Eiffel, the universe and everything.
(somethings anyway)

Technical Report No.138

A. Mayes and R. Barrett

May 1992

Eiffel. the universe and everything. somethings anyway
) ()

Audrey Mayes and Ruth Barrett

18 May 92

1 Introduction

This document is a brief introduction to the programming language, Eiffel ver-
sion 2.2, as currently available on the Sparc Workstations. It assumes a basic
knowledge of object oriented concepts, terminology and techniques. Further
details of the terminology and techniques associated with Eiffel can be obtained
from Meyer [1]. Version 3 should be available during 1992. Any changes will be
reported in a subsequent document. The remainder of this document has two
sections. The first section contains the general information required to access
and use the Eiffel environment. An example system supplied with the environ-
ment is used to demonstrate the available tools. The same example is used in
the second section as an introduction to the syntax of the language.

2 What is Eiffel?

Eiffel is a true object oriented programming language which was devised by
Meyer [1]. It was designed to have all the qualities he considered to be neces-
sary in a software system. These qualities are correctness (compliance with the
requirements and specification), robustness (the ability to function under abnor-
mal conditions), extendibility (the ability to adapt to changing requirements),
reusability (the ability to use some part of a system in a new application) and
compatibility (being able to combine with other products).

A program, or system as it is called, is written as a group of classes. Each
class provides a number of features which can be used by other classes as re-
quired. There are two kinds of features. These are attributes, which contain
data items, and routines which perform some computation. The attributes of a
class are the fields which contain the data. Attributes can be simple types, such
as integer, real, character and boolean or class types, that is a type declared by
another class declaration. The root class is responsible for setting the system
going and is roughly equivalent to the main program in C or Modula-2.

During the running of the program these class definitions are used to produce
objects. Thus objects are only found during the execution of the program and
classes are only found in the program. This is comparable to the difference
between programs and processes in procedural languages such as Modula-2 or
C, in that programs and classes are what is written and processes and objects
occur as a result of the execution of the code.

During the execution of the program, the objects communicate with each
other by passing messages. These messages are the run time equivalent of one
class using a function supplied by another class.

Another feature of Eiffel which is peculiar to object oriented languages is
inheritance. The basic idea of inheritance is that a new class can be formed by
adding extra facilities to an existing class or by combining two or more existing
classes. The new class (called a descendant) formed has all the properties of the

existing class (called an ancestor) plus any extra properties declared in its own
definition.

2.1 How to access the Eiffel system.

The Eiffel system can be accessed via the Sparc workstations. If you are unable
to access the eiffel system the following should be added to the .login file:-

setenv EIFFEL /usr/local/Eiffel
Jusr/local /Eiffel /bin — added to the set path command
Just/local/man — added to the setenv MANPATH command

The Eiffel system requires the use of an editor. The default editor is ‘vi’.
This can be changed by adding the following to the .login file:-

setenv SDF_EDITOR <editor name eg. emacs>

When working with Eiffel it is best to use a workstation with ‘Open Win-
dows’ and an xterm interface as some of the facilities (eg the browsers see
subsection 2.3.4) do not work with a command tool interface. It is possible to
remote login to the Eiffel environment from a terminal via sol but again some
of the facilities do not work.

The sequence of events required to get access to the Eiffel environment on
the workstations is:-

login
% openwin
% xterm & (wait for a new window)

If a print out is required, it is sometimes necessary to remote login to sol
and then print the file.

The Eiffel system contains a library of basic classes. These are contained in
the directory

/ust/local/Eiffel /library

A copy of all the library facilities provided can be obtained by printing out
the short form, see Section 2.3.3, of each of the libraries.

2.2 Examples of Eiffel programs

All the source files have a .e extension (maximum 12 chars +.e). The directory

/usr/local/Eiffel /examples

contains some example programs. The simplest example is contained in
the GUIDED_TOUR directory and will be used throughout this paper. The
example can be copied into your area using the command:-

¢p -t /usr/local/Eiffel /examples/GUIDED.TOUR .

