DIVISION OF COMPUTER SCIENCE

Investigation of Self-Organising
Dynamic Neural Tree Networks

Kate Butchart
Technical Report No.225

May 1995

Investigation of Self-Organising
Dynamic Neural Tree Networks

Kate Butchart

Abstract - Self Organising Dynamic Neural Tree Networks (DNTNs)
provide hierarchical clustering that is potentially applicable to large
data sets. Two DNTN models have been produced by Racz and Klotz
and Li et al. Four DNTN variants have been developed and analysed in
order to establish which of the four potential cluster expansion
methods is the most robust to parameter alterations in the production
of representative tree structures.

1.0 Introduction.

Competitive Learning Neural Networks
(CLNNs) have been used successfully for
many clustering tasks producing a
classification scheme for initially unclassified
data [1,2]. CLNNs provide a single level
classification where there is no structure or
hierarchy amongst the classes produced.
Applications such as those involving
biological taxonomy require the samples to be
classified into hierarchies where the samples in
the same group share similar features[3].
Dynamic Neural Tree Networks (DNTNs)
perform hierarchically structured clustering,
making them particularly suitable for use in
areas where a hierarchical classification is
required.

Standard CLNNs have a fixed number of output
nodes and so classify data according to this
fixed number of nodes. If the nature of the data
is unknown or may alter, the fixed number of
classes can be a limiting factor in the potential
success of the model. DNTNs are able to
dynamically decide upon the number and
structure of the classes required to classify the
input data, thus avoiding the problems of
deciding upon the number of classes a priori.

Section 2 of the report looks at clustering
techniques and standard CLNNs. Section 3
evaluates the principles of DNTNs. The four
networks developed are discussed in Section 4.
Section 5 discusses the tests carried out and
presents the results of these tests.

2 . 0 Clustering and Competitive
Learning Neural Networks

Clustering algorithms can be broadly split into
two main groups, those using an iterative
optimisation approach and those using
hierarchical techniques.

Optimisation clustering algorithms reduce a
cost function by iteratively altering the fixed
number of prototype weight vectors in
response to the inputs. The cost function that
is being reduced determines the form of the
update rule used. The most common cost
function is based on the Mean Squared Error
(MSE) measure that is given as

E =ZIX“‘yj>(-”Z (1)

where x is input vector
Yi* is the winning node

|><—Yi*

|2 <x- Yi|2 Vi)

A standard CLNN performs clustering on the
input data by reducing the MSE given in (1)
The MSE is reduced by updating the winning
node for each input using the rule

yi(n) = y;(n-1) + afx(n) - y;(n - 1)I(3)

where a is the learning rate and is global to the
whole network.
The update rule in (3) uses gradient descent to
minimise the MSE for the fixed number of
nodes provided. The number of nodes may not
be suitable for the data being clustered or the
network may become trapped in a local minima
and so the network may provide a poor
solution,

The iterative clustering method that CLNNs
perform provides a flat, one level representation
of the data. In applications such as biological
taxonomy it is necessary to provide a
hierarchical clustering of the data.

Statistical methods for hierarchical clustering
are split into two main groups, agglomerative
methods and divisive methods.

Agglomerative methods start with all the
individual input vectors representing their own
class. A distance matrix between all classes is
calculated and the two "closest" classes are
merged. This matrix calculation and merging
continues until there is either the required
number of classes or just one class. Different
measures can be used to determine the distance
between two classes[4]. The need to calculate
an N by N similarity matrix (N is the current
number of classes) makes these methods
computationally expensive, and so unfeasible,
for large data sets especially if the
dimensionality of the data is high.

Divisive methods start with all the inputs in
one class and split this class until the required
number of classes are produced. These methods
are either polythetic where all of the elements
of the input vector are used to determine the
next split, or monothetic where the data is
split on the existence or not of just one
element of the input vectors. Monothetic
techniques are the most computationally
efficient of the two techniques but are not
always able to produce a suitable classification.
Traditional polythetic techniques are
computationally expensive and are not feasible
for large data sets.

