TECHNICAL REPORT

COMPUTER SCIENCE

An introduction to the Hatfield Superscalar Scheduler

Technical Report No 316

Fleur L Steven

Spring 1998

Abstract

This document presents a comprehensive overview of the Hatfield
Superscalar Scheduler (HSS). It concentrates on the concepts involved rather
than on the detailed coding because the scheduler is in a state of evolution and
is constantly under review. The main features of the scheduler, its associated
data structures, and the parameters that define and control the scheduler are
fully described. A complete list of the parameters is also found in the
appendix. This document is intended to be a guide for anyone with an

interest in scheduling, or for anyone who wants to know how to use HSS.

Fleur Steven 1 Spring 1998

Contents

Abstract
Section 1 Introduction
Section 2 The Hatfield Superscalar Architecture
Section 3 Data Dependencies
Section 4 Guards
Section 5 Comparison with Related Work
Section 6 Introduction to the Hatfield Superscalar Scheduler
Section 7 Scheduling Mechanism in HSS
7.1 Overview of HSS

7.2 Coexistence and Passing Within Instruction
Groups

7.2.1 Checking for Instruction Coexistence
7.2.2 Checking for Instruction Passing
7.3 Percolating Individual Instructions

7.3.1 Instruction Percolation Within a Basic
Block

7.3.2 Instruction Percolation Beyond a Basic
Block

7.3.3 The Addition of Guards
Section 8 Dealing with Long Latency Instructions
Section 9 Delayed Branch Mechanism

Section 10 Branch Percolation

Fleur Steven 2 Spring 1998

Section

Section
Section
Section
Section
Section

Section

References
Appendix A
Appendix B
Appendix C

Appendix D

Fleur Steven

1

17

Merging

11.1 MOV Merging
11.2 Immediate Merging
11.3 MOV Reabsorption
Combining

Memory Disambiguation
Inlining

The HSS Algorithm
Implementation of HSS

Conclusions

HSP Instruction Set
HSS Configuration Parameters
Loop Scheduling

List of Modules and Data Structures

Spring 1998

List of Figures

Figure 5.1 Loop Carried Dependencies
Figure 5.2 Ebcioglu’s Enhanced Percolation Scheduling
Figure 7.1 Structure of HSS

Figure 7.2 Percolating Instruction Failure in a Sequential
Predecessor Basic Block

Figure 7.3 Percolating Instruction Failure in a Branch Target
Predecessor Basic Block

Figure 7.4 Conditions for Instruction Combining in a Common
Basic Block

Figure 8.1 Insertion of VCOPYs after a Long Latency Instruction
Figure 10.1 Branch Information Descriptors

Figure 14.1 Inlining a Procedure

Figure 15.1 The HSS Scheduling Algorithm

Figure 16.1 The Fields in the HSS Instruction Node Descriptor
Figure 16.2 HSS Instruction Groups and Symbbl Table

Figure 16.3 HSS Procedure and Basic Block Descriptors

Figure 16.4 HSS Loop Descriptor

Fleur Steven 4 Spring 1998

1. Introduction

The Hatfield Superscalar Scheduler (HSS) is being developed as part of the
wider Hatfield Superscalar Architecture (HSA) project currently being
undertaken at the University of Hertfordshire (Steven et al, 1997). The long
term objective of the project is to achieve an order of magnitude performance
increase compared with a classic RISC processor while avoiding the often
associated increase in code size. A suite of software has been written to
support this work including HSS, an HSA gnu ‘C’ compiler, an HSA simulator
(Collins, 1993, Collins, 1995), and a Trace Driven Simulator (Potter, 1996).
The significant features of HSA are guarded instruction execution (Steven &
Collins, 1996) and a delayed branch mechanism (Collins & Steven, 1994,
Egan, 1997). Other features include in-order instruction issue and out-of-
order completion, and support for speculative execution. Unlike many other
superscalar projects the architecture is minimal in terms of the hardware help .
provided to issue instructions in parallel at run time and instead relies heavily
on an instruction scheduler to reorder the original sequential code into
instruction groups which can be executed in parallel. Thus the instruction

scheduler is the key for achieving the high performance desired.

2. The Hatfield Superscalar Architecture

The Hatfield Superscalar Architecture (HSA) was developed as a vehicle for
instruction scheduling research. It has been described as a minimal
superscalar architecture (Steven & Collins, 1996) since it embodies a hybrid
technology which combines the best features of VLIW and superscalar

concepts.