2.3 THE UNIVERSE and other useful facilities of the Eif-
fel system

The universe of an Eiffel system is the set of classes which are needed to compile
and assemble the system. The universe line of the System Descriptor File (SDF)
is used to define the universe. The classes contained in the current directory and
those in the kernel library are included automatically. The directories containing
any other classes required by the system must be listed in the SDF. The kernel
library contains classes which provide all the basic system needs such as input
and output to the screen, arrays, strings and files. The group of classes found
in a directory is called a cluster. This is a term used in the browsing tools
(see section 2.3.4). It is suggested that clusters should contain logically related
classes.

The remainder of this section gives some details of the facilities available
in the Eiffel environment. More information can be obtained on each of the
utilities by using the Unix “man” command eg. type

man es,

for information about the es command. The files in the directory:
Jusr/local/Eiffel /doc

contain the same information.

2.3.1 ec

ec stands for Eiffel compiler. The ec command is used to compile classes. The
following command is used:-

ec <classname> (again classname is lower case with or without an estension)

for example type “ec pointl”

When using ec all the classes required by the class being compiled are
checked to ensure that the latest version is used, supplier classes are then re-
compiled if necessary. If all these are in the same cluster, that is in the same
directory, the SDF is not used. After running ec, one new directory is produced

for each .e file. These have the extension ‘.E’ and contain files generated by the
compiler.

2.3.2 es

es stands for Eiffel system. It is used to compile and assemble the system. The
class name is not required when using es. eg. In the GUIDED_TOUR, directory

type
€s

The first time the es command is called in a directory, the user is prompted
to fill in the System Descriptor File (SDF). This is used to tell the system which
system is to be assembled, where to find the basic library classes (in the line
UNIVERSE:) and other information required by the compiler.

The only line which needs to be edited for the example is the ROOT: line.
The “root_class_name” needs to be replaced by the actual name of the class to
be compiled. In the GUIDED-TOUR, example the name of the root class is
session, so “root_class_name” should be replaced by “session”.

The messages appearing on the screen during the execution of the es com-
mand show that it is not necessary to compile each class individually. The
system checks and compiles each class used by the root class, as required
in turn, before it compiles and assembles the root class. A runnable file,
<root.class_.name>, and a .eiffel file are produced as well as the ones produced
by the compiler. The .eiffel file contains the amended system descriptor file.
The program can be run by typing the name of the executable file, eg type
“session” 1f using the above example.

The other example systems in the /usr/local/Eiffel/examples directory al-
ready have a .eiffel file with the correct root class name added. Beware! Some
of the names of the root classes are not the same as the names of the directory
they are in. The .eiffel file contains the file name to be used run the program.
These examples take up a large amount of disc space, so may cause problems if
more than one is resident in your area.

2.3.3 short

The complete class declaration contains more information than is needed by a
programmer using the class. The short command is used to display only the
required information. This information includes:—

1. the definition of each of the exported features, including the create func-
tion if one is defined,

2. any preconditions or postconditions associated with the features

3. the comments written by the programmer to accompany the feature dec-
laration

4. the type of each of the exported attributes.

A call takes the form:—

short <file name>

The following is the result of running the short command on the class IN-

TERACTION which is found in the GUIDED_TOUR directory.

class interface INTERACTION exported features
over, get_request, one_command

feature specification
over: BOOLEAN

Create
—— Create a point

get_request
—— Ask what the user wants to do next,
—— returning the answer in attribute ‘request’:
—— ‘Up’, ‘Down’, ‘Left’, ‘Right’ or ‘Quit’.

one_command
—— Get user request and execute it

end interface —— class INTERACTION

The amount of information produced by the short command is comparable
to that included in a Modula-2 definition module or Ada package specification.
This example also shows that the Create feature is part of the interface even
though it is not included in the export list. See section 3.1.2 for information
about the create feature.

2.3.4 eb and good —browsing tools

These two commands are used for browsing through the classes available to the
system, ie those contained in the current directory and in the directories listed
in the universe entry of the System Descriptor File. The eb command accesses a
textual browser and the good command accesses a graphical browser. good is a
viewing tool. It is used to graphically display the relationships between classes,

and to examine the code for the classes. Classes must be compiled before good
can give any information about them.

eb is more interactive. It is possible to compile classes, edit existing classes,
add new classes and to run the system from within eb. It is also possible to see
a textual form of the relationships between classes.

