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ABSTRACT

Context. Software defect prediction is essential in reducing software development costs and in helping
companies save their reputation. Defect prediction uses mathematical models to identify patterns
associated with defects within code. Resources spent reviewing the entire code can be minimised by
focusing on defective parts of the code. Recent findings suggest many published prediction models
may not be reliable. Critical scientific methods for identifying reliable research are Replication and
Reproduction. Replication can test the external validity of studies while Reproduction can test their
internal validity.

Aims. The aims of my dissertation are first to study the use and quality of replications and re-
productions in defect prediction. Second, to identify factors that aid or hinder these scientific methods.

Methods. My methodology is based on tracking the replication of 208 defect prediction studies
identified in a highly cited Systematic Literature Review (SLR) [Hall et al. 2012]. I analyse how often
each of these 208 studies has been replicated and determine the type of replication carried out. I use
quality, citation counts, publication venue, impact factor, and data availability from all the 208 papers
to see if any of these factors are associated with the frequency with which they are replicated. I further
reproduce the original studies that have been replicated in order to check their internal validity. Finally,
I identify factors that affect reproducibility.

Results. Only 13 (6%) of the 208 studies are replicated, most of which fail a quality check. Of
the 13 replicated original studies, 62% agree with their replications and 38% disagree. The main feature
of a study associated with being replicated is that original papers appear in the Transactions of Software
Engineering (TSE) journal. The number of citations an original paper had was also an indicator of
the probability of being replicated. In addition, studies conducted using closed source data have more
replications than those based on open source data. Of the 4 out of 5 papers I reproduced, their results
differed with those of the original by more than 5%. Four factors are likely to have caused these failures:
i) lack of a single version of the data initially used by the original; ii) the different dataset versions
available have different properties that impact model performance; iii) unreported data preprocessing;
and iv) inconsistent results from alternative versions of the same tools.

Conclusions. Very few defect prediction studies are replicated. The lack of replication and fail-
ure of reproduction means that it remains unclear how reliable defect prediction is. Further investigation
into this failure provides key aspects researchers need to consider when designing primary studies,
performing replication and reproduction studies. Finally, I provide practical steps for improving the
likelihood of replication and the chances of validating a study by reporting key factors.
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(GLOSSARY

quality,, four phased quality check criteria.

Balance Is the percentage of defective instances (minority) in a dataset. When the proportion of defec-
tive instances makes up 50% of the dataset, balance equals 100%.

Benchmark Is a study derived from comparing and synthesising best practises from previous work
intended for researchers to build upon.

Conclusion Stability Is when a claim in one situation can hold in multiple situations. In this work, the
term is discovered to be an equivalent of replicable.

Control Is an act of changing a specific component of an experiment while keeping other components
constant in order to observe the effect that the changed component has on results.

Imbalance Is the proportion of defective instances in a dataset. It indicates a dataset has balance below
100%.

Original An original study also called primary study.

Replicate Is to repeat an existing study by making various changes and observing whether the same
claims hold.

Replicator A study that replicates an original study.

Reproduce Is to repeat an existing study as close as possible and observe whether the same results are
achieved.

Researcher bias Is the selective observation and recording of information, where researchers con-
sciously or unconsciously allow their personal views to affect data interpretation and research
approaches.

Reverse bias It is when researchers perform a biased replication of an original study, and consequently,
draw conclusions that invalidate a valid original study.

Sources of variabilty factors affecting prediction model performance.






1. INTRODUCTION

1.1 Thesis Statement

In this dissertation inherent threats to software defect prediction research are uncovered and described.
Scientifically, it would be beneficial for practitioners to reproduce and replicate all important results. So
far, there have been limited numbers of such studies, especially on high quality original papers. In my
work, I have looked at all existing studies of this nature and analysed them: I have found examples of
good practice in their methodologies, but also examples of bad practice. I have also attempted inde-
pendent reproduction of five studies. Based on my analysis and practical work, I have uncovered some
issues with existing studies and attempts. One outcome of this work is a set of practical steps to help

support and encourage more and better quality reproductions and replications in the future.

1.2 Background

When software developers write code for implementing software, mistakes can be made. Mistakes are
often errors and manifestation of those errors lead to defective software [IEE 2010]. These defects may
be detected through code inspection which requires intensive manual effort and unit testing [Runeson and
Andrews 2003, Hovemeyer and Pugh 2004]. Defects missed by developers may cause the software to
fail at the hands of the customer. Therefore, significant costs may be incurred when manual inspections
do not find these defects. When software fails it becomes even more costly to companies and customers.
These costs reach up to $50billion per year, in the US [Levinson 2001, Tassey 2008]. Consequently,
substantial investments (research grants and research efforts) have been channelled towards automated

techniques. Automating the process of finding defects has the potential to save inspection time and effort
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for developers and companies while improving software quality [Hovemeyer and Pugh 2004]. So, the
idea is to predict whether a new piece of software might be defective based on what happened in the
past. Typically defect prediction can be viewed as a set of processes. Data is collected from source code
and fed into a prediction model. The model then predicts whether there are defects in that piece of code
that the model has not seen before. The performance of the prediction model is then measured to see
how well the model was able to find the code that was defective or not. All studies are only looking at

the construction and evaluation process on known data.

The performance of a defect prediction model is important. A developer would prefer a model that
accurately finds defective code so that review time and effort are focused on those parts. Shepperd et al.
[2014] meta-analysed 600 prediction models from a set of original studies taken from [Hall et al. 2012]
systematic literature review. The study analysed what impact four important factors of a prediction

model could have on its performance. The four factors and their impact on model performance are:

the research group that performed the study (up to 31.01%)

the dataset used (up to 31%)

the metrics, i.e., input to the algorithm (up to 12.44%)

the algorithm (up to 8.23%).

Research group had the most impact (up to 31%) on prediction model performance. Based on this
finding Madeyski and Kitchenham [2017] remark that one would assume that the main topic in defect
prediction (the algorithm) would have the most impact on model performance but it only accounts for
1.3%. So, “it matters more who does the work than what was done” [Shepperd et al. 2014]. Perhaps
the most critical problem suggested by Shepperd et al. [2014]’s results is that a study done by a research
group may not be repeatable by another group: This questions the value of defect prediction models to

companies and their customers. If practitioners are meant to use such models to predict defects that could



4 Chapter 1. Introduction

lead to software failure [Fenton and Neil 1999] - at the very least these models should be repeatable! by

any interested party.

In other scientific fields replication hashas helped confirm many important findings. These findings
changed the very fundamental theories of particular phenomena. Theories that for many years have
provided direction in those fields and were found to be false through replication. For example, the
fundamental theory in Physics that more precisely, no information travels faster than particles of light
has been questioned. Marangos [2000] explains that textbooks may be wrong about this speed of light.
In fact, Mugnai et al. [2000] after several replications of that experiment showed that there are particles
that travel 7 times faster than the particles of light. Another example is the cold fusion experiment.
Fleischmann et al. [1989] experiments were to find excess heat, nuclear byproducts, from the surface of
normal water. This could have disrupted the energy sector providing very cheap and sufficient energy.
McKubre [2008] reported that Lonchampt et al. [1996] attempted to master the experiments through
replicating the experiments as close as possible. Lonchampt et al. [1996] discovered important factors
such as the calibrating of the temperature must be at a certain range for the experiment to be successful.
Primary studies make discoveries providing replication studies opportunities to support or invalidate the

primary results.

To find replication literature surrounding defect prediction, I used a search string (software AND defect
OR fault OR error OR bug AND prediction OR detection AND replication OR reproduce). In the
literature, multiple words are used to refer to the same entity (error, bug, defect, fault). I ran the search
multiple times, each time adding the defect terms. So far, my search returned few papers outside the
replication papers I later found in chapter 4. That is the papers that replicated the original studies

identified by Hall et al. [2012]. It is noteworthy that no date restriction applies to my search. Most of the

lDepending on the context the word ‘repeat’ is used, the term can be ‘reproduce’ or ‘replicate’. [Leek and Peng 2015, Madeyski and Kitchen-
ham 2017] define reproduce as repeating an experiment using the same data, tools and method to get the exact results (i.e. can be verified
which has to do with credibility and trustworthiness). While replicate means to repeat a study using different data, tools and method (i.e.
checks for consistency not getting the exact result which has to do with generalisability and stability of results in multiple environments).
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recent literature on replication and reproduction in defect prediction is in our paper (section A.1). Now,

I discuss the articles I found that are not within the scope of the systematic review in chapter 4.

Kamsties and Lott [1995] is one of the earliest replications in defect prediction. The study replicated
Basili and Selby [1987] and then made additions. The original looked at three ways to find defects using
(32 professionals and 42 advanced students). The replication used 50 (C programming) students as
subjects. The students gathered data about faults and failures (in three ways functional testing, structural
testing, and code reading). The findings were that all three methods found defects, but the functional
testing was more efficient for students (an agreement with the original) to find defects. Years later the
same original study Basili and Selby [1987] was replicated by Wood et al. [1997]. The replication found
out combining the three techniques is a more effective defect detection achieved consistently; this finding
individually agrees with the three detection methods and also discovered a new result. Porter and Votta
[1998] performed an initial study of how subjects (48 graduate students) can find defects. In the same
study Porter and Votta [1998] carried out an internal replication. Internal replication is a replication done
by the same authors but different context. The internal replication used 18 professional developers from
Lucent Technologies. The findings are that it is not always necessary to use professional developers
for research (they are expensive) since the graduates’ fault detection rate was at par statistically with
those of the professionals. Lanubile and Visaggio replicated Porter et al. [1995] on 3 defect detection
approaches (Ad Hoc, Checklist, and Defect-based Scenario) for software requirements inspections. The
Ad hoc approach is when reviewers use their experience to identify defects without any guidance. The
checklist is when reviewers follow a list based on previous inspections to provide answers. The scenario-
based approach creates a model of a particular class of defect. Questions are created based on that
particular model and answered by a reviewer. All reviewers then combine these multiple and different
scenarios. The replication reported a partial agreement. The replication results disagreed with defect-

based scenario performing better than others as reported in the original. However, the replication agreed
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that collection meetings do not improve defect detection rate. The original also provided an experimental
kit. The replication used different subjects than the original. The original also performed two internal
replications (same authors but used two different subjects to do the detection). Sandahl et al. [1998] also
replicated Porter et al. [1995]. In the replication, they used less experienced subjects. The findings did
not support that scenario-based detection method is superior to other methods. The result of Sandahl
et al. [1998] is a disagreement with the original Porter et al. [1995] but an agreement with the first

replication [Lanubile and Visaggio].

A trend in these studies shows that it is crucial to replicate studies. Replication can be by the same
authors or not and with the same or different population to improve the credibility of results and make
discoveries. In particular multiple replications of a single original study continuously corroborates, dis-
agrees and produces new findings. The importance of replication suggests the need for matching the
number of original studies with continuous replications to provide more reliable results for the founda-

tions of scientific fields.

Therefore, in all fields of science having studies that replicate other studies is important [loannidis
2017]: Because “A culture that values and practices reproducible science can push out the boundaries
of knowledge with confidence that new discoveries have potential to lead to new knowledge” otherwise
“an absence of replication and verification will lead to a published literature that misrepresents reality”

[Errington et al. 2014]. Undoubtedly, replication is at the cornerstone of scientific progress.

As a result of the importance of replication in science the overall aim of this dissertation is to gauge
how repeatable defect prediction studies are. To our knowledge there is no study that systematically
looked at reproducibility and replicability of defect prediction studies. Therefore, in this dissertation so
far, I identify the following research questions and provide the rationale behind them. The questions are

based on the claim by Shepperd et al. [2014] that research may not be replicable and the importance of
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replication practices in other scientific disciplines. It is noteworthy that Shepperd et al. [2014] analysed
studies from the 208 studies identified by Hall et al. [2012]. The Hall et al. [2012] SLR provides the
highest number of papers analysed in Software Engineering SLRs that I found. All the SLRs have the
following number of studies: [Catal and Diri 2009] 74 papers, [Hall et al. 2012] 208 papers, [Radjenovi¢
et al. 2013] 106 papers, [Malhotra 2015] 64 papers, [Wahono 2015] 71 papers, and [Hosseini et al.
2017] 30 papers respectively. As such, I scope my analysis and reproduction approach to the most
representative set of studies, 208 papers in defect prediction taken from the Hall et al. [2012] SLR. Here

are my research questions:

RQ1: What proportion of defect prediction studies is replicated?
I reported replication examples in other scientific fields (and the flaws discovered) in this section. Based
on these examples it is important to know if original studies are replicated in defect prediction to confirm

findings or find mistakes and make new discoveries.

RQ2: What types of replications are performed?
At least if these replications occur it is important to identify how replications are performed. My ap-

proach will then provide best practices for researchers to adopt when performing replications.

RQ3: What features of a defect prediction study make it likely to be replicated?
It is important to identify the characteristics of original studies which are subsequently associated with
replication. When these characteristics are adopted, researchers could produce more repeatable and

verifiable research.

RQ4: Do original and replication studies in defect prediction agree?
Finding replications and defining how they are done is not enough. Determining the consistency of the
findings - agreement between an original and its replication - is key to understanding the reliability of a

field.
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RQS5: What factors are likely to affect reproducibility in defect prediction studies?
Based on the context of Software Engineering - where tools and data are accessible - to what extent do

original studies produce internally reliable experiments?

1.3 Contributions to Knowledge

My contributions in this dissertation include the identification of studies that have been replicated and
how reliable their findings are. On the other hand it highlights a large number of studies that have
not been replicated, an indication of uncertainty in the reliability of defect prediction research. The
chapters (4, 5, and 6) provide influential factors on model performance which affect the ability of original
studies to be reproduced and replicated. Finally, chapter 7 contributes practical recommendations to help

support and encourage more and better quality reproductions and replications.

1.4 Structure of this Dissertation

The structure of this dissertation is as follows:

e chapter 2 gives a background to software defect prediction. The chapter defines replication and

reproduction and examines how they are used in different disciplines.

e chapter 3 describes the methodology developed in this dissertation. The methodology is in two
parts 1) a systematic study of original studies that have been replicated and their level of agree-
ment. 2) a reproduction of papers that have been replicated and how close I get to agreeing with
them. Unmatched results are then further investigated to find explanations for the differences in

results.

e chapter 4 applies the first part of the methodology. The chapter identifies the number of stud-
ies replicated and their level of agreement. The chapter also identifies factors associated with
replicated studies that lead to a paper being replicated. The results in this chapter answer RQs

(1-4).
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e chapter 5 applies the second part of my methodology. The chapter describes my reproduction
of the 5 original studies that have been replicated. It also identifies potential factors causing

differences in the results. The findings in this chapter contribute towards answering RQ5.

e chapter 6 describes further experiments performed to investigate the potential factors that may
have lead to the reproducibility failures. The results in this chapter adds to the results in the

previous chapter to answer RQS5.

e chapter 7 summarises all the work done and discusses the implications of my findings in light of
research practices. The chapter also provides a list of practical recommendations to improve the
state of research, reproduction and replication. Finally, the chapter suggests important future work

based on my contributions.



2. LITERATURE REVIEW

The purpose of this chapter is to provide a literature review of the following concepts: defect prediction,

studies on the unreliability of defect prediction, and the scientific principles of replicability and repro-

ducibility. Prediction is about being able to suggest what might happen in the future based on what you

know in the past. Defect prediction is a process by which data is collected from source code and input

into a model. The model then predicts whether there are defects in the code. A simplistic overview of

defect prediction flow is given by Kim et al. [2011], see Figure 2.1.

Instances
(TRUE) -
éﬁ} é’:}: instance
features
Machine
Learner
Software ej}é:?; / Trainin
X - 9
Archives > éf? instances
Prediction
instances Features TRUE or
(FALSE) FALSE
(1) Labeling (2) Feature (3) Creating (4) Building (5) Prediction &
(TRUE or FALSE) extraction a training corpus  a prediction model evaluation

Figure 2.1: Source code are kept in software archives. Defective and non- defective code are extracted
and labelled accordingly. Software is measured in different ways to represent features. The features are
calculated from the defective and non defective code to make training instances. The model is trained
on that data and used on unknown data to make predictions.[Kim et al. 2011].

I am now going detail how to collect data, build models and evaluate the results. Perhaps suggest-

ing along the way how defect prediction may not be reliable and therefore requires reproduction and

replication.
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2.1 Collecting data for defect prediction
This section will describe how data is collected from the source code repository. After collecting the
data it is organised in a suitable format for building the models. The organised data is then stored in a

data sharing archive, also called defect data repositories.
Creation Stage:

First of all a set of requirements for a piece of software is provided to the developers. The developers
write code to build the software. Errors made by developers when writing the code may be found during
software testing. An unexpected behaviour of the system in operation means there is a defect. That
defect is then reported to the Bug Tracking System (BTS). The BTS is a database that keeps records of
reported bugs that occurred while the software was in operation (after the software was released). Each
bug has a bug ID. Figure 2.2a below shows a bug report with bug ID 5377. The report also shows the
date the bug was reported, the type of product worked on (eclipse JDT) and the developer it was assigned
to (i.e. Martin) to fix. Figure 2.2b shows the BTS search parameters used for finding and extracting bug
information to a suitable format for analysis (a XML or CSV are popular formats). Once the bug is
‘Fixed’ the status is changed to ‘Resolved’. The code used by the developer to fix the bug is available
in the Version Control System (VCS). A VCS tracks code changes, some of which fix the bug. Changes
are ‘committed’ to the VCS. The automatic linking from bug database to version control is pioneered by
[Sliwerski, Zimmermann, and Zeller 2005], the SZZ algorithm. Commit messages are provided at the
time of the commit. The VCS keeps the developer’s name, fixed code, bug ID of fixed bug [Davies et al.
2014]. For example in Figure 2.3a the commit message says ‘Fix for 53770’ making that piece linkable
to the bug 53770 in the BTS (Figure 2.2a). The change made to that (.java file) is shown in Figure 2.3b.
In revision 1.31 of Figure 2.3b there was no code and the fix are the 9 added lines in revision 1.32 which

fixed the bug. When a bug ID is omitted in the commit, the loss of that type of bug (e.g. memory related
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Bug 5377 - NPE in Open Super Method action

Status: RESOLVED FIXED

Reported: 2001-10-31 08:17 EST by Erich Gamma
Modified: 2001-10-31 13:29 EST (History)
Product: JDT .
CC List: 0 users
Component: UI
Version: 2.0
Hardware: PC Windows 2000

See Also:
Importance: P1 normal (vote)
Target Milestone: ---
Assigned To: Martin Aeschlimann
(a) Bugzilla bug report

Classification: Product: Component: Status: Resolution:
loT ed APT UNCONFIRMED ---
DataTools Equinox Core NI FIXED
Eclipse Incubator Debug ASSIGNED INVALID
Eclipse Foundation JoT Doc REOPENED WONTFIX
Modeling PDE Text RESOLVED DUPLICATE
Mylyn Platform ul VERIFIED WORKSFORME

V Detailed Bug Information Narrow results by the following fields: Comments, URL, Whiteboard, Keywords, Bug Numbers, Version, Target Milestone, Severity, Priority, Hardware, OS

Comment: contains all of the strings $
URL:  contains all of the strings <

Whiteboard:  contains all of the strings )

Keywords:  contains all of the words ¢

Bugs numbered 53770

should be onlyincludedin ¢ the results
(comma-separated list)

Only bugs with at least: votes
Version: Target Milestone: Severity: Priority: Hardware: os:
1.0 21RC3 blocker P1 All All
20 21RC4A critical P2 Macintosh AIX
2.0 211 major P3 Other AIX Motif
2.0.2 212 normal P4 PC Android
21 2.3 minor P5 Power PC CentOS
211 3.0 trivial Sun HP-UX

(b) Bugzilla search interface

Figure 2.2: An example of a bug report (a) from Bugzilla database and its search interface (b). It is used
for tracking defects that manifest when a software is running.

bug) occurs [Davies et al. 2014]; this human error begins to threaten the validity of the defect data, based
on the certain type of bugs being missed. The defect data may not have sufficient representation of the
bugs in real life. The under representation of some bugs in the dataset may also not allow generalisable

models to be built. Reproducing the datasets may become more difficult when this omitted information

is not reported accurately.

Linkage Stage: The linkage technique reported by [Sliwerski, Zimmermann, and Zeller 2005] (SZZ)
uses a pattern matching algorithm (regular expressions), recently improved by Shippey et al. [2016], to
match bug ID existent in both BTS (Figure 2.2a) report and a VCS commit message (Figure 2.3a) saved

in commit logs. The successful linkage shows the code change that fixed the bug. Running a VCS ‘diff’
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/[cvsroot]/ org.eclipse.ui /Eclipse Ul/org/eclipse/ui/internal / /Prog ingWi java
Log of /org.eclipse.ui.workbench/Eclipse \V/viewve
Ul/org/eclipse/ui/internal/progress/ProgressFloatingWindow.java

L _Parent Directory | = Revision Log | §%_Revision Graph

Links to HEAD: (view) (annotate)

Sticky Tag: < set
Revision 1.34

Mon Apr 19 18:46:20 2004 UTC (13 years, 6 months ago) by tod
Branch: MAIN

CVS Tags: HEAD
Changes since 1.33: +0 -0 lines
FILE REMOVED

Removed floating window reference

Revision 1.33 - (view) (annotate) - [select for diffs]
Thu Mar 25 22:41:47 2004 UTC (13 years, 7 months ago) by nick
Branch: MAIN

Changes since 1.32: +1 -1 lines
Diff to previous 1.32

Branch point for: M8_3_0

Bug 55816 [ViewMgmt] Focus lost when showing view

Revision 1.32 - (view) (annotate) - [select for diffs]
Mon Mar 8 15:17:17 2004 UTC (13 years, 8 months ago) by tod
Branch: MAIN

Changes since 1.31: +9 -0 lines
Diff to previous 1.31

Fix for 53770

Revision 1.31 - (view) (annotate) - [select for diffs]

Mon Mar 8 14:53:11 2004 UTC (13 years, 8 months ago) by tod
Branch: MAIN

Changes since 1.30: +0 -2 lines

Diff to previous 1.30

Fix for 53770

Revision 1.30 - (view) (annotate) - [select for diffs]

(a) Commits written after fixing bug 53770

/[cvsroot]/org.eclipse.ui.workbench/Eclipse Ul/org/eclipse/ui/internal / progress/ ProgressFloatingWindow.java

Diff of /org.eclipse.ui.workbench/Eclipse \V/viewve

Ul/org/eclipse/ui/internal/progress/ProgressFloatingWindow.java

L _Parent Directory | [E] Revision Log | §% Revision Graph | ¥ Patch

revision 1.31 by tod, Mon Mar 8 14:53:11 2004 UTC revision 1.32 by tod, Mon Mar 8 15:17:17 2004 UTC
# Line 133 class ProgressFloatingWindow extends Ass Line 133 class ProgressFloatingWindow extends Ass
133
134 D ;
135
136 control.addMouseMoveListener(new MouseMoveListener(){
137 /* (non-Javadoc)
138 * @see
org.eclipse.swt.events.MouseMoveListener#mouseMove(org.eclipse.swt.events.MouseEvent)
139 !
140 public void mouseMove(MouseEvent e) {
141 window.closeFloatingWindow();
142 }
143 s
144
145 return viewer.getControl(); return viewer.getControl();
146 } }
147 = e
Colored Diff ¢ Show Legend;

Removed from v.1.31
changed lines
Added in v.1.32

(b) Difference between old and new versions of the same .java file

Figure 2.3: ViewVC report-like tool is used to navigate through the source code repository
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command gives previous changes of the code which is then used to find where the defective code was
first introduced. According to Bird et al. [2009] defect linking is inconsistent due to omission of bug
ID’s by developers (creation stage Table 2.6) when committing a bug fix. Defect data built could over or
under-represent certain types of defects. However the linkage inconsistency can be addressed manually
as pointed out in [Bird et al. 2009]. Davies et al. [2014] manually simulated two linkage approaches and

concluded that combining both gives better linkage.

Metrics Stage: Measurement is an important aspect to development. Roberts’ book [Roberts 1979] on
the theory of measurement provides the concepts of measurements in science and social sciences. How
things are measured plays an important role in determining the development of a field. In the book, he
further elaborates on the concepts. Examples of measurements concepts include: the physical, such as
temperature; preference, such as loudness; and societal problems, such as noise pollution. The important
idea is that taking measurements produces results and the results help in decision making. For instance,

due to extremely low temperatures drivers could be urged to drive only when there is an emergency.

Baker et al. [1990] report that measurement theory [Roberts 1979] provides a way of categorising intu-
itive and meaningful characteristics of objects and events in software engineering. For example length
of source code. The length can be represented using formal models such as integer. Length can then be
ordered and also used to compare two programs in terms of their relative length. If a unit has the ability
to be represented like ‘length’ taken from an aspect of software then it can be called a software measure,
otherwise a metric if the mapping is arbitrary [Baker et al. 1990]. Software metric can be defined as
“a measure derived from the requirements, specification, design, code, or documentation of a computer
program”[Curtis 1983]. When software grows in size and usage it can be complex. Software complexity
is an aspect of software that can be measured. There are different ways to measure software complexity.
For example, [McCabe 1976] cyclomatic complexity measures. Fenton and Neil [1999] reported that

the earliest use of size and complexity metrics was by [Akiyama 1971] for predicting the number of
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. ; Writes out 2D array row by row of the results for all classifiers on all datasets
; p;blic void writeResults() throws FileNotFoundException
. PrintStream printResults = new PrintStream(new File(path));
printResults.print("classifiers ");
for (String dn : datasetNames)
printResults.print(", " + dn);
printResults.println();
for (int i = 0; i < results.length; i++)
printResults.print(classifierNames[i]);
for (int p = 0; p < datasetNames.length; p++)

printResults.print(" , + results[i][p]);

}
printResults.println();

printResults.close();

Figure 2.4: An example Java code used to show how McCabe complexity metric is calculated. The code
prints out the results of a defect prediction experiment of multiple classifiers that make predictions on
multiple datasets

defects in a Fujitsu system. The most popular method-level metrics are McCabe and Halstead metrics
[McCabe 1976, Halstead 1977]. I give a small example of how to calculate McCabes cyclomatic com-
plexity metric in Figure 2.4. The Figure 2.4 shows a writeResults() method which is part of its class
called PrintWriter which I wrote to print out the results of my experiments in chapter 5. From lines
6-26 the code is executed sequentially from top to bottom. The for statement is a statement that controls
that flow followed by a condition to execute the block of code. McCabe’s cyclomatic complexity counts
the number of control paths in the writeResults() method. There are 3 control statements (for) and
the starting point to the method (1), in total McCabe cyclomatic complexity denoted by V(g) = 4. The
total lines of code is 20 LOC (executable lines between 4 and 27). These metrics can be calculated from
the linked code (from the linkage stage) which contains defective and non-defective code. The calcu-
lation gives output of the metrics called attributes or ‘commit features’. For example, code complexity

metrics, code size metrics, code change metrics [Bird et al. 2009] and their corresponding values. These
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attributes or features of the piece of code from a (.java file) are also called Independent Variables —
which are the input to the algorithms used to perform prediction. There are various metrics developed

with properties at different granularity levels; class, method, process and so on [Catal and Diri 2009].

Metric tools (Jhawk!, locmetrics?) are used to calculate these metrics. Some of these tools have been
found to produce different metric values when used to calculate the same type of metric [Lincke et al.
2008]. Tool inconsistencies could threaten the validity of the defect data. When tools are not shared and
are likely to calculate the same metrics differently, it then makes it impossible to reproduce the results.
For example, NASA metrics data sets have had erroneous values of 1.1 lines of codes for the LOC metric
[Boetticher et al. 2008], that is a method having 1.1 lines, is not realistic. These errors could be from
the metric tools they used and were not publicly available. In addition, the source code from which the
metrics were derived is also not publicly available. Thus, the metrics are not reproducible and cannot be

independently validated [Shepperd et al. 2013].

The SLR on finding the most effective metrics by [Radjenovié, Hericko, Torkar, and Zivkovit 2013]
from 1990 - 2011, reported that object-oriented metrics such as Chidamber and Kemerer [1994] at class-
level were mostly used among all metrics. Although Hall et al.’s SLR discovered that for higher model
performance “independent variables used by models performing well seem to be sets of metrics (e.g.,
combinations of process, product, and people-based metrics)"[Hall et al. 2012]. As described in Kim
et al. [2011] the Dependent Variable is the label of a predicted module, file, method or class. The label
can be categorical values for binary classification; defective or not. The labels can also be continuous

values for building regression models; that is the number of defects in a module.

Archive Stage: This stage is where metrics/defect data (uncleaned or cleaned) are stored and made

publicly available for researchers to perform repeatable, refutable and verifiable experiments [Menzies

Thttp://www.virtualmachinery.com/jhawkprod.htm
Zhttp://www.locmetrics.com
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et al. 2007]. The PROMISE repository developed by Menzies et al. [2012]? has been widely used and
is helpful in making defect data sets from differents sources accessible to the public*. There is possible
‘sampling bias’ when data is contributed to a repository. Sampling bias occurs when a portion of the
dataset in which the prediction models perform well are submitted to the repository, and the remaining
portion of the data where models did not do well are not shared [Liebchen and Shepperd 2008]. A
key issue with repositories is that when contributed datasets are easily accessible to users, it could be
easier to use them for experiments without checking quality of the data (like NASA having 1.1 LOC
for a module or duplicates [Gray et al. 2012]). In this case, defect data repositories have an important
role to play in terms of data quality Shepperd et al. [2013], if not, producing unreliable studies may
be propagated easily since the prepared data sets can be easily downloaded and used for experiments

(chapter 4 provides more data on this problem).

