Do we still need the system life cycle?
Technical Report No.135

Carol Britton

February 1992




Do we still need the system life cycle?
Carol Britton

School of Information Sciences, Hatfield Polytechnic
Herts AL10 9AB, England

Since the dawn of software systems the development process has been dominated by
the traditional system life cycle. This is a route map, onto which a software project fits
more or less comfortably, and which prescribes the stages through which such a project
must pass on its way from being merely an idea in the customer's mind to
implementation and delivery. It is true that, in recent years, techniques, such as
prototyping and the use of formal notations, have been developed which seem to
encourage a move away from a rigid life cycle approach; yet software projects based

on these techniques seem to be significant more for the fact that they do not follow a life
cycle pattern rather than that they do introduce a new development framework.

In a typical life cycle model of system development one of the pricipal divisions is the
demarcation between specification and design. The early stages in a development
project aim to identify problems, establish the feasibility of pursuing a solution,
analyse the current situation and determine what must be done to satisfy the
customer's needs. These activities culminate in the production of a requirements
specification which may be written using English, a formal notation, structured
graphical techniques, or a combination of all of these. The main characteristic of such
a specification is that it describes only what tthe new system is going to do without any
consideration of Aow this is going to be achieved. As a system development project
progresses into the design stage of the life cycle the area of concern is widened to
include such issues as the choice of appropriate hardware and software, design of the
user interface and allocation of storage. The software designer uses the given
specification as a starting point for decisions as to how the new system is going to
implement the defined solution.

The split between specification and design, the what and the how, has always been one
of the principal tenets of the traditional life cycle. It is argued that, only by abstracting
away from details of implementation in the early stages of development, can the
software developer hope to establish exactly what is needed and so produce a system
which is fit for the purpose.

It all sounds so plausible, so obvious; why then are we becoming more and more deeply
embroiled in the now notorious 'software crisis'? Why is it that most systems still
overrun their budgets, are delivered late and fail to do what the customer wanted? Is
the life cycle - and therefore the way we develop most of our systems - fundamentally
flawed?

It is true that the structure of our traditional systems life cycle may no longer be
appropriate as a framework for modern systems development. We need only to think
of the many tools and techniques that have been introduced since the advent of the life
cycle: fourth generation languages, prototyping, formal specification languages and
automated project management tools are but a few of these.

The most significant change, however, has not been in development process itself, but
in the type of system required. As recently as a decade ago much of the work of a
software systems developer involved building complete systems for customers who

had little or no experience of computers. Today virtually everyone has used or come
into contact with a computer system. It is increasingly rare for a developer to be asked




to build an automated system to replace a wholly manual one. More and more systems
are 'second time round’ and all the easy jobs have been done. The old life cycle view

of developing a system from the first vague thoughts right through to implementation
and handing over to the customer is no longer appropriate. It is about as unrealistic as
the idea of building a new road and being able to make a free choice about where it is to
go and what route it will take. Our country is full of roads and our computers are full
of software. Unless we start building motorways under the sea any 'new' road is
merely a modification of the existing network. In the same way, believing that the job
of a software developer is to build new systems, is simply self delusion. With

computer systems already in place, however inefficient they may be, the system
developer's tasks today are those of extension and modification.

But does this actually have any bearing on the way we develop systems? The
traditional life cycle explicitly takes account of the need for change in any system. In
nearly all life cycle models there is a 'Maintenance and Modification' stage which
encompasses everything from fixing minor bugs in the code to major alterations in
the system functionality. Most system development methodologies state
euphemistically that even small changes should involve working through all the
development stages.

To my mind, this is simply patching over the problem. The fact that a computer system
is already operational gives rise to constraints on the development of a new system
which are of a different order from those imposed by an existing manual system.
Time, money and effort will already have been invested in the original computer
system and organisational procedures based on it will have been developed.After the
major upheaval of installing a computer system first time round, very few customers
are going to be prepared to jettison what is already in place in favour of a totally new
system. It is essential, therefore, that the existing computer system is analysed in
depth, that the constraints it imposes on future development are identified and that
these constraints are borne in mind throughout the development of the new system.If
we take this view of modern system development, we can see that the life cycle in its
present form is no longer appropriate for the type of work that system developers are
asked to carry out since it is based on two false premises: first that the system is to be
developed from scratch, and second that what must be done can be decided without
detailed consideration of how this is to be achieved.