2.3.5 et

et stands for Eiffel test, (not for green monsters of the universe!). This command
is used to produce a test program which can be used to test classes interactively
without having to write a special test driver. A call takes the form

et <classl>,<class2> etc

All the classes listed must be in the current directory or one listed in the
SDF ie must be in the current universe.

The test program is then automatically run, allowing all the features of the
listed classes to be checked. That is the theory, but the easiest way to test
and debug a program is to use the ALL_ASSERTIONS option in the system
descriptor file as recommended by the author of the language.

2.3.6 ancestors

This command lists all the ancestors, ie. the classes from which features are
inherited, of a compiled Eiffel class. A call takes the form

ancestors <classname or filename>

Indentations are used to indicate levels of inheritance.

2.3.7 flat

This gives an inheritance free version of the class, ie. it lists all the features
inherited from other classes as well as those declared in the class. Inherited
features are preceded by a statement —Feature from <class>. A call takes the
form

flat <classname>

The class must be already compiled.

3 The Eiffel language

This section contains an introduction to the Eiffel language and its syntax.

3.1 The structure of an Eiffel class declaration

As stated before, an Eiffel program consists of components called classes. The
class declaration contains both the definition and the implementation of the
class, unlike Modula-2 which has separate definition and implementation mod-
ules. Below is a generalised class definition. The Eiffel reserved words are in
bold type, the explanations are in italics:-

class CLASS_NAME (capitals for class name is an Eiffel convention)

export
(a list of the features which are available for use by other classes.
They form the interface of the class. The root class will not have
an ezport list unless it can be used as part of another system.)
inherit (optional list of ancestor classes .)
ANCESTOR._CLASS rename a as al
(This facility is used to avoid name clashes and give more meaningful names to the
properties of the new class)
ANCESTOR._CLASS redefine a
(used to put in a different piece of code to be used for the new class under the
same name as the original feature.)
feature (This section contains

i) the type declarations for the attributes of the class which are equivalent

to the fields of a record.

ii) the code used to implement the functions which form the interface and those
required by the class itself)

a: CLASSI; (a and b are attributes of the class CLASS_NAME .
b : CLASS2; They are instances of other classes CLASS1 and CLASS2)
function_name (parameter list) is

local
(optional declaration of variables used in the function)

require
(optional declarations of preconditions)

do

(code required to perform the function)
ensure

(optional declaration of postconditions)
end;——function.name (—— indicates comments)

(more feature declarations)

invariant (optional list of conditions which must be true after creation

of the object and after every call to a routine.)

end ——CLASS_NAME

3.1.1 the export list

Attributes are made accessible by exporting the name of the attribute. It is
not necessary to supply a specific “get_attribute” routine. It is not possible,
however, to assign a new value to the attribute outside the class, the compiler
rejects the code giving an unhelpful message (see Section 3.5). The effect of this
is that attribute and parameter-less functions appear the same. This gives more
freedom to the implementor of the class to use whichever method they think
is best and to change this without any change to the client class, eg a derived
value could be held as an attribute or computed each time it is required, the
frequency of access might determine which is the best implementation but will
not change the way the class is used.

3.1.2 the create function

One feature that all Eiffel classes have, is a create function. This is a standard
function which is exported by all classes. Attributes of the simple types, that is
integer, real, char and boolean, are produced at runtime as actual instances of
the type. Attributes of other classes, known as class types, are implemented as
references to the corresponding object at runtime, not the actual object itself.
The create procedure is called to produce the object and relate it to the reference
held in the calling class. It is impossible to use any of the features supplied by a
class until the create function has been called. A default create procedure exists
which initialises all attributes of the class according to their type, as shown in
the following chart [1].

type Initial value

integer 0
real 0.0
boolean false
character null

class type | void reference

If these values are not suitable, a new create function can be defined.The
feature is then listed in the interface displayed by the short command. One
important use of a user defined create function is in the root class, which is
used to start the system running.