2.2 Prediction modelling technique

Different studies use different classification methods. The most common are machine learning algo-
rithms and statistical techniques [Malhotra 2015]. Examples of machine learning algorithms include
Random Forests [Breiman 2001] and Support Vector Machine (SVM) [Gray et al. 2009]. A common
statistical technique is Naive Bayes by Thomas Bayes. The probability equation taken from [Rish 2001]

can be expressed as follows:

PIFIC] = | |, PLFiC] @.1)
PF|C)P(C
P = ZEEE 2.2

The definitions of the parameters in the equations are:

*now moved to https://zenodo.org/communities/seacraft Accessed: 12th Nov 2017
“the widely used datasets from NASA Metrics Data Program is available in PROMISE repository
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F =(F,,...,F,)is afeature vector

f is a feature in the feature vector (return type, parameter count)
C is a class (defective or not)

P(C|F) is the posterior probability of a class (defective and not)
P(C) is the prior probability of a class

P(F|C) is the likelihood of a feature to be defective or not

P(F) is the prior probability of all features (it is the same when calculating likelihood of the classes)

Equation 2.2 works out the likelihood that a feature belongs to a defective or non defective class C.
The mathematical algorithms associate the metrics values with the dependent variable. The dependent

variable can be categorical, that is defective or not, or continuous, that is the number of defects.

I will give an example of categorical Naive Bayes classifier Equation 2.1 because I use it in my work, see
Table 2.1. It is naive because it considers each variable as a separate contributor towards the dependent
variable. For this discussion I will create data from my example code in Figure 2.4. The code is in Java
where I attempt to predict whether it is defective by looking at the return type of the writeResults()
method. I also look at the number of parameters in my method signature. I then add some modified
methods I used in my experiments in chapter 5 for better illustration. None of these methods are defec-

tive, but I mark some of them as such for this example.

Naive Bayes deals with variables that are categorical. As such, return type, parameter count, and defect
count have to be transformed into binary form. This is possible by using thresholds for each variable.
Return types that are void will be ‘Yes’, otherwise ‘No’. Likewise, parameter count above 2 should
be binary; that is a method with less than 2 parameters is a ‘No’ and above 2 is a ‘Yes’. The same

conversion is applied to defect count. Table 2.1 will then transform to Table 2.2 and to Table 2.3.
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Table 2.1: Illustration data showing the methods and parameters. The independent variables are de-
termined by number of parameters for each method and its return type. The dependent variable is the
number of defects.

Independent Variables Dependent Variable
Method Return Type Parameter Count Defect Count
writeResults() void 0 0
findPlugin(String source, File folder) void 2 1
parsePackage(Package p, PrintStream ps) void 2 4
nextFile() File 0 0
getOnlyJavaFiles() List<File> 0 0
parseOnlyJavaFiles(Dir rdir, List javaFiles) void 2 0

Table 2.2: Illustration data converted to binary data using different thresholds. The methods are num-
bered for readability. The independent and dependent variables are converted to binary using thresholds
in each respective column.

Independent Variables Dependent Variable

Method Return Type = void Parameter Count >2  Defect Count >1

1 Yes No No
2 Yes No Yes
3 Yes No Yes
4 No No No
5 No No No
6 Yes No No

Table 2.3: Illustration data summarised based on the matching between independent variable values and
those of the dependent variables values.

Return Type = void Parameter Count >2
Yes No Total Yes No Total
defecti Ye 2 0 2 0 2 2
aective N0 2 2 4 0 4 4
4 2 6 0 6 6

If a new method is added its prediction outcome will be based on probabilities calculated on the
previous data. The likelihood of the two classes (defective and not defective), P[F|C], is first calculated

for all features. Followed by the posteriori probabilities, P[C|F], of both classes as follows.
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From equation (2.1) the likelihood (Not Defective | Defective) is,
PIFIC] = | |1, PLFiC]

Breaking equation (2.1) for all the two features in our data we now have,

P[F = (f1, f2)|C = not defective]
all non defectives

PIFIC] =

P(C = not defective)

P =
© all methods

Substituting equations (2.3) and (2.4) into the numerators of equation (2.5),

_ PFIO)P(C)
PICIF] = —P(F)
i (2.2 4\ 0.1667
P[C = not defective|F] = (4_1 X 4_1) X (6) = 0
: (2.2 2\ 0.3333
P[C = defectivelF] = (5 X 5) X (5) = )

P(F) is the prior probability of all features for defective and not defective instances,

. - . 0.1667

P[C|F] = posterior probability(Not Defective) = 01667 103333 0.3334 ~ 33%
. .. . 0.3333

P[C|F] = posterior probability(of Defective) = = 0.6666 ~ 67%

0.1667 + 0.3333

(2.3)

2.4)

2.5)

(2.6)

2.7)

(2.8)

2.9)

The result shows the posterior probabilities. Such that a new method with File return type and more

than 2 parameters will be classified as defective. The classification is based on the maximum posteriori

probability [Rish 2001], i.e, 67% probability calculated from the previous data.
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2.3 Building the prediction model

Experiment Stage: Typically an algorithm is trained based on the defect dataset which is a combination
of numerical values calculated from source code. The algorithms find patterns from combinations of
these values and separate them into different classes. These patterns can be seen as if-then rules useful for
classifying new patterns accurately [Quinlan 1993]. A piece of software can have multiple releases. A
model can be trained on one release and used to make predictions on another release. With new releases
come new changes. So, slow growth of data could affect the building of models. Defect prediction has
been motivated towards building models in one organisation and used in a different organisation (cross
company defect prediction) [Kitchenham et al. 2007]. Modelling is a complex process and mistakes can

be made easily.

Gray et al. [2009] introduced an extensive framework for building reliable prediction models. Gray et al.
[2009]’s techniques ensure there are no repeated instances in a training set and testing set. Otherwise,
having duplicates in both sets nullifies the theory of prediction. The theory of prediction is that a trained
model should make a prediction on code it has not seen before. Song et al. [2011] proposed a new
framework by adding a metric (or attribute or feature) selection stage. In Figure 2.5 the study also added
a retraining step - where a trained model is retrained on the whole training set after being trained on
different partitions of the training set. The trained model is then used to predict what the labels are given

unseen test data. How well the model performed is then evaluated using standard performance measures.
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Figure 2.5: A procedure for evaluating a defect prediction model [Song et al. 2011]

I use some these classifiers which I elaborate in chapter 5. Some of the main challenges at this stage have
to with data quality, the procedures followed in handling the datasets when building prediction models

and how the performance of the models are measured.

Data handling: There are many challenges within defect datasets. Some source codes can have few
defects in them, and training classifiers on such imbalanced data makes the algorithm struggle to learn

from few samples that are not sufficient to allow the classifier separate new patterns. This could make
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the classifier’s performance poor. There are many techniques to handle data imbalance, for example, by
increasing the number of defective patterns or instances in the dataset so that the classifier would have
enough training samples to make better predictions. Many of these techniques have been compared by
Chawla [2003] and recently by Rodriguez et al. [2014]; including cost sensitive, sampling and ensemble
methods. Additionally, how data is split for training and testing can be flawed, this is where novelty
and replication problems occur [Fokkens et al. 2013]. For example, Rodriguez et al. [2014] uses 5 by 5
cross validation when 10 by 10 is recommended. The latter provides more reliable estimates on how the

model may perform when given new datasets to classify.

Since the idea of cross-validation is to split the dataset into (n) approximate folds so that in each run
the model can be trained on (n-1) folds and tested on the one fold. The procedure can be run 10 times,
each time randomising the instances so that the model is not used to the same patterns most of the time.
Fewer folds for training and testing, and less randomised instances could bias (over fit) the classifier to
that dataset and the model could perform poorly on new unseen data [Hand et al. 2001]. The problem
is even if standard techniques are used to develop prediction models, the results could remain unreliable

as long as stages 2, 3 and 4 are not addressed.

2.4 Evaluating the performance of the prediction model
When the model predicts whether a piece of code is defective or not, its performance is measured using

different approaches. Song et al. [2011] elaborate on the evaluation process in Figure 2.6.
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Figure 2.6: A procedure for building a defect prediction model [Song et al. 2011]

Again, prediction performance measures that partially explain model’s performance are used, e.g. recall
only or precision (Table 2.5). Ostrand and Weyuker [2007] investigate the success of prediction models
reporting common measures. The paper concluded that combining measures better explain performance
of prediction models. Furthermore the combination of what percentage of defects were missed > and
percentage of defective files/modules depends on interest. These two measures are important to know
effectiveness of the prediction. Precision, Recall, Type I, Type II have all been studied. Type I and
Precision focus on false positives (classified non defectives as defectives); Type I is more relevant in
terms of prediction. Comparing Type II and Recall, Type II was selected as more relevant and both

focus on False Negatives (classifying defectives as non defectives is most severe as it leads to failure

SType II misclassification rate or False Negative rate
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in operation) Table 2.5. However, a comprehensive measure Mathews Correlation Coefficient (MCC)
which tests the model in all four parts of the confusion matrix Table 2.4 is recommended [Hall and
Bowes 2012]. A prediction model that is not evaluated in full may not be useful for practitioners. When
a model misses a defect and that defect leads to failure in operation, there is a huge cost to the company

and the user.

Table 2.4: A Binary Confusion Matrix

Observed Observed
Positive Negative
. . True Positives False Positives
Predicted Positive (TP) (FP)
. . False Negatives ~ True Negatives
Predicted Negative (FN) (TN)

Table 2.5: Compound Performance Measures from a Binary Confusion Matrix

Measures Defined As Meaning
TP . o .
Recall Proportion of actual positives
TP+FN found.
Precision _re Proportion of predicted positives
TP+ FP which are true positives
2 X Recall x Precision 2TP The harmonic mean of
F — Measure T = ..
Recall + Precision 2TP+ FP+ FN Precision and Recall.
Matthews . . .
Correlation TPxTN — FPx FN A regression coeflicient using all
Coefficicnt TP+ FPTP 1 FNYIN + FPYTN + FN) four quadrants of a confusion

(MCC) matrix.
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2.5 Summary of defect prediction: 5 Stages

Based on the defect prediction literature, the process can be summarised into 5 important stages, see
Table 2.6. The second column lists all stages of the defect prediction process. The description of what
is at each stage is given in the third column.

Table 2.6: Software Defect Prediction process and its Defect Data Life-Cycle

Sn  Stages Description

1 Creation Developers write code, Defects are Tabelled, fixed, inserted, reported

2 Linkage Defect ID in bug DB is matched with fix point in version control

3 Metrics Metrics are calculated from features of code like line of code counts

4 Archive Metrics called data are stored for public to access via website

5 Experiment Researchers, practitioners, reviewers use data to build and test prediction models

In light of all this complex process of building prediction models, there are potential threats to validity
at every stage of the 5 defect prediction process stages Table 2.6. Therefore, repeating an experiment
to get the same result is a challenge. Especially when the original studies are not rigorously performed
or do not report sufficient information. When a study is not reproducible or replicable how can it be
trusted? This takes us to the next section which elaborates on the importance of having replicable and

reproducible studies and the difference between the two terms.



2.6. Defining the terms replicability and reproducibility 27

2.6 Defining the terms replicability and reproducibility

Thomas Kuhn says ‘normal science’ means research firmly based upon one or more past scientific
achievements, achievements that some particular scientific community acknowledges for a time as sup-
plying the foundation for its further practice... and “a paradigm is an accepted model or pattern” [Kuhn
1963]. In order to shift from a paradigm and drive progress scientific rigour must be applied. Firm con-
sensus must be reached from one paradigm to another [Kuhn 1963]. Therefore scientific methodology
requires us to repeat experiments to check that other people can get the same results. If people cannot
get the same results, the original study may not be valid. In the previous replication examples given in
chapter 1 (Marangos [2000] particles of light, Fleischmann et al. [1989] cold fusion) one can repeat an
experiment to get the same or different findings. How about in this age of computing with resources
being accessible? How can these concepts be distinguished? The terms replication and reproducibility
are often interchanged, but they carry different meaning. Each term determines how experiments are
done and the expected outcomes and their complexity. Replication means to repeat an experiment by
independent researchers within a different environment, with changes to the original study aimed at get-
ting consistent results. Reproduction is to recompile the same artefacts used for a study, including data,
analysis and procedures for validation [Leek and Peng 2015, Madeyski and Kitchenham 2017] to get the

same results. I provide the details and history of both concepts in the following sections.

2.6.1 Origin of Replication (Robert Boyle, 1600s)

[Gandrud 2013] talked about Francis Bacon’s book ‘Colours of Good and Evil’ [Bacon 1890] originally
published in 1605. That replication is referred to as demarcating science from non-science and science
is a systematic way of collecting knowledge into testable claims. A famous experiment that sparked
considerable debate about replication: Robert Boyle’s New Experiments Physico-Mechanical, Touching

the Spring of the Air, and its Effects. The book published by H. Hall, printer to Oxford University, was
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about the first controlled experiment that measured the effect of lowering air pressure in an air pump (of
~28 litres and ~38cm diameter in size, see Figure 2.7) [West 2005]. Shapin et al. explained this debate
that at that time Boyle’s claims about his observations “could be turned into matters of fact by replication
of the pump”[Shapin et al. 1985]. The moment Boyle’s book on New experiments was published, within
a year 1660 to 1661 August, other researchers attempted to replicate the pump but failed. It took an
eye witness Huygens present at the air pump trials to be able to replicate it. The replication took place
at a different location with some changes. The research groups in Germany and Florence had the full
text but were unable to replicate the pump. Hobbes published (in Dialogus physicus) some of the errors
in the pump. An example of one error is air leaked between sucker and cylinder. Once the flaws were
identified the custodian of the pump Royal society requested Boyle to make corrections within a year

[Shapin et al. 1985].

2.6.2 Importance of Replicability

An important lesson here is that within a year (1660 - 1661) researchers set to replicate the air pump and
found errors. The custodians Royal Society requested the author Boyle to make corrections to existing
pump immediately. The speed at which findings are replicated in order to be verified is important to
minimise error propagation among the scientific space. The experiment would not be accepted as fact
until it was successfully replicated. Indicating the significance of replication as the scientific method to
establish facts. Which means that quantifying replications in any scientific field is crucial to evaluate
whether some facts have been established to reduce false claims and correct errors as in the case of
Robert Boyle. West [2005] further reported that Boyle and Hooke extended the work on effects of low

pressure, on magnetism, sound propagation, behaviour of a pendulum etc. [West 2005].
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Figure 2.7: “Engraving of the air pump devised by Robert Boyle and Robert Hooke (1635 - 1703). The
complete pump is shown at center, and some of the disassembled parts are at right. Various small pieces
of equipment that were used in the experiments are also shown” West [2005]
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2.6.3 Origin of Reproducible Research (Jon Claerbout, 1990)

More recently with the advent of technology, computing and software engineering replication could
branch out to reproduction. It is because one can access the exact same materials used for an ex-
eperiment through repositiories, file transfers and so on. Unlike in replications some materials are not
accessible. For example the same composition of glass, leather used for Boyle’s pump might have in-
trinsic difference to those in a different environment. Madeyski and Kitchenham [2017] summarised the
origin of reproducible research documents in their paper on adopting reproducible research in Software
Engineering. The paper reported that Gandrud [2013] attributes the term “reproducible research” to Pro-
fessor Claerbout (Stanford University) in 1990. Claerbout ensured makefiles® were created to compile

all results of the studies including figures during the Stanford Exploration Project.

2.6.4 Importance of Reproducibility

Gandrud [2013]’s book further explained that accessing the three parts of a study, text, data and analytic
procedures (algorithms) achieves reproducibility. Some of the advantages are that: research can be ver-
ified, new work can be created, it allows better teamwork, replication is easier by doing re-analysis, and
lowers the effort of doing what has been done already. Conversely, producing non-repeatable research,
even by oneself [Baker 2016] is a waste of time, effort and research funding [loannidis 2017]. Failed

reproducibility may disrupt advancement of research [Shepperd et al. 2014, Ioannidis 2017].

2.6.5 Contrasting the Terminologies

Given the definitions of replication and reproduction and their examples the two terms differ. Repro-
duction applies when a researcher has access to the same materials, tools and is able to repeat the study

and get the same result (in the case of makefiles). Replication applies when a researcher uses differ-

%a file kept in a directory containing some executable commands called by the keyword ‘make’
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ent materials and possibly tools to get similar behaviour of a system (in the case of Boyle’s air pump).
As a result of this difference these two concepts may also be measured differently depending on the
context. For instance, in the context of defect prediction, using the same tools and methods the mea-
surement/independent variable (e.g. model performance) outcome of the original and its reproduction
study might be expected to be the same. Perhaps with some differences due to rounding errors. Using
different materials and environment the expected outcome would not be as straight forward. There could
be many variations intrinsic to the contextual factors that differ from those of the original environment

and materials.

2.7 Adopting the Terminologies to Defect Prediction

Previous work has looked at the reproducibility of data mining studies [Gonzalez-Barahona and Robles
2012]. Defect prediction studies invariably are based on data mining. Gonzélez-Barahona and Robles
[2012] propose a process model to gauge the reproducibility of data mining studies by identifying key
elements of the research including: data source, retrieval methodology, raw dataset, extraction method-
ology, study parameters, processed dataset, analysis methodology, and results dataset. Goodman et al.
[2016] suggest that in any scientific field the kind of replication must be clearly specified, including
the components of studies being replicated with respect to the knowledge derived and the limitations of
using statistical significance as the only basis for conclusions [Goodman et al. 2016]. In this dissertation
part of the Gémez et al. [2014] replication taxonomy is adopted; it tracks changes made to components
of an original study, and identifies the different types of replications that can be performed. The taxon-
omy was originally defined for software engineering human-centric experiments, but I adapt it to defect

prediction experiments (chapter 3 presents the adaption).

According to the taxonomy of Gémez et al. [2014], replication in software engineering can be cate-

gorised into three broad types (see Table 2.7). Literal is a type of replication done by authors of the
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Table 2.7: The identified replications in this study that are mapped & tagged to the considered categories
of the Gémez et al. [2014] replication taxonomy.

Replication type Protocol Operationalisation Populations Experimenters Replication name & changed (A) components

Literal = = = = Repetition
A-experimenter (A)
A-populations
A-populations/-experimenter (B)
A-operationalisation
A-operationalisation/-experimenters (C)
A-operationalisation/-populations
A-operationalisation/-populations/-experimenters (D)
A-protocol
A-protocol/-experimenters (E)
A-protocol/-populations
A-protocol/-populations/-experimenters (F)
A-protocol/-operationalisation
A-protocol/-operationalisation/-experimenters (G)
A-protocol/-operationalisation/-populations
A-protocol/-operationalisation/-populations/-experimenters (H)
Conceptual ~ Unknown Unknown Unknown Unknown  (only hypotheses are retained)

Operational

HOH R I T
R TR 1N N TS 'S N TR TS N TN}
RS TI TN T [N N T N TR N TR N T N

HOH R R

original study. In effect, this type of replication is named Repetition because no component of the origi-
nal study is changed; the same experiment is run by the same authors using the exact tools on the same
data to avoid bias in the results. Modifying any component of the original study changes the type of
replication to Operational. For example, if different authors replicate an original study while data and
tools remain the same, it is the Operational replication type with Changed-experimenter (in effect the
same as reproduction); experimenter is the component. Under the Operational replication, 15 changes
can be made to the original study, and each change is given the appropriate name to reflect the change
(Table 2.7 column on the right identifies these changes) for example the populations being studied may
change. The third replication type is called Conceptual because every aspect of the original study is
changed except the hypotheses. Applying this taxonomy to new and existing replications is crucial in

aggregating replication types and results, to consolidate and synthesise new knowledge.

2.8 Summary

Within the 5 stages of defect prediction process I have highlighted the challenges faced. Researchers
may face impediments when verifying studies through replication and reproduction. These two concepts
vary in terms of their approach to the experiments and expected results. Reproducibility problems have

been highlighted in other fields, for example, a recent study in Nature Epistemology suggests that many
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researchers fail to reproduce other researchers’ work and this failure includes their own work [Baker
2016]. In Cognitive Science reproducibility is challenging due to the implementation of computational
models in computer code [Lane and Gobet 2003]. In light of the current problems within the defect
prediction process this dissertation aims to identify the number of replicated original defect prediction
studies. I also aim to statistically identify characteristics of these studies that are likely to relate to a
paper being replicated. In the next chapter I detail my methodology on finding replication studies and
measuring their outcomes. I further elaborate on the approach I use to reproduce these studies and

statistically confirm some of the factors that have impact on prediction replication and reproduction.



3. METHODOLOGY

In this chapter, I propose a research validation process to provide new evidence on the state of replica-
tion in defect prediction. I also highlight technical details affecting validity assessments through repro-
ducibility. The methodology is broken down into two approaches, theoretical (qualitative) and empirical
(quantitative) approaches. The theoretical approach (detailed in chapter 4) explains the systematic re-
view and analysis of replication studies. In the empirical approach (detailed in chapter 5) the experiments
undertaken to test the reproducibility of research are explained. Investigations into the reproducibility
failures encountered are also explained (detailed in chapter 6). In this chapter these explanations are

supported with a mapping of how both approaches fit together.

3.1 Research Method

In Empirical Software Engineering there are different research methods [Runeson and Host 2009, Vegas

2015]:

e gsurvey is collecting information from a sample, not only by questionnaire or interview

e case study is an enquiry on one phenomenon based on a variety of sources describing that phe-

nomenon in real life
e controlled experiments measure a variable and observe its effects on another

e quasi experiment is similar to a controlled experiment except that there is no random assignment

to control groups
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As described by Vegas [2015], over the past 20 years an Empirical SE PhD can generally fall under two
categories either of which can use any of the research methods. The first category gathers knowledge
about a specific topic, for example Seaman [1998], through several experiments, characterised aspects of
communications between team members when developing software. Shull and Basili [1998] ran several

experiments and synthesised knowledge about different reading techniques to inspect code.

The second category proposes a methodological advancement of Empirical SE research: For exam-
ple, Daly [1996] proposed a multi-method technique to conduct empirical research combined with a
replication strategy to achieve reliability and generalisability of findings; Solari [2013] identified the
appropriate contents to include in a replication package; Ciolkowski [2011] proposed a methodology for
quantitatively aggregating evidence from controlled experiments; Jedlitschka [2009] proposed a method
of reporting useful information for managers to make decisions; and Gémez et al. [2014] proposed a

replication taxonomy which organises the order in which types of replications should be done.

I use the Empirical SE controlled experiment research method which is defined as an attempt to combine
a set of components into a defined protocol (framework) whose outcome (dependent variable) can be
measured [Runeson and Host 2009, Vegas 2015]. My thesis aims to satisfy this approach by proposing a
methodology to advance replications in defect prediction. I support this thesis by identifying replications
of 208 controlled experiments from an existing SLR [Hall et al. 2012]. I also assess the confirmations
of the findings (agreements) followed by a quantitative analysis of factors associated with replications.
Finally, I do a reproducibility check on those replicated studies and identify potential factors causing

reproducibility failures.

3.2 Theoretical approach
Under this part of the methodology there are six stages. Each stage is broken down into multiple pro-

cesses. Each process passes information sequentially to its dependent process. The stages begin from
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the top right of Figure 3.1 and progress downward. The same order is followed on the left side of the
figure to complete the review. Systematic reviews are an important aspect of gathering evidence from the
literature to answer research questions and unify research goals: This type of review is widely used in
Software Engineering (SE) [Kitchenham 2004, Kitchenham et al. 2009, Catal and Diri 2009, Hall et al.
2012, Radjenovi¢ et al. 2013, Wohlin 2014, Silva et al. 2014, Malhotra 2015, Wahono 2015, Hosseini
et al. 2017]. Therefore I use a systematic review to find valuable insights about replication in defect

prediction.
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3.2.1 A Qualitative and Quantitative Analysis of Replication Studies in Defect Predic-

tion

Stage 1 - Identification of replication papers: In the first stage, I aim to find studies that
conduct one or more replications. The number of studies found will answer (RQ1). To replicate a
study, that replication must have cited the original paper. Therefore, the first place to begin the search
is citations of an original study. The criteria and search strategy used to develop the systematic review
process will be synthesised from [Wohlin 2014, Hall et al. 2012, Silva et al. 2014] and adapted for

finding replication studies as follows:

1. Select a representative base set of original defect prediction studies [Wohlin 2014]: so the 208
original defect prediction studies from [Hall et al. 2012] will be used.

2. Search through references that cite the original study (forward-snowballing) [Wohlin 2014], be-
tween 2000 - 2017, because the original paper must have been published before the replication
was conducted [Silva et al. 2014] (this means that references within the original studies will not
be searched).

3. Use areliable search engine (e.g. Google Scholar) to ensure sufficient coverage of papers that cite
original studies. On the ‘cited by #papers’ page of each paper the ~Replicate OR ~Replication OR
~Replicated string and selected ‘search within citing articles’ filter will be used. In effect, only
papers that used these terms or their synonyms (denoted by tilde (~)) will be returned. Applying
this technique will reduce the number of papers to be assessed as replications and reduces false
positives. From the returned results page, we will read the paper title and its summarised phrases
to identify if the paper was a replication of an original study in the 208. If not sufficient, the whole
document will be accessed to find the context in which the term was used, as suggested by Wohlin
[2014]. For this search the in-built search feature of the web browser or document reader will be

used to find the term replication. If the replication term is not in the document the paper will be
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read in full to determine if it is a replication. Using this approach will help identify a set of papers
that replicated a sub-set of the 208 original studies.

4. Use SLuRp [Bowes et al. 2012], an open source SLR tool to aid the review process for effective
tracking, storing, and retrieving information [Hall et al. 2012], and to achieve reproducibility for

reviewers, researchers, practitioners to repeat the study and be able to ascertain its credibility.

Stage 2 - Inclusion criteria: In the second stage, I aim to exclude internal replications (some-
times known as self replications). There are two main types of replication. The replications conducted
by the original authors themselves and those replications done by authors other than the original authors.
These two can be called internal and external replication [Silva et al. 2014]. The latter is the preferred
type [Silva et al. 2014, Gémez et al. 2014, Fucci et al. 2016] to minimise threats to the validity of a
study. Since bias introduced by original authors (as discussed in chapter 1) has been shown to be the
dominant factor impacting model performance, and consequently has the tendency to disrupt replication
and hinder progress in a field [Shepperd et al. 2014]. I will exclude internal replications or extended
work by the original author(s). If the author(s) have extended an original piece of work, I will consider
this work to be one paper, and any replication of either of these two is a replication of an original study.
I will consider any author (whether a lead author or not) to be an author of the paper. Consequently I

will be able to track all replications by all authors of original studies and exclude them.

Stage 3 - Data extraction: In the third stage, data from the identified replication studies will be
extracted and validated amongst authors. The approach is adopted from [Hall et al. 2012] because the
study is one of the “very prominent ‘gold sets’ as published SLRs” and “define their work in enough
details for us to construct data sets for simulations” [Yu et al. 2016], making it a standard followed in

this dissertation (a recent SLR [Hosseini et al. 2017] also used the same extraction technique).
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1. Tool for extraction: For reproducibility I use the SLuRp tool [Bowes et al. 2012]. SLuRp is
a web-based tool developed to make Systematic Literature Reviews (SLR) reproducible and also
provides effective information storage and retrieval. SLuRp has been assessed as the best out of
four SLR tools in SE Marshall et al. [2014]. I will not use all of SLuRp’s functionality, many more
useful SLR management features are described in [Bowes et al. 2012]. I provide the following

steps as a summary of SLuRp together with how I will use it for data extraction.

(a) Import BIBTEX files and store references to all original and replicated studies.

(b) Assign more than one researcher (in my case two researchers are assigned, Mahmood and
Bowes) to independently store extracted information from each paper.

(c) Allow the researchers to modify and approve extracted information.

(d) Disagreements between the researchers are flagged by SLuRp.

(e) Create forms based on contextual and methodological information that must be extracted
from each paper.

(f) Store extracted information in the SLuRp database.

(g) Retrieve stored information using SQL queries and organise into result tables.

(h) Export tables as I&IEX tables. Graphs and box plots are available.

(i) Edit entire final report with SLuRp I&IEX editor, including results, tables and compiled to
produce the final paper - this functionality allows researchers produce reproducible research

work.

2. Reference management References of the set of studies will be stored in a BBTEX file.
Original studies will be labelled in BIBTEX using the format [paperID#] and replication studies
as [#paperID#]. Because some original studies may be replicated more than once; this format is
crucial to track the number of replications per original study. For example, an original [pid1] will

have one replication as [1pid1] within the bibliography database.
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3. Extraction of selected data from final set
Three sets of data will be extracted to allow RQ2, RQ3 and RQ4 to be answered. The first set of
extracted data (for RQ2) characterises how defect prediction studies are performed. The dataset is
based on the defect prediction characteristics presented in Hall et al. [2012] and Hall and Bowes

[2012]. These characteristics include:

(a) dependent variables
(b) independent variables
(c) algorithms

(d) dataset

(e) tuning

(f) cross validation

(g) statistical analysis

This dataset of defect prediction characteristics can be analysed for insights on replication practice
and to categorise replications based on changes replications make to the original studies in terms
of these characteristics. The information we collect allows us to categorise replications into their
respective categories (as defined in Table 2.7).

