DIVISION OF COMPUTER SCIENCE

The Responsibility Driven Object-oriented
Design Method advocated by Wirfs-Brock,
Wilkerson and Weiner

Technical Report No. 149

A. Mayes

December 1992

The Responsibility Driven
Object-oriented Design Method

advocated by Wirfs-Brock, Wilkerson
and Weiner.

Audrey Mayes
December 92

1 Introduction

This document presents the results of an investigation into a responsibility driv-
en object-oriented design method [1]. This type of method views a system as a
group of objects which represent the roles required to provide the desired func-
tionality. This view of objects contrasts with the more usual view that objects
represent both abstractions of entities in the problem space and the computer
artifacts required to produce a system([2]. The responsibility driven method can
lead to the identification of classes which provide one service only and act on
data provided by or stored in other objects of another class.

Section 2 of this document contains a brief summary of the responsibility
driven object-oriented design method. This is followed by a section giving the
author’s views on the method and program style produced. Section 4 contains
a review of the author’s experience of using the responsibility driven design
method.

2 The method

Object-oriented design is defined as ‘the process by which software requirements
are turned into a detailed specification of objects’ [1]. The object specification
defines the roles and responsibilities of the object, leading to the method being
described as responsibility driven. This is different from the more conventional
definition of an object which is concerned with the state and behaviour required
[2].

The starting point for the method is a requirements specification document.
This contains a description of what the software can and cannot do, the relative

importance of the different features and real world constraints. Details of the
user interface and the data storage facilities to be used are included in the
requirements specification. The method deals with all aspects of the required
system.

The method is divided into two phases, the exploratory phase and the anal-
ysis phase. Each of these phases is divided into three stages as summarised
| below.

2.1 Exploratory phase

1. Identify classes. This identification starts when the requirements specifi-
cation has been read and understood. The classes are found by examining
the requirements specification document and making a list of all the nouns
and noun phrases. It is pointed out that the phrasing of the document can
lead to nouns or verbs being disguised so care should be taken to compen-
sate for this. The list is reduced by removing duplicates and alternative
names for the same things and obvious nonsense. The remaining nouns
and noun phrases are then examined to make sure that they fall into one
of the following categories.

e physical objects such as a display screen,
e conceptual entities such as a PIN on a card,
e external interfaces such as the user interface,

e values of attributes such as float or real for the value of an attribute
length.

The candidate classes are then examined for groups with common at-
tributes. These are used to define preliminary inheritance hierarchies.
Fig.1 shows the notation used. The final list is then transferred on to
cards or other storage medium. Each card contains the name of one class
and a sentence describing the purpose of that class.

2. Allocate responsibilities. Responsibilities are the knowledge maintained by
an object and the functions it can perform. The requirements specification
is the starting point for the identification of responsibilities. This time
verbs and verb phrases are extracted. The purpose recorded for each
class is also useful. The relationships between classes are also used to
help identify responsibilities. These responsibilities are then allocated to
classes. The following guidelines are given.

e State the responsibilities as generally as possible.
e Distribute the intelligence evenly.

e Put all the information about one thing in one place.

e Keep the behavior with the related information.

e Share responsibilities among related classes.
This information is also recorded on the cards as shown in Fig 2. More
information is added to the cards later in the development process.

The attributes of a class are not modelled. It is the type of the attribute
that is important, ie if it is an integer, string, etc. The attributes required
by a class can be added as a responsibility for the class to know something,
for example

Class: Account

Know the account balance.

class

N

subclass 1 subclass 2

Figure 1: notation for preliminary heirarchies

class name concrete or abstract
superclass name
subclass name

responsibility collaborates with

Figure 2: class cards

3. List the collaborations required. Some of the responsibilities recorded
will require information or services from other classes. These are called

collaborations. Classes providing the services are called servers and classes
using the services are called clients. Server classes are noted with the
responsibilities on the cards (Fig 2). The relationships between classes are
used to help identify collaborations. Any classes with no collaborations
with other classes and which are not used by other classes are discarded.

This exploratory phase leads to a preliminary design which is studied in greater
detail during the analysis phase to improve the hierarchies and identify subsys-
tems.

2.2 Analysis phase

1. Develop inheritance hierarchies. This involves re-examining the classes
and preliminary hierarchies. The common attributes are placed as high
in the hierarchy as possible. Venn diagrams are used to ensure that all
the responsibilities of the superclass are needed by the subclass. These
diagrams are used to ensure that there is a type-subtype relationship be-
tween classes as well as a class-subclass relationship, but Venn diagrams
seem to be an irrelevant complication. Abstract classes, which will not
exist during the execution of the system are identified.