The class SESSION, shown below, is the root class (the one responsible for
driving the system) of the example in the GUIDED_TOUR directory. As this is
a simple program, the root class only contains a create feature. It could contain
other features as well and also have exported features if the system is part of a
larger one.

class SESSION feature

Create is —— Execute sequence of interactive commands
local
interface: INTERACTION
do
from
interface.Create
until
interface.over
loop
interface.one_command
end
end —— Create

end —— class SESSION

3.1.3 system execution

When a system is executed, the create function of the root class is invoked. In
the guided tour example, this means the create function of the class session.
As can be seen above, the create function declares a local variable of class
INTERACTION. The features exported by this class can then be called. The
create feature is, of course, the first one called. The system then repeats the
feature one_command until the boolean variable over is set to true.

3.1.4 syntax

Eiffel syntax is fairly simple. A semicolon is used as a statement separator.
There is only one iterative statement. This is the loop statement an example of
which can be seen in Section 3.1.2. There are two forms of conditional statement.
These are

1. The if statement, which takes the form:-
if conditional then statements
else statements

end

2. The inspect statement, a multi-branch instruction, which takes the form:-
inspect variable
when z then statements
when y then statements
else statements

end

There is one other important piece of syntax. That is the dot notation as in
interface.Create, see class SESSION above, is used to link the action required to
a specific object. It means take the object named “interface” and apply feature
“Create” to it. The same notation is used to access all features. The following
code for the one_command feature of class INTERACTION shows the use of
the dot notation when a feature requiring parameters is called.

one_command is

—— Get user request and execute it

do

get_request;

inspect request

when Up then
my_point.translate (0., 1.)

when Down then
my_point.translate (0., -1.)

when Left then
my.point.translate (-1., 0.)

when Right then
my_point.translate (1., 0.)

when Quit then
over = true

end;

my_point.display

10

end ——one_command

3.2 Types

There is no inbuilt facility to declare enumerated or subrange types. This is
because they do not fit in with the Eiffel notion of type. Eiffel has only the
four simple types plus class types. All the features in a class are eventually
represented as one of the four simple types.

The way to implement an enumerated type is to represent each value by an
integer, for example:

Monday: INTEGER is 1;
Tuesday: INTEGER is 2; etc

The class containing these declarations would also contain the features re-
quired to use this type. A class containing an enumerated type might be used
by more than one other class in a system, that is they may contain an attribute
of that class type. This would normally result in many instances of the class
being produced. These instances would all be identical. For example a class
CALENDAR would always contain the same information, such as May has 31
days. To avoid duplicating the information, the class can be declared as a once
class [1] so that it is instantiated the first time it is called and any other objects
can access this one instance.

3.3 Peculiarities of the Eiffel language or potential black
holes.

3.3.1 “readline”

This procedure reads in a string of characters until a new line or end of file is
input. This string of characters is put into a variable called laststring, which is
of type STRING. STRING is a complex type which is predefined. This means
that any variables of type string are implemented as references to the variable,
not as actual instances of the variable. The statement

x:= io.laststring;

therefore binds x to the variable laststring, that is it always takes the value
of the latest 10.laststring, not the value it had at the moment the assignment to
io.laststring was made.

In order to assign laststring permanently to a variable ‘x’, the statement

X := io.laststring.duplicate;

11

must be used. This makes a duplicate copy of the latest string input and
assigns this to the reference x.

3.3.2 “readreal” and “readint”

These two input procedures read the input into a lastreal or lastint variable.
This can then be assigned to the required variable. Real and integer are simple
types, so just the normal assignment is needed. In common with other lan-
guages, a space is enough to separate a series of numbers, but the program will
not go on to the next stage until a <return> is entered. In Eiffel this causes
some problems such as :-

1. If two numbers are entered, separated by a space, when only one is re-
quired, the first one is allocated to the variable and the second one is
stored in a buffer, waiting to be allocated. It is used for the next required
input.

2. The return used to terminate the input of a number is also buffered and
appears to lurk around waiting to terminate the next string input. This
results in the user not being given an opportunity to enter the next textual
information requested, a null value is inserted instead.

Both of these difficulties can be solved in the same way namely by forcing
each input to be on a separate line. The way to do this is to follow each input
of a number by an “io.next.line ” instruction which reads the return and starts
a new line on the standard input.

The instruction io.new_line forces the output to a new line but has no effect
on the input so does not clear the return and can not be used in the same way.

This problem is a recognised “feature” of the Eiffel language. The situation
arises because of the way readreal and readint are implemented. The required
value is read into a variable, laststring, and then converted to the correct format
and put into lastreal or lastint. The laststring variable is not cleared, leading to
the above problem. It is unlikely that this will be changed as existing software
would need to be altered to comply with the new implementation.