Once the final set of papers is identified, 5 papers will be read independently between two authors
(Mahmood and Bowes, by way of a validation check on the data extraction process) and their
data extracted, while agreements will be reached on this data extraction using SLuRp to minimise
threats to validity. The review is a significant step to reduce errors or bias that can be introduced
by researchers, and in turn to reach a sound conclusion. Information on the remaining papers
will then be extracted by me. The second set of data extracted (for RQ3) allows us to determine
which features of defect prediction studies make it likely an original study will be replicated.
This set of data is: study quality, publication venue, citation count and dataset (as explained in

chapter 2). The third set of data to be extracted (for RQ4) allows us to establish whether the results
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of a replication study are comparable to the original. Chapter4 describes the process by which I

establish and measure agreements between a replication and the replicated original results.

Stage 4 - Categorisation of replications into types: In the fourth stage, the process
identifies how replications are performed by applying Gémez et al. [2014]’s replication taxonomy to
categorise the identified replication studies into types. The extracted information from the papers ini-
tially stored in SLuRp will be retrieved as tables using the SQL functionality. The information will
then be divided into four components based on Gémez et al. taxonomy. The retrieved information from
SLuRp will be presented in these four components, adapted from Goémez et al. [2014], see Table 3.1.
Each component changed may assist in the discovery of unknown factors that affect replication results.

I detail the four components of a study as follows;

Protocol is the overall study design. In defect prediction the framework that pulls together different
sub-components to build a prediction system is the overall study design (protocol). Table A.1 shows the

protocol sub-components I will use:

1. cross validation scheme used
2. whether parameter tuning was performed
3. which statistics were used to compare performance results

4. whether data cleaning was used

These factors are motivated by Hall et al. [2012] and Hall and Bowes [2012] as outlined previously in

chapter 2. The protocol is the design before it is implemented (i.e. operationalised).

Operationalisation has two aspects, cause and effect. The cause is the process of implementing the
protocol and considers the implementation environment. We consider the following implementation

factors (again motivated by Hall et al. [2012] and Hall and Bowes [2012]):
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1. Tools used
2. Algorithms used

3. Independent variables used

Algorithms have are available in data mining tools like Weka [Hall et al. 2009], in effect the tools
help to implement a prediction framework. Therefore such tools and their versions must be considered
because variations may cause differences in replication or reproduction results. Effect is the process of
determining and defining the aspects of a model to be measured and selecting the appropriate measure.
Since performance measures already exist (e.g. recall; measures the proportion of actual defects a model
correctly predicted, see chapter 2), it is a question of ‘which’ measure appropriately measures the effect

of the treatments on the model’s prediction outcome.

Population is based on the systems analysed in studies. These systems are then mined from source code

repositories (open or closed sources). Below are the population factors that are considered:

1. data source (which repository, open source could be Eclipse, Mozilla)
2. domain
3. language

4. granularity of defect data

The granularity i.e. method or class level where the defective or non-defective data are gathered is
also part of this. The programming languages used, size of project (KLOC), maturity (years of use
and development) etc. Changing any of these sub-components affects the population and likely the

replication results.

Experimenters are the researchers that conducted the study.
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As explained in chapter 2, Gémez et al. [2014]’s idea of the types of replication is based on changes
to the subcomponents within these four components. Each component changed represents a type of
replication. There are three broad replication types based on changes to the study components: i) literal
(no change), ii) operational (15 changes), and iii) conceptual (only hypotheses of the original study are
retained). The results of applying this taxonomy to the identified replication studies are provided in

chapter 4.

Stage 5 - Identification of Factors Associated with Replications: In the fifth stage,
for all 208 papers, as discussed previously we (Mahmood and Bowes) will extract the following factors

to find out if any of the them has a relationship with the number of subsequent replications:

1. quality,,

2. number of citations of a paper

3. publication venue

4. publication venue’s impact factor

5. data sharing/availability

The focus on quality is necesary because Aksnes [2003] deems quality as the core knowledge that leads
to further developments by other researchers, with lasting significance. I also focus on publication
venue and study influence as Garousi and Fernandes [2016] report that highly cited papers make studies
influential. Only the quality characteristic is not directly measurable. The qguality,,assessment outcomes
will be extracted using Hall et al’s quality check for defect prediction studies [Hall et al. 2012] for
the 208 original studies that have been replicated (see Table 3.2 for a summary of the four phased
quality check criteria, quality,,). The quality,, process assesses defect prediction studies in terms of
whether they employ a reliable methodological approach to building prediction models and whether

studies report sufficient information to comprehend a study.
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Table 3.2: Summarised Quality,, Criteria by Hall and Bowes [2012]? from Hall et al. [2012]

Quality,, Assessment Phases Details of Phases

-Is a prediction model reported?
-Is the prediction model tested on unseen data?

phase 1: Establishing that the study is a
prediction study.

i . -Is the source of data reported?
phase 2: Ensuring sufficient contextual -Is the maturity of data reported?

information is reported. -Is the size of data reported?

-Is the application domain of data reported?
-Is the programming language of the data reported?
-Are the independent and dependent variables

clearly reported?
-Is the granularity of the dependent variables re-

ported?
-Are the modelling techniques used reported?

phase 3: Establishing that sufficient model
building information is reported

] o -Is the fault data acquisition process described?
phase 4: Checking the model building data  -[s the independent variables data acquisition pro-

cess described?
-Is the faulty and non-faulty balance of data re-

ported?

Phase 1 assesses defect prediction methodological approaches 2Phases 2, 3 and 4 assess reporting
of prediction studies

Quality,), overlaps extensively with Gonzailez-Barahona and Robles [2012]s’ reproducibility criteria
which includes checking the: data source, retrieval method, raw data, extraction method, study pa-
rameters, analysis method, results method, identification and description. Two elements of Gonzélez-
Barahona and Robles [2012]s” reproducibility criteria are missing from quality,, and these are data
availability and data flexibility. Availability of data will be collected, i.e., an element’s tendency to exist
in the future. All the links of each study will be checked to confirm if data are accessible. In addition
I will collect Gonzéalez-Barahona and Robles [2012]s’ flexibility criteria, adaptability to different envi-
ronments, by extracting the formats of shared data in terms of e.g. csv, arff etc. For open or closed
source code repositories, metrics (e.g. object oriented metrics calculated on defective/non-defective
code) can be collected to form defect data used as input for building prediction models [D’ Ambros et al.
2010][Zimmermann and Nagappan 2008][Zimmermann et al. 2007]. For example the NASA MDP pro-

gram provided defect datasets calculated from the raw source code of critical systems (e.g. Flight and
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Satellite systems). The raw source code, being proprietary, was not available. However, it is possible to
reproduce a study based on the defect data which was shared even though it was generated from a closed

source.

Impact factor values of the publication venues the papers are published in will be collected from Journal
Metrics (details are in chapter 4 in Table 4.9). I will also use the Source Normalised Impact Average
(SNIPA) [Moed 2010] values which are based on the average citation per paper of a journal in that
subject area. In addition, the ratings of journal/conference venues from Excellence in Research for
Australia (ERA) will be extracted. In 2009, the Australian Research Council consulted the public, expert
reviewers and academic bodies to rank journals and conferences, and produced the ERA rankings. The
ERA 2010 rankings are used since other ranking bodies only provide journal impact factors and omit

any ranking of conferences. ERA has 5 ranks according to research quality, see Table 3.3.

Table 3.3: ERA Ranking Categories

Rankings Description
* flagship conference, a Ieading venue in a discipline area
A excellent conference, and highly respected in a discipline area
B good conference, and well regarded 1n a discipline area
C other ranked conference venues that meet minimum standards

Unranked A conference for which no ranking decision has been made

http://www.core.edu.au/conference-portal

Stage 6 - Assessment of Agreements between Studies: This stage assesses the outcome of
the identified replication studies, whether they succeed or fail in replicating the original studies. Such
information is useful to gauge the reliability of existing studies. If an original study is used by a different
research group in a different environment (organisation) and is able to confirm the findings, then this

shows the reliability of the initial hypotheses being tested.

Confirmed findings may be depended on by other researchers and practitioners with more confidence.

Agreements reported in those studies will be recorded as Yes or No. Where both the original study


http://www.core.edu.au/conference-portal
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and its replication are based on the same data, the prediction model performances will be extracted and

compared to confirm the agreements.

An important step towards establishing more reliable agreements is where a study reports confirmation
but the values show a significant difference; such a wide gap may be considered an agreement for
replications, but should not be considered as an agreement for reproduction. For example, an original
study A that reports a prediction model identifying 80% of the modules as containing defects in a system
(i.e. recall), while its replication B reports a recall of 70%, shows a 10% difference between the studies.
The difference may end up being the defective modules that could cause system failure, although many
studies would report an agreement of A and B. Fenton and Ohlsson [2000] report that a small number of
defective modules lead to most failures of the system in operation. It is important to measure agreements

by their model performance measure as small differences may have significant consequences.
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3.3 Empirical approach

3.3.1 Reproducibility Checks Performed on Replicated Papers

Reproducibility checks that investigate the credibility of previous work are conducted in this part of
the methodology. Reproduction is to repeat a study using the same materials with the aim of getting
the same results as the original study to ascertain its credibility [Leek and Peng 2015, Madeyski and
Kitchenham 2017]. loannidis [2017] suggests that “reproducibility checks performed to date are still
relatively few and include few replications each. It would be useful to understand which disciplines
have high consistency in their results, which show high heterogeneity, and which have consistently
nonreplicated results.” Influential papers are primary targets of reproduction because other researchers
rely on them significantly [loannidis 2017] and, if not verified, such studies could misrepresent reality
[Errington et al. 2014]. Studies need to be reproducible and replicable, and their multiple replications
help to “validate the validator” [Miller 2005]: This mitigates replication bias (i.e. introducing bias
that ends up invalidating an original study that is valid) [loannidis 2005]. Multiple replications can be
combined to produce new knowledge [Basili et al. 1999] and determine the limits to which a study can

generalise [Gomez et al. 2014].

As a start, the 208 studies mentioned in the theoretical part of the methodology are sourced from Hall
et al. [2012]. Replicated papers found in the 208 studies will be selected. I will then perform re-
producibility checks on those replicated papers that share their datasets: These checks set the path to
answer RQ5 in chapter 5. Due to quality affecting defect prediction datasets [Gray et al. 2009], for each
study that I will reproduce, data consistency checks will be performed. The aim is to identify studies that
are reproducible and replicable, which can be presented as exemplar studies for researchers to emulate

in achieving credibility (reproducible) and stability (replicable).
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3.4 Investigations into factors affecting reproduction and model perfor-

mance
extract compare _dataset size N\
reproduce _ | prediction _ mogel > inconsistency
study model " on paper and
performance [PEEIIENES repository
[— l Analyse
— investigate data indiviidual
L Yes match? No—{ causes of . > impacts on
findings VEERED RISDICCESSING prediction model
\_7/‘\ performance
_ | different tool
versions
J

Figure 3.2: The process followed to investigate reproducibility failures and identify potential factors
causing the failures

During the process of reproducibility checks I will extract and compare the prediction model perfor-
mance for both the originals and reproduction studies. If the difference is higher than 5 percent, I will
consider them different: a lower difference will indicate that a study is reproducible. I will then point out
reproducible and replicable studies, and those that fail I will carry out further investigations on 3 main
factors (data inconsistency, data preprocessing and tool variations) as to why they failed (Figure 3.2);

this investigation completes the data needed to answer (RQ5 in chapter 6).

3.5 Summary
In this chapter I contribute a detailed methodology that aims to find replications, assess stability of find-
ings between replications and original studies in order to identify exemplar studies that are reproducible

and replicable.
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In the next three chapters I provide the results achieved from the application of each aspect of my
proposed methodology. The analyses and results of all three components of the methodology will be

provided together with answers to five of my research questions. That is the analyses and results of:

¢ identifying and analysing replications studies,
e reproducing a systematically identified set of replicated studies, and
e investigating important factors that may affect the process of validating defect prediction experi-

ments through reproduction based on their impact on prediction model performance.



4. ANALYSING THE REPLICABILITY OF DEFECT

PREDICTION STUDIES

4.1 Introduction

The results in this chapter have been published Mahmood et al. [2018]. The paper is attached in sec-
tion A.1. I was the lead-author of this journal paper. My role was to conduct the initial analysis, find the
papers and write the first draft paper. The motivation for this chapter comes from one of the most signif-
icant threats discovered by Shepperd et al. [2014]’s meta-analysis mentioned in chapter 1; the research
group that conducted the prediction study impacts model performance more than the main idea of the
topic — the algorithms used for developing the prediction model [Madeyski and Kitchenham 2017]. The
implication of this finding is that studies may not be reproducible and replicable by other researchers,
which are important approaches used to demarcate science from nonscience [Gandrud 2013], establish
matters of fact [Shapin et al. 1985] and to verify results so that the results may be trustworthy [Madeyski

and Kitchenham 2017] and generalisable [Basili et al. 1999, Silva et al. 2014, Leek and Peng 2015].

The aim of this chapter is to answer RQ(1-4), in general, to determine the state of replication in defect
prediction. I aim to contribute a systematically identified set of replication studies and analyse how
consistent they are with the original studies they replicated. Knowing success and failure of replications
provide information that these studies have the ability to be validated which may increase the confidence
towards practitioners that these studies are reliable. Replicable and reproducible studies would serve as
exemplar studies for other researchers to better understand replication and reproduction processes. I also

aim to find characteristics of these replicated studies that are related to replication so that these may be
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incorporated in new research studies to make them more accessible to replication.

The methodology I developed in chapter 3 (Figure 3.1) is applied in 6 stages: stage 1 uses the 208 studies
from [Hall et al. 2012] as a base set to find any of the papers that has been replicated, stage 2 applies the
inclusion criteria on the replication papers found (focuses on replications done by independent authors),
stage 3 applies the data extraction, stage 4 categorises the identified replication papers into replication
types, stage 5 identifies the factors (quality, citation counts, publication venue, impact factor, and data
availability) associated with the frequency with which originals are replicated and stage 6 assesses the

consistency of the findings between replications and original studies via agreements.

The following subsections provide results of the 6 stages of my proposed methodology (described in
chapter 3, assesses research validity of a subject area) applied on the 208 studies from Hall et al. [2012]’s

SLR.

4.1.1 Identification of papers

Table 4.1 shows the results of applying the methodology in chapter 3. Starting from the left the first
column contains the original studies that were found to be replicated out of the 208 studies from the
SLR. Only 13 out of the set of 208 original studies (13-ORS) were replicated by different researchers:
6% of the original studies, a much lower rate than the 94% non-replicated original studies; this means
that the lack of replication is substantial. There are many studies that have not been confirmed to report

valid results via replication.

The second column, replication studies, shows the 26 papers identified as having to replicate the 13-ORS.
There are two replication studies by (Hamill and Goseva-Popstojanova, Hongyu Zhang) that replicate
more than one original study, these two papers appear twice making the number of replication studies

26; these papers then appear twice on the list of the replication-references section. It is also important to
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note that in the first column, three original studies (Andersson and Runeson, Lessmann ef al., Ostrand
et al. ) also conducted replications of other original studies making them appear as both original and
replication studies (second column). It is because within them, certain components! of their study that
are not part of the original study they replicated, is original and, also has been replicated by a different
paper. For example, part of Lessmann et al. [2008]? is a replication of Menzies et al. [2007] and the
other aspect is a novel classifier benchmarking framework which Ghotra et al. [2015] replicated. Since
part of Lessmann et al. is a replication and the other aspect is original, Lessmann et al. appears twice in

Table 4.1 and on both lists of the replication and original-references sections.

4.1.2 Categorisation of replications to types

As explained in chapter 2 (Table 2.7) replication has different types (three in general; literal, operational,
conceptual) and are based on the changes that can be made to the original’s study components. The
focus is on replications done by authors other than the original authors, operational replication, with 15
changes that could be made to the original study. 8 changes involve different authors and I tag these
combinations (from A to H, see Table 2.7 in chapter 2). After identifying the 26 replication papers, I
broke down each study into components that could be changed and mapped them to the respective type
of replication. Table 4.1, third column, shows that all replication studies made many changes to the

original study. Typically replications made three sets of changes to components of original studies.

lalgorithms, datasets, experimental procedures; such as feature selection, data normalisation, cross-validation etc.

2Naive Bayes classifier, datasets, cross-validation, the authors confirming that its a replication, not all studies mention this.
Papers that do not mention replication but its synonym were returned by my search string and I read them in full to confirm
that they are replications and then I successfully applied the Gémez et al. [2014]’s replication taxonomy to categorise studies
into their respective replication types.
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Table 4.1: 13 replicated original studies out of the 208 with their replication studies and the types of
replications they performed

Original studies replicated Replication studies  Operational rep.!
D’ Ambros et al. 2010] [Mende 2010 A), (G)
[Andersson and Runeson 2007] [Hamill and Goseva-Popstojanova 2015a] H)
[Zhang 2008a] (H)
Lessmann et al. 2008] [Ghotra et al. 2015 (A), (H)
[Ostrand et al. 2005] [Leszak 2005 H
[Mende and Koschke 2010] (G)
[Fenton and Ohlsson 2000] [Andersson and Runeson 2007 H)
[Galinac Grbac et al. 2013] (H)
[Ostrand et al. 2005] (H)
[Zhang 2008b] (H)
[Devine et al 2012] gH)
[Hamill and Goseva-Popstojanova 2015b] H)
[Menzies et al. 2007] [Turhan and Bener 2007] (&)
[Zhang et al. 2007] (G)
[Lessmann et al. 2008] (G)
[Song et al. 2011] (A),(H)
[Singh and Verma 2014] (H)
Moser et al. 2008] [Krishnan et al. 2013] (H)
[Kim et al. 2007] [Rahman et al. 201T] (H)
[Zimmermann and Nagappan [Tosun et al.] H)
2008]
[Nguyen et al. 2010] (H)
[Premraj and Herzig 2011] (H)
[Amasaki et al. 2003] [Okutan and Ylldlz 2014] (H)
[Schroéter et al. 2006] [Duala-Ekoko and Robillard 2009] (H)
[Zimmermann et al. 2007] [Kpodjedo et al. 20711 (H)
[Khoshgoftaar and Seliya 2002] [Li et al. 2003] H)

IReplication name tags: (A) changed-experimenters, (G) changed-protocol/-operationalisation/-experimenters, (H) changed-protocol/-
operationalisation/-populations/-experimenters. Tagging is an information retrieval concept that allows efficient retrieval of information
by reducing unnecessary information [Hotho et al. 2006]. I tagged these replication names to easily allow identification of gaps between
replication types performed.
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Table 4.1 shows that many changes are made to studies:

1. Changed-experimenters (tag A, 3 papers)
2. Changed-protocol/-operationalisation/-experimenter (tag G, 5 papers)

3. Changed-protocol/-operationalisation/-populations/-experimenters (tag H, 21 papers)

Replications in which most components are changed together (tag H, 21 papers) dominates the other
types of replications (A to G). With changed-experimenter (A) as the first change and (H) as the last,
changes (B,...,F) have been omitted for all replications indicating gaps in steps that need to be taken

during replications.

Table 4.1 shows that ([Mende 2010], [Song et al. 2011], [Ghotra et al. 2015]) replicate with sets of
two study-component changes (A,G and A,H); the studies did multiple runs of a single original study.
The first run reproduced the original study as it is, and the second run either modified the protocol (e.g.
Mende [2010] changed D’ Ambros et al. [2010]’s protocol by adding a cross validation step, Song et al.
[2011] used feature selection that ensured the test instances are not seen by the prediction model), or
change dataset (Ghotra et al. [2015] used less noisy data and new datasets, Song et al. [2011] also added
more datasets). These multiple runs have implications for agreements between studies (i.e the need
to account for agreements in all runs) and the need to categorise each run into its type of replication

performed, based on each component change, though such multiple runs are generally good practice.

By breaking studies into components and sub-components [ was able to synthesise data in the com-
ponent structure from all studies (Table 4.3, Table 4.4, Table 4.5 for original studies, and Table A.1,
Table A.2, Table A.3 in the appendix for replication studies). The data depicts a landscape of some of
the sub-components; tools, algorithms, and statistical analyses used in defect prediction. The main com-
ponents of a defect prediction study and sub-components of each including the number of times each

sub-component is changed for all replications is given in Table 4.2. The Table 4.2 shows that the sta-
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tistical test sub-component has the most changes compared to parameter tuning with the least changes.
Replications tend to focus more on finding the most suitable statistical methods to describe data (e.g.
[Zhang 2008a] suggests distribution of software faults are better described as Weibull distribution, not
Pareto principle as originally proposed by [Fenton and Ohlsson 2000]). While tuning parameters of the
prediction models to improve performance is considered the least (indicating that there may be many
sub-optimal models being built).

Table 4.2: Study-components of Original Studies that were changed during Replication

Protocol Stats CrossVal  DataClean  Parameter tuning
19 8 5 2
Operationalisation IndepVar — DepVar  Algorithm Tools
15 4 12 14
Populations Granularity Domain  SourceCode ProgLang
14 12 11 7

Full field names from left to right and top to bottom: statistical analysis, cross validation, data cleaning, opti-
mising parameters, independent and dependent variables, programming language
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4.1.3 Identification of factors associated with replications

As explained in chapter 2 and chapter 3, for all 208 original papers, I* selected contextual factors of stud-
ies a priori (based on the literature) at stage 5 of the methodology (quality, citation counts, publication
venue, impact factor, and data availability) to determine their relation with replication. The extracted
factors were analysed from each paper statistically*. A y? test was used to establish the relationship
between each binary factor (i.e. venues, citations etc.) and replications and Kendall’s rank correlation
[Kendall 1962] to test the relationship between citations and replications (as citations is continuous data,
all factors are not assumed to come from a normal distribution of prediction studies).

Table 4.6: The 208 papers categorised as having four-phased quality of reporting and methodology
(quality, ), shared data, appeared in TSE w.r.t being replicated

quality,, shared data InTSE*

Replicated Yes No Yes No Yes No
Yes 3 10 5 8 5 8
No 33 162 70 125 10 185

*chosen as TSE dominates in Table 4.9

Table 4.6 shows the number of original studies have been replicated or not based on their quality assess-
ment (in Table 3.2), whether they share their data and whether they are published in TSE journal. The

table shows few replicated studies pass quality,,and most of the replicated studies are appear in TSE.

Table 4.7 shows the data format of the papers with datasets. The table shows that there are few papers
using formats other than arff. The small numbers do not allow a sound statistical analysis to be carried

out for the affect of flexibility> on the ability to be replicated.

31 did this extraction independently and concurrently with David Bowes using SLuRp, discrepancies in the data were corrected
and agreed upon. The statistical analysis was also validated by Bowes.

“using R 3.3.1 open source statistical software.

%is one of the 8 factors Gonzdlez-Barahona and Robles [2012] suggested to affect reproducibility, the remaining factors overlap
with Hall et al. [2012]’s quality,, on reporting sufficient information by a study to aid replication
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Table 4.7: The number of papers which have available data and they were replicated

Data format (flexibility) Not replicated Replicated
6

arff 2

Y% 0 1

csv, arff 2 1
csv, xml 1 0
excel 1 0
xml 3 1

There were 85 venues in which the 208 papers appeared (online-appendix®). Only 6 venues published
papers that were subsequently replicated: PROMISE, MSR, ESEM, ISSRE, ICSE and TSE. TSE has
the highest number of papers published with subsequent replications (Table 4.9). Table 4.8 shows that
papers published in TSE are more likely to be replicated. We do not consider the impact factor of venues
directly since, for non-replicated studies, impact factors are not available for many (63) publication

venues.

Table 4.8: Statistical tests for assessing quality,,, shared data, TSE and citations, individually against
replications

Chi Square test ¥’ p-value

quality, * replication 0.322 0.570
shared data = replication  0.035 0.852
InTSE = replication 20.237 < 0.0001

Kendall Z T p-value
citations * replication 47614  0.269 < 0.0001

Table 4.8 shows that a paper’s influence (citations) has an impact on replication. However the quality of

original papers or shared data used is not associated with subsequent replication.

Table 4.9 shows 10 of the 13-ORS have not passed the quality,, assessments. Replication not based on
quality, has ramifications on the validity of findings. For instance, referring back to Table 4.3, it shows

data cleaning of the quality, may have been overlooked or not reported, an indication

®https://bugcatcher.herts.ac.uk/replication/Online- Appendix.html
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that some findings may be erroneous. It is particularly true for the noisy NASA datasets used by 59

original studies (Table OA.1 online-appendix).

Table 4.10: Descriptions of replicated original studies based on the type of data source and defect data
sharing

Source Code Shared data  Org. papers Rep. papers
15

Closed I;eos g 6
No 2 2
Open Yes 3 3

Table 4.10 shows that 21 of 26 replication studies replicated original studies which were based on closed
source industrial data (these will have needed to be replicated with different datasets). This suggests that

studies based on closed source industrial data may be more attractive for replication.

4.1.4 Assessment of agreements between studies

Assessing agreements is difficult when dealing with replication studies. Silva et al. [2014] reported that
they could not asssess agreements in their review of replication studies because of reporting inconsis-
tencies of replications. In this section I show how I assess agreements. My approach is based on the
synthesis I did on how Andersson and Runeson [2007] reported their replication of Fenton and Ohlsson
[2000]. The Fenton and Ohlsson [2000] study outlined clearly whether a statistical claim tested was
(none, weak, strong)’. This measuring style is important because the margin of error of the dependent
variable (for example, the number of defects found by a model measured using MCC) may be much
wider than that of the original study. Replication has many differences in terms of data, tools, and
method, so, the inherent differences are likely to cause differences in the results. Therefore, I focus on
assessing the outcome of the hypotheses tested. The hypotheses outcome is a claim that a relationship
between two entities in the original study and its replication or otherwise. If the outcome is not clear I

report what the authors report. If none are available I conclude that the agreement is unknown.

7 An alternative can be found in Psychology by Patil et al. [2016] - the study suggested the use of confidence intervals.
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Table 4.11: 13 replicated original studies out of the 208 with their replication studies, replication types
and agreements between studies (this table is not the same as Table 4.1). This Table contains the agree-
ments between originals and their replications showing that most replications agree based on the reported

hypotheses.
Replicated original studies Replication studies ~ Agreements  Operation-
al rep.!
[D”Ambros et al. 2010] [Mende 2010 Yes, Yes (A), (G
[Andersson and Runeson 2007] [Hamill and Goseva-Popstojanova 2015a Yes (H)
[Zhang 2008a No (H)
[Lessmann et al. 2008] [Ghotra et al. 2015 Yes, No (A), (H
[Ostrand et al. 2005] [Leszak 2005 Partial (H)
[Mende and Koschke 2010 Unknown (G)
[Fenton and Ohlsson 2000] [Andersson and Runeson 2007 Partial (H)
[Galinac Grbac et al. 2013 Partial (H;
[Ostrand et al. 2005 Yes (H
[Zhang 2008b No (H)
[Devine et al. 2012 Yes (H)
[Hamill and Goseva-Popstojanova 2015b No (H)
[Menzies et al. 2007] [Turhan and Bener 2007 Yes (G;
[Zhang et al. 2007 Yes (G
[Lessmann et al. 2008 Yes (Gg
[Song et al. 2011 Yes, No (A),(H)
[Singh and Verma 2014 Yes (H)
Moser et al. 2008] [Krishnan et al. 2013 Yes (H)
[Kim et al. 2007] [Rahman et al. 2011 Yes (H)
[Zimmermann and Nagappan [Tosun et al. Yes (H)
2008]
[Nguyen et al. 2010 Yes (H)
[Premraj and Herzig 2011 Yes (H)
Amasaki et al. 2003] [Okutan and Yildiz 2014 Unknown (H)
Schroter et al. 2006] [Duala-Ekoko and Robillard 2009 Yes (H)
[Zimmermann et al. 2007] [Kpodjedo et al. 20711 Unknown (H)
[Khoshgoftaar and Seliya 2002] [Li et al. 2005 Yes H)
Agree: replications that confirm original findings 18
Disagree: replications that do not confirm original findings 5
Partial: replications that confirm part of the original findings 3
Unknown: replications that do not report any of the above 3

In my work I propose and use 3 criteria for measuring agreements as follows (the summarised results

are in Table 4.11, see Table A.4 in the appendix for the full data):

1 If a study performed a reproduction study (also tagged A in Table 4.11), model performance values

should be compared between the original and its reproduction study. If the percentage difference is

greater than 5%, then it is a disagreement.

2 If a study performed a replication (also tagged G and H above among other types), the outcome of the

same hypotheses tested in both original and its replication should be compared. That is, what both

studies reported, for example statistical power being strong, weak, absent (see example in Fenton and

Ohlsson [2000] replicated by Andersson and Runeson [2007]).
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3 If (1) and (2) are not possible, the agreement reported by the replication confirming the original’s

findings should be used otherwise it is unknown.

Table 4.11 shows the number of replication studies that agree or disagree with the conclusions of orig-
inal studies. Table 4.11 shows that 17 experiments® agreed with the conclusions stated in the original
accompanying paper, which indicates that 61% of the experiments are successful replications. There are
5 experiments (18%) that disagree and 3 experiments (11%) assessed as partial agreement. As I men-
tioned earlier agreements are difficult to extract. I now give worked examples based on my agreement

criteria.

4.1.4.1 Worked examples for synthesising agreements within original and replication studies

Under this section the agreement criteria is applied. The application will show how to determine agree-

ments in three ways. The results of each criterion are illustrated from the original and replication papers.