HSA is a load and store architecture with a RISC instruction set (Appendix A)
derived from its predecessor HARP (Steven, Steven & Wang, 1995). Separate
integer and Boolean register files are provided. The latter are used both to
store branch conditions and to implement guarded instruction execution. A

simple four stage pipeline is used:

Fleur Steven 5 Spring 1998

IF Instruction Fetch
ID Instruction Decode
EX Execute

WB Write Back

During the IF stage, multiple instructions are fetched into an Instruction
Buffer from the instruction cache. Instructions are then issued in order from
the Instruction Buffer to functional units during the ID stage. Conditional

branches are also resolved in the ID stage.

While more complete details of the architecture can be found elsewhere
(Steven et al, 1997), two further features are directly relevant to this paper.
First, all HSA instructions, including branches, are conditionally executed..
‘The following divide instruction, for example, will only be executed if the
value in Boolean register seven evaluates to false (or zero) at run time:
FB7 DIV R1, R6, R13

Second, the processor attempts to avoid issuing instructions from the
Instruction Buffer if the associated guard condition has already failed.
Instructions are therefore marked as “squashed” in the instruction buffer if
they have remained unissued in the buffer for a full cycle and the associated
Boolean condition evaluates to false. To avoid increased pressure on the
processor cycle time, the IF stage evaluates squashing conditions in parallel

with its primary instruction issue function.

To achieve high performance, HSS reorders the HSA assembly language code
to form groups of instructions that can be issued to functional units in parallel
at run time. These instruction groups are then presented to the processor as
traditional sequential code. The ID stage has the task of reconstructing the
original instruction groups, before issuing them in parallel for execution.
This task involves checking that each instruction being issued does not use the

result of an instruction being issued ahead of it in the same group. Since each

Fleur Steven 6 Spring 1998

pair of instructions being issued must be compared for dependencies, the
complexity of this dependency checking increases in proportion to the square

of the issue rate and places increasing pressure on the ID stage cycle time.

In the Instruction Decode stage, the processor simply rebuilds instruction
groups that have already been assembled at compile time. We are therefore
now investigating the idea of marking the end of each instruction group within
the instruction stream. This involves using only a single bit in each instruction
to flag the end of each parallel group. Issuing instructions then simply
involves scanning through the instruction buffer looking for the first end of
group flag. No dependence checks are required between instructions.
Instruction issue is subject only to functional unit availability and operands
being available from previously issued instructions. The instruction group
flags therefore effectively encapsulate information about compile-time
instruction groups, yet do not sacrifice compatibility over a range of

processor designs.

3. Data Dependencies

Scheduling instructions for parallel execution can be viewed as a process in
which each instruction is successively moved or percolated (Nicblau, 1985) up
through the code structure in an attempt to ensure that it is executed at the
earliest possible opportunity. This code motion is ultimately stopped by data

dependencies between pairs of instructions.

Three classes of data dependencies can be identified: Read after write (RAW),
write after read (WAR) and write after write (WAW). However, only RAW
dependencies represent true data dependencies and therefore ultimately limit
the performance of MII processors. In contrast, WAR and WAW data

dependencies can both be removed by using register renaming.

In the instruction sequence below instruction I2 has a WAR or anti-dependence

on I1.

Fleur Steven 7 Spring 1998

Il ADD RS, R6, R7 /*RS :=R6 + R7*/
12 ADD R6, R8, #256 /*R6 := R8 + 256%*/

This dependence can be removed by returning the result of I2 to an
unallocated register, in this case R20. This renaming allows I2 to be

percolated ahead of I1 in the instruction schedule:

12 ADD R20, R8, #256 /*R20 = R8 + 256*/
I1 ADD RS, R6, R7 /*RS = R6 + R7*/

MOV R6, R20 /*R6 := R20*/

The move instruction is required to restore the new result to R6. Note this
extra instruction need not introduce further data dependencies. Subsequent

instructions using R6 can equally well use R20.

Register renaming can also be used to remove spurious data dependencies
which arise when code is moved between basic blocks. Consider the following

example:

NE B6, R1, R2 /* B6 := (R1 <> R2)*/
BT B6, Label /* if B6 is true goto Label*/

Label:
LD R6, 8(SP) /*R6 := contents of (SP + 8)*/

The LD instruction could be moved ahead of the branch instruction and

executed speculatively' giving the following code:

NE B6, R1, R2 /*B6 = (R1 <> R2)*/

' An instruction is executed speculatively if it is executed before it is known whether the path originally

containing the instruction will actually be taken.
Fleur Steven 8 Spring 1998

LD R6, 8(SP) /*R6 := contents of (SP + 8)*/
BT B6, Label /*if B6 is true goto Label*/

Label:

Unfortunately if R6 is live on the alternative path it will be incorrectly
updated whenever the branch fails. Register renaming can be used to avoid

this problem:

NE B6, R1,R6 /*B6 := (R1 <> R6)*/
LD R20, 8(SP) /* R6 replaced by R20%*/
BT B6, Label /*1f B6 is true goto Label*/

Label:
MOV R6, R20 /*R6 = R20%*/

As before, a MOV instruction is required to copy the contents of R20 into R6
if the branch is taken.

