
may have on the system therefore a solution to maintaining system stability must be found.
My research is aimed at finding a solution to the problem of modelling reuse and inheritance
whilst still maintaining the stability of the system within which the modified processes reside.
I argue that it should be possible to replace processes with new versions of themselves with
(possibly) more behaviour without altering the stability of the system if extensions to the original
behaviour of the system should fail. Within certain criteria the original behaviour of the system

should still prevail regardless of the fragility of any newly inserted behaviour.




1 Process Algebra with Synchronous Communications

The standard process algebra model of communication, as used by CCS and CSP, is synchronous
communication carried out between processes brought together under parallel composition over
common channels shared between those processes. The synchronisation of channels in a system
which attempts to capture inheritance forces the failure of that system if the extended behaviour
of a new substituting process fails. The failure being due to a failed synchronisation. Any
process that is not ready to synchronise on a common channel in the parallel composition of the
communicating processes will cause any other process in the composition to wait. When all of
the processes are in the same state (i.e: ready to communicate on a common channel) then they
will all communicate together; hence synchronisation.

In the system (P || @ || R), if process R is busy then P and @ will both wait for R. As you
can see, R can effectively hold up both P and @. If R has failed then, consequently, P and @
will wait indefinitely.

The main problem with existing process algebras is that their reliance upon synchronous
communications does not lend itself to modelling a system where modification and extension is
possible. In an object-oriented system the possibility of change is high as new child processes are
introduced to supplant their parents. Clearly, a model of communications that is less susceptible

to failed synchronisations between processes is required.

2 Asynchronous Process Communications

To solve the problem of synchronous communications reducing the stability of object-oriented
communicating systems I have researched the applicability of existing asynchronous process alge-
bras. To date, two theories for asynchronous communications have been reviewed; both theories
being derived from the language of CSP. These theories are entitled “T'he Theory of Asynchronous
Processes” (APT) [8] and “Receptive Process Theory” (RPT) [7]. Incidentally, RPT evolved from
the work by Dill on speed independent circuits [2]. A process in both APT and RPT is modelled
with an unbounded (infinite) buffer on both its input and output channels.

Due to their common heritage both APT and RPT can be converted into CSP processes by
simply removing their unbounded buffers, enabling the rich facilities of the CSP language to be
applied to those processes.

A process algebra based on an asynchronous communications model offers the ability to
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communicate between processes and the environment without requiring the target of those com-
munications being (necessarily) available.

By using the concept of unbounded buffers on their input and output channels APT and
RPT effectively surround each process with a buffer. Each process then synchronises with this
buffer rather than synchronising explicitly with other processes. Being of infinite size the buffer
of an asynchronous process is always ready to accept a communication (hence the name given to
receptive processes as they are always capable of receiving input; they are always receptive).

APT and RPT processes can talk or listen on their I/O channels without requiring other
processes in the parallel composition being ready to receive the communications. Therefore, both
APT and RPT processes are not affected by a failed synchronisation between communicating
processes.

A problem with the existence of unbounded buffers on both input and output channels is that
an explicit synchronisation between processes is no longer possible. There is no direct contact
between processes if buffering is used on both input and output channels; all communications
have to go through the buffers. Therefore, neither APT nor RPT can provide an explicit syn-
chronisation between processes (unless it is through the ordering of their buffer’s action traces).

A trace of a process is an ordered sequence of visible communications between the process
and its environment. The ordering of communications of a process is found in the trace of that
process.

The reordering of these traces may be necessary as synchronisation 'ma;y be required between
two processes (via their buffers). Note that explicit synchronisation between processes does not
take place in either APT or RPT as the buffers form a shield around each process. Reordering
the trace elements of a process shifts inputs left and outputs right and states that two trace
elements denoting the same channel must remain ordered (to enforce channel ordering rather
that trace element ordering) [8, p.6]. For example, (b.w, a.v) C (a.v, b.w) denotes that message
w on channel b, followed by message v on channel a is reordered by the new trace (a.v, b.w).
The reader should be aware that the ordering of a trace has some part to play in the (implicit)

synchronisation of APT and RPT processes.




3 Resilient Process Theory

The main thrust of my research will be aimed at providing a mathematical model of asynchronous
communications that attempts to offer more overall flexibility than those currently in use. My
proposed communications model only buffers the output channels of a process and is called
“Resilient Process Theory” (RsPT).

I propose to modify the theories of APT and RPT in order to produce RsPT. One topic for
further discussion is the nature of the buffers that I intend to introduce into RsPT. At present the
use of multi-sets seems to allow more flexibility than traces (i.e: sequences) as the ordering and
reordering of the trace elements will not be necessary. The cost of using a multi-set over a trace
is that CSP trace theory, that both APT and RPT are based upon, will cease to be applicable. I
must therefore decide which model to adopt and what consequences this design decision will have
on RsPT’s design. Much of the work on CSP failures sets (i.e: traces and refusal sets), which
characterise an asynchronous process in APT, will be void if a multi-set is used.