Hierarchic classifications may be represented
by dendrogams - as shown in Figure 1 -
which illustrate the fusions or divisions that

have been made at each successive stage, The
dendrogram shows the fusions or splits and
the order in which they occur, and also shows
the similarity or distance between the two
classes that are split or merged. It should be
possible to see the natural clusters in the data
from the dendrogram produced.

5.0

4.0

3.0

2.0

1.0

@
1 2 3 4 5

data points

Figure 1: An example dendrogram, The
dendrogram shows which of the classes have been
combined or split at each stage, and shows the
distance or similarity between the two classes that
are merged or split. For example when classes 1
and 2 were merged the distance between them was
2 units, whereas the distance between classes 3
and 4 & 5 was 4 units.

3 .0 Dynamic Neural Tree Networks

DNTNs are single layer feed forward networks
where a hierarchical tree structure is
superimposed on the output layer nodes. The
output nodes are created dynamically and each
is fully connected to the input layer. The
output nodes are grouped into clusters and the
clusters of nodes are organised in a (ree
structure. The pattern of activity across the
output layer is determined in part by the tree
structure of the clusters. On presentation of an
input to the network only the root cluster is
initially active and the nodes within the cluster
compete to classify the input. If the winning
node has a child cluster this cluster then
becomes the current active cluster, this
continues until the input is classified by a node
with no child cluster.

3.1 Advantages of Dynamic Neural
Tree Networks

» Speed of learning - as only subsets of a
tree are involved in training at any one
time the learning rates are speeded up,
especially if the network is large. If N is
the number of nodes in the tree, only
PlogpN nodes are explored, where P is the
average number of nodes in a cluster,

» Natural hierarchies that exist in the input
data set may be replicated in the tree
structure of the network. This hierarchical
classification may be important in some
situations especially those associated with
biological data.

o Scalability - statistical methods that
perform hierarchical clustering are
generally only able to cope with data sets
of a limited size. DNTNs may prove to be
able to classify much larger data sets.

« Stability - only the group of clusters that
were active in the classification of an input
are influenced by that input. All of the rest
of the network is completely unaffected by
the current input. This natural division of
the output nodes inherently makes the
network stable in response to noisy or
changing data.

» Plasticity - as the structure is dynamic it is
able to grow or shrink (node deletion is
discussed in section 4.1) in response to
changes in the input data. This dynamic
alteration in the number and structure of
the nodes makes the networks more suited
to cope with non stationary data than static
networks.

DNTNs are able to provide both stability and
plasticity, thus they can provide a solution to
the stability plasticity dilemma [5]. The
networks can grow and shrink in response to
changes in the input data without any alteration
being required to the classification provided by
the rest of the network.

3 .2 Network Structure and Operation

Unlike a dendrogram the final structure of the
network is not restricted to a binary tree. An
example of a possible tree structure is shown
in Figure 2, each node is connected to the
input layer, and there are connections between
parent nodes and their subtrees, Only one
cluster of the total nodes is active at any one
time, this cluster is known as the current
cluster. The root cluster of the tree is always
active initially, and the nodes in that cluster
compete to classify the input. The winner of
the current cluster is updated using the
standard compelitive learning rule in (3).

3.3 The production of the Tree
structure

DNTNs have associated with them two
parameters, known as the tolerance and
threshold, which have a strong influence over
the structure of the tree created, The tolerance

root subset of nodes
level 1

level 2

Figure 2: Network Structure

The nodes are grouped into subsets (clusters).
Each node in a cluster may be the parent node of
another subset of nodes. All nodes are connected
to the inputs, but at any one time only one cluster
is active

parameter defines the radius of the classifying
hypersphere of every node at each level. The
size of the tolerance parameter decreases as you
travel down the tree away from the root node;
so that clusters towards the bottom of the tree
provide a finer grained classification than those
at the top of the tree.

The threshold parameter determines when a new
cluster is created and is described in more detail
below.