Example based on agreement criteria 1 - Comparing model performance values:

Song et al. [2011] reproduced Menzies et al. [2007] and then replicated the study. In the first run the
replication agrees with Menzies et al. [2007]. Prediction values on the original and replication are very
close. For example, on datasets CM1, KC3 and KC4 the values in the order (original, replication) are

(69.5, 69.5), (69.7, 70.8), and (68.1, 69.1) respectively.

Example based on agreement criteria 2 - Comparing outcome of the same hypothesis tests:

An example of partial agreement is the replication by Andersson and Runeson [2007] of the Fenton
and Ohlsson [2000] study. The replication reported confirmation of 3 out of 5 hypotheses tested, thus I
categorised this as partial agreement. An example of one of the hypothesis is “High fault incidence in

Functional Test implies the same in System Test”. Fenton and Ohlsson [2000] found No support for the

8some papers conduct more than one experiment, there are 26 papers running 29 experiments
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hypothesis and its replication by Andersson and Runeson [2007] found Strong support.

Example based on agreement criteria 3 - Clear reporting of the agreement:

Ghotra et al. [2015] replicated Lessmann et al. [2008] in 2 runs and reported an agreement as “First, we
apply the replicated procedure to the same (known-to-be noisy) NASA dataset, where we derive similar
results to the prior study, i.e., the impact that classification techniques have appear to be minimal. Next,
we apply the replicated procedure to two new datasets: (a) the cleaned version of the NASA dataset and
(b) the PROMISE dataset, which contains open source software developed in a variety of settings (e.g.,
Apache, GNU). The results in these new datasets show a clear, statistically distinct separation of groups

of techniques.” [Ghotra et al. 2015].

Performing multiple runs of replication affects agreement outcomes. Song et al. [2011] did two runs (1st
run fell under agreement criteria 1, because it is a reproduction study). The second run, Song et al. [2011]
disagreed and reported a flaw in Menzies et al. [2007]’s attribute selection approach. The flaw is that the
test data included information seen by the prediction model which inflated its performance. Ghotra et al.
[2015] did 2 replication runs of [Lessmann et al. 2008]. The first run was based on uncleaned NASA
data (including duplicate and inconsistent instances, see [Petri¢ et al. 2016]) to confirm if no single
classifier is best as in the original study [Lessmann et al. 2008]. The Friedman test used in Lessmann
et al. [2008] showed the ranking of model performances are not random; subsequently Nemenyi post
hoc test was applied to detect which of the classifiers differed significantly. Ghotra et al. [2015] agree
with Lessmann et al. [2008] in the first run with the same data and different statistics, but disagrees in
the second run with a cleaned dataset curated by Shepperd et al. [2013] and different statistics. In the

second run, Ghotra et al. [2015] reported;

“We used the Scott-Knott test to overcome the confounding issue of overlapping groups that are pro-

duced by several other post hoc tests, such as Nemenyis test [13], which was used by the original study.
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Nemenyis test produces overlapping groups of classification techniques, implying that there exists no
statistically significant difference among the defect prediction models trained using many different clas-
sification techniques”[Ghotra et al. 2015]. The curated data by Shepperd et al. [2013] has been cleaned
further by Petri¢ et al. [2016]. The data errors found during this further cleaning may have also affected

previous models.

4.2 Conclusion

In this chapter, my proposed methodology for assessing research validity of a subject area through repli-
cation provide new evidence (and contributes answers to RQ(1-4)) that only 13 (6%) of the 208 studies
are replicated, 10 of which fail a quality check. Replication seems related to original papers appearing
in the Transactions of Software Engineering (TSE) journal. The number of citations an original paper
had was also an indicator of replications. In addition, studies conducted using industry closed source
data seem to have more replications than those based on open source data. These findings show that
very few defect prediction studies are replicated. The lack of replication means that it remains unclear
how reliable defect prediction is. Where a paper has been replicated, 11 (38%) out of 29 replications
revealed different results to the original study. In the next chapter 5 I perform reproducibility checks on
the replicated studies having dataset in order to increase the validity of my findings; this is also moti-
vated by how reproducibility experiments are measured with the expectation of an error margin between

an original and its reproduction not being more than 5%.



5. ANALYSING THE REPRODUCIBILITY OF DEFECT

PREDICTION STUDIES

5.1 Introduction

The aim of this chapter is to answer (RQ5), that is to assess whether replicated defect prediction studies
are reproducible. Secondly, to contribute factors that may aid or hinder reproduction. Studies that are
reproducible and replicable would serve as exemplar studies with useful characteristics. Researchers
could incorporate such characteristics to increase the ability of their work to be validated. Studies with

credible and stable results are valuable to their community and scientific fields [loannidis 2017].

Of the 13-ORS I identified in chapter 4 only 5 have their data available. I reproduce the 5 studies using
the Java based data mining library WEKA and R statistical software. Java and ‘R’ were used to write 4
of the 5 original experiments I reproduce. Only one study used Java and Matlab. I am more conversant
with Java and R, and for consistency and ease of use, I did not use Matlab. I present the reproduction
experiments in the following format:

o the purpose of the original study,

e the dataset used,

o the classifiers used,

o the tools used where possible,

o the method (i.e. experimental procedure of the original),

e my reproduction procedure with changes I make and assumptions made about the original, and

e a comparison of my results and the original study’s together with any missing information.
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5.2 Reproducing baseline results of static code metrics on the original

NASA datasets

The aim of Menzies et al. [2007] was to provide baseline results on NASA datasets and to provide
evidence that static code metrics are useful for predicting defects. As such these results need to be as

reliable as possible.

Data: The Menzies et al. [2007] study used eight NASA datasets'. Each dataset is created from four
systems (Spacecraft, Storage, Database and Flight). The metrics from McCabe [1976]; e.g. cyclomatic
complexity v(g) shows pathways in modules using flow graph of data points and connecting arcs. The
data points are program statements. The connecting arcs show movement of control from one statement
to another. The Halstead [1977] attributes measure the difficulty of reading code. For example, Halstead

counts the number of operators, and operands etc., as metrics.

Classifier: Naive Bayes was used as a classifier for predicting defects. The classifier estimates the
probability that a new module is either defective or not. The estimation is based on previously calculated
probabilities of defective or non-defective dataset instances. The probabilities of the defective and non-
defective classes are calculated independently (e.g. v(g) only, or LOC). The classifier assumes each

feature contributes individually to the class probability. A summary of classifiers is found in Figure 5.2.
Tool: The original study used WEKA data mining tool kit [Witten and Frank 2005] for their experiments.

Experimental procedure of Menzies et al. [2007]: The datasets were preprocessed using a logarithmic
filter. Natural log (In) of all numeric values were taken. The numerical values < 0.000001 were replaced
with /n (0.000001) to prevent infinity errors with /n (0). The log transform is an important step to even

out the distribution of numeric values of features within datasets. Many small and large values (0.003,

'now moved to https://zenodo.org/communities/seacraft Accessed: 12th Nov 2017
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726) are scaled to improve prediction performance [Menzies et al. 2007]. Feature selection was done
using Information Gain (InfoGain). It is an aspect of information theory that uses a Ranker to rank
features in the defect dataset. The models were built and evaluated using (m = 10 X n = 10) fold cross
validation. The evaluation prevents ordering problems and increases reliability of results [Menzies et al.
2007]. The (m) is the number of times the experiment is run and the dataset is randomised before being
divided into (n) folds. 9 folds for training and 1 fold for testing. The performances were evaluated
using probability of detection and false alarm (known as recall and false alarm rate), see chapter 2. It
is important to note that these two performance measures do not provide a holistic performance of the
model. The two performance measures are not based on the whole confusion matrix unlike Mathews

Correlation Coeflicient (MCC, see chapter 2).

Table 5.1: Model performance measure from Menzies et al. [2007] set of replications reporting different
performance measures. Our reproduction with values in parentheses showing % differences ((rep —
org)/org) = 100. Positive values indicate that replication is higher.

Naive Bayes
recall auc balance
Data Menzies et al. Mahmood (% diff) Turhan & Bener Zhang et al. Singh & Verma (% diff) Lessmann ef al. Song et al.
pcd 98 87 (-11) - - 72.6 (2) 85 83
c3 80 79 (-1) - 80.6 (14) 81 71
c4 79 80 (1) - - - 68 71.9
ke3 69 78 (13) - - 929 (39) 83 74
pcl 48 73 (52) - - 66.2 (-7) 79 65
cml 71 77 (8) - - 81.5 (15) 72 73
pc2 72 86 (19) - - 83.3 (17) 85 82
mwl 52 78 (50) - - 100 (41) 80 71
avg 71 80 (12) 64 (-10) 8520) 83 17 79 74

Reproducing Menzies et al. [2007] and the changes made: I performed the Menzies et al. [2007]
experiment? using the ‘same’ data, tool and procedure. I ran 1,000 iterations of 10-fold cross validation
to build the prediction model. These several runs reorder the instances in each run with a different
seed and the results for each dataset is an average of the recall; this improves reliability and minimises

variance in the results [Kohavi et al. 1995].

2] ran the experiment with the error in the study that Song et al. [2011] pointed out (feature selection was performed on both
train and test sets — nullifies prediction). This is strictly for the purpose of being able to reproduce a study and to identify
factors aiding or hindering the process.



72 Chapter 5. Analysing the Reproducibility of Defect Prediction Studies

Comparing the results: In chapter 4 I found that Menzies et al. [2007] had been replicated in five
studies. Since these five studies use the same data, I extracted the results of these five papers. I included
my reproduction results and compared components (data, classifiers, feature selection, preprocessing,
see Table 5.2 for details) across all of the studies. The aim is to assess internal validity of studies with
minimal changes to the original study. Hence, I extracted components that are as close to the original as
possible. In Table 5.1 results for [Turhan and Bener 2007], [Zhang et al. 2007], and Singh and Verma
[2014] are > 5%. An average recall performance of (64 and 85) for the replications, disagreeing with

[Menzies et al. 2007] (71). The results are not reproducible.

100

80

60

Recall

DOorg

Hrep
40

20

pcd pc3 kca ke3 pcl cml pc2 mwl avg

Datasets

Figure 5.1: The bar plot of Menzies et al. and my reproduction results showing an experiment using
Naive Bayes classifier on 8 NASA datasets. The model performance is measured using recall (actual
number of defectives found from total defectives) and only two datasets results on pc3 and kc4 are
reproducible. The 9th data point is the average over all datasets.

In the case of Lessmann et al. [2008], a different measure (auc) was reported. Song et al. [2011] reported

one performance measure (balance). These results show that reporting inconsistencies between replica-
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tions and original studies make it difficult to confirm agreements and check reproducibility of replicated

studies.

In Table 5.1, it is noteworthy that the differences in my reproduction (same data, tools, and method)
results are as wide as the replications (different permutations of data, tools, and method). Even though
these replication studies report that their results confirm those of the original studies. The results of my
reproduction study in Table 5.1 and Figure 5.1 disagree with the original except for two datasets (pc3,
kc4). In addition, some of the features from the output of the feature selection did not match what was
reported in the original paper for datasets (kc3, pcl, pc2, mwl). The input and output of the feature
selection process were reported in the original paper and so I was able to compare with my result. The
results in each case are mixed despite matching closely all study components. Doing data consistency
checks is important. I compared the proportion of defective instances and total number of instances
of the datasets reported in the original paper and the downloaded version (Table 5.2). These dataset

variations also cut across all Menzies ef al. set of replication studies.
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5.3 Reproducing a framework for comparing defect prediction classifica-

tion models
The aim of Lessmann et al. [2008] was to find the best of 22 classifiers over 10 NASA datasets. The

benchmark results show no single classifier dominates.
Data: The study used 10 NASA datasets from the same source as the experiment in section 5.2.

Classifier: The study compared 22 classifiers from six classifier families as follows (summarised in

Figure 5.2):

1. Statistical classifiers

2. Nearest neighbour methods

3. Neural Networks

4. Support vector machine-based classifiers
5. Decision tree approaches

6. Ensemble methods

Tool: Rapid Miner is a Java based data mining tool (formerly known as YALE Workbench) and Matlab

development environment.

Experimental Procedure of [Lessmann et al. 2008]: The experiment is summarised in the pseudo
code in Figure 5.3. Each dataset is randomised and then split into 2/3 for train set and 1/3 for test set,
a procedure known as percentage split. The 22 classifiers are grouped into three based on the type of
training procedure. The first group of classifiers do not require tuning, and are trained directly on 2/3
train set. The second group of classifiers require their parameters to be tuned (SVM, k-NN etc.) using
a pool of parameter values to tune with cross-validation. The 2/3 train set is split in (r) folds, (n — 1) is

the sub train set and the last fold is the sub test set.
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Classification model Philosophy

Statistical classifiers Strive to construct a Bayes optimal classifier by estimat-
ing either posterior probabilities directly (LogReg), or
class-conditional probabilities (LDA, QDA, NB, Bayes-

Linear Discriminant Analysis™’ (LDA) Net) which are subsequently converted into posterior
probabilities using Bayes’ theorem. LDA/QDA assume a
Quadratic Discriminant Analysis™®  (QDA) multivariate Gaussian density function, whereas NB is
based on the assumption that attributes are conditionally
Logistic Regression®? (LogReg) independent, so that class-conditional probabilities can be
estimated individually per attribute. BayesNet extends NB
Naive Bayes' (NB) by explicitly modeling statements about independence and
correlation among attributes. LARS adopts a different
Bayesian Networks' (BayesNet) approach and consists of a multivariate linear regression
model and heuristics to shrink the number of features.
Least-Angle Regression’ (LARS) RVM has been proposed as an extension of the SVM (see

below) which avoids the need to tune certain hyperparam-
eters and may incorporate kernel functions SVMs are un-

Relevance Vector Machine? [62] (RVM)
able to process.

Nearest neighbor methods Belong to the group of analogy-based methods which
classify a module by considering the &£ most similar exam-
k-Nearest Neighbor' (k-NN) ples. The definition of similarity differs among algo-

; rithms. An Euclidian distance is used in ~-NN whereas K*
K-Star [11] (K*) employs an entropy-based distance function.

Neural Networks Mathematical representations inspired by the functioning
of the human brain. They depict a network structure
which defines a concatenation of weighting, aggregation
and thresholding functions that are applied to a software

Multi-Layer Perceptron®* (MLP) module’s attributes to obtain an approximation of its pos-
terior probability of being fp. The study includes two
types of MLP classifiers which incorporate different ap-

Radial Basis Function Network' (RBF net) proaches to avoid overfitting the training data, i.e. weight
decay and Bayesian Learning.

Support vector machine-based classifiers Utilize mathematical programming to optimize a linear

. 2 decision function that discriminates between fp and nfj
Bappur VEor Maching (SVM) modules. A kernel function enables more comi))lex decif-,
Lagrangian SVM? [40] (L-SVM) sion boundaries by means of an implicit, nonlinear trans-
Least Squares SVM? [61] (LS-SVM) formation of attribute values. This kernel function is poly-
Lincar Programming2 (LP) nomi-al for the- VP cl_assiﬁer? whereas SVM and LS-S_VM
consider a radial basis function. L-SVM and LP are linear
Voted Perceptron' [22] (VP) classifiers.

Decision tree approaches Recursively partition the training data by means of attrib-
ute splits. The algorithms differ mainly in the splitting
criterion which determines the attribute used in a given

C 4.5 Decision Tree' (C4.5) iteration to separate the data. C4.5 induces decision trees
based on the information-theoretical concept of entropy,
Classification and Regression Tree?> (CART) whereas CART uses the Gini criterion. ADT distinguishes
between alternating splitter and prediction nodes. A pre-
Alternating Decision Tree' [21] (ADT) diction is computed as the sum over all prediction nodes

an instance visits while traversing the tree.

Ensemble methods Meta-learning schemes that embody several base-
classifiers. These are built independently and participate
in a voting procedure to obtain a final class prediction.
RndFor incorporates CART as base learner, whereas LMT
utilizes LogReg. Each base learner is derived from a lim-
ited number of attributes. These are selected at random
within the RndFor procedure, whereby the user has to pre-
define their number. LMT considers only univariate re-
Logistic Model Tree' [36] (LMT) gression models, i.e. uses one attribute per iteration,
which is selected automatically.

Random Forest' [7] (RndFor)

" Classifier is implemented using the YALE workbench [45].

2 Classifier is implemented using the MATLAB environment.

* These classifiers fail to produce a classification model if all attributes are used. Therefore, they are trained in conjunction with a backward-
feature elimination heuristic [25] (see also Appendix I).

* Subsequently, we use the abbreviation MLP-1 to refer to a multi-layer perceptron neural network which has been trained with a weight decay
penalty to prevent overfitting, whereas MLP-2 represents a network which uses a Bayesian learning paradigm (see also Appendix I).

Figure 5.2: The classifiers and their descriptions from Lessmann et al. showing six groups of classifier
families each differentiated by certain characteristics.
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Input: D=List of datasets C=List of classifiers
P=Dictionary of hyperparameter settings per classifier
Output: auc
Initialise with: noisy data
LOOP Process
for each d in D do
train = randomly select 2/3 of d
test = d - train
for each ¢ in C do
p_opt = ModelSel (train, c, P[c] )

model = BuildClassifier (train, c, p_opt )
auc[c, d] = ApplyClassifier (test, model)
end for
end for

ModelSel (data, classifier, hyperparameters)
for i = 1 to 10 do
crossval = generate 10 bins from data
validate = crossvall[i]
learn = crossval - validate
for each p in hyperparameters do
model = BuildClassifier (learn, classifier, p)

cv_auc[p, 1] = ApplyClassifier (validate, model)
auc = compute mean performance over cross-validation bins
end for
end for

return hyperparameters[max (auc)]
BuildClassifier(data, classifier, para)

# Train classifier on data with hyperparameters = para
ApplyClassifier (data, model)

# Compute AUC of model on data

Figure 5.3: Experimental Scheme of Lessmann et al. [2008]

A 10 by 10 fold cross-validation was used. The third set performs better when correlated features in
the defect datasets are removed using feature selection. The full list of classifiers and parameters are
in Table 5.3. The best model evaluated using Area Under ROC (AUC) is selected from any of the
procedures. The selected model is then re-trained on the whole training set. The trained model is finally

used to make predictions on the 1/3 test set.

Reproducing Lessmann et al. [2008] and the changes made: I attempted to use the tools as in the
original study. However, I was more conversant with Weka [Hall et al. 2009] unlike the tools used by the
original. Tools may also cause variation in the results and could invalidate a reproduction study. Lincke
et al. [2008] compared metric tools on the same system and found variations in the software metrics
calculated. The study concluded that some results are tool dependent. In this case, a tool comparison

(Rapid miner, Matlab and Weka) was not done and is beyond the scope of this work. Though it would
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be valuable to conduct such an analysis when there are inexplicable differences in the outcome of the
reproduction studies. 12 classifiers available in the Weka tool kit were trained and tested on the 10
NASA datasets. 1,000 runs of the procedure were done. In each run the datasets were randomised to
handle ordering effects on classifier performance [Menzies et al. 2007]. The remaining procedure and

parameters were applied as described in Figure 5.3.

Comparing the results: Table 5.4 and Figure 5.4 show that the classifiers with the most differences
compared to the original Lessmann et al. [2008] study are SVM on all datasets and VP on 6 datasets.
Overall, half of the results (60 model performances) are reproducible. Despite using the exact parameters
reported by the original study in Table 5.3, it is not clear why the remaining half of the results failed
to be reproduced. There may be unreported processes done with these classifiers that could be missing
in the paper in addition to the variations in the datasets used (Table 5.2). I focus on the SVM and VP
because the two classifiers failed the most. Further investigation to find possible explanations for this

failure are reported in chapter 6.



Chapter 5. Analysing the Reproducibility of Defect Prediction Studies

80

() 18 6L (S) 99 €9 MmE 668 (¢) TLOL (L) S919 (L) 79 L9 (I-) 8L 6L (8 L9T9 (€) 69 L9 (0T)6S vL ikig)
(I-) 16 26 (0) 08 08 (S-) 6L €8 (8) 6,98 (I-) 1LcL (L) 9L 1L (I-) 6L 08 (I-) LL 8L (S) 08 9L (9-) 9L I8 IINT
() 16 €6 (0) 8L 8L (TT-)99 +3 M:-v 08 06 (¥-) 69 CL (€1-)89 8L (1) LL 9L Ma-v vL I8 (8) LL 1L (8T) L9 LS 8[
() 26 ¥6 (£) 8L 9L Mv: 08 0L (p-) 2868 (¢) 1L €L (L) 1L9L (T) 6L 18 (€) 9L vL (€1) 8L 69 (8) TL 8L 9ILAV
(8-) 9L €8 (I1)99 +L (0) 7979 (8) 99 2L (01-)79 69 (€1-)79 1L (L) SL 18 (¥T-)9S 1L (I-) L9 89 (8T-)T9 9L ISy
(02-)0L L8 (8T-)€9 LL (I-) 9L LL (ST-)OL T8 (TII)€9 1L (61-)19 SL (PI-)89 6L (IT-)€L T8 (¥) €L OL (FI-)09 OL NN-3
Mhm-v 7S €8 Mcm-v Lty vL (0 0S50S (62-)€S SL (0) S +S (6T-)¢S €L (€) SL €L (9179 vL (1) LL 9L (STI¥S TL  OIdPIAOA
) T8 6L (¥) SL 8L (¥) 9L 6L Mm: 2Lv9 (0 6969 (T ¢L S9 (¢) SL €L (€1 LL 89 (£) 8L 9L M_é L 8S IOMINAGY
(S-) 06 6 (0 8L 8L (IT-)€8 €6 (LI)¥L 68 (¢) TL €L (S) €L LL (S) 9,08 (S-) SL 6L () 6L LL (S) TLIL IodMmINA
(9b-)0S 26 (T1€)€S LL  (IP-)0S S8  (0€-)9S 08 (92-) €S TL (€2-)0S S9 (TT)09 LL (TH-)OS 98 Mmm-v 1S 9L (LT) IS OL INASAr'T

(1) ¥8 S8 (S-) LL 18 @ s.w mm

(=) 9L 6L (0). 69 69 (¥-) LLOS (€1 LL M.wo (I-) 28 €8 (¥) 6L 9L (9) 9L TL sokegaaleN
Yt Q Q - - n - Q Q )~

JNsaAeg
ToIsse[d

¥Od £0d ¢Od 10d TN ITMIN YO 139) [10):1 TIND sjaseleq

"sjaserep oy}
JO 1SOW SSOIOR 9, G JA0QE SIOUIIIP ISOW A} YIIM SISIINO I8 JA PUB INAS %SG 9A0Qe I8 SUIUTRWAI A} ‘“M0[q PUR 9¢ dIe sooueuiofled [opouwt
09 ‘e[qronpoidal are s}NsaI 9y} JO J[eH "SQOUIYIP aAnIsod oy 10j IoySIY pue I9MO[ oIk sadueuLIojIad S [opow AW 9y} Jey) SIJedIPUl SOUISYIP
a8rjuaorad aane3au oy, ‘dax se uononpoidar pue 310 se [eur3LIO ‘s)nsal Y1oq urmoys synsal uononpoidar Aw pue [8007] T€ 10 UUBWSSIT 4G 9[qe]



5.3. Reproducing a framework for comparing defect prediction classification models

81

90

80

70

60

50

40

auc model performance

30

20

90

80

70

60

50

auc model performance

40

30

20

90

80

70

60

50

auc model performance

40

30

20

BayesNet NaiveBayes  LibSVM

BayesNet NaiveBayes  LibSVM

BayesNet  NaiveBayes  LibSVM

MultilPer  RBFNetwork VotedPerc  K-NN
classifiers

MultilPer RBFNetwork VotedPerc  K-NN
classifiers

MultilPer  RBFNetwork VotedPerc — K-NN
classifiers

KStar

Kstar

Kstar

ADTree

ADTree

ADTree

148

148

148

T

T

T

Cart

Cart

Cart

Ocmi (org)

™ cM1 (rep)

Okc1 (org)

Wy (rep)

Okc3 (org)

®KC3 (rep)

Figure 5.4: Bar plots showing the comparison of Lessmann et al. [2008] results for 12 classifiers on 10
datasets. The bars in white are the original results and in black are the reproduction results. In most
cases the SVM and Voted Perceptron had the most differences over the datasets.
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Bar plots showing the comparison of Lessmann et al. [2008] results for 12 classifiers on 10
datasets. The bars in white are the original results and in black are the reproduction results.
In most cases the SVM and Voted Perceptron had the most differences over the datasets.
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In most cases the SVM and Voted Perceptron had the most differences over the datasets.
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5.4 Reproducing the mining of Eclipse source code repository

The aim of Schroter et al. [2006] was to find out whether certain import relationships between imported
classes or packages within a Java file can be used as input metrics to predict failures. That is to identify
if a Java file is likely to fail when it imports a particular Java class or package. The study found out that
certain classes or packages that appear in previous Java files that failed are useful for predicting failures.
Some classes or packages are harder to work with. A Compiler package is harder to use than a GUI

package which is easier and less likely to be prone to faults [Schroter et al. 2006].

Data: The study analysed Eclipse repository for release 2.0 and 2.1 and built prediction models. The

study considered reported and fixed components that failed 6 months after their release to end-users.

Classifier: Four classifiers SVM, Ridge regression, Linear regression and Regression trees were used

as both classifiers and rankers to carry out the prediction of post-release faults per Java file and package.

Tool: The experimental scripts were not provided. The authors reported that a syntactic tool to collect
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the data from the repository was written but this tool was not available online.

Experimental Procedure of [Schroter et al. 2006]: Two repositories were used. A source code config-
uration management (CVS) that stores code changes, time, author, deletion, addition and modification.
The second tool (BUGZILLA) is a bug database that stores reported bug summaries, status (i.e. as-
signed, fixed), bug ID, bug severity (trivial or major) etc. Fixed failures in BUGZILLA were mapped to
the code that was changed to make the fix in CVS. The code changes occur in Java files of the Eclipse
plugins analysed. For each Java file, its name, package name and the number of failures that occur post-
release are recorded and provided as an XML document. Import statements were collected for each Java

file and used as features to classify files as faulty or not and rank files as having the most faults.

The training set in this case is 1/3 of Eclipse 2.0, an unusual training set size. In my previous experiments
training sets were larger than testing sets for improved performance. Larger training sets are standard
machine learning approaches [Hall et al. 2009]. 2/3 of Eclipse 2.0 and the whole of Eclipse 2.1 were used
as the testing set. The experiment was repeated over 40 runs. Each run produced a prediction model
trained on 1/3 train set. Trained models were tested separately on 2/3 test set of release 2.0 and the
remaining 2.1. Averages over all runs and respective partitions were taken as final model performances.
For classification a decision boundary was used. For example, files assigned probabilities above 0.5 are
classified as faulty and below not faulty. For ranking the files are predicted based on the top 20%, 15%,
10%, 5% respectively. The performance of classifiers is based on precision (of all predictions made
how many files were correctly classified) and recall (of all the actual failure prone files how many were
correctly classified). Subsequently, for ranking (regression) Spearman rank correlation correlates the

predicted number of faults in a Java file with the actual number of faults observed.

Reproducing [Schroter et al. 2006] and the changes made: The shared XML document by the original

study contains the following information: linked bugs, their Java file and package names, number of
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pre and post-release failures, and eclipse version. We (Mahmood, Bowes and Petric) wrote a tool,
EclipseCodeMiner, in Java. It is used to convert the XML into Java objects which are output as comma
separated values (CSV) with these headers (packagename, filename, pre and post release). The original
study reported an analysis of 52 Eclipse plugins. For data consistency check, the tool extracted unique
plugin names from the CSV file containing all plugins analysed by the original study. The extracted
plugin names were used to copy only the exact plugin folders used by the original study. The original
used the source code downloaded from the Eclipse repository. We also downloaded from the Eclipse
repository. 42 plugins were found instead of the 52 plugins reported by the original; this is an indication
that the dataset sizes will differ, thus affecting the prediction models. The tool was further used to collect

all Java filenames from the 42 plugins and then reads all import statements in each of the Java files.

I then used R statistical package (version 3.4.0) to transpose the import statements used within each Java
file. The transposed import statements become input metrics for each file. All import statements for all
Java files are the feature-columns for the defect dataset created (i.e 3,421 features per file). If a file uses
a set of import statements (represented as feature-columns in the defect dataset) a value of 1 is assigned
for all members used by that Java file and O if not used. There is post release information, which is
the number of failures a file has after being released. The post-release information is available in the
XML output (now a CSV file). To create a complete defect dataset, I merged the post-release variable
(or feature) with the transposed import statements by filename. The post-release variable serves as the

dependent variable which the prediction models are able to predict.

Classification required the number of post-release failures to be a dichotomous dependent variable. Post-
release values above 0 are flagged as 1 indicating the presence or absence of failures. Prediction by
ranking uses the number of post-release failures as they are; this is because the model predicts the file

with the highest number of failures.
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Figure 5.6: Schroter et al. [2006] results on mining a repository of 52 eclipse plugins. The difference in
the number of Java files and packages of the plugins obtained by the original in white and reproduction
study in black showing large differences in sizes of files and package for both studies. The original study
reported mining of 52 plugins in the Eclipse repository, and reproducing the mining found 42 plugins.
10 plugins less than the original study, hence the discrepancy in number of files and packages.
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Comparing the results: After creating the dataset, I did a data consistency check. A large discrepancy
between plugins reported (52) in the original paper and those I downloaded (42) was observed. The result
mean that thousands of Java files are missing. I provide the obtained results for this mining process in
Figure 5.6. The Figure 5.6a shows the number of files reported in the original study in white and those
our tool extracted in black. The left two bars show the number of Java files in thousands for release 2.0
of the eclipse system mined (the same goes for the bars on the right on release 2.1). The percentage
difference in Table 5.5 shows the difference in files and packages mined from eclipse repository. The
original study mined on 52 plugins has more files than my reproduction study mined on 42 plugins.