3.4 Reuse of existing classes

The short-flat form of a class is supposed to contain enough information to allow
a programmer to understand and use the class and all its features. An attempt
was made to reuse the demo-driver class. This class provides features to allow
a user of the system to choose an option from a menu. Several problems were
encountered. These were:-

1. The output did not appear on the screen in the expected order. This
happened because the default output in the demo-driver class is set to the

12

standard error file which runs asynchronously with the normal standard
output file, so it is pot luck which gets to the screen first. Two methods to
deal with this situation were suggested by Applied Logic Developments,
these were either to redirect the required output to the error file or to
change the demo-driver class to write to the standard output instead.
This second method is possible because the demo-driver is a high level
class so other classes should not be effected. As a general rule, it is better
not to change classes which have been provided.

2. The add_entry feature is supplied to add an entry to the menu. The
comments state that

“If it (an entry) contains upper case letters, they will be used as a tag for
recognising the users input.”

This implies that the use of the tag is optional. This is not the case as
the print_menu displays a heading stating:-

“Select a comment by typing the first two letters in upper or lower case
(? for help)”

The print.menu comment is simply “Print menu”. which gives no help
with the structuring of the menu.

After reading the code for all the features it is obvious that:-

(a) In order to use the supplied print menu the upper case tag system
must be used

(b) A help facility must be added in order for some of the other features
to work correctly. This is supplied by the feature

complete_menu —— Add help command to menu.
There is no instruction to say that this must be called before print_menu.

Problems of this nature make the reuse of classes difficult, if not impossible.
The problem could be avoided by adding copious comments to tell the user
exactly how to use the class and its methods or by making use of the features
supplied by the language. As can be seen from subsection 3.1, Eiffel provides
require and ensure to implement pre and post conditions. These could have
been used in the demo-driver class to ensure that the class would be used cor-
rectly. Boolean variables would be set to true by a feature and tested as a
precondition for another procedure. For example, the present print_menu fea-
ture has no preconditions. In order to ensure correct use the following could be
added:-

print-menu
require
has_title ——boolean variable to be set by new_menu
menu.size /=0 ——variable changed by add_menu

13

menu_complete —— boolean variable to be set by complete_menu

The comments supplied with the add_entry feature should be changed to
reflect the real situation, that is to state that the use of a tag is essential if the
print_menu feature is to be used.

All the changes use readily available facilities. If reuse of classes is to be a
reality, these facilities should be fully exploited.

The poor quality of the documentation which accompanies supplied classes
is not unique to Eiffel. D Esp [2] found the Smalltalk-80 library to be large and
useful but inadequately documented.

This suggests that programmers need to be trained to document their work
in a more complete way. This would not only make reuse easier but would also
malke it easier to make corrections to code written by another programmer.

3.5 Compiler error messages

The following list contains some of the less meaningful error messages that have
been interpreted.
1. “Is cannot be used as an identifier”

really meant that an end statement was missing!

2. “’:=’ may not be used as identifier ”

occured when trying to change the value of an attribute outside its own
class declaration but inside a client class. eg. changing the value of a point
coordinate inside the interaction class in the GUIDED_TOUR example.

3.6 Warning

Several changes have been made since the Meyers’ original book was published[1].
The main ones are:-

1. The library has been changed so the simple example (p72) does not work!
Replace

io.putstring nl(” ”) with

io.putstring (”....... "),

1o.new_line

2. The IF statement is the only conditional statement mentioned in the
book. A new statement which is roughly equivalent to a case statement in
Modula-2 or C has been introduced. This is the inspect statement. An
example of this is in the code for the one.command feature in the class
INTERACTION.

14

3. The SDF has also been changed.
There is a new book [3] but this relates to Eiffel version 3. There is conversion

subsection to allow the comparison with previous versions.

References

[1] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
Hemel Hempstead, 1988.

[2] D.G.Esp. A beginners experience of smalltalk-80 for the evolutionary proto-
typing of an expert system. IEE Colloguium on ’Applications and Ezperience
of Object-Oriented Design’, 18, 1991.

3] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead
bl
1992.

15