The tree structure is built dynamically in
response to the structure inherent in the data
set. The neural tree begins with an empty root
cluster. When the first input is presented to the
network a node is created in the root cluster to
classify the input. This node's weight vector
being set equal to that of the first input. As the
rest of the inputs are presented to the network
one of four situations may occur :

1. The winning node in the current cluster is
within the tolerance of the input, and has
no child subcluster. This node then
classifies that input and moves it weight
vector closer to that of the input using the
standard rule in (3).

2. The winning node in the carrent cluster is
within a tolerance of the input, and this
node does have a child subcluster. The
node then learns using (3) and its child
cluster becomes the current cluster.

3. The winning node in the current cluster is
within the tolerance of the input, has no
child subcluster and the threshold value is

exceeded. The node then updates its weight
vector and creates a new child subcluster.

4. The winning node in the current cluster is
not within a tolerance of the input. A new
node is then created within the current
cluster to classify the input with its
weight vector set equal to the input vector,

Cases 3 and 4 cause the tree to grow in
response to the data it is classifying.

4. 0 The Four Potential Network
Models

Two DNTNs models[6,7] have been produced, A
comparative analysis of these models can be
found in [8]. The models both use the same
Euclidian distance measure to determine when a
new node should be produced within a cluster.
However the models differ on the heuristic used
to determine when a new child cluster should be
grown,

4 . 1 Creating a new cluster:

The main aim of the work carried out is to
assess the performance of the four possible
network variants outlined below in their ability
to produce “quality” tree structures. The
networks vary only in the choice of stored
value for each node and in how these values are
compared,

4 ., 1. 1 The stored values

The error measure: Each time a node
classifies an input the squared error produced
by the node in classifying that input is
added to the current total error for that node.
For each node a quantity known as the total
error is maintained.

2. The activity measure: Each node has a
counter which is incremented each time the
node is active.

4 .1 .2 Comparing the Values

Absolute comparison: the value stored for
each node can be compared to an absolute
figure, if it exceeds this figure then a new
cluster is created. In order to maintain
consistency over time the windowing
method of Li et al {7] has been used.

Relative Comparison: The value stored by
each node is compared to the value stored by
its parent. If the ratio between the values
exceeds a preset limit then a new cluster is
created.

The Four Network Variants

There are two possible values to store for each
node - error and activity , and there are two ways
of comparing the measure - to an absolute value
or relative to the cluster value. There are therefore
four possible different network variants that can
be created. These are

1. absolute error network

2. absolute activity network

3. relative error network.

4. relative activity network.

These four networks have been implemented. In
order to provide a fair comparison of the different
new cluster heuristics the networks were identical
in all but this respect. The absolute networks
used the window technique defined in Li, and to
ensure that the size of the window did not
adversely effect the networks performance extra
test were run to check this,

4 . 2 Generating new nodes within a
cluster

In order for the winning node of the cluster to
classify an input the excitation of that winning
unit in response to the input must exceed a
tolerance «, if the winner’s excitation does not
exceed this tolerance level then a new unit is
generated. In geometric terms if the input is
not sufficiently close to any current unit then a
new unit is generated to classify it, The
tolerance o, varies according to the cluster level
reducing as you move away from the root.
Potential improvements to the method of node
generation within clusters are not considered in
this study.

5. 0 The Tests

The networks were run over two dimensional data
containing structures of hierarchical clusters.
Artificially generated two dimensional data was
used in order to assist the interpretation of
network performance.

The networks were assessed on their ability to:

¢

e Discover the structures present in the data.

e Exhibit robustness to alterations in the
tolerance parameter.

e Exhibit robustness to alterations in the
threshold parameter

o Exhibit stability in creating an appropriate
tree structure,

5. 1 Results

Detailed results are shown in Table 1 and Table 2

All four networks were run over 12 core tests.
The first group of tests used a tolerance value of
4.0, which was suitable for the data set being
used, with varying threshold values. The absolute
networks produced consistent results for all but
the highest threshold value where nodes were
prevented form expanding thus leading to an
unrepresentative distribution of nodes. The
relative networks produced good results for mid
range threshold values, but low values caused the
networks to “run away” - producing over large
networks - and high values again caused
problems of uneven distribution.