Table 5.5: The percentage difference between files and packages mined from eclipse repository for

Schréter et al. [2006] and my reproduction study. Positive values in parentheses show that the my study
has more files and negative ones show the number of packages are lower.

files packages

versions org re diff org rep diff
20 6,751 5,420 (-20) 309 377 (22)
2.1 7,909 6,369 (-19) 357 425 (19)

Table 5.5 and Figure 5.6b show number of packages in eclipse release 2.0 and 2.1 for the original and the
reproduction study. My results are higher in both releases with 68 packages. It is strange that I obtained
fewer files and higher number of packages than the original. It is possible that the 10 plugins missing in
the same repository I mined affected the quantities. The 52 plugins used by the original contains fewer
packages than those obtained in the 42 plugins I found in the eclipse repository. These results suggest
that it may not matter which study obtained the larger number of plugins. Rather, it is which collection
of plugins has the higher number of packages. The prediction models were not built for this study. Large
changes in the dataset size affect the proportion of defective instances and model performance. My next
reproduction study in section 5.6 shows this effect. To support my work I use 600 model results from
[Shepperd et al. 2014] to assess the impact data imbalance has on model performance. The work is

published in [Mahmood et al. 2015] and I give details of the results in chapter 6.
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5.5 Reproducing a comparison of defect prediction approaches
The aim of [D’ Ambros et al. 2010] is to produce a dataset that will be used for benchmarking prediction

techniques. The focus was on the types of metrics used as features of defect datasets.

Data: There are five different types of metrics calculated from open source systems (Eclipse, Equinox,

Mylyn, Pde, Lucene). The types of metrics include:

1. Change metrics calculated from CVS such as number of revisions made on a file and number of
authors that worked on a particular change

2. Previous defects metrics calculated from number of past defect fixes

3. Source code metrics calculated as number of classes that reference a class

4. Entropy of changes metrics calculated from the distribution of one change in code that affects
multiple files etc.

5. Churn of source code metrics calculated the number of code changes over a previous snap shot of

the source code

Classifier: Linear regression was used to predict the number of post-release defects, a continuous de-

pendent variable.
Tool: R statistical package was used.

Experimental procedure of [D’Ambros et al. 2010]: The defect dataset was first transformed (pre-
processed) using Principal Component Analysis (PCA). Principal components that are independent and
contribute at least 95% of variance within the dataset are selected as input to the prediction model; this
prevents passing correlated metrics into the prediction model. 50 runs of randomised cross validation
was then used to train the linear regression model on 90% training set and tested on 10% testing set.

The final values are averages over the 50 runs. Adjusted R? is used to measure how well the regression
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line fits the data with values from O to 1. The closer to 1 the more accurate the prediction model. Spear-
man rank correlation measures the similarity of the predicted ranking with the actual number of defects

observed.

Reproducing [D’Ambros et al. 2010] and the changes made: The experiment required doing multiple
runs for each type of metric. Performing data consistency checks revealed missing information which
halted the reproduction study. The (CHGSET, change set size attributes) in (change-metrics.csv) was
missing. Secondly, it was observed that all bugs are greater than the sum of the bug categories (non-
trivial, major, critical and high priority) in the dataset. I contacted the original author, via email, to help
clarify the data discrepancy but the author was not responsive for reasons unknown to me. Contact-
ing authors has been investigated in the literature. It is a process of managing communication between
researchers to achieve replications [Juristo et al. 2013]. Because D’ Ambros et al. [2010]’s first repro-
duction and replication was found in chapter 4, we contacted [Mende 2010] and requested for any useful

information. Mende [2010] sent the scripts used for his experiment.

Comparing the results: Mende [2010]’s script is reproducible, similar results between the original and
the results from his script were observed. Table 5.6 shows Mende [2010]’s result and percentage differ-
ence values in parenthesis indicate the original study values are higher if positive or lower if negative.
Despite the missing CHGSET metric in MOSER datasets, the results are very similar, indicating that
that particular metric may not have a significant effect on the prediction model. Instead, few results still
below 1% difference stand out for (Equinox, Pde, and Lucene systems). No explanation was found for
these differences, however, they are below 1%. It is still important to do data consistency checks. The
missing feature discovered did not have an effect on model performance. The CHGSET metric may be

highlighted as not very useful for prediction.
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5.6 Reproducing defect prediction approach on Eclipse
The aim of Zimmermann et al. [2007]’s study is to map defects reported in Eclipse bug database to the

source code in order to find the most defect prone components of a software.

Data: The same Eclipse system (releases 2.0 and 2.1) used by Schroter et al. [2006] was used with
an additional (release 3.0). In this extended defect dataset, complexity metrics were calculated using
Eclipse and used to find out if more complex code has more bugs. More metrics were calculated based
on the abstract syntax tree (AST). Each Java file or package had the AST nodes (e.g. ForStatement,
IfStatement) as their columns. Frequency of the nodes become the values in the dataset. Files with 1 or

more failures post release are flagged with 1 for defective or O for non defective.

Classifier: Using logistic regression the classification model predicts for each file a likelihood value
between (0 and 1). Predicted likelihood values of files above 0.5 were classified as faulty, anything less
is not faulty. Precision, recall and accuracy’ measures were used to evaluate the classification model.
Predicting defects by ranking was done with linear regression to predict the number of post release
defects per file or package. Ranked predictions were compared with the actual ranks using Spearman

correlation.
Tool: R statistical package was also used here.

Reproducing [Zimmermann et al. 2007] and the changes made: The authors provided all scripts
and datasets for the study. The script is runnable but the results are not reproducible. Performing the
data consistency check showed large variations in dataset sizes. The sizes vary with what was reported
in the paper against what I downloaded from their research group data repository. On the website the

authors reported “Regrettably, due to a clerical error, we have temporarily withdrawn all versions of

3note that these measures are not comprehensive like Mathews correlation coefficient which assesses the model based on
correctly/incorrectly classified majority and minority classes
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the Eclipse bug data..We removed duplicates entries from the dataset that were inserted by a bug in the
Perl API. Here’s the new data (labelled as Release 2.0a)”*. A new version of the data is now available,
however, would this lead to a rework or withdrawal of the initial paper? This question is interesting but

not answerable within the scope of my work.

Comparing the results: Figure 5.7 shows large variations in the results after running the classification
experiment compared to the original study. Figure 5.8a shows significant reductions between the first
(in white) and second (in black) versions of the defect datasets. The number of defects per release
has drastically reduced and is likely to affect the models. The reduction of defects affects the balance
between defective and non defective files leading to the imbalanced data problem; this problem affects
prediction models (e.g. [Van Hulse et al. 2007, Lane et al. 2012]). More about the data imbalance
problem is discussed in chapter 6. The effect of this change is noticeable in the rest of the figures.
Figure 5.8b shows my results are similar in 5 instances and not in 4 instances. The x — axis represents
training and testing combinations for the model. The first data point is the model trained on release
2.0 and tested on release 2.0. Subsequent train-test combinations are: 2.0-2.1, 2.0-2.1, 2.0-3.0, 2.1-2.0,
2.1-2.1, 2.1-3.0, 3.0-2.0, 3.0-2.1, 3.0-3.0 respectively. The number of defects in my data is fewer than
that of the original. My model correctly classified the defective instances it predicted (higher precision
than original). It does not necessarily mean that the model correctly predicted all defective instances.
In fact in Figure 5.8c the model missed out many defective instances (lower recall than the original).
We are more interested in finding defects, Figure 5.8d shows higher accuracy than the original study.
The accuracy is higher because of the fewer defective instances in the version of the dataset I used.
Accuracy performance goes high if the majority class is dominant in the data. The accuracy measure
is not suitable to measure model performance on imbalanced data. Since the model missed most of the

defective instances and got the non defective ones it has low recall and high accuracy.

“https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/: (Accessed on 18th October 2017)
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5.7 Conclusion

In this chapter I have reproduced five studies (four failed) and identified potential factors that may affect

model performance; this partially answers my (RQ5).

Table 5.8: The five studies I reproduced compared based on their experimental procedure. Important
methodological aspects of defect prediction studies are also considered. A reproducibility assessment
outcome indicator showing whether the results are reproducible or not. All studies have cross validation
in common and all studies have data problems (imbalance, cleaning, consistency). Only one study is

fully reproducible.

Experimental procedure components & outcomes

Original studies

Menzies et al. [2007]
Schroter et al. [2006]
D’Ambros et al. [2010]
Zimmermann et al. [2007]

N X X X |Normalisation

N SN N N |Cross Validation

> > % % |Data Consistency
N X X X |Feature Selection
N N\ > % |Experimental Script

> > X X |Imbalance
> X* % X |Data Cleaning

> N\ X X |Reproducible
> N N\ X |Replicable

> > > X |Tuning

Overall this chapter provides empirical evidence that attempting to use the same data, tools, and method,
does not guarantee the reproducibility of a study (Table 5.8). That is, a study may still not be verifi-
able through this approach. Even though the study has been replicated and confirmed with different
permutations of data, tools and method. This ‘discrepancy’ is based on the differences in measuring
reproducibility and replicability. Otherwise the results may seem to contradict each other where a study
is replicable but not reproducible. I note recent concerns about non usage of robust statistical methods
to confirm findings [Madeyski and Kitchenham 2017]. Perhaps this may have affected statistically con-
firmed claims in the original and its replication study (that confirmed the original’s finding). Further

works on how to measure replications are needed.
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Looking at Table 5.8, all studies I reproduced are affected by dataset problems. Only one study,
D’ Ambros et al. [2010] , is fully reproducible and replicable. Interestingly, the data used by D’ Ambros
et al. [2010] has missing metrics which affected my results. The missing metrics was confirmed by
Mende [2010] who also reproduced the original. However, when I ran the script by Mende [2010] the
results was close to the original. I could not explain this anomaly, since there is missing data and results
are the same as the original. Could there be a possibility that Mende [2010] performed additional un-
reported tasks to achieve the same result as the original, or the results are random. Perhaps this is the
major threat identified in this chapter. When problems in original studies are discovered, these studies
are meant to be corrected. When corrected, should the original studies remain in the search space? Or
should they be flagged at the point of access (in the online library) as having been challenged, possibly
flawed? This is so that researchers learn from the errors of such studies, treat them with caution, and
incorporate the corrections. Otherwise the errors in those studies may continue to propagate across the
field, potentially, compromising the validity of findings. Furthermore, in Table 5.8, dealing with data
imbalance, data cleaning, and parameter tuning are not dealt with. I believe this is very serious, subopti-
mal models may have been designed over the years due to poor methodology. There is therefore, a lot of
factors that need to be addressed in defect prediction. There is opportunity for improving these studies

by ensuring all these aspects of the procedure where needed are adhered to.

In addition, the lack of a single version of data may be a significant factor that affects reproducibility
but by how much is still unknown. To aid reproducibility a single version of data between an original
and the repository should be maintained. Tools with their versions need to be reported. Parameters of
algorithms both input and those outputted need to be reported. My reproduction results are mixed. There
could be many unknown factors that could have caused these differences in the model performances. Not
all factors can be investigated in this work. In chapter 6 I investigate what impact variations in data, tool

versions, and unreported preprocessing steps have on model performance.



6. INVESTIGATIONS OF FACTORS AFFECTING RE-

PRODUCIBILITY

6.1 Introduction

The results of chapter 5 have shown the likely factors affecting reproducibility of a study. The factors
are data inconsistency, missing tool versions and data preprocessing steps during prediction modelling.
Dataset information in original papers has not been consistent with the information in the online repos-
itory. When there is a large difference between the sizes of different versions of the same datasets (on
paper and in repository), the number of defective and non defective modules are also different. Predic-

tion model performance on these datasets tend to be affected greatly on both datasets.

In one of my reproduction experiments, all the modelling information was provided, yet the reproduction
failed the most on two classifiers. I use WEKA for all the experiments I performed. Instances where I
use the same tool as the original still showed different results. Therefore, I consider the possibility that

versions of tools may give different results.

The aim of this chapter is to complete the results necessary to answer (RQ5). That is whether replicated
studies can be reproduced and to identify factors that aid or hinder reproduction. I do more experiments
to validate effects of dataset inconsistency, data preprocessing, and consistency of WEKA on model
performance. These factors need to be validated to guide future researchers on the impact they have on

model performance and how they hinder reproducibility — a means of checking research validity.

I start with the data inconsistency problem. I statistically analyse two factors to determine the impact
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‘change in defect proportions’ has on ‘model performance’. A sufficient sample size to do a reliable
statistical test is needed. For that, I use data synthesised by a previous meta-analysis of 600 defect
prediction models [Shepperd et al. 2014]. I then use the computed Mathews Correlation Coefficient
(MCC) model evaluation measure and compare it to the corresponding change in defect proportions (also
known as data imbalance ratio in the literature). These two variables also show how defect prediction

models perform and how data imbalance affects the prediction performance.

Secondly, I investigate the overwhelming non-reproducibility of the two classifiers in chapter 5, Support
Vector Machine (SVM) and Voted Perceptron (VP) in my reproduction study of Lessmann et al. [2008].
I then rescale the dataset by taking the natural log of its values. The scaling is done before building the
prediction models (a preprocessing step); this step has been used originally by [Menzies et al. 2007] to
improve model performance. Lessmann et al. [2008] replicated that original study but did not report

whether they used the log transform or not.

Most of the originals did not report versions of the tools they use. Finally, I analyse different versions of
WEKA. I present my results in the following format: the aim, data, tools, experimental procedure, and

results.

6.2 Effect of Imbalanced Data on Model Performance and Reproducibil-
ity

The aim of this study is to test whether the change in the balance of a dataset affects predictive per-

formance significantly. Secondly, to check whether moving to a more balanced dataset increases that

performance. The outcome would confirm that dataset inconsistency is a threat to reproducibility. It will

also confirm that model performance may increase significantly. The work in this section has been pub-

lished [Mahmood et al. 2015]. I was the lead-author of this conference paper, along with 3 co-authors.
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My role was to conduct the initial analysis on the Shepperd et al. [2014] dataset and write the paper.
Subsequently, the study was validated by each co-author for each of the 3 research aspects. The aspects

include statistical analysis, dataset imbalance problem, and a review and validation of the whole study.

Data: The datasets from Shepperd et al. [2014] are based on defect prediction studies which have
predicted a module of code as being either defective or not defective. When a model is trained to predict
an instance as being defective or not defective the results can be summarised in a confusion matrix (see
Table 2.4 in chapter 2). Compound performance measures can be computed from the confusion matrix
to reveal different properties of the prediction models (see Table 2.5 in chapter 2). The following are
standard classification measures, MCC, F' — Measure, Precision and Recall, extracted from confusion
matrices. The MCC measure was chosen because it combines all four quadrants of the confusion matrix
and does not ignore the many true negatives; Precision because high values indicate that few predictions
are wrong and a developer would not be wasting their time investigating these predictions; Recall shows
the proportion of defects actually predicted, which is important in safety critical systems; and F —

measure combines both Precision and Recall.

Tool: R statistical software (3.1.3) is used.

Experimental procedure: The percentage of the defective class (balance%) of the datasets used for
the 600 models in Shepperd et al. [2014] is extracted. A significant impact on predictive performance
due to a change in balance% should confirm my hypothesis. That, data inconsistencies (discovered
in chapter 5 between original paper and repository) may have affected my reproduction experiments.
However, data inconsistency may not be the only factor. An analysis of variance of the Shepperd et al.
[2014] data is done. The numerical balance% is converted into 20 factor levels (balances) e.g. factor 1

is any imbalance in the range 0.0% to 4.9%.

Results: Table 6.1 shows that balances does contribute significantly to the variance in the results, how-
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ever, dataset family (from which imbalance is derived) contributes more. In conclusion, imbalance of
the dataset is important, but dataset family has other features (beyond the scope of this study) which are

causing more variations in the performance of defect prediction studies.

Table 6.1: Table showing how the variance result from balances compares with other possible factors.

Partial 77 Pr(>F)
Researcher Group  31.01% < 0.0001

Dataset Family 31.00% < 0.0001
balances 18.76% < 0.0001
Input Metrics 12.44% < 0.0001
Classifier Family 8.23% <0.0001

Having established that data imbalance can be a significant factor in defect prediction, the nature of
the relationship between Predictive performance and imbalance is now investigated. Scatterplots of

F — measure, Precision and Recall against balance% are created.

Figure 6.1 shows that, as balance% initially increases, MCC also increases. This means that datasets
with very few defects tend to result in prediction models which are poor at predicting defects. There is
a change in MCC from 0.15 to 0.35 when balance% changes from 0.00 to 0.20. Figure 6.1 has few data
points where 0.21 < balance% < 0.30 and, although average predictive performance appears to increase,
we can not be confident in saying that performance increases up to balance%=0.3. The general increase
is also observed for F — Measure and Precision. It is interesting to note that Recall initially decreases as
balance% increases. As balance% increases from 0.3 to 0.5 (maximum level of balance), the predictive
performance does not tend to increase for MCC. Predictive performance as measured by Precision,

Recall and F — Measure do increase.
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Figure 6.1: Scatterplot of predictive performance against dataset balance%. Showing that for MCC, as
the balance% increase from 0.00 to 0.20, the MCC increases. An increase of balance% from 0.20 to 0.5
does not seem to change MCC. For the first scatterplot, we identify a small number of possible outliers
(orange boxes). We have also plotted the convex-hull of ‘best’ performance (blue line) as balance%
increases. The (red lines) indicate the overall moving average trend of the performance against the
balance of the data. The (dotted red lines) indicate the lowest and highest average of the trend. The
(green lines) are linear trend lines, all showing an increase in performance as the balance increases.
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In light of reproducibility, this novel finding about how imbalanced data impacts predictive performance
may explain some of the reproducibility failures I encountered in chapter 5. Major rewrites of datasets
affects the balance of the data, and affected balance implies a significant change in the predictive per-
formance. Therefore, part of reproducibility success depends upon a single version of dataset consistent
in the original paper and available online. I now investigate additional factors affecting reproducibility

even after matching all parameters, metrics and most of the datasets in [Lessmann et al. 2008].

6.3 Effect of Data Preprocessing

As reported earlier in chapter 5 my reproduction experiment of [Lessmann et al. 2008] of 12 classifiers
was not successful especially for two classifiers. The model performance averages for both original and
my reproduction study are: SVM (79 and 53) and for VP (72 and 56) respectively. These differences
could not be explained. The aim is to test whether there are missing preprocessing steps not reported by

Lessmann et al. [2008].

Data: 10 NASA datasets were used as mentioned in chapter 5 Table 5.4. There are few data inconsis-

tencies between the dataset information in original paper and repository.
Tools: WEKA 3.9.1 developer was used.

Experimental procedure: The natural log was taken for each value of each feature of the 10 datasets
for scaling and improving model performance. For example a feature such as lines of code for a small
and large Java file (module) can be (10 and 720, taking the /n(10) In(720) —> 2.3,6.57). The log filter I
used is the same filter used by [Menzies et al. 2007]. Lessmann et al. [2008] replicated the same study
before producing their novel framework which I reproduced. I assume that the preprocessing step might
have been used but not reported. The rest of the experiment is the same as the original, but I ran it 1,000

by 10 fold cross validation for increased reliability of model performance as mentioned in chapter 5.
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Table 6.2: A comparison of Lessmann et al. [2008] results and my reproduction experiments run twice,
with and without log transforming the dataset values. SVM and VP classifiers show poor performance
compared to the original and increase significantly after applying the log transform. Positive percentage
difference in parenthesis indicates that the my results are higher than the original and vice versa.

SVM VP

Datasets Org Rep(log) diff(log) Rep diff Org Rep(log) diff(log) Rep diff
pcd 95 )95 3) 56 (-46) 8§ % / (5) 55 (-37)
c3 77 94 (22) 53 (-31) 74 74 (0) 47 (-36)
c4 77 85 (10) 60 (-22) 73 79 6)) 75 (3)
kc3 86 85 (-1) 50 (-42) 74 83 12) 62 (-16)
pcl 80 94 (18) 56 (-30) 75 79 5) 53 (-29)
cml 70 96 (37) 51 (27) 72 79 (10) 54 (-25)
pc2 85 71 (-16) 50 (-41) 50 50 0) 50 (0)
mwl 65 83 (28) 50 (-23) 73 77 (5) 52 (-29)
avg 79 89 (13) 53 (-33) 72 76 6) 56 (-22)

Results: Figure 6.2 shows the two runs that I performed for each classifier (SVM and VP). The percent-
age differences are given in Table 6.2. Figure 6.2a shows SVM’s first run with a large difference between
the original results in white and first reproduction in stripes. The result is completely not reproducible.
Applying the log transform significantly increases SVM’s performance in white, higher than the original
results in black over 6 datasets (pc4, pc3, kc4, pcl, cm1, mwl) and the overall average. The same result

is seen for one dataset (kc3), and lower performance for (pc2).

Figure 6.2b shows VP’s results are close for (kc4) and exact for (pc2) with and without log trans-
form. Among all datasets (pc2) is the second largest with over 4,000 modules with <1% defective
modules. Which shows that VP is strongly affected by imbalanced data more than SVM on log trans-
formed dataset. Subsequent results without log transform for VP are not reproducible. With the log
transform (pc3) has an exact match while outperforming the original results on the remaining datasets

(pc4, kc4d, ke3, cm1, mwl) and the average (Table 6.2).

Overall my results in most cases are now aligned with the original results because of the log transform.
The log transform is an important step and perhaps it is the missing preprocessing information not
reported in the original study. These results provide opportunity to investigate further characteristics

of the dataset family affecting results as mentioned in section 6.2 which is beyond this study. Having
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Figure 6.2: Bar charts showing two runs of Lessmann et al. [2008]’s study. The original’s results are in

black. The non-reproducible classifiers, Support Vector Machines (SVM) and Voted Perceptron (VP),
are in stripes and white for first and second run. The first run in stripes is done without log transforming

the dataset values. The second in white is done with log transform, this reduces the margin between
small and large values of the features in the datasets, which significantly increases model performance

for both classifiers.
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discovered two potential factors that affect performance and reproducibility (data imbalance and data

preprocessing) I investigate the final factor I consider to likely affect reproducibility in the next section.

6.4 Effect of Tool Version Difference Problem

As mentioned in the previous chapter, it was not possible to use the exact tools as all the original studies.
In particular, Lessmann et al. [2008] used Matlab and Yale Workbench (now known as Rapid Miner)
which were not used because I was familiar with the Java-based Weka. Lincke et al. [2008] reported that
different tools give different results. My initial first year experiment was based on [Menzies et al. 2007]
and [Rodriguez et al. 2014]. The Rodriguez et al. study compared different imbalance techniques. After
reproducing the study, some differences were observed and I decided to check for every reproduction
study which tool versions were used. Both [Menzies et al. 2007] and [Rodriguez et al. 2014] do not
report the versions of Weka used. To find the right version of Weka, releases close to publication date of

the original study were compared.

Data: 12 NASA datasets curated by Shepperd et al. [2013] were used.

Tool: WEKA was used in the original study. The version was not reported.

Experimental procedure of Rodriguez et al. [2014]: Several approaches that tackle data imbalance
were compared. Using J48 as the base learner, random undersampling, synthetic minority oversampling
technique (SMOTE), bootstrap aggregating (ensemble; building multiple learners and using majority
voting for classification) were compared. Additionally, cost sensitive learners were used, by making cost
of false negative to be 10 times more than false positive. Which means 1FN = 10FP, and importance is
given to FN since it leads to failure of a software in operation. These classifiers were measured using

MCC. A 5 by 5 cross validation was used for training and testing phase.

Results: Table 6.3 shows that the results are similar in the performances (MCC). The study provided
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all artefacts (scripts, results in arff format, data set link). The challenges are missing parameters for
performing the experiments in WEKA Filters for undersampling to handle imbalance data had errors at
runtime. Some missing parameters in the paper were retrieved from the shared results. Even though
these variations are small I compared multiple WEKA versions released around the publication date of

the paper. Surprisingly, different versions of tools have different results as shown in Table 6.4.

Table 6.4: A reproduction study of Rodriguez et al. [2014] using many versions of Weka. Bagging
is used for dealing with imbalance. The negative values of % difference show version 3-7-7 performs
lower.

Weka Versions

Datasets 3-7-7 3-7-8 (to 10)  diff
CM1 0.07 0.12 -71)
IM1 0.26 0.27 (-3)
KCl1 0.34 0.34 20)
KC3 0.32 0.30 6)
MCl1 0.45 0.46 (—2;
MC2 0.32 0.26 19
MW1 0.32 0.21 (34)
PC1 0.25 0.23 (8)
PC2 -0.01 0.01 (200)
PC3 0.21 0.21 0)
PC4 0.53 0.50 (5)
PC5 0.52 0.50 3)

Here Weka version 3.7.7 and 3.7.8 had 61 code parts removed while 58 were added. Additions and
removals are denoted by plus and minus signs after running a ‘diff” between the two files. The ‘diff’
command is used by a version control system (git) . It helps manage code and the different versions
created throughout a development process. A hunk shows where both files differ, -493 is the line number

in the Java file and 7 is number of lines afterwards, and vice versa.

I studied the Weka API and extracted the notable change. The Java code provided below (Figure 6.3)
was the major addition to the later version. It allows the bagging algorithm create data partitions using
the PartitionGenerator class. Instances are taken randomly from the main training set into each partition.

The sampling is done with replacement, which means an instance taken in one round can still be taken
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protected Random m_random;
protected boolean[][] m_inBag;
@@ -493,7 +439,7 @@ public class Bagging
// create the in-bag dataset
if (m_CalcOutOfBag) {
m_inBag[iteration] = new boolean[m_data.numInstances()];
- bagData = resampleWithWeights(m_data, r, m_inBag[iteration]);
+ bagData = m_data.resampleWithWWeights(r, m_inBag[iteration]);
} else {
bagData = m_data.resampleWithWWeights(r);
if (bagSize < m_data.numInstances()) {
@@ -672,12 +618,63 @@ public class Bagging
}

* Builds the classifier to generate a partition.
%/

public void generatePartition(Instances data) throws Exception {

if (m_Classifier instanceof PartitionGenerator)
buildClassifier(data);
else throw new Exception("Classifier: + getClassifierSpec()
}

+ " cannot generate a partition");
/ e

* Computes an array that indicates leaf membership

public double[] getMembershipValues(Instance inst) throws Exception {

if (m_Classifier instanceof PartitionGenerator) {
ArrayList<double[]> al = new ArrayList<double[]>(Q);
int size = 0;
for (int i = 0; i < m_Classifiers.length; i++) {
double[] r = ((PartitionGenerator)m_Classifiers[i]).
getMembershipValues(inst);
size += r.length;
al.add(r);

double[] values = new double[size];

int pos = 0;

for (double[] v: al) {
System.arraycopy(v, 0, values, pos, v.length);
pos += v.length;

return values;
} else throw new Exception("Classifier: + getClassifierSpec()

+ cannot generate a partition");

}
Yok

* Returns the number of elements in the partition.
public int numElements() throws Exception {

if (m_Classifier instanceof PartitionGenerator) {
int size = 0;
for (int i = 0; i < m_Classifiers.length; i++) {
size += ((PartitionGenerator)m_Classifiers[i]).numElements();

return size;
} else throw new Exception('Classifier: + getClassifierSpec()

+ cannot generate a partition");

T T

Figure 6.3: Java code extracted from the Bagging algorithm of Weka version 3-7-7 and 3-7-8 by running
a ‘diff’. The code was added in the later version to create partitions of the date when building models.
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again. A model is trained per partition, where an increase in number of partitions creates more trained

models. Mean of all trained models are taken to get a generalised performance.

Consequently, this partitioning process is less prone to overfitting (i.e only performing well on training
set). The results for Rodriguez et al. [2014] in Table 6.4 show that Bagging of version 3.7.7 (without

partitioning code) has significantly higher results, a likelihood of overfitting.

Researchers need to exercise caution in terms of the versions of tools they use, especially when reporting
experiments that they intend for others to reproduce. Missing version information can comprise the
reproduction process due to implementation variations of algorithms within tools. Consequently, an
original study may seem unreliable if reproduction results vary, whereas reporting ‘just’ the version can

easily solve this problem.

6.5 Conclusion

The findings in this chapter contribute the answer to my (RQS5). Reproducibility checks are possible.
However, four factors contribute to reproducibility failure when they are inconsistent between an original
and its reproduction study. The four factors are data inconsistency, data imbalance, data preprocessing,

and tool versions.

Overall controlling these factors is not sufficient to achieve complete reproduction. Most of the results
are still not aligned with those of the originals. Keeping one version of a dataset and reporting of prepro-
cessing steps and tool versions may reduce reproducibility failures and improve research verifiability.
More reproduction studies and the investigation of factors affecting reproducibility need to be done. In
the next chapter I discuss the implications of all my findings and provide a set of practical recommenda-

tions to encourage and improve reproduction and replication.