An alternative solution is to use guarded instruction execution. On HSA any
of the Boolean registers which are used to record the results of relational
instructions can also be used as Boolean guards. In the above example B6 can

therefore be used to guard the execution of the LD instruction:

NE B6, R1,R2 /*B6 := (R1 <> R2)*/
T B6 LD R6, 8(SP) /*if B6 is true execute LD*/
BT B6, Label /*if B6 is true goto Label*/

Label:

Now the Boolean guard ensures that the LD will only be executed if the
branch is taken.

Fleur Steven 9 Spring 1998

Any further code motion will move the LD instruction beyond the scope of

the Boolean guard. Now only register renaming can be used:

LD R20, 8(SP) /*R6 replaced by R20%*/
NE B6, R1,R6 /¥B6 := (R1 <> R6)*/
BT B6, Label /*if B6 is true goto Label*/

Label:
MOV R6, R20 /*R6 = R20%/

The above code illustrates a further problem introduced by the speculative
execution of instructions. Suppose the load instruction in the previous
example generates an invalid memory reference. If the path originally
containing the load instruction is not actually followed, the instruction will

generate a spurious exception which will incorrectly terminate the program.

To solve this problem, all non-branch instructions must exist in two forms. In
the normal form, any exception generated by an instruction is immediately
taken. In the second speculative form an exception will simply generate a

polluted value in its result register. For example, consider the code below:

BT B6, Label /*if B6 is true goto Label*/
LD R6, 8(SP) /*R6 := contents of (SP + 8)*/
SUB R8, R6, #1 /*R8 :=R6 - 1*/

NE B3, RS, #0 /*B3 := (R8 <> 0)*/

Label:

Now assume that both the load and subtract instructions are scheduled

speculatively ahead of the branch instruction:

Fleur Steven 10 Spring 1998

LD! R6, 8(SP) ; speculative load
SUB! R8, R6, #1 ; speculative subtract
BT B6, Label

NE B3, RS, #0

Label:

If the load instruction generates an exception, R6 will be marked as polluted.
Since the subtract instruction is also marked as speculative, it will in turn
mark R8 as polluted when it finds R6 is polluted. An exception will only be
taken when the non-speculative relational instruction attempts to use the
polluted value held in R8. Note this is the earliest point in the code where we

can be certain that the speculative load should have been executed.

To support speculative execution an extra bit must be added to all processor
registers, including the Boolean registers, to flag polluted values. This
additional hardware support allows loads and other instructions, such as adds
which generate an exception on overflow, to be executed speculatively.
However, in the absence of additional hardware support, store instructions can
still not be executed speculatively. In HSA, stores can therefore only be safely

percolated into a preceding basic block if they can be guarded.

4. Guards
One of HSA’s major features is an ability to execute all instructions
conditionally. The instructions are conditionally executed by placing a
Boolean guard in front of the instruction. The condition tested is denoted by
T (true) or F (false). For example:

T B1 ADD R6, R7, R8
will only execute if the value in B1, at run time, is true. Likewise:

F B6 MULT RS, R4, #4
will only execute if the value in B6 is false. The instructions can also be

guarded by more than one Boolean guard. The maximum number of guards

Fleur Steven 1 Spring 1998

which can be appended to a non-branch or non-move instruction is controlled
by a parameter “MAX_GUARDS” in the file hsp_const.h. Branch
instructions have their own parameter “MAX_BR_GUARDS” to determine the
number of guards available to them. Likewise MOV instructions have their
own parameter “MAX_MOV_GUARDS” which also determine the number of
guards available to them. Thus several guards up to this predefined number
can control instructions as follows:
T B2 F B5 FB7 BT B1, Loop
Here the BT (branch if true) instruction will only execute if B2 is true, B5 is

false, and B7 is false. It will then only branch to Loop if B1 is true.

By setting the appropriate parameters to zero, conditional execution can also
be switched off. In these circumstances the scheduler will make no attempt to

attach new guards to instructions.