The networks were also tested with tolerance
values that were too small (2.0) and tolerance
values that were too large (6.0) for the data set.
For each tolerance value three threshold values
were used - small medium and large. Alterations
in the threshold value had the same effect as had
been found in the first four tests, i.e. too high a
value created uneven expansion and too low a
value causes the relative networks to run away.

Tests were also run with very low and very high
tolerance values. For the very low value the
networks produced only one significant cluster
which contained many nodes. The high tolerance
value caused the networks to all have a root
cluster with just one node.

The absolute networks were run over extra tests
to establish what influence the size of the
network’s window had on the results produced. It
was found that provided the window size was not
too small (i.e. was not less than a quarter of the
size of the data set) it had little effect.

5. 1 Activity versus Error

It was found in these tests that the two measures
performed in a very similar fashion. Networks
using either measure were able to discover the
clusters present in the data set, and performance
was in many tests almost identical. There were
some differences between the networks and it was
found that an error network was more likely to
expand a spatially large cluster and an activity
network was more likely to expand a spatially
compact cluster. However over the data set used
these differences were generally confined to the
order of cluster discovery as opposed the actual
clusters found.

If the network is to be used for Vector
Quantization then error has been shown [9,10] to
be the most suited to the reduction in MSE.
However if the network is to be used for
clustering and discovery of the input probability
distribution is more important than error

reduction then the activity measure may well be machine”. Computer Vision, Graphic and Image
preferable as is shown in [9]. Processing, 37 , 54.

[6] Racz,J. and Klotz , T . (1991)
“Knowledge Representation by dynamic
5. 2 Absolute or Relative Networks competitive learning techniques.” SPIE
Applications of Artificial Neural Networks 1T ,
The absolute networks produced reasonably vol. 1469,
consistent and reliable results. The threshold
parameter determined the depth of the ree, but [7] Li , T ., Tang , Y., Suen, S .
even with low threshold values the tree did not and Fang , L, (1992). “A structurally
“run away”. These networks showed fair adaptive neural tree for recognition of a large
resilience to the threshold parameter seltings. character set.” In: Proc. 11th IAPR

The relative networks were sensitive to the [8] Butchart, K., Davey, N., Adams,
threshold parameter setting. For some values they ~ N.(1995a) ,“A Comparative Study of two Self
produced good results. The networks do however Organising and Stuctually Adaptive Dynamic
have a tendency to “run away” i.e. they continue NeuralTree Networks”, In: Proceedings ADT 95
to produce child clusters when there is no real to be published.

advantage in doing so. This is a problem inherent

in the nature of the relative measure. As the [9] Fritzke, B. (1993), “Kohonen feature
decision on whether to expand or not is based maps and growing cell structures - a performance
purely on the ratio of the two error (or activity) comparison” in Advances in Neural Information
values and no consideration is given to the fact Processing 5, L. Giles, S. Hanson & J. Cowan,
that the error measure may already be minuscule eds., Morgan Kaufman Publishers, San Mateo,
(i.e. 0.0000001) and that expansion is therefore CA.

not suitable, For relative networks to be viable a

stopping rule would need to be added to the [10] Ueda, N. and Nakano, R., (1994), “A
cluster generation process. New Competitive Learning Approach Based on
All networks types performed badly when the an Equidistortion Principle for Designing
threshold was set too high as this prevented Optimal Vector Quantizers”, Neural Networks,
clusters from being created to represent groups in -~ Vol.7, No. 8, pp. 1211-1227.

the data. The tolerance value had a very strong

influence over the structure of the network and

the results of these tests demonstrates the

dependence these networks have on being given

suitable parameter values.

References

[1] Kohonen,T. (1989).“Self Organisation
and Associative memory”. Third Edition
Springer Verlag.