7. CONCLUSIONS

In conclusion this thesis is about the discovery of inherent threats to software defect prediction research
through reproduction and replication. Scientifically, it would be beneficial for practitioners to reproduce
and replicate all important results. So far, I supported my thesis by identifying that there are limited
numbers of such studies, especially on high quality original papers. In my work, I have looked at
all existing studies of this nature and analysed them: I have found examples of good practice in their
methodologies, but also examples of bad practice. I have also attempted independent reproduction of
five studies. Based on my analysis and practical work, I have uncovered some issues with existing
studies and attempts. One outcome of this work is a set of practical steps to help support and encourage

more and better quality reproductions and replications in the future.

In this chapter, I explain the limitations of my study. I then expand on the implications of my results.
Such as the consequence of few replications in a field. I relate the ‘few replications issue’ in light of
the recent concerns in defect prediction raised in chapter 1. The absence of consistent reporting and
systematic replication is also discussed. I then provide practical recommendations to improve the state
of replication in defect prediction. I summarise the answers to my research questions. Finally, I suggest

important future work based on my contributions.

7.1 Limitations of this Research
My research is limited to a set of studies in defect prediction (not all studies). My work looks at the
claims by Shepperd et al. [2014] that research may not be replicable due to bias of research groups.

Shepperd et al. [2014] analysed studies from the 208 studies identified by Hall et al. [2012]. The Hall
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et al. [2012] SLR provides the highest number of papers discovered in Software Engineering SLRs that
I found. All the SLRs have the following number of studies: [Catal and Diri 2009] 74 papers, [Hall et al.
2012] 208 papers, [Radjenovié et al. 2013] 106 papers, [Malhotra 2015] 64 papers, [Wahono 2015] 71
papers, and [Hosseini et al. 2017] 30 papers respectively. As such, I scope my analysis and reproduction
approach to the most representative set of studies, 208 papers in defect prediction taken from the Hall

et al. [2012] SLR.

The main threat (in chapter 4) is in the identification of papers that replicate from the 208 original studies
and the search engine used (Google Scholar). The search ended in 2016, since then the replicated papers
have been monitored automatically to trigger email alerts of any new papers that cite the original studies.
The search string is saved and is run automatically by Google Scholar with every new citation of the
replicated study. Each paper is checked to confirm if it was a replication or not; no new replication has

been identified and I believe this threat has been mitigated.

There are different search engines (Scopus, ISI Web of Science etc.) and Google Scholar was chosen
because it has been effective as demonstrated by Wohlin [2014] for this type of search. In addition
between 2011 and 2012 Google Scholar has “very significantly expanded its coverage... at a stable
rate” [Harzing 2014]. Primarily, I am concerned about getting a reliable number of citations for my
analysis and not usability. Although I found it useful to reduce the number of papers to read manually
due to the ‘search within citing articles’ feature. I am confident that Google Scholar is sufficient for my

work.

Threats also exists in assessing and extracting information from the original studies and their accom-
panying replications. These threats were mitigated in the following way. Two authors (Mahmood and
Bowes) in the chapter 4 study read and extracted information from 5 of the 39 papers and for the six

factors extracted from all the 208 papers. Using the SLuRp tool [Bowes et al. 2012] any disagreements
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were identified and then resolved and the data was updated accordingly. The statistical analysis of cita-
tion count and the number of replications involves data with many ties (since 8 of the replicated studies
are replicated once and many are not replicated). The Kendall correlation analysis is not as accurate due

to the ties.

Threats exist in reproducing experiments in chapter 5. These threats were mitigated by ensuring all
experimental designs of the reproduction were validated with their original designs. In each experiment
the validation was done by at least two people. In addition I put in place data consistency checks
(chapter 5, chapter 6) for all datasets I downloaded from the data repositories given by the original
studies. I recorded all dataset information reported in the original studies and the information I found
from the datasets I downloaded from the repository. I then marked any inconsistencies and variations in
the number of instances and proportion of the defective instances observed. This recorded information
served as a reference point for continuous validation between the information I also reported in this
dissertation and what I observed and uploaded in our online appendix; this is to ensure the experiments
and data I shared is consistent with my reporting. Most threats have been minimised and believe to the

best of my ability these findings are sound.

7.2 Implications of Findings

Overall my results show that defect prediction suffers from a lack of external replications with only 6%
of 208 studies replicated. Silva et al. [2014] identified 96 articles, reporting 133 replications performed
between 1994 and 2010 in software engineering. The result of their study indicates that replication in
software engineering is carried out more frequently than in defect prediction. Having few replications in
a field has a negative impact on its research and progress. Because practitioners must be skeptical about
using the results and teachers must ignore the findings until supported by replication [Evanschitzky et al.

2007]. In the medical field, Chanock et al. [2007] reported that it is unlikely that ‘one’ study would have
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a valid result without requiring replication. I believe few replications must not be accepted in scientific
fields. Some of the replication studies I found have detected errors in highly influential original studies.
The fewer the replications the more chances there are for influential studies to propagate erroneous
results. Such erroneous papers can distort the very future foundation upon which new research will
be based upon. My results strongly suggest the need for more replications. More replications should

provide confidence to practitioners on the usefulness and reliability of defect prediction research.

It would be interesting to find out why there are few replications. Perhaps, few replication studies
could be an indication for researchers to define new research goals. My results may simply demonstrate
decreasing interest in defect prediction. Recent criticisms suggest the need for defect prediction to be
more relevant to practitioners. Lanza et al. [2016] reported that the problem with defect prediction
lies in how the approaches are evaluated and benchmarked. They further suggested that “researchers
should seriously consider putting their predictors out into the real world and having them used by
developers who work on a live code”[Lanza et al. 2016]. Shepperd [2017] mentioned that evaluation of
these prediction models is problematic and "that the concerns of researchers need to be better aligned
with the likely end-users" [Shepperd 2017]. Kitchenam [2017] talked in-depth about the 4Rs (Rigour,
Reproducibility, Replication and Relevance) and how they are linked. With good Rigour, there is value in
Replicating Reproducible work. It is to check their stability across multiple organisations provided they
are relevant to what practitioners need. Kitchenham further mentioned that “very few papers consider
practical issues”’[Kitchenam 2017]. Issues such as cost to a bidding document, when software is suitable
for the next release. And suggested the need to obtain more realistic datasets and collaborate more
with industry partners. My results also support Kitchenham’s suggestion. An important characteristic
that leads to a paper being replicated is original studies being based on closed source industrial data.
Indicating that researchers may achieve relevance and attract replications by collaborating with industry

and obtaining realistic data.
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One aim was to find out how consistent replications were with the original studies. My results show that
of the 29 replication experiments I analysed, 18 (62%) results agreed with the original paper. Agree-
ments indicate the original studies are valid and practitioners can have more confidence in them. The
agreement rate is encouraging because it shows replications can succeed in defect prediction. It is worth
noting that a successful replication depends on how sufficient an original study reported the data, tools
and method they used. Conversely, 38% of the failed replications must not be neglected. Why these
studies failed should provide lessons for researchers to learn from and produce replicable studies. Leslie
Sage, one of the Senior Editors for Physical Science submissions to Nature, gave a talk on "How to
publish a paper in Nature" !. Sage mentioned that if he cannot reproduce the results of a study, he will
reject the paper. If a study cannot be reproduced or replicated it should be treated with caution. Further

investigations need to be carried out to find the errors.

I made reproduction attempts on five studies to find exemplar studies that are replicable and reproduce.
And to find out important factors that impact reproducibility of studies. What is particularly worrying
is that four of the replicated studies I reproduced failed despite their replications reporting agreements.
That is, my reproduction results are much greater than 5% difference compared to the original’s results.
Similarly, in most cases the results of the replications were also greater than 5% compared to the original.
Replication agreement is based on the reported outcome of the statistical test used. What if the wrong
statistic is used to confirm the initial finding? Madeyski and Kitchenham [2017] reported that previous
software engineering results are confirmed by weak statistical tests. Most software engineers are not
statisticians, and can easily apply the wrong statistics. I have also experienced this previously. For
example, Ghotra et al. [2015] found statistical flaws in Lessmann et al. [2008]. The findings could be
nullified. Expert statisticians must be consulted for the correct analysis method. So, it is important to

conduct further work on measuring replication agreements - not only based on what is reported.

IThis talk was given on the 6th April 2016 at the University of Hertfordshire, Room E351. This is a popular talk and also
available on https://www.seti.org/seti-institute/weeky-lecture/how-publish-paper-nature.
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Furthermore, reporting inconsistencies are problematic for interpreting the outcomes of replications.
For example agreements are not always reported clearly. Performance values of original studies are
not always reported in the replication. Variations in datasets sizes exists between datasets information
reported on paper and the dataset downloaded from a repository. These reporting inconsistencies hinder

comparison of results, synthesis of knowledge, and affect reproducibility outcomes.

One of the main goals of my analysis was to find features of studies that are likely to attract replication:
venue, quality, and influence. Most of the replicated original studies do not satisfy quality,, this despite
being largely published in high impact venues. Such a potential lack of quality in original studies is
surprising and suggests unreliable findings may be propagated. Researchers need to be aware of this
and focus on building quality research. Methodological quality is overlooked and has the potential to
amplify erroneous results. Data preprocessing, dealing with data imbalance, and tuning parameters are
qualities of good practise. Publishing in top journals/conferences is also related to replication. The
influence (number of citations) of a paper and of a journal/conference differ from the quality of a paper.
Influence and place of publication should not be taken as determining factors for quality of a paper. For
example, the MSR conference (ranked as satisfactory) has higher impact than the ESEM conference

which is ranked as excellent - I discussed the rankings in chapter 4, see Table 4.9.

It is important to note that quality may change over time. Previous influential experiments in defect
prediction measured model performance using Accuracy e.g. [Elish and Elish 2008]. Accuracy does
not account for data imbalance when measuring model performance [Gray et al. 2009]. Many defect
prediction studies use cross validation for their experiment. Cross validation may not be as useful for
all defect prediction approaches [Shepperd 2017]. The idea is that the definition of quality may change
over time based on new findings. It is imperative for researchers to adhere to quality. But quality should
be reviewed frequently. The review could be by consensus of experts in the field to continuously help in

producing more relevant and reliable studies.
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It was important for my thesis to find out how replications are performed. There is no structured ap-
proach for conducting replications. Most of the replication studies I found make many changes to the
original study at once. Making many changes at once is prone to the masking of important influential

factors on prediction models. Replications need to be done much more systematically.

My results in chapter 4 show the important replication steps that have been missed out in each repli-
cation, based on the applied Gémez et al. [2014] replication taxonomy. Being systematic, first and
foremost, requires a researcher to break down a study into separate components (Table 4.2). Where typ-
ical components of a defect prediction study include, tools, statistics, cross validation, feature selection,
parameter optimisation etc. The experiment is then run with the same components (i.e. reproduced),
if the components are open source - otherwise with similar components. Then an intentional change to
the study components is done, one after the other while recording their effect on model performance.
Systematic replication has the potential to uncover underlying factors affecting results. A good example
of systematic replication is Song et al. [2011]. The study first reproduced the original study of Menzies
et al. [2007] to confirm it, then performed several combinations of the components while recording the
effect on model performance. The study concluded that different combinations of the important three
factors - learning algorithm, data normalisation, and feature selection - for different datasets, are needed
to build suitable models. Good examples of replications based on closed source original studies are

Andersson and Runeson [2007] and Galinac Grbac et al. [2013].

I provide a detailed landscape of replication activities in defect prediction in chapter 4. Statistical anal-
yses and the use of data mining tools are the most frequently changed in replications. Data cleaning and
tuning model parameters are changed the least. More scrutiny, and questions should be raised. For ex-
ample what assumptions are used for statistical tests? Why is data cleaning and tuning not considered?
Which tools provide standard lines of code metrics? Data gathered in this way would help researchers

and practitioners increase their learning and understanding on how to build, apply and analyse models.
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I now provide some practical suggestions on some of my findings. The aim is to guide researchers on
the important characteristics to include in their studies. Characteristics that could lead to replication, and
consequently lead to the confirmation of their results to achieve consistency of findings. I suggest ways

to improve the standards of existing replication and reproduction practises with a focal point on quality.

7.3 Practical Recommendations

[Recommendation 1] Highly cited papers should in particular be replicated as such papers tend to in-
fluence future defect prediction practice. Other papers should also be replicated.

[Recommendation 2] Use a replication infrastructure (e.g. OpenML [http://www.openml.org/]
Vanschoren et al. [2013] or Zenodo [https://zenodo.org/]). Such infrastructures typically include
an application programming interface API (Weka, R, REST, Java, .Net, Python, mIR, Moa) based repos-
itory. OpenML allows experiments to be configured on it and run on a user’s machine. The repository
keeps one version of datasets, the results, the protocol for easy sharing, and long-lived for researchers to
use in future.

[Recommendation 3] Better use of existing reporting guidelines should be made. This requires the
development of comprehensive software engineering reporting guidelines. These should be based on
existing guidelines, including Runeson and Host [2009] on case study design, Kitchenham et al. [2008]
on empirical software engineering, Carver [2010] on reporting replications, Silva et al. [2014] on design-
ing and reporting replication studies and Mende [2010] on replication remedies, pitfalls and challenges.
Crucially, these guidelines must be collected and structured as a repository similar to the repositories that
already exist in the Medical field (e.g. [Munafo et al. 2017] [http://www.equator-network.org]).
[Recommendation 4] Replication Impact Factors should be put into practice. As Schimmack says:
“Demonstrating replicability should become an important criterion of research excellence that can be
used by funding agencies and other stakeholders to allocate resources to research that advances sci-

ence” [Schimmack 2016].


http://www.openml.org/
https://zenodo.org/
http://www.equator-network.org
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I suggest ways in which replication can be used for Impact Factors:

e Use number of replications per study as additional impact factor metric R — index [Schimmack
2016]
o Use number of reproductions per study as additional impact factor metric Reproingex

e Use number of replications and reproductions as the most significant impact factor metric RR;;4.»-

[Recommendation 5] Quality assessments (e.g. quality,,) should be applied to original studies. Re-
searchers should consider quality in two parts: the quality of the methodology and quality of the report-
ing. These quality checks should be made on original studies before replication to minimise the spread
of potentially erroneous results.

[Recommendation 6] The replication of important studies needs to be incentivised. Currently there is
little reason for a researcher to replicate a study, as original studies are more likely to be cited than a
replication. Highly rated publication venues should specifically encourage replications.
[Recommendation 7] Reproduction should be carried out before replication. This will demonstrate how
close the replicating authors can get to the original study. There is little point attempting to replicate
results if reproduction is not possible because, e.g. the raw defect data is not both accessible and held in

a secure source.

These suggestions are not exhaustive. I provide these in light of my empirical analysis of replication and

reproduction of studies for researchers to make improvements or refute them.
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7.4 Summary of answers to the Research Questions

The answers to the research questions asked in this dissertation are summarised in this section.

Only 6% of 208 original studies were replicated, suggesting replication and reproducibility are largely neglected in defe

prediction studies. The fewer the replications the more chances there are for studies to propagate erroneous results.

o2

RQ1 What proportions of defect prediction studies are replicated? ]
ct

Replication studies make many changes to original studies at once, whereas incremental changes on a component b

component basis may highlight important factors that impact model performance.

(2 5 )

RQ2 What types of replications are performed? ]
y

My results suggest that highly cited studies based on industry closed source data published in the Transactions o

Software Engineering journal (highest impact in software engineering) leads to a paper being replicated.

T

RQ3 What features of a defect prediction study make it likely to be replicated? ]
n

RQ4 Do original and replication studies in defect prediction agree?

Replications are likely to succeed and in some cases discover mistakes. A sizeable number also disagree. It is difficult

a

to confirm agreements in published results as there is inconsistent reporting of the performance measures.

f RQS5 What factors are likely to affect reproducibility in defect prediction studies? \

Dataset information are not consistent between the data repository and original paper. The same dataset can have
different proportions of defective files and number of instances. A change in the defective proportion (imbalance) could

affect the performance of a model by about 18%. The same tool but different versions and data preprocessing also affect

Qerformance and if not reported may lead to reproducibility failures. )

I hope that these findings drive discussions along the line of my suggestions. Attempting to reproduce
or replicate studies should not be construed as a repressive endeavour. Rather, as scientific approaches
to collaborate and stabilise findings and bring about new research questions. I encourage researchers to

replicate and extend my results to get more insight into replication across Software Engineering.
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7.5 Future Work based on Contributions to Knowledge
Based on the findings in this dissertation, here are some potential directions based on my contributions

to knowledge, most of which have been stated in the practical recommendations section 7.3.

Tool Analyses: It would be valuable to do tool analyses based on my findings about tool inconsistencies
between versions discovered in (chapter 6). The value in this is to standardise these tools and minimise
contradictory results when different or even the same tools are used for reproducing and replicating
experiments; lack of a standard for tools could compromise the validity of a study. The tool problem has
been discussed by Lincke et al. [2008] and a good example of tool analyses is done by Marshall et al.
[2014] on the best tool for conducting SLR. Based on how I extracted and structured the data from the
set of papers I identified, several tools used across defect prediction surfaced, with a potential to conduct

such a tool analysis (Table 4.4, Table A.2).

Applying my proposed methodology for utilising SLRs to identify a particular type of papers (in
this case, replication papers): This new appraoch reduces waste of a set of studies discovered by SLRs
(atedious and time consuming work). The SLR papers using my methodology can be used to find papers
of certain types, more replication studies on different dates. The SLR used in this dissertation covers
original papers from 2000-2010 and their replications up to 2017. SLRs published by Wahono [2015]

and Malhotra [2015] can be used as base sets for replicating my study by reapplying its methodology.
Build a SE Repository of Guidelines: This is detailed in section 7.3.

Replicating the remaining quality studies and correcting existing non quality studies: This is an
important endeavour for researchers to take up. Only 3 out of the 36 quality original studies have been
replicated; this is a unique opportunity for researchers to replicate these studies and help establish their

validity, their stability across multiple datasets (a large amount of datasets have been newly released
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by Shippey et al. [2016]). There is potential to create new benchmark algorithms, discover the most
robust quality technique and perhaps leading to an extended quality criteria (enforceable by publication
venues). The non quality studies, most of which failed based on poor quality data, can be re-validated

on these new datasets.
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Keywords: Context: Replications are an important part of scientific disciplines. Replications test the credibility of original
Replication studies and can separate true results from those that are unreliable.
Reproducibility Objective: In this paper we investigate the replication of defect prediction studies and identify the char-

Software defect prediction acteristics of replicated studies. We further assess how defect prediction replications are performed and the

consistency of replication findings.

Method: Our analysis is based on tracking the replication of 208 defect prediction studies identified by a
highly cited Systematic Literature Review (SLR) [1]. We identify how often each of these 208 studies has been
replicated and determine the type of replication carried out. We identify quality, citation counts, publication
venue, impact factor, and data availability from all 208 SLR defect prediction papers to see if any of these factors
are associated with the frequency with which they are replicated.

Results: Only 13 (6%) of the 208 studies are replicated. Replication seems related to original papers appearing
in the Transactions of Software Engineering (TSE) journal. The number of citations an original paper had was
also an indicator of replications. In addition, studies conducted using closed source data seems to have more
replications than those based on open source data. Where a paper has been replicated, 11 (38%) out of 29 studies

revealed different results to the original study.
Conclusion: Very few defect prediction studies are replicated. The lack of replication means that it remains
unclear how reliable defect prediction is. We provide practical steps for improving the state of replication.

1. Introduction

Defect prediction is a very active area of research in software en-
gineering. However the quality of defect prediction modelling is reg-
ularly criticised [2,3]. Replications are an important way in which to
identify the quality of original studies and to increase the confidence
that we can have in results [4,5]. Replications also test the claim that
“most research findings are false” [6] and that a “little replication goes a
long way” to separate true research findings from false positives [7]. The
more replication studies are performed, the more opportunities there
are for defect prediction studies to be improved and the state-of-the-art
to mature.

This paper aims to quantify the subsequent replications of 208 de-
fect prediction studies identified by Hall et al. [1]. We use Wohlin’s [8]
forward snowballing approach to identify papers that cite these original
208 studies. Within these citing papers, we identify replications of the
original 208 defect prediction studies. We compare the prediction
performance of an original study with its accompanying replication
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study. We measure performance agreement between studies. Agree-
ments or disagreements show replication success or failure, and also
indicate the replicability of studies. We extract the characteristics of
original studies which have been replicated. Knowing the character-
istics of replicated original studies should help authors of primary
studies produce studies more accessible to replication. We also present
a landscape of how replications are done in defect prediction. We aim to
answer the following four research questions:

RQ1: Are defect prediction studies replicated?

RQ2: How are replications performed in defect prediction?

RQ3: What features of a defect prediction study make it likely to be
replicated?

RQ4: Do original and replication studies in defect prediction agree?

We make the following contributions. First, we present a metho-
dology for analysing replications that is based on using an existing SLR.
Second, we provide a small baseline set of 39 defect prediction studies
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Table 1
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The identified replications in this study that are mapped & tagged to the considered categories of the Gémez et al. [5] replication taxonomy.

Replication type Protocol Operationalisation Populations

Experimenters Replication name & changed (A) components

Literal
Operational

oy oy

[}
LR S N Y
#on

Iy w4

LSS U RS U R O O

LR S U

Conceptual Unknown Unknown Unknown

Repetition

A-experimenter (A)

A-populations

A-populations/-experimenter (B)
A-operationalisation
A-operationalisation/-experimenters (C)
A-operationalisation/-populations
A-operationalisation/-populations/-experimenters (D)
A-protocol

A-protocol/-experimenters (E)
A-protocol/-populations
A-protocol/-populations/-experimenters (F)
A-protocol/-operationalisation
A-protocol/-operationalisation/-experimenters (G)

D O | T TR |

H

oy

H

A-protocol/-operationalisation/-populations
A-protocol/-operationalisation/-populations/-experimenters (H)
(only hypotheses are retained)

W ooy

Unknown

(originals with their corresponding studies) for researchers to use in
future studies. Third, we identify a set of characteristics of original
studies for researchers to incorporate into their work to encourage
subsequent replication. Finally, we provide practical recommendations
which could increase the number of replications performed.

The paper is structured as follows: Section 2 gives background about
replication and related work. Section 3 details the methodology while
Section 4 provides results. Threats to validity are given in Section 5 and
the implications and recommendations for replication are discussed in
Section 6. Finally, Section 7 concludes the study.

2. Background and related work

Defect prediction has “many researchers continuously proposing novel
approaches to predict defects in software systems” [9]. Ioannidis [6] re-
ports that there is a high risk of false results in rapidly growing fields
with many research groups (defect prediction can be described this
way). Moonesinghe et al. [7] shows that the probability of a research
claim being true is increased by replications. Quantifying replications in
defect prediction is therefore important.

The number of replications in software engineering has previously
been investigated by da Silva et al. [4] who found 96 software en-
gineering papers replicating 72 original software quality and testing
studies between 1994 and 2010. A total of 70% of the replications were
conducted after 2004, and 70% of those were self replications. Even
though replication growth is evident, it does not keep pace with the
growth of empirical primary studies; therefore, more external replica-
tions are needed [4]. We set out to quantify external replications in one
strand of software engineering, i.e. defect prediction. We based our
analysis on tracking the replications of a representative sample of defect
prediction studies from Hall et al. [1] because the study is one of the
“very prominent ‘gold sets’ of published SLRs” and the authors “define their
work in enough detail for us to construct data sets for simulations” [10].

The terms replication and reproducibility are often interchanged,
but they carry different meaning. Replication means to repeat an ex-
periment by independent researchers within a different environment,
with changes to the original study aimed at getting consistent results.
Reproduction is to recompile the same artefacts used for a study, in-
cluding data, analysis and procedures for validation [11,12] to get the
same results.

Bias may be a major threat to repeatability. Shepperd et al. [13]
found that bias introduced by researchers accounts for most of the
variance in defect prediction-model performance. So,“it matters more
who does the work than what was done” and “Clearly Research Group is a
basket for a number of concepts including prior knowledge, statistical and
data processing skills, interests, opportunities, relationships with
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practitioners and so forth” [13]. These bias factors suggest that a study
done by a research group may not be repeatable by others. Previous
work has looked at the reproducibility of data mining studies [14,15].
Defect prediction studies invariably are based on data mining. Gon-
zalez-Barahona and Robles [14] propose a process model to gauge the
reproducibility of data mining studies by identifying key elements of
the research including: data source, retrieval methodology, raw dataset,
extraction methodology, study parameters, processed dataset, analysis
methodology, and results dataset.

Goodman et al. [16] suggest that in any scientific field the kind of
replication must be clearly specified. We adopt part of the Gémez et al.
[5] replication taxonomy that tracks changes made to components of an
original study, and identifies the different types of replications that can
be performed. The taxonomy was originally defined for software en-
gineering human-centric experiments, but we adapt it to defect pre-
diction experiments (Section 3 presents our adaption).

According to Gémez et al.’s [5] taxonomy, replication in software
engineering can be categorised into three broad types (see Table 1).
Literal is a type of replication done by authors of the original study. In
effect, this type of replication is often named Repetition because no
component of the original study is changed; the same experiment is run
by the same authors using the exact tools on the same data to avoid bias
in the results. Modifying any component of the original study changes
the type of replication to Operational. For example, if different authors
replicate an original study while data and tools remain the same, it is
the Operational replication type with Changed-experimenter (in effect
the same as reproduction). Under the Operational replication, 15
changes can be made to the original study, and each change is given the
appropriate name to reflect the change (Table 1 identifies these
changes) for example the populations being studied may change. The
third replication type is called Conceptual because every aspect of the
original study is changed except the hypotheses. Applying this tax-
onomy to new and existing replications is crucial in aggregating re-
plication types and results, to consolidate and synthesise new knowl-
edge.

We aim to identify the number of replicated original defect pre-
diction studies, and identify characteristics of these studies likely to
relate to a paper being replicated. The characteristics of the original
study we focus on are: study quality, publication venue, citation count
and dataset. We focus on quality because Aksnes [17] deems quality as
the core knowledge that leads to further developments by other re-
searchers, with lasting significance. We focus on publication venue and
study influence as Garousi and Fernandes [18] report that highly cited
papers make studies influential. Aksnes [17] also reports that such in-
fluential papers tend to be published in journals. We focus on dataset as
the availability and usability of data is likely to influence replication
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Table 2
Summarised quality4pcriteria defined by Hall and Bowes [21*" from [1].
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Qualily4passessment phases

Details of phases

Phase 1: Establishing that the study is a prediction study.

Phase 2: Ensuring sufficient contextual information is reported.

Phase 3: Establishing that sufficient model building information is reported

Phase 4: Checking the model building data

-Is a prediction model reported?

-Is the prediction model tested on unseen data?

-Is the source of data reported?

-Is the maturity of data reported?

-Is the size of data reported?

-Is the application domain of data reported?

-Is the programming language of the data reported?

-Are the independent and dependent variables clearly reported?
-Is the granularity of the dependent variables reported?

-Are the modelling techniques used reported?

-Is the fault data acquisition process described?

-Is the independent variables data acquisition process described?
-Is the faulty and non-faulty balance of data reported?

@ Phase 1 assesses defect prediction methodological approaches.
b Phases 2, 3 and 4 assess reporting of prediction studies.

potential. Only the quality characteristics are not directly measurable.
We use the quality4passessment process to characterise the quality of
original studies as used by Hall et al. [1]. The qualit))4pprocess assesses
defect prediction studies in terms of whether they employ a reliable
methodological approach to building prediction models and whether
studies report sufficient information to comprehend a study [1] (Table 2
summarises the quality criteria). A more detailed description of
quality, is outlined in Hall and Bowes [2].

3. Methodology

Our methodology has six stages with each stage further broken
down.

3.1. Stage 1: Identification of replication papers

We use as our base set of studies the 208 original studies published
in the 2012 SLR in defect prediction [1]. We used forward snowballing
[8] to identify papers that subsequently cite and replicate the 208
original studies between 2000-2017 (15th April). This means that we
sift through papers that cite original studies, identifying all possible
papers that may replicate an original SLR study.

We used Google Scholar to identify citing papers for each of the 208
original studies. On the ‘cited by #papers’ page of each paper we used
the ~Replicate OR ~Replication OR ~Replicated string and selected
the ‘search within citing articles’ feature. In effect, only papers that used
these terms or their synonyms (denoted by tilde (~)) were returned.
Applying this technique reduces the number of papers to be assessed as
replications and reduces false positives. We then read from the returned
results page, the paper title and its summarised phrases to identify if the
paper was a replication of an original study in the 208. If not sufficient,
we accessed the whole document to find the context in which the term
was used, as suggested by Wohlin [8]. For this search the in-built search
feature of the web browser used or document reader was used to find
where the term replication is used. If the replication term is not in the
document we read the paper in full to establish if it was a replication.
Using this approach we identified a set of papers that replicated a sub-
set of the 208 original studies.

3.2. Stage 2: Inclusion criteria

Our focus is to find external replications (i.e., replications not by the
original authors, as these are considered true replications [4,19]) of the
original studies. We exclude a paper if the replication is by any original
author(s), or was extended work by any of the original author(s). If the
author(s) have extended an original piece of work, we considered this
work to be one paper, and any replication of either of these two is a
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replication of an original study. We consider any author (whether a lead
author or not) to be an author of the paper. Consequently we track all
replications by all authors of original studies.” We found 13 original
studies that have been replicated by 26 replication papers. These 39
papers are our final-set.

3.3. Stage 3: Data extraction process

3.3.1. Tool for extraction

For reproducibility (i.e. the ability of our research to be compiled
and produce the same result), we used our SLuRp tool.? SLuRp is a web-
based tool developed to make Systematic Literature Reviews (SLR) re-
producible and also provides effective information storage and re-
trieval. SLuRp was assessed as the best of the SLR tools by Marshall
et al. [21]. We did not use all of SLuRp’s functionality, many more
useful SLR management features are described in Bowes et al. [20]. We
provide the following steps as a summary of SLuRp together with how
we used it for data extraction.