The responsibilities of each class are divided into two groups. Those which
can be requested by another class are called contracts. Those which repre-
sent behaviour a class must have but which cannot be used by other classes
are called private responsibilities. The contracts supported by classes are
simplified by grouping together those which are used by the same clients.
An example of this is that the responsibility for an array to return the
first element meeting a criterion can be grouped with the responsibility
to return all the elements meeting a criterion. This simplifies the design.
The notation used to show the developed hierarchies is shown in fig 3.

The class cards have the extra information added to them. Each contract
is numbered and named. The numbers of the contracts used by the class
to fulfill its private responsibilities are noted.

2. Identify subsystems. A subsystem is a group of classes which work togeth-
er to fulfill a set of closely related responsibilities eg a printing subsystem.
Subsystems do not exist as the system executes. They are conceptual
entities introduced to make the system easier to understand.

A complete collaborations graph of the system is drawn. The notation
used is again simple, see fig 4, but the graph gets complicated when many
classes are involved.

The subsystems are then identified and named. Again the collaborations
between subsystem and classes within subsystems are examined and sim-
plified. The introduction of subsystems permits layering of the design

information. Information on the subsystems is noted in a similar way to

class information.

abstract

class 1

abstract

class 1

Figure 3: notation for final inheritance hierarchy

concrete

class 1

concrete

class 2

4 M\
subsystem
name
—
class name
)
superclass name
subclass 1 subclass 2
. J

concrete

class 3

Figure 4: notation for collaboration graphs

3.

Define protocols. A protocol is the list of signatures, procedure calls, to
which a class will respond. These are defined for each class. Some classes
may have to fulfill the same responsibility, such as display, even though
they are not in the same hierarchy. A common abstract superclass is
introduced from which the classes inherit the responsibility. The protocols
are made as general as possible. This can be done by providing many
versions of the same method. The most general version will require several
parameters to be provided by the client of the method. Other versions
require fewer parameters because the other values are implemented as
default values. This gives a user of the class a choice of implementations.

The hierarchy and collaborations graphs are then amended to include any
changes made. The classes are then fully specified giving details of the

e superclasses,

e subclasses,

® purpose,

e contracts supported,

e signatures of the methods they contain to support any contracts they
do not inherit,

e private responsibilities and the signatures for their methods if defined,
e any behavioural constraints,

e error conditions.

The completed design documentation consists of

1.
2.

3.

hierarchy graphs - showing the class inheritance hierarchy,

collaborations graphs - showing the classes and subsystems within a sys-
tem and how they collaborate,

class, subsystem and contract specifications.

As stated above the method considers the whole of the required system
together, although it is recommended that larger systems are split up into major
subsystems. There is no real advice about how to do this. The large system
used as an example, in Wirfs-Brock’s book, is an online documentation system,
a simple word processor. This is divided into subsystems. Three of these are
interfaces to the external world, a windowing system already provided, a printing
subsystem and a file subsystem. The other is the document subsystem. Each
subsystem is designed individually following the above stages. The stages are
iterative. At each stage it is possible that some more details will be found which
require the repetition of a previous stage.

3 Comments on the method

Most of the examples, given by Wirfs-Brock [1] to explain the method, refer
to an automatic bank-teller machine called the ATM system. An online docu-
mentation system is also used. The following comments on the method use the
same example case studies,

3.1 The notation used

The notation and documentation system is mostly clear and simple. There
are some mistakes in the documentation for the ATM system which indicates
that some form of consistency checking tool would be required for the method.
The contract specifications show which of the services provided by a server is
required by each client class. The clients are thought of as clients of a service
provided by a class rather than of the class itself. This contrasts with Coad and
Yourdon [3] where only the server class is noted. The collaborations graphs are
simplified by removing subclasses which do not define new contracts. This is a
sensible way to reduce complexity but a reminder that there are more classes
involved would be useful. This can be done quite simply by adding (+) after
the relevant class name.

The sample documentation shows classes and subsystems arranged alpha-
betically in one list. This can be confusing, separate subsystem specifications
and class specifications would be preferable.

3.2 The design style
1. Classes

The approach concentrates on defining the responsibilities of each class.
A class must have a purpose which can be easily stated and either provide
services to other classes or use services provided by other classes. The
concentration on responsibilities results in some of the classes appearing
to be little more than functions.