Using a multi-set will avoid the problems of reordering traces, with its influence on synchro-
nisation between processes and their buffers. However, what I might gain on one hand with
multi-sets as buffers I may easily lose should the underlying CSP theory fall apart once traces are
removed. Clearly the decision to use multi-sets will have many repercussions for the remaining

mathematical model.

3.1 Buffered Process Communication

There are three ways of representing buffers in a process, dependent upon the location of the
buffers themselves. The notation used to represent specific buffers is the open/close square
bracket symbol ([]). Use of this symbol allows process actions to be included within the buffer
if necessary, to show any contents prior to synchronisation (e.g: (P[a] || a.Q[b]), where P and
@ will synchronise on channel a and evolve to (P[] || @[b])). Reference to a general buffer for a
process uses the following notation (as seen in section 5 of this paper): Pbp or Qbg. Operations
on the contents of a buffer can then be performed on bp, where p represents any process.

The three separate views of buffered processes can be defined as follows:

1. Buffered input and output channels on a process - as defined in both APT and RPT [7, p.1]
and written formally as [|P[]. Using the parallel composition operator ||, an expression of

the form ([JP[]|[ C']| [|Q]]) states that P and @ will engage in undirected communications
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on common channels found in both their alphabet and the set C'. Expressed formally in

the CSP text as follows [4, p.72]:
traces(P || Q) = {t| (t [ «P) € traces(P) A (t [ aQ) € traces(Q) At € (aP U aQ)*}

The buffers of each process synchronise with the process itself and consequently have the
same alphabets. Therefore, a;P = aP = «,P, where ;P denotes the input buffer for

process P and , P denotes the output buffer of P.

. The second type of process buffering, as yet unused by any of the reviewed asynchronous

process algebras, is buffered input channels and unbuffered output channels. Represented
formally as [JP and written using the parallel composition operator as ([JP || []@). Only
the input channels of an input buffered process are receptive. Buffered input entails that
a process can continuously listen to the environment but must explicitly synchronise with

other processes on output communications.

The main disadvantage of this type of buffering is that although a process may listen
indefinitely it must still wait if another process is not ready to receive any of its output
communications. Were we to use this particular type of buffering then the problem of an
unavailable process further down the line holding up the current process would still prevail.

Therefore, we do not consider this type of buffer configuration further.

. Finally, the buffer configuration for RsPT is defined. RsPT uses unbuffered input channels

and buffered output channels on each process. We can show this buffer organisation formally
as P[]. Using parallel composition we write (P[] || Q[]). Again, common channels define
synchronise points between processes, brought together under parallel composition. A
process with the form P[] may continually send messages to its unbounded output buffer.
If P requests synchronisation on input then the sending process must be available for
the communication to take place. P must also be ready to receive the communication.
Therefore, we can enforce synchronisation with other processes by demanding that they

communicate directly with the process on input, rather than with its buffer (as is the case

with APT and RPT).

The advantage of RsPT over both APT and RPT is that my communications model allows a

process to continue to execute if the target of the communication fails to respond. It seems logical



to model communications between processes so that they must wait if there is no response from

the sender and are not concerned if the receiver of a communication fails to respond.

4 Summary

Existing process algebras do not model faithfully either objects or inheritance. From my research
it it clear that any attempt to modify an existing system by replacing processes with their inher-
ited counterparts has the potential to render that system more unstable than it was originally.
Consequently, the modified system is more likely to fail.

One key issue that my research has identified has been the ability of a new process to influence
the stability of an entire system, simply by substituting one process for its inherited child.

Part of the problems associated with modelling object-oriented communicating systems with
existing process algebras is their use of synchronous communications to effect inter-process com-
munication. A partial alleviation of this communications problem can be addressed by using
process algebras with an asynchronous communications model. However, because existing asyn-
chronous process algebras, like APT [8, 6] and RPT [7], use unbounded buffers on both input
and output channels it is not possible to guarantee explicit synchronisation between processes,
should they be required. Asynchronous processes synchronise with their buffers in a buffered
input/output model, not each other. Inter-process communication in this case is implicit rather
than explicit.

My proposed solution to the problem of a totally buffered systém of processes is to introduce a
refinement of APT and RPT; known as RsPT for “Resilient Process Theory”. An RsPT process
buffers its output channels only which gives it the flexibility to send messages to a process that
may be unavailable to communicate without having to wait itself. Also, messages requested
from other processes (taken as input to the RsPT process) will be synchronised directly with the
buffer of the sending process. Should the sender be unavailable then the RsPT process will wait.
The organisation of buffered output channels lends itself to a more resilient model for process
communications, hence the name of the proposed theory.

Finally, rather than adopt a traces model (i.e: ordered sequences) for the visible communi-
cations of a process [ am researching the use of a multi-set to replace the trace as the internal
structure for the buffers. The multi-set will yield more flexibility as the reordering of trace ele-

ments will no longer be necessary, as it is in APT [8, p.4]. The contents of the multi-set can then




be interrogated by using standard set operations.