Guarded instructions have three major advantages. Firstly, renaming is
avoided when an instruction is percolated into a preceding basic block. If we
consider the fragment of code below:

GT B2, R2, R3

BT B2, Label

MULT R6, R8, R9
The MULT instruction can always be moved in parallel with the branch
instruction as long as the guard condition T B2 is attached:

GT B2, R2, R3

BT B2, Label; T B2 MULT R6, R8, R9
If guarded execution is switched off R6 must be renamed if the contents of R6
is live on entry to the basic block starting at Label. Therefore, conditional
execution reduces the number of registers required by the code and removes

the need for the extra MOV instruction introduced by the renaming process.

Secondly, conditional execution can result in the deletion of short basic blocks.

For example, typical code for an “if then else” statement is shown below:

Fleur Steven 12 Spring 1998

NEQ B6, R14, R15 /*B6 = (R14 <> R15)*/

BF B6, else_code /*Branch if B6 = false*/
then_code: ADD R1, R2, R3

BRA continue /*Unconditional branch*/
else_code: SUB R1, R2, R3

continue:

After scheduling the following code may be produced:
NEQ B6, R14, R15
T B6 ADD R1, R2, R3; FB6 SUB R1, R2, R3
Thus, three basic blocks have been reduced to one, thereby reducing code size

and reducing the number of branch execution units required.

Thirdly, branch instructions themselves can be moved into a branch delay slot

of an earlier branch:
BT B1, Label

BT B2, Label2
becomes:

BT B1, Label; F B1 BT B2, Label2
There are however, two main disadvantages of conditional execution. Firstly,
extra encoding space is required in each instruction word to specify the
condition. Secondly, guards significantly increase the complexity of the
instruction scheduler. Instruction scheduling ultimately reduces to a massive
case analysis problem and our experience suggests that using Boolean guards

introduces a significant number of additional hard-to-handle cases.
5. Comparison with Related Work

This section attempts to put the HSS scheduling algorithm into context and

compares it with other work being carried out in the USA.

Fleur Steven 13 Spring 1998

Trace Scheduling (Fisher, 1981), which is perhaps the best known instruction
scheduling technique, was developed by Fisher at Yale in conjunction with a
VLIW architecture. Central to this technique is the concept of a trace which is
a path through a sequence of basic blocks that is frequently executed. Traces
are selected and scheduled in order of their frequency of execution. The
selected trace is scheduled as if it were a single basic block. Code is then
inserted at path exits and entrances to preserve the semantics of the off-trace
state. The process is repeated until all the code has been scheduled. However,
code from successive traces is never overlapped by the scheduler and
therefore successive iterations of a loop will never be overlapped to achieve
software pipelining. This problem can be addressed by unrolling loop bodies
to provide longer traces and then allowing the unrolled loop bodies to be
scheduled for parallel execution. However, loop unrolling is an excellent

mechanism for achieving code explosion.

At Hertfordshire, we feel that code compatibility and code expansion problems
make Fisher’s VLIW architecture unsuitable for general-purpose computation.
Fortunately, the instruction scheduling techniques pioneered by Fisher can be
equally well applied to superscalar processors. Only slight changes are
required to preserve the instruction-level semantics and to ensure that the

resultant code can also be executed in the traditional sequential style.

Current scheduling developments try to achieve software pipelining and build
on either Modulo Scheduling Techniques (Rau and Fisher, 1993, Rau, 1994) or
on the Enhanced Percolation Scheduling algorithm (Ebcioglu, 1994)
developed by Kemal Ebcioglu’s group at IBM. Software pipelining is a
method of overlapping operations from different loop iterations, without
initially unrolling the loop, thereby attempting to produce a minimum number

of cycles between successive loop iterations.

Modulo Scheduling attempts to construct a schedule based on a fixed initiation

interval (II). The II is the delay between the beginning of successive iterations

Fleur Steven 14 Spring 1998

of a loop. Modulo Scheduling computes a lower bound on the II. The
minimum]I may be determined by loop carried dependencies. Loop carried
dependencies are dependencies between instructions in different iterations of a
loop. In Fig 5.1 a circular chain of dependencies ensures that II must be at
least four. In general an instruction in loop iteration ‘n’ may depend on an

earlier instruction in loop iteration ‘n-i’, or by available resources.

4 , ™

Circular chain of dependencies.
In general, inst1 in cycle n will
depend on inst4 in cycle n - 1.