All the classes in the transaction hierarchy have one public responsibil-
ity, that is they perform a financial transaction.In order to fulfill that
responsibility an instance of a transaction class, for example a withdrawal
transaction,interacts with:

(a) the user via instances of user interaction classes to prompt the user
for the amount to be withdrawn.

(b) an instance of class account to tell the account to reduce its balance
by the required amount,

(c) the user via the cash dispenser to dispense the required amount of
money.

There is no responsibility to remember the transaction so the objects of
class transaction have no state. They are functional abstractions.

A more conventional object-oriented approach might result in an abstract
class ‘account’ being developed and used to produce a ‘transaction ac-
count’ by inheritance. The derived class would add the ability to perform
all the required transactions to the basic ‘account’ class. This would reduce
the number of classes and help to simplify the design. At a later stage in
the case study, the ‘account’ and ‘transaction’ classes are grouped into the
financial subsystem. This brings about the same apparent simplification.

The transaction class hierarchy has arisen because the design method con-
centrates on responsibilities. The use of these functional classes may have
the following advantages :

(a) any additional transaction types could be added more easily by in-
heriting from transaction instead of from account. More changes
might be required in the ATM class if a new type of ‘transaction ac-
count’ was introduced rather than a new transaction. If this is true
it suggests that object-oriented programs should have operational
procedures separate from the data types on which they act,

(b) the user input and output is in a separate class which allows for easy
change of natural language or style of output,

(¢) the account to be accessed has to be specified in an object, so the
same object can find out the amount as well. This also has the benefit
of distributing the system’s intelligence more evenly.

. System Intelligence

It is advised that the system’s intelligence should be distributed evenly.
The reason is that putting as much intelligence as possible into one object
results in an object which is very much like a main program in a structured
system and a group of other objects which are more like data structures.
An advantage of this uneven distribution is that the flow of control is easy
to understand. However the system’s behaviour is “hard-wired” and the
resulting system may be less flexible. This method is also said to require
the writing of more unintelligent classes and therefore take longer. The
recommended approach of evenly distributing the intelligence is said to
require relatively fewer classes, be easier to modify and be more flexible.
The disadvantage is that the overall system may take longer to understand
as the flow of control is not readily seen.

The following discussion looks at the ATM case study developed by the
authors of the method with reference to the formation of a main program,
the flow of control and the number of classes required.

(a)

(b)

Main program
The ATM system has a class ‘ATM’. The stated purpose of this class
is to represent a teller machine through which bank customers can
perform financial services. This has private responsibilities to

e create and initialise transactions

o display the greeting message

@

display the main menu

eject the receipt
e eject a bank card.

This is very similar, but not identical to the documentation for a main
driver module in a Modula-2 program and thus appears to contradict
the advice to distribute the intelligence evenly throughout the sys-
tem. The difference between the ATM specification and a Modula-2
main program, is that the main driver module has the procedures
listed in the order they are required to be carried out, instead of
in alphabetical order. The order of execution must be determined
somewhere. This can only be from within the ATM itself because
all its responsibilities are private and so cannot be accessed by other
classes. One method by which this can be implemented is by a create
procedure within the ATM which would list the procedure (methods)
in the correct order. Alternatively it may be possible to impose the
order by using pre- and post- conditions. This would ensure that
eject bankcard could not be called until the receipt had been printed
and that the receipt could not be printed until a transaction had been
created and initialised etc. The ATM has a large amount of control
irrespective of the mode of implementation.

Flow of control

It is stated that when the machine is idle the greetings message is
displayed. This indicates a repeating structure is needed to allow the
system to return to the greeting message. There is no indication of
this in the design. The idea of when an action must be performed
does not appear to form part of the documentation of the design.
This may be reasonable for the design of ‘what’ the individual class-
es must do but it does not seem sensible for the system design to
ignore the ‘when’ aspect altogether. This information is known to
the designer and so should be available to the people responsible for
implementation. It could be added in the documentation of the pri-
vate responsibilities for each class. It should be noted that ‘when’
is not always important. For abstractions representing stored da-
ta there are no private responsibilities and no concept of ‘when’ is
needed.

Thus the ‘ATM’ class appears to have a large amount of control over
the system. There is no flow of control defined so it cannot be readily
seen.