5 Future Work

With the identification of a suitable communications model my task becomes clear. A firm
mathematical foundation for the theory behind RsPT must be developed in order to provide a
formal language that allows object-oriented communicating systems to be modelled faithfully. I
hope to be able to derive much of what is required from the existing models used in APT, RPT
and CSP. It would be useful to maintain much of the existing underlying theory as the CSP
foundations from which the theory is derived is consistent, complete, robust and well known. It
is not my intention to have to reinvent much of the what will be required in order to capture
formally RsPT.

An operational and denotational semantics for RsPT must be drawn up to give me a firm
mathematical foundation for the language. Further research is necessary in order to determine
the depth to which the theoretical foundation of RsPT needs to be captured. Using computation
semantics, Hennessey’s name for operational semantics ([3, p.30]), reduction rules for RsPT,
derived from the following first draft, will be required. Note that references to general buffers for
processes P and () are used (i.e: Pbp and (g, instead of P[] and Q[]).

The following mathematical structure is introduced as a model for the structure of the buffers
to be used in RsPT. Using the alphabet of a process (aP) as the domain of a relation, a partial

function between a channel from P and a sequence of values is defined.

For example: aP = {a,b,c,d}

bp = {ar(v,w), b= (w,y),c—(2),d (}
The invariant for the contents of bp is given as:
dom b, = oP

Note that the initial sequence of values for a channel can be empty, as it is in the example for
bp(d). In RsPT it is possible to explicitly synchronise on a channel without passing a value along

that channel (see rule 5 below). The signature of bp is given as:
bp : Channel + seq Value, where Channel = aP

Value is informally defined to be any value (i.e: message) sent along a channel.
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Standard set operations are defined upon the elements of bp. Standard sequence operations
are defined upon ran bp.

Two macro operations on sequences are used to extract the correct sequence elements mapped
to by a specific channel: first (i.e: oldest item in a sequence) and last (i.e: newest item in a
sequence). FIFO queuing of sequences is assumed, therefore the oldest item is the far right item
in the sequence and the newest item is far left. Function axioms for these two new operations on

sequences are defined as follows:

first 1 seqy X — X last :seq; X — X

Vs :iseq; X e first(s) = s(#s) Vs :seq X o last(s) = head(s)

A labelled transition system for RsPT can now be defined. The following rules govern the
communication of channel/value pairs from within a process to its output buffer and between

processes.

1. Internal communication from a process’s action sequence to its output buffer (P — Pbp)

is defined as follows:

clv.Pbp =% Pbp @ {c+ (v) " bp(c)}

2. Inter-process communication (IPC) between the output buffer of P and Q (Pbp — Q) is

defined as follows:

Pbp || c?0.Qbg == Pbp @ {c = (bp(c) \ first(bp(c)))} || Qbg
If ¢ € dombp A first(bp(c)) =v

e Incidentally, the expression {c¢ — (bp(c)\ first(bp(c)))} can be written in extension as

{c— bp(c) \ {#0bp(c) — bp(#bp(c))}}. For reasons of brevity the extended version

of the sequence replacement expression is not used.

3. Communication between the output buffer of @ and the input buffer of P (Qbg — P) is
defined as:

c?v.Pbp || Qbg = Pbp || Qbg & {c — (bg(e) \ first(bg(c)))}

If c € dombg A first(bg(c)) = v
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4. Communications between both of the output buffers of communicating processes P and

Q (Pbp > Qbg) is defined as:

cv,d.w

¢?0.Pbp || d?w.Qbg "=~ Pbp @ {d — (bp(d) \ first(bp(d)))} ||

Qbg @ {c = (bg(c) \ first(bg(c)))}
If (d € dom bp A first(bp(d)) = w) A (¢ € dom bg A first(bg(c)) = v)

5. Unparameterised synchronisation between processes (i.e: no value passing) can also be
defined in RsPT simply by passing the channel name and no value (represented by ()

between communicating processes:

Pbp || c.Qbg <% Pbp || Qbg
If c e dombp A bp(c) =)

By convention, the symbol §) can be dropped in the previous expression, yielding — in

future.

A simple (first draft) set of operational semantics of RsPT has now been presented. Clearly, more
work is required to complete the mathematical theory which, it is hoped, will provide a suitably
flexible communication model to help solve the inheritance issues that underlie this research.

The choice of amendments to the existing theories of APT and RPT, in view of the traces
model, will need to be considered. One main difference betweén APT and RsPT is the idea
of modelling a buffer as a multi-set, rather than a trace. The failures model of CSP, as used
by APT, will need to be modified (if possible) to incorporate the multi-set view. As yet it is
not clear whether a multi-set will decrease the stability of the existing traces model. So far a
set-based model which maps channels to sequences of actions has been proposed. The ordering
of the elements within these sequences can imply strict synchronisation.

As soon as the mathematical theory behind RsPT has been developed I expect to apply it
to specific case studies taken directly from the work done with BAe on the EMBLEM project
(Empirical Man-in-the-loop Battalion-level Effectiveness Model). Results from the application
of RsPT to the complexities of example EMBLEM engagements will be evaluated to show the
benefits of the theory of RsPT and will form part of the completed research thesis.
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