1. Import BiBTeX files and store references to all original and replicated
studies.

. Assign two researchers (authors of this paper) to independently
store extracted information from each paper.

. Allow researchers to modify and approve extracted information.

. Disagreements between researchers are flagged by SLuRp.

. Create forms based on contextual and methodological information
that must be extracted from each paper.

. Store extracted information in the SLuRp database.

. Retrieve stored information using SQL queries and organise into
result tables.

. Export tables as LaTeX tables. Graphs and box plots are available.

. Edit entire paper with SLuRp LaTeX editor, including results, tables
and compiled to produce the final paper.

3.3.2. Extraction of selected data from final set

Three sets of data were extracted that allowed us to answer RQ2,
RQ3 and RQ4. The first set of extracted data (for RQ2) characterises
how defect prediction studies are performed. This dataset is based on
the defect prediction characteristics presented in Hall et al. [1] and Hall
and Bowes [2]. These characteristics include:

1 To clarify: If paper P is authored by Anne, Ben and Ceri. And paper Q is authored by
any of Anne, Ben or Ceri, paper Q is NOT in the set of replicated papers. If paper R is an
extension of paper P and has none of the original authors, R is included.

2 Bowes et al. [20] available at https://bugcatcher.stca.herts.ac.uk/bugcatchers/faces/
slurp/SLuRp.xhtml.
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. dependent variables

. independent variables
. algorithms

. dataset

. tuning

. cross validation

. statistical analysis

NO U~ WN -

This set of defect prediction characteristics data allows us to gain
insights on replication practice and to categorise replications based on
changes replications make to the original studies in terms of these
characteristics. The information we collect allows us to categorise re-
plications into their respective categories (as defined in Table 1). Of the
39 final-setof studies, 5 papers were read independently between two
authors (by way of a validation check on the data extraction process)
and their data extracted, while agreements were reached on this data
extraction using SLuRp to minimise threats to validity. Information on
the remaining papers was then extracted by one of the authors. The
second set of data extracted (for RQ3) allows us to determine which
features of defect prediction studies make it likely that an original study
will be replicated. This set of data is: study quality, publication venue,
citation count and dataset (as presented in Section 2). The extraction of
this data is described in Section 3.5. The third set of data extracted (for
RQ4) allows us to establish whether the results of a replication study
are comparable to the original. Section 3.6 describes the process by
which we establish study outcome agreement.

3.4. Stage 4: Categorisation of replications into types

The Gémez et al. [5] replication taxonomy (Table 1) requires un-
derstanding of a study and its individual components before being ap-
plied to categorise replications into types. We breakdown defect pre-
diction study components for replication classification by adapting the
general component structure proposed by Goémez et al. [5] (see
Appendix A). These study components represent changeable aspects of
an original study during its replication (as described above). Each
component changed may assist in the discovery of unknown factors that
affect replication results.

The component data extracted from the final-setof papers are orga-
nised into tables (see Appendix B). We mapped each replication study
to its type in Gémez et al. [5] taxonomy based on changes researchers
made to the original study components during replication. We detail the
four components of a study as follows;

Protocol is the overall study design. In defect prediction the fra-
mework that pulls together different sub-components to build a pre-
diction system is the overall study design (protocol). Table B.16 shows
the protocol sub-components we have used are:

1. Cross validation scheme used

2. Whether parameter tuning was performed

3. Which statistics were used to compare performance results
4. Whether data cleaning was used

These factors are motivated by Hall et al. [1] and Hall and Bowes
[2] as outlined previously in Section 3.3. The protocol is the design
before it is implemented (i.e. operationalised).

Operationalisation has two aspects, cause and effect. The cause is
the process of implementing the protocol and considers the im-
plementation environment (as shown in Table B.17) we consider the
following implementation factors (again motivated by Hall et al. [1]
and Hall and Bowes [2]):

1. Tools used
2. Algorithms used
3. Independent variables used
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It should be noted that algorithms have been embedded into data
mining tools like Weka [22], in effect the tools carry out the treatments
required to implement a prediction framework. Therefore such tools
and their versions must be considered because they may cause differ-
ences in replication results. Effect is the process of determining and
defining the aspects of a model to be measured and selecting the ap-
propriate measure. Since measures already exist (e.g. recall; measures
the proportion of actual defects a model correctly predicted), it is a
question of which appropriately measures the effect of the treatments in
the model’s prediction outcome. Consequently Table B.17 shows that
the final operationalisation factor we collect is the dependent variable.

Population is based on the systems analysed in studies. These
systems are then mined from source code repositories (open or closed
sources). Changing a repository to mine data also changes the popula-
tion. Table B.18 shows that the population factors that are considered
are:

. Data source

. Domain

. Language

. Granularity of defect data

AWM=

The granularity, i.e. method or class level, where the defective or
non-defective data are gathered is also part of this. The programming
languages used, size of project (KLOC), maturity (years of use and de-
velopment), etc. Changing any of these sub-components affects the
population and likely the replication results.

Experimenters are the researchers that conducted the study.

3.5. Stage 5: Identification of factors associated with replication

For all 208 papers, as discussed previously, we extracted 6 factors to
find out if any of the factors have a relationship with the number of
subsequent replications:

. quality4p

e Number of citations of a paper

e Publication venue

® Publication venue’s impact factor
e Data sharing/availability

We extracted quality, assessment outcomes using Hall et al.’s quality
check for defect prediction studies [1] for the 208 original studies that
have been replicated (see Table 2 for a summary of quali%p).

Quality 4, overlaps extensively with Gonzélez-Barahona and Robles’
[14] reproducibility criteria which includes checking the: data source,
retrieval method, raw data, extraction method, study parameters,
analysis method, results method, identification and description. Two
elements of Barahona and Robles’ [14] reproducibility criteria are
missing in quality, and these are data availability and data flexibility.
We additionally collect availability data (i.e. an element’s tendency to
exist in the future). We explicitly checked all the links of each study to
confirm if data are accessible (in September 2017). We additionally
collect Barahona and Robles’ [14] flexibility criteria, i.e. adaptability to
different environments by extracting the formats of shared data in
terms of e.g. csv, arff etc. For open or closed source code repositories,
metrics (e.g. object oriented metrics calculated on defective/non-de-
fective code) can be collected to form defect data used as input for
building prediction models [Orgl, 2, 3]. For example the NASA MDP
program provided defect datasets calculated from the raw source code
of critical systems (e.g. Flight and Satellite systems). The raw source
code, being proprietary, were not available. However, it is possible to
reproduce a study based on the defect data which was shared even
though if it was generated from a closed source.

We extracted impact factor values for their publication venue from
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Table 3
ERA ranking categories.

Rankings Description

A* Flagship conference, a leading venue in a discipline area

A Excellent conference, and highly respected in a discipline area
B Good conference, and well regarded in a discipline area

C Other ranked conference venues that meet minimum standards
Unranked A conference for which no ranking decision has been made

http://www.core.edu.au/conference-portal.

journalmetrics (details are in Table 9). We used the Source Normalised
Impact Average (SNIPA) [23] values which are based on the average
citation per paper of a journal in that subject area. In addition, we
extracted the ratings of journal/conference venues from Excellence in
Research for Australia (ERA). In 2009, the Australian Research Council
consulted the public, expert reviewers and academic bodies to rank
journals and conferences, and produced the ERA rankings. We used the
ERA 2010 rankings since other ranking bodies only provide journal
impact factors and omit any ranking of conferences. ERA has 5 ranks
according to research quality, see Table 3.

3.6. Stage 6: Assessing agreements between studies

We checked whether the performance reported in the original stu-
dies matched those reported in the replications. If replications agree
then original studies are replicable. We also assessed reproducibility
(getting the same results) since replications tend to vary because of
contextual differences. By comparing predictive performance measures
for both original and replication studies in the same context (i.e. same
data, classifiers, metrics etc.). If the performance is different by < 1%
we assess this as having being reproduced. If the change is < 5%, it is
similar and if it is > 5%, we classify this as different. We chose these
values based on the intervals used in statistical testing, i.e. 1% prob-
ability and 5% probability using standard statistical tests.

Table 4
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4. Results

4.1. RQI: Are defect prediction studies replicated?

Only 6% of 208 original studies were replicated, suggesting
replication and reproducibility are largely neglected
in defect prediction studies.

Only 13 out of the set of 208 original studies were replicated by
different researchers reported in 26 papers (Table 4): 6% of the original
studies, a significantly lower rate than the 94% non-replicated original
studies. Which means that the lack of replication is substantial, conse-
quently, there is a significant number of studies that have not been
confirmed to report valid results via replication.

4.2. RQ2: How are replications performed in defect prediction?

IReplication studies make many changes to original studies.

Overall Table 4 shows that all replication studies made changes to
the original study. Typically replications made three sets of changes to
components of original studies.

Two replication studies (Hamill and Goseva-Popstojanova (Rep
[1,2]), Hongyu Zhang (Rep[3,4])) replicated more than one original
study, these two papers appear twice making the number of replication
studies 26; these papers then appear twice in the ‘Replication studies’
column of Table 4 as Hamill and Goseva-Popstojanova (Rep[1,2]), and
Hongyu Zhang (Rep[3,4]).

Three original studies (Andersson and Runeson (Org[4]) (Rep[5]),
Lessmann et al. (Org[5]) (Rep[6]), Ostrand et al. (Org[6]) (Rep[71))
also conducted replications of other original studies and within them,
certain aspects of their study have also been replicated. For example
Lessmann et al. (Rep[6]) replicated Menzies et al. (Org[7]) and built a
new classifier benchmarking framework. Ghotra et al. (Rep[8]) subse-
quently replicated the new framework. Therefore Lessmann et al.would
appear twice in the first two columns of Table 4 with (Org[5]) (Rep[6]).

Table 4 shows that many changes are made to studies:

13 replicated original studies out of the 208 with their replication studies, data sets, replication types and agreements between studies.

Replicated original studies Replication studies Agreements Operation-al rep.0"
D’Ambros et al. (Org[1]) Mende (Rep[9]) Yes, Yes A), (G)
Andersson and Runeson (Org[4]) Hamill and Goseva-Popstojanova (Rep[1]) Yes (H)
Zhang (Rep[3]) No (H)
Lessmann et al. (Org[5]) Ghotra et al. (Rep[8]) Yes, No (A), (H)
Ostrand et al. (Org[6]) Marek (Rep[10]) Partial (H)
Mende and Koschke (Rep[11]) Unknown (&)
Fenton and Ohlsson (Org[8]) Andersson and Runeson (Rep[5]) Partial (H)
Grbac et al. (Rep[12]) Partial (H)
Ostrand et al. (Rep[7]) Yes (H)
Zhang (Rep[4]) No (H)
Devine et al. (Rep[13]) Yes (H)
Hamill and Goseva-Popstojanova (Rep|2]) No (H)
Menzies et al. (Org[7]) Turhan and Bener (Rep[14]) Yes (&)
Zhang et al. (Rep[15]) Yes (&)
Lessmann et al. (Rep[6]) Yes (©)]
Song et al. Rep[16] Yes, No (A),(H)
Singh and Verma (Rep[17]) Yes (H)
Moser et al. (Org[9]) Krishnan et al. (Rep[18]) Yes (H)
Kim et al. (Org[10]) Rahman et al. (Rep[19]) Yes (H)
Zimmermann and Nagappan (Org[2]) Tosun et al. (Rep[20]) Yes (H)
Nguyen et al. (Rep[21]) Yes (H)
Premraj and Herzig (Rep[22]) Yes (H)
Amasaki et al. (Org[11]) Okutan and Yildiz (Rep[23]) Unknown (H)
Schroter et al. (Org[12]) Duala-Ekoko and Robillard (Rep[24]) Yes (H)
Zimmermann et al. (Org[3]) Kpodjedo et al. (Rep[25]) Unknown (H)
Khoshgoftaar and Seliya (Org[13]) Li et al. (Rep[26]) Yes (H)

2 Replication name tags: (A) changed-experimenters, (G) changed-protocol/-operationalisation/-experimenters, (H) changed-protocol/-operationalisation/-populations/-experi-

menters.
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Table 5
Study-components of original studies that were changed during replication.

Protocol Stats CrossVal ~ DataClean Parameter tuning
19 8 5 2
Operationalisation IndepVar DepVar Algorithm Tools
15 4 12 14
Populations Granularity ~ Domain SourceCode  ProglLang
14 12 11 7

Full field names: statistical analysis, cross validation, data cleaning, optimising para-
meters, independent and dependent variables, programming language.

1. Changed-experimenters (tag A, 3 papers)

2. Changed-protocol/-operationalisation/-experimenter (tag G, 5 pa-
pers)

3. Changed-protocol/-operationalisation/-populations/-experimenters
(tag H, 21 papers)

Replications in which most components are changed together
dominates. Table 4 shows that Mende, Song et al., Ghotra et al.replicate
with sets of two study-component changes (A,G and A,H). With
changed-experimenter (A) as the first change and (H) as the last,
changes (B,..., F) have been omitted for all replications indicating gaps
in steps that need to be taken during replications.

The data we synthesised from all studies (in Tables 11-13 for original
studies, and in the appendix Tables B.16-B.18 for replication studies)
depicts a landscape of some of the tools, algorithms, and statistical ana-
lyses used in defect prediction. Table 5 shows that the statistical test
component has the most changes compared to parameter tuning with the
least changes. Replications tend to focus more on finding the most suitable
statistical methods to describe data (e.g. Zhang (Rep[3]) suggests dis-
tribution of software faults are better described as a Weibull distribution,
not in terms of the Pareto principle as originally proposed by Fenton and
Ohlsson (Org[8])). While tuning the parameters of the prediction models
to improve performance is considered the least.

There are 3 replication studies (Rep[16]), (Rep[8]), (Rep[9]) that
did multiple runs of a single original study. The first run reproduced the
original study as it is, and the second run either modified the protocol
(Rep[9]), (Org[1]) protocol by adding a cross validation step, Song
et al. Rep[16] used feature selection that ensured the test instances are
not seen by the prediction model), or dataset (Ghotra et al. (Rep[8])
used less noisy data and a new dataset, Song et al. Rep[16] also added
more datasets). These multiple runs have implications for agreements
between studies and the types of replications performed, though such
multiple runs are generally good practice.

4.3. RQ3: What features of a defect prediction study make it likely to be
replicated?

Our results suggest that studies based on industry closed source
data published in the Transactions on Software Engineering journal
(highest impact in software engineering (during the time

period covered by Hall et al. [1])) leads to a paper

being replicated.

We analysed the factors we extracted from each paper statistically.*
We use a y” test to establish the relationship between each binary factor
and replications and Kendall’s Tau rank correlation to test the re-
lationship between citations and replications (as citations is continuous
data) (see Table 6).

Table 7 shows the data format of the papers with datasets. Table 7
shows that there are few papers using formats other than arff. The small

3 Using R 3.3.1 open source statistical software.
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Table 6
The 208 papers categorised as having quality4p, shared data, appeared in TSE w.r.t being
replicated*.

Quality, 4p Shared data InTSE*
Replicated Yes No Yes No Yes No
Yes 3 10 5 8 5 8
No 33 162 70 125 10 185

* chosen as TSE dominates in Table 8.

Table 7
The formats of the data and the number of papers which use the format and the avail-
ability of the data.

Data format (flexibility) Not replicated Replicated
arff 60 2
csv 0 1
csv, arff 2 1
csv, xml 1 0
excel 1 0
xml 3 1
Table 8

Statistical tests for assessing quality.,,, shared data, TSE and citations, individually against
replications.

Chi Square test x* p-value

Quality4p* replication 0.322 0.570

Shared data * replication 0.035 0.852

InTSE * replication 20.237 < 0.0001

Kendall z T p-value
Citations * replication 4.7614 0.269 < 0.0001

numbers do not allow a sound statistical analysis to be carried out for
the affect of flexibility on the ability to be replicated.

There were 85 venues in which the 208 papers appeared (Online-
Appendix *). Only 6 venues published papers that were subsequently
replicated: PROMISE, MSR, ESEM, ISSRE, ICSE and TSE. TSE has the
highest number of papers published with subsequent replications
(Table 9). Table 8 shows that papers published in TSE are more likely to
be replicated. We do not consider the impact factor of venues directly
since, for non-replicated studies, impact factors are not available for
many (63) publication venues.

Table 8 shows that a paper’s influence (citations) has an impact on
replication. However the quality of original papers or shared data use is
not associated with subsequent replication.

Table 9 shows 10 of the 13 replicated studies have not passed the
quality paSsessments. A replication not based on quality4phas ramifications
on the validity of findings. For instance, data cleaning of the quality4pmay
have been overlooked or not reported, an indication that some findings
may be erroneous. It is particularly true for the noisy NASA datasets used
by 59 original studies (Table OA.1 in Online-Appendix).

Table 10 shows that 21 of 26 replication studies replicated original
studies which were based on closed source industrial data (these will
have needed to be replicated with different datasets). This suggests that
studies based on closed source industrial data may be more attractive
for replication.

4 https://bugcatcher.herts.ac.uk/replication/Online-Appendix.html.
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Table 9
The replicated original studies and whether they extracted contextual factors.

Information and Software Technology 99 (2018) 148-163

Citations Original studies Journal ERA" Impact” Quality 4passessment" failed at phase #Reps
128 Andersson and Runeson (Org[4]) TSE A* 4.423 Phasel No prediction done 2
577 Lessmann et al. (Org[5]) TSE A* 4.423 Phase2 NASA data used 1
535 Ostrand et al. (Org[6]) TSE A* 4.423 Phase4 Model building 2
684 Fenton and Ohlsson (Org[8]) TSE A* 4.423 Phasel No prediction done 6
816 Menzies et al. (Org[7]) TSE A* 4.423 Phase2 NASA data used 5
361 Moser et al. (Org[9]) ICSE A 2.988 Pass all 1
330 Kim et al. (Org[10]) ICSE A 2.988 Phase4 model building 1
393 Zimmermann and Nagappan (Org[2]) ICSE A 2.988 Phase4 model building 3
240 D’Ambros et al. (Org[1]) MSR C 1.876 Pass all 1
43 Amasaki et al. (Org[11]) ISSRE A 1.383 Phase2 contextual information 1
159 Schréter et al. (Org[12]) ESEM‘ A 0.992 Pass all 1
126 Khoshgoftaar and Seliya (Org[13]) ESEM* A 0.992 Phase2 contextual information 1
508 Zimmermann et al. (Org[3]) PROMISE U 0.001 Phase2 contextual information 1

2 CORE contributed to ERA rankings. Both rankings agree except on ICSE; A by ERA, A* by CORE (TSE not ranked).
b Source is journalmetrics, 2015 source normalised impact (SNIPA); takes average citation per paper of a journal in subject area.

¢ QA details summarised in Table 2.
9 ISESE,
¢ METRICS are now part of ESEM http://www.esem-conferences.org/history.php .

Table 10
Descriptions of replicated original studies based on the type of data source and defect data
sharing.

originals (i.e. where some of the replicated results were the same as the
originals but not all). Additionally 3 studies did not report the level of
agreement with the original study.

Our results show a variety of disagreements between the original

Source code Shared data No. of papers No. of reps
and replicated results. There are a range of reasons for these dis-
Closed No 6 15 agreements that we will now discuss. Song et al. Rep[16] did 2 re-
Yes 2 6 plication runs of Menzies et al. (Org[7]). In the first run the replication
Open No 9 9 agrees with Menzies et al. (Org[7]). In the second run, Song et al. Rep
Yes 3 3 [16] disagreed and report a flaw in (Org[7])’s attribute selection ap-
proach which meant that the test data included seen information and

Table 11

Protocol: Original studies.

Org. Studies Cross Val. Parameter tuning  Statistics Data Cleaning
Andersson and Runeson (Org No No Pearson product-moment correlation Yes: Duplicate
[4D), (Rep[5]) failures
Lessmann et al. (Org[5]), (Rep Hold-out set Yes Friedmans test (rank classifiers), Nemenyi post hoc (statistical significance  No
[61) test on classifiers)
Ostrand et al. (Org[6]), (Rep[7]) No No t-test No
Fenton and Ohlsson (Org[8]) No No Alberg diagrams No
Menzies et al. (Org[7) 10 by 10 randomised No Quartile chart No
Moser et al. (Org[9]) 10 by 10 randomised =~ No Kruskal-Wallis test No
Kim et al. (Org[10]) No No No No
Zimmermann and Nagappan split-sample No Spearman correlation, Pearson, Nagelkerke (predictive power of logistic =~ No
(Org[2]) regression models), F-tests
Amasaki et al. (Org[11]) No No Error rate, Fishers exact test (correlation between 2 variables) No
Schroéter et al. (Org[12]) random splits No Two t-test, Spearman rank correlation No
D’Ambros et al. (Org[1]) 50 by 10fold No F-test (explanative significance), Spearman correlation (evaluating No
randomised predictive power of models) with Spearman coefficient (skewed data)
Zimmermann et al. (Org[3]) No No Spearman correlation, Pearson correlation No
Khoshgoftaar and Seliya (Org 10 fold cross No Z-test No
[13]D) validation

4.4. RQ4: Do original and replication studies in defect prediction agree?

It is difficult to confirm agreements in published results
as there is inconsistent reporting of the performance measures.

Overall our analysis shows that the performance of 18 replicated

experiments.® agreed with original performance values. This suggests
that 62% of the replicated experiments were successful. The perfor-
mance of 5 replicated experiments (17%) did not agree with originals
and 3 replicated experiments (10%) resulted in partial agreement with

3 Some papers conduct more than one experiment, there are 26 papers running 29
experiments.
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therefore inflated performance of the defect prediction models.

Ghotra et al. (Rep[8]) did 2 replication runs of Lessmann et al. (Org
[51). The first run was based on uncleaned NASA data (including du-
plicate and inconsistent instances, see [24]) to confirm if no single
classifier is best as in the original (Org[5]). The Friedman test used in
Lessmann et al. (Org[5]) showed the ranking of model performances
are not random; subsequently Nemenyi post hoc test was applied to
detect which of the classifiers differed significantly. Ghotra et al. (Rep
[8]) agree with Lessmann et al. (Org[5]) in the first run with the same
data and different statistics, but disagree in the second run with a
cleaned dataset curated by Shepperd et al. [25] and different statistics.
In the second run, Ghotra et al. (Rep[8]) reported;
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Table 13

Populations: Original studies.

Availability

Source

Granularity

Domain

Prog. Lang.

Org. Studies

Not shared

Commercial

Module

Telecom

C, Java

Andersson and Runeson (Org[4]),

(Rep[5])
Lessmann et al. (Org[5]), (Rep[6])

Ostrand et al. (Org[6]), (Rep[7])

Shared

NASA, PROMISE

Industrial

Module (predictions), code (metrics)

File (predictions)

Satellite, Flight, Storage

C, Java

Not Shared

Inventory System, Provisioning System

Java, C, Makefiles, sql, shell,

html, other

No

Not shared
Shared

Ericsson Telecom AB
NASA, PROMISE

Module
Method

Telecom

Fenton and Ohlsson (Org[8])
Menzies et al. (Org[7])

Moser et al. (Org[9])
Kim et al. (Org[10])

Satellite, Flight, Storage

IDE

C, Java
Java

Not shared
Not shared

Eclipse 2.0, 2.1, 3.0

File (predictions)

Apache 1.3, JEdit, Subversion, PostgreSQL,

Columba, Eclipse, and Mozilla

Windows Server 2003

File, method (predictions)

Web server, Browser, Text editor, Version control,

Database, IDE, Email client

Operating System

C, C+ +, Java

Not shared

Binaries (predictions), Binaries (metrics)

C++

Zimmermann and Nagappan (Org

2D

Amasaki et al. (Org[11])

Not shared

Industrial

development process (metrics), directed

graphs

Embedded software

No

Shared

ECLIPSE plug-ins 52nos

File, package (predictions), import packages

and classes (metrics)

IDE

Java

Schroter et al. (Org[12])

Shared

Eclipse (Mylyn, Equinox, PDE, Lucene, Score)

Eclipse 2.0, 2.1, 3.0

Industrial

Class (predictions, metrics)

IDE

Java

D’Ambros et al. (Org[1])

Shared

Files, packages (predictions, metrics)

IDE

Java

Zimmermann et al. (Org[3])

Not shared

Telecom Modules (predictions), design documents
(metrics)

Protel

Khoshgoftaar and Seliya (Org[13])

Agree: replications that confirm original results, Disagree: replications that do not confirm original results, Partial: replications that confirm part of the original results, Unknown: replication that does not report agreement or disagreement.
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“We used the Scott—Knott test to overcome the confounding issue of
overlapping groups that are produced by several other post hoc tests, such
as Nemenyis test [13], which was used by the original study. Nemenyis
test produces overlapping groups of classification techniques, implying
that there exists no statistically significant difference among the defect
prediction models trained using many different classification techniques.”

The curated data by Shepperd et al. [25] has been cleaned further
by Petrié et al. [24]. The data errors found during this further cleaning
may have also affected previous models. Overall, these findings suggest
that replication leads to the discovery of mistakes and provides the
opportunity to remedy those shortcomings.

Overall our results suggest that replications in defect prediction are
possible with or without quality, in the original study. Of the 29 studies,
partial agreements (3) and disagreements (5) make up to 28% of the re-
sults, indicating that replication is able to detect errors and limitations of
studies. Unreported (3) replications results (10%) are relatively high. We
suggest that all replications need to state agreements and disagreements.

For a more detailed assessment of agreements, we extracted the
performance values of replications with only ‘changed - experimenter’,
as this type of replication is useful for assessing the reproducibility of
research. Reproducibility aims to get the same result as the original
study [11,12]. We categorise a paper as reproducible if the difference in
the performance between an original and its replication does not go
beyond 5%. We identified 5 replications of Menzies et al. ((Org[7])
shown in Table 14). Table 14 shows that Turhan and Bener (Rep[14]),
and Zhang et al. (Rep[15]) report > 5% different recall performance
(64% and 85%), which means that neither study has succeeded in re-
producing Menzies et al. (Org[7]) (71% recall). Table 14 also shows
that Lessmann et al.’s replication (Rep[6]) used a different measure
(auc) to the original measure reported making it difficult to assess re-
producibility; similarly Song et al. Rep[16] reported only one perfor-
mance measure (balance).® These results show that reporting incon-
sistencies between replications and original studies make it difficult to
confirm agreements.

We investigate reproducibility further by ourselves reproducing
(Org[5]), (Org[7]). Table 14 shows that our results are mixed despite
matching closely all study components. In reproducing these original
studies a number of anomalies with the original studies arose which
may explain the differences in our performance values compared to the
original studies. These anomalies include that the datasets we down-
loaded varied from the original in terms of number of defective units,
number of instances etc. and also that our feature selection outcomes
were not the same as the originals. Our Online-Appendix provides full
details of these anomalies.

5. Threats to validity

The main threat to validity is that replication is currently performed
so seldom that it is difficult to draw conclusions from the population of
replications that we have. Many more replications need to be performed
before it is possible to draw highly reliable conclusions about replica-
tion.

Another important threat is the identification of papers that re-
plicate the 208 original studies and the tool used for the search, that is
Google Scholar. The main search ended in 2016 and since then we have
automatically monitored replicated papers with triggered mail alerts of
new citing papers. The search string is saved and is run automatically
by Google Scholar with every new citation of the replicated study. Each
paper is checked to confirm if it was a replication or not; no new

© Mende (Rep[9]) reproduced D’ambros et al. (Org[1]), the results are mostly the same
about ( < 1%), but with a few differences that could not be explained. We do not include
Mende (Rep[9]) due to lack of space, but all the results can be found in our replication
package https://bugcatcher.herts.ac.uk/replication.
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Table 14
Model performance measure from Menzies et al. set of replications and Lessmann et al.

Information and Software Technology 99 (2018) 148-163

Data Naive Bayes SVM VP

Recall auc balance auc

(org[7D Us (Rep[14]) (Rep[15]) (Rep[171) (Rep[6]) (Rep[16]) (Org[5D) Uslg Us (Org[5D) Us'g Us
pc4 98 87 - - 72.6 85 82.6 92 95 50 83 87 52
pc3 80 79 - - 80.6 81 71.4 77 94 53 74 74 47
ke4 79 80 - - - 68 71.9 77 85 60 73 79 75
ke3 69 78 - - 99 83 74.1 86 85 50 74 83 62
pcl 48 73 - - 66.2 79 64.6 80 94 56 75 79 53
cml 71 77 - - 81.5 72 72.7 70 96 51 72 79 54
pc2 72 86 - - 83.3 85 81.8 85 71 50 50 50 50
mwl 52 78 - - 100 80 70.5 65 83 50 73 77 52
avg 71 79.7 64 85 83 79 74 79 89 53 72 76 56

NB: Us" denotes our results with a log transformation.

replication has been identified and we believe this threat has been
mitigated.

There are different search engines (Scopus, ISI Web of Science etc.)
and we chose Google Scholar because it has been effective as demon-
strated by Wohlin [8] for this type of search. In addition between 2011
and 2012 Google Scholar has “very significantly expanded its coverage...
at a stable rate” Harzing [26]. Primarily, we are concerned about getting
a reliable number of citations for our analysis and not usability. Al-
though we found it useful to reduce the number of papers to read
manually due to the ‘search within citing articles’ feature. We are
confident that Google Scholar is sufficient for our work.