(c¢) Number of classes

The ATM system appears to have a large number of classes. The
account class has responsibility for knowing the account balance, ac-
cepting deposits and withdrawals and committing the results of the
transactions to the database. This is an opaque abstract data type
which knows how to store itself, an alternative name for this type
of class is a passive class. The transaction classes all represent re-
quests by the user to do something to an account. This results in a
hierarchical structure to the system with the higher layers interact-
ing with the user and the lower layers interacting with the hardware
responsible for the storage of the data (Fig 5).

3. Requirements Capture

The ATM class has a responsibility to display the main menu. The menu
class acts as a template for the production of instances of class ‘menu’
and provides facilities to get a user choice from a list of options.The main
menu is an instance of menu and as such does not appear in the class
specification. The designers of the system know at least part of what is
required in the menu, they have defined the different sorts of transactions.
This information should be available to the programmer. This lack of de-
tailed information suggests that the method may be designing the classes
from which a system can be built rather than the system itself.

4. System Structure

In the ATM case study, the ATM ‘root’ class, or main program, at the
top of the hierarchy is responsible for starting the system. This interacts
with the user to find out which transaction is required, before starting the
required transaction which interacts with the user and with the account
abstract data type at the bottom of the hierarchy. The user interaction is
performed by user interface classes.

10

ATM

- - X w\;ser‘
: interaction
Transaction subsystem
account

a) superclasses only shown

display device

withdrawal
transaction

balance
enquir

deposit
transaction

—_— communication

class name|

b) all classes shown

Figure 5: ATM system structure

The separation of the user interaction from the ADT has the benefit of
allowing the user interface to be changed more easily and allows the generic
classes to be used in other systems.

The online documentation system is divided into subsystems. Three of
these are interfaces to the external world, a windowing system already
provided, a printing subsystem and a file subsystem. This allows the
designers to concentrate on the documentation subsystem. This is further
subdivided into subsystems. These are the document subsystem and the
editor subsystem.

The editor subsystem is used to interpret user inputs - I think this is a
functional breakdown although probably different to the breakdown ar-
rived at by structured analysis and design. A main difference between

11

traditional development and this method seems to be the responsibility
of the data stores to control their contents. For example, a sorted array
would be responsible for finding the right place and putting the element in
there. Conventionally an array would be traversed until the correct place
was found and the user would be responsible for adding the element.

The overall architecture of the system appears to give flexibility for reusing
the components. The grouping of classes into functional subsystems makes
it possible

(a) to reuse each subsystem independently in other systems,

(b) to allow the possibility of changing the user interface and the storage
medium.

4 Experience using the method

The garden planning system [4] was designed following the responsibility driven
approach. The final documentation is not included, but 1s available if required.
The complete requirements specification was used to supply the nouns and verbs
needed to identify classes.

4.1 Requirements Capture

The approach examines the required system in great detail and ensures that
most if not all of the requirements are understood.

The consideration of the required output and user interaction throughout
the design helped to clarify the requirements.

The recommended documentation did not allow all the knowledge gained to
be passed on to the implementation stage.

The lack of layering led to a rather large number of classes being considered
at the same time. The garden planning system with around forty classes is not
large but the number was rather overwhelming.

The authors of the method suggest that large problems are split into smaller
pieces ie subsystems. The experience of following the method suggests that
anything other than small systems should be divided. The following subsystems
would be the starting point for the development of an information system similar
to the garden planner:

e user interaction,
o stored data,
o external devices

e the control system.

12

The first to be considered would be the user interaction defining the user
interface and the output required. This would make sure all the requirements
were fully understood before any of the rest of the system was designed. Some
of the more general classes needed for the user interaction in the first system
might be reusable. C : :

4.2 Abstract classes

There are two main types of responsibility:
e to maintain information
e to pefform an action.

The design method makes no distinction between the types of responsibility
until the implementation is being considered. The responsibilities to maintain
information then become part of the state of the object or part of its structure.
For example, a car class might maintain information about its colour as part of
its state and information about its engine as part of its structure. The actions
a class can perform will become the sevices or methods provided by the class.

During the analysis phase of the design, inheritance hierarchies are devel-
oped. This involves placing common responsibilities as high as possible in a
hierarchy. Abstract superclasses are added to the system as necessary to pro-
vide the common responsibilities. These classes can be added to encapsulate
knowledge storing and/ or processing responsibilities.