[2] Ahalt, S.C. , Krishnamurthy, A.
K., Chen, P., and Melton , D.E.
(1990). "Competitive learning algorithms for
vector quantization,” Neural Networks, vol.
3,n0. 3, pp. 277-290.

[3] Sneath , P.H., and Sokal, R.R.
(1973)."Numerical Taxonomy, the principles
and Practice of Numerical Classification”,
W.H. Freeman and Company, San Francisco

[4] Everit, B.S.,(1993) “Cluster Analysis”,
Edward Arnold , London.

[5] Carpenter G.A, and Grossberg S.
»,(1987a), “A Massively Parallel Architecture
for a Self-organising Neural Pattern recognising

|
|
|
|

Table 1 Absolute Network results - poor performances are shown in italics

Network Type
tolerance | threshold | Absolute Activity Absolute Error
4.0 10.0 4 top level nodes 4 top level nodes
3 levels 3 levels
Even representation Even representation
4.0 15.0 3 top level nodes 3 top level nodes
3 levels 3 levesl
Even representaion Even representaion
4.0 5.0 3 or4 top level nodes 3 or4 top level nodes
4 levels 3 levels
Even representation Even representation
4.0 25.0 3 top level nodes 3 or 4 top level nodes
2 levels 2 levels
Poor representation Even representation
6.0 10.0 2 top level nodes 2 top level nodes
4 levels 3 levels
Even representation Even representation
6.0 15.0 2 top level nodes 2 top level nodes
4 levels 3 levels
Even representation Even representation
6.0 20.0 2 top level nodes 2 top level nodes
4 levels 2 levels
Even representation Poor representation
2.0 10.0 9 top level nodes 9 top level nodes
3 levels 2 levels
Even representation Even representation
2.0 15.0 9 top level nodes 9 top level nodes
2 levels 2 levels
Poor representation Even representation
2.0 20.0 9 top level nodes 9 top level nodes
2 levels 2 levels
Poor representation Poor
representation
1.0 15.0 many top level nodes many top level
2 levels nodes
poor 2nd level 3 levels
representation poor
representation
10.0 20.0 1 node at top level 1 node at top level
3 levels 3 levels
Even representation Even representation

Table 2 Relative Network results - poor performances are shown in italics

Network Type
Relative Activity Relative Error
tolerance | threshold | Network Network
4.0 0.2 3 top level nodes 3 or 4 top level nodes
3 levels 3 levels
Even Representation Even representation
4.0 0.25 4 top level nodes 3 or 4 top level
2 levels nodes
Even representation 2 to 6 levels
Poor
representation
4.0 0.1 3 top level nodes 3 top level nodes
6 levels many levels
Poor representation | poor
representation and
cluster
proliferation
4.0 0.15 3 or 4 top level 3 or 4 top level
nodes nodes
5 levels 8 levels
Poor representation{ poor
representation and
cluster
proliferation
4.0 0.35 3 or 4 top level 3 to level nodes
nodes 2 levels
2 levels poor
Variable representation
representation
6.0 0.15 2 top level nodes 2 top level nodes
3 levels 8 levels
Even Representation poor
representation and
cluster
proliferation
6.0 0.1 2 top level nodes 2 top level nodes
4 levels 9 levels
Even Representation poor
representation and
cluster
proliferation
6.0 0.25 2 top level nodes 2 top level nodes
2 levels 2 to 9 levels
Even representation Poor
representation
2.0 0.1 9 top level nodes 9 top level nodes
7 levels 12 levels
cluster cluster
proliferation proliferation
2.0 0.15 9 top level nodes 9 top level nodes
5 levels 12 levels
Even representation cluster
proliferation
2.0 0.25 9 top level nodes 9 top level nodes
1 level 1 level
1.0 0.15 many top level nodes many top level nodes
1 level 1 level
10.0 0.2 1 top level node 1 top level node

2 levels
Fair representation

4 levels
Fair representation