Threats also exists in assessing and extracting information. We mi-
tigated these threats; two authors in this study read and extracted in-
formation from 5 of the final-set of 39 papers and for the six factors
extracted from all the 208 papers. Using the SLuRp tool Bowes et al.
[20] any disagreements were identified and then resolved and the data
updated.

The features of the data collected introduces another threat. In
particular the analysis of citation count and the number of replications
involves data with many ties. We therefore used Kendal’s Tau correla-
tion, rather than Spearman’s correlation because it is known to deal
with ties better.

We show that most threats have been minimised and believe to the
best of our ability our findings are sound. We hope researchers replicate
our study and our replication package is available (Online-Appendix).
Under such conditions, significance tests of the Kendell correlation
coefficient may be unreliable.

6. Discussion

Overall we have shown that defect prediction suffers from a lack of
external replications with only 6% of 208 studies replicated. Silva et al.
[4] identified 96 articles, reporting 133 replications performed between
1994 and 2010 in software engineering, indicating that replication in
software engineering is carried out more frequently than in defect
prediction. We also show that the few replications performed are not
consistently systematic and of the 29 replications we analysed, only 18
(62%) results agreed with the original paper.

The characteristics of replicated original studies include those stu-
dies being published in the TSE journal and being based on closed
source industrial data. Most of the replicated original studies do not
satisfy a quality assessment (quality4P) this despite being largely pub-
lished in high impact venues. Such a potential lack of quality in original
studies is surprising and suggests unreliable findings may be being
propagated.
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Reporting inconsistencies are also problematic for interpreting the
outcomes of replications. For example, agreements are not always re-
ported clearly, performance values of original studies are not always
reported in the replication.

Our findings suggest that defect prediction replication can offer
valuable lessons that can be built upon by others. The original studies
that have multiple replications have demonstrated opportunities to
improve defect prediction and develop more stable conclusions (e.g.
(Org[5D).

Conversely, the lack of replication studies could be an indication of
the need to define new research goals in defect prediction; our results
may simply demonstrate decreasing interest in defect prediction.
Recent criticisms of the area focus on the lack of impact that defect
prediction research has in industry. For example, Lanza et al. [9] re-
ported that the problem with defect prediction lies in how the ap-
proaches are evaluated and benchmarked and further suggested that
“researchers should seriously consider putting their predictors out into the
real world and having them used by developers who work on a live code”.
Shepperd [27] mentioned that the evaluation of prediction models is
problematic and “that the concerns of researchers need to be better aligned
with the likely end-users”. Kitchenham [28] highlights the importance of
these issues in relation to replication when she talked in-depth about
the 4Rs (Rigour, Reproducibility, Replication and Relevance) and how
they are linked; with good Rigour, there is value in Reproducing the
work and also useful Replicating reproducible work to check stability
across multiple organisations provided they are relevant to what the
practitioners need. Kitchenham claims that “very few papers consider
practical issues” [28] and suggests the need for obtaining more realistic
datasets and collaborations with industry partners. It is criticisms re-
lated to these industry issues that are currently affecting the area of
defect prediction.

Our results suggest that far more replications are needed.
Furthermore that replications need to be done much more system-
atically. We show that important replication steps have been missed out
based on the taxonomy that we applied. Incremental changes should be
made to original studies in replications while analysing the effect of
changes on model performance. Being systematic may be easier when
artefacts are open source (for reuse and reduced variability) so that a
researcher can break down a study into separate components. The ty-
pical components of a defect prediction study include, tools, statistics,
cross validation, feature selection, parameter optimising, etc. (e.g.
Table 5). Replicated experiments should be run with the same com-
ponents as the original (reproduced), with intentional variation of
changeable components implemented systematically, i.e. change one
after another while recording their effect on model performance. This
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systematic approach has the potential to discover those factors affecting
results. A good example of systematic replication is Song et al. (Rep
[16]); the study first reproduced the original Menzies et al. (Org[7]) to
confirm it, then performed several combinations of the components
while recording the effect on model performance.

6.1. Practical recommendations for the replication of defect prediction
studies

We make the following recommendations for replication in defect
prediction studies. These suggestions are not a hard and fast set of rules
and as such should not be used as a mechanism to exclude papers from
being replicated.

[Recommendation 1] Highly cited papers should be replicated as
such papers tend to influence future defect prediction practice. Other
papers should also be replicated.

[Recommendation 2] Use a replication infrastructure (e.g. OpenML
[http://www.openml.org/] [29], or Zenodo [https://zenodo.org/]).
Such infrastructures typically include an application programming in-
terface API (Weka, R, REST, Java, .Net, Python, mIR, Moa) based re-
pository designed to allow experiments to be configured on it and run
on a user’s machine. This keeps one version of datasets, the results, the
protocol for easy sharing, and has persistence; most likely going to have
the availability attribute [14] for researchers to use in future.

[Recommendation 3] Better use of existing reporting guidelines
should be made. This requires the development of comprehensive
software engineering reporting guidelines. These should be based on
existing guidelines, including Runeson and Host’s [30] on case study
design, Kitchenham et al.’s [31] on empirical software engineering,
Carver’s [32] on reporting replications, da Silva et al.’s [4] on designing
and reporting replication studies and Mende’s (Rep[9]) on replication
remedies, pitfalls and challenges. Crucially, these guidelines must be
collected and structured as a repository similar to the repositories that
already exist in the Medical field (e.g. Munafo et al. [33, http://www.
equator-network.org 1).

[Recommendation 4] Replication Impact Factors should be put into
practice. As Schimmack says: “Demonstrating replicability should become
an important criterion of research excellence that can be used by funding
agencies and other stakeholders to allocate resources to research that ad-
vances science” [34]. The following are possible ways in which re-
plication can be implemented in impact factors:

e Use number of replications per study as additional impact factor
metric R — index [34].

e Use number of reproductions per study as additional impact factor
metric Reproindex-

e Use number of replications and reproductions as the most significant
impact factor metric RR;ygex-

[Recommendation 5] Quality assessments (e.g. quality4p) should be
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applied to original studies. Researchers should consider quality in two
parts; the quality of the methodology and quality of the reporting.
These quality checks should be made on original studies before re-
plication to minimise the spread of potentially erroneous results.

[Recommendation 6] The replication of important studies needs to
be incentivised. Currently there is little reason for a researcher to re-
plicate a study, as original studies are more likely to be cited than a
replication. Highly rated publication venues should specifically en-
courage replications.

[Recommendation 7] Reproduction should be carried out before
replication. This will demonstrate how close the replicating authors can
get to the original study. There is little point attempting to replicate
results if reproduction is not possible because, e.g. the raw defect data is
not both accessible and held in a secure source.

These suggestions are not exhaustive. We hope that future re-
searchers will evaluate, refine and extend these recommendations.

7. Conclusion

Replication is reported to be very important [6], yet not often en-
ough performed in software engineering [4]. In this paper we particu-
larly investigated replication in defect prediction - a very active area of
research in software engineering. In this study we investigated the re-
plication of 208 original defect prediction studies identified by a highly
cited SLR [1].

Our findings suggest low replication in defect prediction and po-
tential low quality in defect prediction studies. Only 13 of the 208
original studies have been replicated by researchers that are in-
dependent to those of the original studies. Only 3 of the 13 original
replicated studies are assessed as quality studies with regards to re-
search methodology and reporting. We have also shown some of the
difficulty in comparing original results with replicated results, as re-
plications can report their results using measures not used by original
studies. This reporting inconsistency makes comparing results difficult.

We have given some practical suggestions to incentivise and stan-
dardise aspects of replication suggesting, for example the calculation of
a new Replication and Reproduction impact factor, data sharing, and
guidelines of reporting.

Our results show that studies published in a high impact journal (in
particular TSE) tend to attract replications. This means that there is an
opportunity that these publication venues could come up with ways to
encourage more replications, for example a best replication paper
award could be created. Industrial based original studies also seem to
have more replications.

We hope our study drives discussions along the line of our sugges-
tions and we hope researchers replicate and extend this study to get
more insight into replication across Software Engineering.
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Appendix A. Components that make up a defect prediction study

Table A.15
Changeable components of defect prediction studies adapted from [5].

Protocol

Operationalisation

Populations

Experimenter

Definition: The configuration of

subcomponents to observe an outcome
Changes: -Experimental design of how
treatments are allocated, e.g. model
building framework configures data
preprocessing, parameter optimisation,
cross validation, prediction, data
collection framework configures defect
linking, extracting and labelling
-Statistical analyses

Definition: Mode of applying treatments
(techniques) e.g. training a model on train
and test set gives unrealistic results than on
train set only Changes (cause construct:
cause of differences in results): -Literature
sources, training, instructions for applying a
procedure during experiments -Tools used
for running experiments e.g. IDE -Algorithms
for, building prediction models, dealing with
imbalance, linking defects Changes (effect
construct: effect on results): -Defining
dependent/ independent variables, e.g.
number of defects post release/code
complexity -Process of calculating the

Definition: The subject and objects
properties used in a controlled
experiment Changes: -Source code of
project (open (Eclipse) or closed (NASA)
source) -Design documents,
programming language, size,
complexity, maturity (years used and
growth), domain etc. -Granularity of
independent variables (metrics) such as
class or method level, granularity of
dependent variables such as defective or
not and number of defects

Definition: The designer, trainer,
monitor, measurer and analyst
involved in the experiments (authors).
Changes: -Different authors may or
may not vary the parameters of an
experiment on the same dataset

variables, e.g. number of defects fixed after
released to customers and linked to the point
the defect was introduced -Measuring model
performance with different measures

Appendix B. Changed components data extracted from replication studies

Table B.16
Protocol: Replication studies.

Rep. studies Cross val. Parameter Ttuning  Statistics Data cleaning
Hongyu Zhang (Rep[3]), (Rep[4])  No No Computed the coefficient of determination and the No
Standard Error of Estimate
Ghotra et al. (Rep[8]) Yes Yes Scott-Knott statistical test Mixed: Yes on NASA, No on
Apache family
Leszak Marek (Rep[10]) No No No No
Mende and Koschke (Rep[11]) 10 by 10 cross validation No Friedman test, Nemenyi post hoc test No
Galinac Grbac et al. (Rep[12]) NA NA Pearson correlation coefficient, nonparametric Yes: removed duplicates,
Spearman correlation, vote counting outliers
Devine et al. (Rep[13]) No No Spearman correlation No
Hamill and Goseva-Popstojanova
(Rep[2])
Turhan and Bener (Rep[14]) 10 by 10 randomised No t-test No
Zhang et al. (Rep[15]) 10 by 10 randomised No No Removed duplicates, missing
values
Song et al. Rep[16] 10 by 10 randomised Yes % difference, Wilcoxon signed 1-tailed Removed outliers, missing
values
Singh and Verma (Rep[17]) 10 by 10 stratified No No No
randomised
Krishnan et al. (Rep[17]) 10 by 1000 randomised No Figner—Killeen, Kruskal-Wallis, one-way ANOVA, t-test No
with Bonferroni correction of p-value
Rahman et al. (Rep[19]) No No Wilcoxon one sided paired No
Tosun et al. (Rep[20]) split-sample 10 by 5 No Spearman, Pearson No
Nguyen et al. (Rep[21]) split-sample by 50 No Spearman rank correlation, Wilcoxon rank test, ANOVA  No
Premraj and Herzig (Rep[22]) stratified hold-out No Kruskal-Wallis two pairs test, ANOVA Yes
Okutan and Yildiz (Rep[23]) 10 by 20 randomised No t-test Yes
stratified
Duala-Ekoko and Robillard (Rep No No Chi-square No
[24D)
Mende (Rep[9]) 50 by 10fold and 10fold
Cross-Val
Kpodjedo et al. (Rep[25]) No No Wilcoxon signed rank test, Cohen-d statistics No
Li et al. (Rep[26]) No No Weibull, Power, Gamma, Exponential, Theil No
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ABSTRACT

Software defect prediction performance varies over a large
range. Menzies suggested there is a ceiling effect of 80%
Recall [8]. Most of the data sets used are highly imbal-
anced. This paper asks, what is the empirical effect of using
different datasets with varying levels of imbalance on pre-
dictive performance? We use data synthesised by a previ-
ous meta-analysis of 600 fault prediction models and their
results. Four model evaluation measures (the Mathews Cor-
relation Coefficient (MCC'), F-Measure, Precision and Re-
call) are compared to the corresponding data imbalance ra-
tio. When the data are imbalanced, the predictive perfor-
mance of software defect prediction studies is low. As the
data become more balanced, the predictive performance of
prediction models increases, from an average MCC of 0.15,
until the minority class makes up 20% of the instances in the
dataset, where the MCC reaches an average value of about
0.34. As the proportion of the minority class increases above
20%, the predictive performance does not significantly in-
crease. Using datasets with more than 20% of the instances
being defective has not had a significant impact on the pre-
dictive performance when using MCC. We conclude that
comparing the results of defect prediction studies should
take into account the imbalance of the data.
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Defects in software cost the software engineering indus-
try in excess of $50billion per year to put right in the US
[7, 10]. In order to reduce the number of defects which
are released, software engineers use different techniques to
identify where defects are. Techniques for identifying de-
fects include manual inspection and unit testing. Over the
last fifteen years regression and machine learning techniques
have been used to predict where defects may be in the code.
Software defect prediction should allow development teams
to allocate resources more effectively to testing and code
reviews, thereby improving software quality and reliability
[5].

A recent meta-analyses of 42 primary studies [11] identi-
fied 4 major factors that influence model performance (see
Table 1).

Factor Partial *
Researcher Group 31.01%
Dataset Family 31.00%
Input Metrics 12.44%
Classifier Family 8.23%

Table 1: The different factors which may affect the
predictive performance of a defect prediction study
and the proportion of the variance which the factor
would account for if a prediction model is built using
just one factor at a time (Partial n?) [11]

Shepperd et al. [11] found that over 40 percent of data
sets used by the 42 studies have less than 20 percent in-
stances of the positive class (i.e., defect-prone). Highly im-
balanced datasets are well-known to reduce the ability of a
machine learning algorithm to predict the infrequent class.
The explanation lies in the preference of many algorithms for
the ‘simplest’ hypothesis, as apparent in decision-tree algo-
rithms and support-vector machines; this simplest hypoth-
esis is liable to ignore a minority class with relatively few
representatives. Several approaches have been developed
to handle imbalanced data. The more popular modify the
training set and include: over-sampling, under-sampling and
synthetic minority over-sampling technique (SMOTE [3]).



When applied to imbalanced datasets, these techniques have
been shown, in general, to increase the predictive perfor-
mance of standard classifiers [1, 6, 9, 12]. However, re-
balancing can be misapplied. Blagus [2] shows that SMOTE
does not significantly improve the performance of classifiers
when more than 40 independent variables are used. Lane et
al. [6] found that balancing the data in a sentiment analysis
task had the most impact on severe imbalances, but was not
so effective when the minority class made up 25% or more of
the data; also, balancing the data for algorithms which can
adapt to different class probabilities, such as Naive Bayes,
can be less effective.

In this paper, we conduct an exploratory study of the im-
pact imbalance has on the performance of defect prediction
models. We hypothesise that the performance of models in-
creases as the proportion of the minority class approaches
50% of the population.

The remainder of this paper is structured as: Section 2 de-
scribes the methodology. Section 3 presents our preliminary
findings. Section 4 concludes with our recommendations.

2. METHODOLOGY

To test the assumption that moving to a more balanced
dataset will increase predictive performance, we first deter-
mine if imbalance has a significant impact on predictive per-
formance. We extracted the frequency of the defective class
(balance) of the datasets used for the 600 models in [11].

The data from [11] are based on defect prediction studies
which have predicted a module of code as being either de-
fective or not defective. When a model is trained to predict
an instance as being defective (POSITIVE) or not defective
(NEGATIVE) the results can be summarised in a confu-
sion matrix (see Table 2). Compound performance measures
can be computed from the confusion matrix to reveal differ-
ent properties of the prediction models (see Table 3). We
extract the following binary classification measures, MCC,
F-Measure, Precision and Recall, from the extracted confu-
sion matrices. We chose MCC because it combines all four
quadrants of the confusion matrix and does not ignore the
many true negatives; Precision because high values indicate
that few predictions are wrong and a developer would not
be wasting their time investigating these predictions; Recall
shows the proportion of defects actually predicted, which is
important in safety critical systems; and F-Measure com-
bines both Precision and Recall.

Observed Positive ObserYed
Negative
. " True Positives False Positives
Predicted Positive (TP) (FP)
. . False Negatives True Negatives
Predicted Negative (FN) (TN)

Table 2: A Binary Confusion Matrix

We carried out a univariate analysis of variance by con-
verting the numerical balance into 20 levels (balances), e.g.,
level 1 is any imbalance in the range 0.000 to 0.049. The
analysis of variance used a random effects model to show if
imbalance was a significant factor rather than which level(s)
are significant. Table 4 shows that balances does contribute
significantly to the variance in the results, however, dataset

family (from which imbalance is derived) contributes more.
In conclusion, imbalance of the dataset is important, but
dataset family has other features (beyond the scope of this
study) which are causing more variations in the performance
of defect prediction studies.

Partial n°  Pr(>F)

Researcher Group 31.01% < 0.0001
Dataset Family 31.00% < 0.0001
balances 18.76% < 0.0001
Input Metrics 12.44% < 0.0001
Classifier Family 8.23% < 0.0001

Table 4: Table showing how the variance result from
balances compares with other possible factors.

Having established that data imbalance can be a signifi-
cant factor in defect prediction, we now investigate the na-
ture of the relationship between Predictive performance and
imbalance. We create scatterplots of F-Measure, Precision
and Recall against balance.

3. RESULTS

Figure 1 shows that, as balance initially increases, MCC
also increases. This means that datasets with very few de-
fects tend to result in prediction models which are poor at
predicting defects. There is a change in MCC from 0.15 to
0.35 when balance changes from 0.00 to 0.20. Figure 1 has
few data points where 0.21 < balance < 0.30 and, although
average predictive performance appears to increase, we can
not be confident in saying that performance increases up to
balance =0.3. The general increase is also observed for F-
Measure and Precision. It is interesting to note that Recall
initially decreases as balance increases.

As balance increases from 0.3 to 0.5 (maximum level of
balance), the predictive performance does not tend to in-
crease for MCC. Predictive performance as measured by
Precision, Recall and F-Measure does increase.

4. CONCLUSION

Data imbalance is a factor which affects software defect
prediction. To some extent this is not a surprise as imbal-
ance has been observed to affect the ability to make pre-
dictions in other fields [6]. What is important is that the
evidence from published work shows that performance im-
proves as balance increases from 0.0 to 0.2 with the exception
of Recall. As balance changes from 0.2 to 0.5. the story is
different, MCC no longer appears to improve. Other per-
formance measures do increase but not as rapidly.

Why does this matter? Because when we clean or modify
our data we implicitly change the imbalance of the dataset [4].
This preliminary study suggests that we can estimate the
amount by which MCC may increase for datasets with a low
balance. Correcting the predictive performance for changes
in imbalance as a result of cleaning allows us to see if an
improvement in predictive performance is due to the clean-
ing step or the change in imbalance. It is also interesting
to note that, as balance initially increases, Recall declines.
If a cleaning step does not cause Recall to decline, we may
be able to conclude that the cleaning step may not be the
cause of an improvement in predictive performance.

5. ACKNOWLEDGEMENTS



Figure 1: Scatterplot of predictive performance against dataset balance. Showing that for MCC, as the balance
increase from 0.00 to 0.20, the M CC increases. An increase of balance from 0.20 to 0.5 does not seem to change
MCC. For the first scatterplot, we identify a small number of possible outliers. We have also plotted the
convex-hull of ‘best’ performance as balance increases.
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Table 3: Compound Performance Measures from a Binary Confusion Matrix

Measures Defined As Meaning
TP Proportion of actual positives
Recall TP+ FN found.
Precisi TP Proportion of predicted positives
recision TP+ FP which are true positives
P 2 x Recall x Precision _ 2rp The harmonic mean of Precision
-fieasure Recall + Precision 2I'P+ FP+ FN and Recall.
Matthews . . .
Correlation TP xTN — FP x FN Afregress1gn coeﬂifcuent ufsmg all
Coefficient /(TP + FP)(TP + FN)(TN + FP)(TN + FN) our qua rargzstr?xa contusion
(McCcC) ’
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Appendix A. Appendix

Table A.1: Protocol: Replication Studies

Rep. Studies Cross Val. Parameter Tuning Statistics Data Cleaning
No No computed the coefficient of de-  No
Zhang [2008a],Zhang [2008b] termination and the Standard
Error of Estimate
Ghotra et al. [2015] Yes Yes Scott-Knott statistical test 1/\\/[1xed: Yes‘ on NASA, No on
pache family
Leszak [2005] No No No No
Mende and Koschke [2010] 10 by 10 cross validation No E::(tlen:tan test, Nemenyi post No
Galinac Grbac et al. [2013] NA NA Pearson corr_e‘lutlon coeflicient, Y.csi removed duplicates, out-
nonparametric Spearman corre-  liers
lation, vote counting
N N 1 N
Devine et al, [2012] 0 o Spearman correlation o
Hamill and Goseva-
Popstojanova [2015b]
T I s N T-tes N
Turhan and Bener [2007] 0 by T0 randomised ) test o
Zhang et al. [2007] 10 by 10 randomised No No \l/(;r‘;leosved duplicates, missing
Song etal. [2011] 10 by T0 randomised Yes % d.liference, Wilcoxin signed  Removed outliers, missing val-
O S— - 1-tailed ues
10 strat S N N N
Singh and Verma [2014] v 1V stratifled randomise ° ° °
B T0 by TO00 randomised No Figner-Killeen, Kruskal-Wallis,  No
Krishnan et al. [2013] one-way ANOVA, t-test with
Bonferroni correction of p-
value
Rahman et al. [2011] No No Wilcoxon one sided paired No
Tosun et al. split-sample TO by 5 No Spearman, Pearson No
] split-sample by 50 No Spearman rank correlation, No
Nguyen et al. [2010] Wilcoxon rank test, ANOVA
. . stratified hold-out No Kruskal-Wallis two pairs test,  Yes
Premraj and Herzig [2011] I ; . ANOVA
T sed strati N t-test Yes
Okutan and Yildiz [2014] v =0 randomised stratiie N o °
Duala-Ekoko and Robillard  ° No Chi-square No
L2002 50 by 10fold and 10fold C; Val
Mende [2010] y Hloidand THloid Trossva
. No No Wilcoxon signed rank test, No
Kpodjedo etal. [2011] Cohen-d statistics
No No ‘Weibull, Power, Gamma, Expo-  No

Li et al. [2005]

nential, Theil

A.3 Changed components data extracted from Replication Studies
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Table A.2: Operationalisation: Replication Studies

Rep. Studies Tools Algorithms Independent Var Dependent Var
Zhang [2008a], RepZhang SPSS Non TinearReg static code (complexity), struc-  Number of defects (prerelease,
ture of abstract syntax tree (no  postrelease).
[2008b] ‘
of nodes etc.)
Ghotra et al. 12015 Weka Statistical, Clustering, Rule- static code, CK, QMOOD, Defective or Not defective
otra et al. [ ] based, Nearest Neighbours, Martin’s
NeuralNet, SVMs, Tree-based,
Ensembles
Leszak 2005 ClearDDTSTM ~ (from  IBM-  Correlation analysis Process, Complexity ~— of Number of defects (prerelease,
eszak [2005] Rational), ClearCaseTM (from changes, source file size, postrelease)
IBM-Rational) file age, defect density (file,
release)
Mende and Koschke [2010] R RandomForest Static code metrics Defective or Not defective
No No Size (LOC) Number of faults (pre-release,

Galinac Grbac et al. [2013]

analyse post-release)

Devine et al. [2012]

SourceMonitor (metrics), StatSVN

Stepwise regression

source code, change, fault met-
rics

Number of defects, defect den-
sity

Hamill and Goseva-
Popstojanova [2015a]
RepHamill ~and  Goseva-

Popstojanova [2015b]

(analyse SVN logs)
No

No

fault types, detection activities,
severity

Number of faults (prerelease,
postrelease)

Turhan and Bener [2007]

Matlab: no version

Naive Bayes, Linear Discrimi-
nant, Quadratic Discriminant

static code

Defective or Not defective

Zh < al. [2007 Function to Component level data BayesNet, Bagging, k-NN, LOC, CyclComplex and Hal- Defective or Not defective
ang etal. [ ! aggregator, Weka: No version. RandFor, NeuralN, Logis- steadVol
ticR, RBFNet, SVM, Naive-
Bayes, (C4.5(J48), K-Star,
AdaBoostM 1
No Naive Bayes, J48, OneR static code Defective or Not defective
Song et al. [2011]
No K-means static code Defective or Not defective

Singh and Verma [2014]

Krishnan et al. [2013]

CVSPS(capture commit transac-

J48

change

Defective, Not-defective

Rahman et al. [2011]

tions), Weka, R
Git

Least recently used (LRU)

churn, temporal Tocality, spatial
locality

defect density and the cost ef-
fectiveness of inspection

Ucinet 6 Network Analysis tool

NaiveBayes, LogisticReg, Lin-

Tosun et al. .

osun et & (network metrics), open-source  eaReg
metrics  extraction tool, Prest
(dependencies)

complexity, network

Defective or Not defective

Nguyen et al. [2010]

UCINET (network metrics), Struc-
ture101 (extract dependencies), Un-
derstand (complexity metrics)

TinearReg, TogisticReg

Tmport packages, Network met-
rics, Complexity, OO, Function

Number of Tfaults(postrelease),
Defective or Not defective

Premraj and Herzig [2011]

Understand V2.0 Build 505 (met-
rics for Java, C++), JDT frame
(map class back to file), UCINET
(network metrics), R

KNN, LogisticReg, Naive-
Bayes, Rpart, SVM, Tree-
Bagging

code, socio-technical (network
metrics), combined

Number of defects, Defective or
Not defective

Okutan and Yildiz [2014]

PMD source code analyser plugin
in Netbeans (for LOCQ), Weka (no
version)

Bayesian Networks

OO0, static code

Defective or Not
Number of defects

defective,

Duala-Ekoko
[2009]

and Robillard

SemDiff and Mylyn (mapping bug
fixes to bug reports)

No

Tmport packages, classes

Number of Taults

Mende [2010]

R

TogisticReg, NaiveBayes

process, change , entropy of
change , entropy, churn of
source code, source code met-
rics, CK, OO

Number of defects

Kpodjedo et al. [2011]

PADL (extract CK metrics)

Togistic regression

Design metrics (class diagrams)

Defective or Not defective

Li et al. [2005]

R

PCA, TinearReg, k-means, non-
linearReg, CART

change, development metrics
(no of in-dev process defects)

Number of faults




168

Appendix A. Appendix

Table A.3: Populations: Replication Studies

Rep. Studies Prog. Lang. Domain Granularity Source
Java IDE ackag Eclipse Versions 2.0, 2.1, 3.0
Zhang [2008a], RepZhang 0 package clipse Versions
[2008b]
Ghotra et al. [2015] C, Java (Satellite, Flight, Storage), web ?;[:;::Les) (predictions), code NASA, PROMISE, Apache, GNU

Leszak [2005] C++, C, shell script, Telecom File (metrics) Lucent
tcl/tk, perl
Mende and Koschke [2010] R Static code metrics Defective or Not defective
Galinac Grbac et al. [2013] PLEX Telecom Module, file Industrial 5 releases
T s Is PolyFI T Pi Line: 4
Devine et al. [2012] Java Software testing tools Component p:oj}:icgw Software Product Line
Hamill and Goseva- No Flight software safety-critical Component NASA (not public)
Popstojanova [2015a] Hamill
and Goseva-Popstojanova
(201301 C Satell Tight, S hod S
T tellite, Flight, St Met NASA
Turhan and Bener [2007] ava atetlite, The orage etho
Zhang et al. [2007] C, Java Satellite, Flight, Storage Component NASA
Song et al. [2011] C, Java Satellite, Flight, Storage Method NASA, PROMISE
Ilite, Fligh Meth NASA, PROMISE
Singh and Verma [2014] C, Java Satellite, Flight, Storage ethod SA, PROMIS
Krishnan et al. [2013] Java, C, C++ IDE File (predictions) Eclipse 2.0, 2.1,3.0,3.3,3.4,35,3.6
Rahman et al. [2011] C, Java Web server, Image 'mar.npulator, File (predictions) Apache Hitpd, Gimp, Nautilus, Evolu-
File manager, Email client, Text tion, Lucene
search engine
C, Java IDE, Embedded systems function, file (predictions), file  Eclipse, Embedded systems
Tosun et al. i
(metrics)
Java IDE Class, package (predictions) Eclipse
Nguyen et al. [2010] Classes, Packages, Function
(metrics)
Premraj and Herzig [2011] Java IDE source files (pred%ctmns), class JRuby, ArgoUML, Eclipse
and method (metrics)
Okutan and Yaldiz [2014] Java ‘Web Server Class (predictions) Apache Family
Duala-Ekoko and Robillard Java IDE File, Method (predictions) Eclipse version 2,3
[2009]
Mende [2010] Java IDE Class (predictions,metrics) Eclipse (Mylyn, Equinox, PDE,
Lucene, Score)
Kpodjedo etal. [2011] Java IDE, UML, Javascript Inter- Class (prec!létlons), Class dia- ArgoUML, Rhino
preter gram (metrics)
No Operating System Release (predictions) IBM

Li et al. [2005]
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