The type of responsibility being encapsulated in the abstract superclass be-
comes important when the implementation is considered. For example, in the
garden case study, a class ‘display form’ was introduced to encapsulate the re-
sponsibility ‘to display stored information in a text form’. The fact that the
responsibility being encapsulated is a processing requirement means that the
class does not contain sufficient information to allow instances to be created.
The class contains an abstraction of many possible implementations. In the
programming language Eiffel [5], this type of abstraction is coded as a deferred
class which prevents any direct instances of the class being created. A sub-class
must be formed to add the required information before the class can be used.
A abstract super class added to encapsulate the responsibility to maintain in-
formation will contain all the information required to allow an instance to be
created and is a potential concrete class. The type of responsibility being en-
capsulated, therefore affects the way in which the classes are implemented. The
author has decided to include the information that a superclass encapsulates an
action that can be performed in the documentation, see Fig 6.

4.3 Control

A class to to encapsulate user choice has been included in the design. This class
was identified when several classes were found to have similar responsibilities

13

- namely to display a menu and initiate a process. The new class is called
‘dispatch’. This is to be used whenever a choice of function can be made by
the user. It is an example of an action abstraction. The ability to execute is
exported or, alternatively stated, it has a responsibility to allow other classes to
execute it! If a series of choices can be made, it must be able to execute another
instance of itself. This is a reusable main program or driver module.

There is a problem with modelling this type of class in this responsibility
driven method. The responsibility to execute a process should specify which
class(es) it will collaborate with. This requires a slight change in the notation,
the class specification will have to allow for a ‘uses’ statement to contain a
deferred class and contract number.

4.4 Architecture

The introduction of the ‘dispatch’ class gives a system architecture which can
be used for many different systems. The top level collaborations graph gives
no indication of the system under development because the dispatch class is an
abstract class. It is necessary to go down a level to find out about the current
system. The system is not fully specified. The menus are not defined because
they are instances of a class menu.

4.5 Notation

In the garden case study, the following changes were made to the notation to
give a more complete representation of the known information. See Fig 6.

1. The collaborations graphs show, by adding (+4), where classes have been
left out to simplify the diagrams. The written specifications of the classes
and subsystems are not arranged alphabetically. All the subsystem spec-
ifications are given with the controlling subsystem first. This is followed
by the classes grouped by subsystems and arranged alphabetically within
each group.

2. The heirarchy graphs show, by filling in the bottom left hand corner of a
class box , when the abstract class encapsulates an action to be performed.

3. The class specification allows a uses- statement to contain a deferred class
and contract number.

4. The requirement for some of the responsibilities to be carried out in a
specified order has been added to the class specifications.

14

T T

s class1 class2 (+)

l

:

! + indicates the presence of subclasses which
| do not add behaviour

|

a)collaborations graph

gstram; class | Loncmte class | E:tion abstract class l

oncrete class bstract class

b) class hierarchies

concretefabstract/

; class name action abstract
superclass name

| subclass name

| responsibility collaborates with

¢) class cards

Figure 6: changed notation

5 Conclusion

The Wirfs-Brock method seems to lead to a thorough understanding of the
required system. The system is divided into functional subsystems. The doc-
umentation appears simple and clear but does not capture all the information
known to the designer. In particular,

e there is no concept of how the system is controlled,

15

e information about the type of abstraction is not recorded, that is entity
abstraction or action abstraction,

e detail known to the designer about the entries required in the menus is
not recorded.

Several questions are raised by this approach. These include:

o Is this design method producing classes for using in the design of a system
or developing a system?

e Should classes provide more than one service?

"~ e At what stage in the development should the requirement for a program
to repeat be included in the design?

o At what stage should instances of template classes be specified? eg the
contents of menus.

e Should there be special classes to interpret user input?

o Is it easier to modify a design with many simple classes than a design
for the same system which has fewer complex classes? How can ease of
modification be measured?

e Does the fact that a hierarchical system with one class resposible for overall
control is easier to understand make this a more maintainable structure
than one with distributed control?

The method begins with the requirements specification for a system and
involves studying the whole of the system, including data storage and user
interaction, but it suffers from the drawback that it appears to design the classes
from which a system can be built rather than designing the required system.

References

[1] R. Wirfs-Brock, B. Wilkerson, and L. Weiner. Designing Object-Oriented
Software. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[2] G. Booch. Object Oriented Design with Applications. Benjamin/Cummings
Publishing Company, Redwood City,California, 1991.

[3] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Inc,
Englewood Cliffs, New Jersey, second edition, 1991.

[4] J. A. Mayes. An investigation into the reusability of functional and object-
oriented designs. MSc Report, Hatfield Polytechnic, 1991.

[6] B. Meyer. Object-oriented Software Construction. Prentice Hall, Hemel
Hempstead, 1988.

16