It is true that certain methodologies, such as SSADM, begin the development process by
modelling the current system. In the case of SSADM this is done principally by

means of current physical data flow diagrams which aim to capture how the system
(manual or automated) functions at present. These data flow diagrams do indeed

give the developer a picture of the current system implementation and could therefore
be used to ascertain how this implementation will affect future development. In
practice, however, the current physical model of the system is used as a basis for
abstraction to the current logical model in which the details of implementation are not
considered relevant.

What is needed is an explicit stage in the life cycle during which the model of the
current physical system is analysed in depth to determine precisely what the starting
point is for the new system. It is at this point that issues should be discussed such as the
choice of hardware and software, the design of the user interface and measures of
performance. The customer's requirements, while perfectly reasonable in

themselves, may be totally impractical as an extension to an existing system. There

is little point in a developer spending time and effort defining what the new system is

to do if this can only be achieved through hardware or software which is not compatible
with that of the customer's current system. Many of the major decisions about the new
system will be dictated by the nature of the existing system in the customer
environment and the degree to which the client is prepared to adapt both the system and

2




the ways of working which have developed round it. It is essential for the success of
'second time round' systems that an in-depth analysis of the current system
implementation is carried out and the resulting constraints on the new system are
identified at the very beginning of the development process.

The fact that most system development projects today replace or modify existing
computer systems also has implications for the relationship between the customer and
the system developer. Not many years ago most customers were novices who were just
moving into the world of computerization. They had faith in the new technology, were
eager for change and felt confident that installing a computer would be the solution to
their problems. Most customers had little or no knowledge of computers and so tended
to regard the system developer as a technical genius who could provide the perfect
system with minimal user involvement. This view of the customer/ developer
relationship is supported by the traditional system life cycle and methodologies based
on it which explicitly involve the customer only at the very beginning and end of the
development process.

Today few customers believe that the developer can wave a magic wand or that the
computer can solve all their problems. Customers now have experience of a computer
in the problem environment and rightly believe that their expertise is as valuable as
that of the developer. The former customer/expert relationship is now much more a
partnership. This view is not reflected in the life cycle approach to systems
development, but is found in techniques such as prototyping where the role of the
customer in designing the system is just as important as that of the developer.

Does this mean that the life cycle is no longer of use to system developers? It seems that
the traditional separation between the what and the how is no longer applicable to most
present day development projects, nor does the life cycle framework cater for the
present day relationship between customer and developer. Have we reached the point
where it is old-fashioned and misguided to base system development projects on the

life cycle?

However tempting it may appear, it would be a disasterous step simply to dispense with
the life cycle. The framework and management support that it offers are too valuable

to throw away while we have nothing with which to replace them. The factors that
originally gave rise to the life cycle are still with us. Problems such as the complexity
and scale of systems required, the size of development teams and the speed of change

in the computing industry are, if anything, more accute today. The life cycle can go

some way towards alleviating the situation by imposing a structure on the

development process, identifying milestones, encouraging standardised

documentation and acting as a basis for project management.

In the current state of software system development it is relatively simple to criticise
the life cycle and to pinpoint some of its underlying problems. It is very much harder
to suggest how these problems might be solved. This paper identifies two distinct areas
which could make the life cycle a more appropriate basis on which to build today's
software systems. First there should be a comprehensive study of the existing system,
including current hardware, software and organisational procedures. At this stage it
must be established which of these the customer is prepared to change and which are to
remain in the new system. This information, together with the customer's problems
and requirements, should then form the basis of all decisions about the new system.

The second area of the life cycle which could benefit from change is more difficult to
define, since it involves a view of the customer / developer relationship, rather than a
particular development activity. The customer is an essential part of any system
development process and should not be pushed aside at certain stages because these are
seen as of concern only to the system developer. If the customer were having an

3




extension built to his home he would not presume to understand all the architectural
and engineering details of the process, but he would expect to be able to ask at any stage
why things were done in a particular way and to understand the answers he was

given. In building software systems the developer is answerable to the customer in

just the same way an architect or a builder. At any stage the developer should be
prepared to explain to the customer not only what and how but also why development
is proceeding in a particular way. If this degree of customer involvement disrupts the
management structure provided by the life cycle it may be frustrating, but it is vastly
preferable to a dissatisfied customer and a system that falls short of expectations.

Whether we need some form of life cycle, guidelines, framework, or whatever we
choose to call it, is not the question. What we need to ensure is that our structure is
rigid enough to provide support for managers and developers of systems, while at the
same time flexible enough to respond to computing's rapidly changing environment.
For many years the system life cycle has been a life line for system developers; now
we must make sure that it does not become a noose.