-

Fig 5.1 Loop Carried Dependencies

The II may also be limited by the number of instructions that can be issued in
each cycle. For example, if there are five arithmetic instructions in the loop
and only two ALU operations can be issued in each cycle, the II must be at
least three. The loop schedule is then obtained by placing instructions in a
window of appropriate size for the minimum II. A reservation table is used to
record resources currently in use by a particular instruction. Instructions can
be “unscheduled” because of resource conflicts and then rescheduled later in
the window as part of a backtracking scheduling algorithm. When an
instruction is “unscheduled” the resource information pertaining to that
instruction is removed from the window. If a schedule cannot be obtained for

a given II, the II is incremented and scheduling is attempted again. This

Fleur Steven 15 Spring 1998

process is repeated until a satisfactory schedule is obtained. A loop prelude
and postlude are added after the schedule. This basic algorithm only works
for single basic blocks. The main challenge in using Modulo Scheduling is to

extend the technique to loop structures of arbitrary complexity.

One technique that has been proposed is to use guarded execution to convert
multiple basic blocks into a single basic block before scheduling. This
procedure is called if-conversion (Warter et al, 1993). If guarded execution is
not provided the process must then be reversed using reverse if-conversion

(loc. cit). Unfortunately, the resultant scheduled code is far from optimum.

In contrast to Modulo Scheduling, Enhanced Percolation Scheduling keeps the
body of the loop intact throughout the scheduling process. During scheduling
an instruction group, termed the fence, is selected and searches are then made
through the code for instructions which will coexist within the selected group.
This continues until the group is full or until no further instructions can be
found. All successor groups of the fence are then selected as the new fences
and searches are again made for instructions to fill the groups. Instructions in
already filled fences are now allowed to migrate upwards past the join point of
the loop, both around the backedge and into a loop prelude. To facilitate this
code motion, two copies of each filled fence are created, one on the path

entering the loop and one at the end of the loop (Fig 5.2).

The copy of the filled fence at the end of the loop represents operations from
the next iteration of the loop. The whole process is repeated until all the
instructions in the loop have been moved into fences. A major challenge with
this technique is to avoid the excessive code expansion caused by the

aggressive fence duplication.

Fleur Steven 16 Spring 1998

e

Filled 1st
Fence >
1st Fence =
I
2nd Fence >

Fig 5.2 Ebcioglu’s Enhanced Percolation Scheduling

HSS builds on the IBM work and can therefore schedule loops of any
complexity. However, our scheduler differs in two important respects.
Firstly, each individual instruction is scheduled in turn and percolated up
through the code structure as far as possible. In contrast, the IBM algorithm
assembles each parallel instruction group in turn by repeatedly searching
forward through the code for candidate instructions. Our approach avoids
repeatedly picking up candidate instructions only to find that they can not be

moved far enough to be included in the group currently being assembled.

Secondly, code motion across loop back edges is restricted to avoid excessive
code expansion. As in the IBM algorithm, code is systematically moved across
loop back edges to overlap successive loop iterations and achieve software
pipelining. However, code is only moved across a loop back edge if it can be
demonstrated that the instruction being moved is part of a critical path

dependence chain that determines the iteration time of at least one path

Fleur Steven 17 Spring 1998

through the loop.

6. Introduction to HSS
HSS has been developed to improve performance through static instruction
scheduling. The long term aim is to achieve an order of magnitude

performance increase over conventional RISC processors.

HSS must gather information about a particular benchmark and place the
benchmark’s assembly instructions in appropriate data structures before any
instruction scheduling can take place. The scheduler must therefore first read
in the instructions, form one-word parallel instruction groups (LIW), detect
basic blocks, find branch targets, detect procedures, detect loops?, and
compute register live ranges. In addition there is an option for inlining
functions which can be invoked after the live range analysis has been
completed. If the inlining option is invoked, the loop detection and live range

information must then be updated before scheduling can commence.

The program is scheduled a procedure at a time. Because programs spend a
great deal of time in loops and provide much potential parallelism, innermost
loops are scheduled first, followed by outer loops and finally by straight line

code.

Once scheduling has been completed, the final scheduled code is output by the
functions “PrintParInstructionRecord” and “PrintSeqlnstructionRecord” found
in the file hsp_sched.c. “PrintSeqlnstructionRecord” outputs the scheduled
code in a form suitable for the HSP simulator. The resulting scheduled code is
then used by the HSP simulator to produce statistics about the scheduled code.
The final schedule will comprise many instructions in parallel and the

resulting code will execute more quickly than the unscheduled code.

HSS is available on Sun Unix workstations and PCs under Linix, and is very

? Nested loops which share the same header are merged before scheduling.
Fleur Steven 18 Spring 1998

straightforward to use. It takes as input the HSA assembly code which has
been produced by the HSA Gnucc ‘C’ Compiler and outputs four other files

with various extensions. These files must be specified by the user as follows:

% hsp <file.s> <fileu> <file.ps> <file.ins> <file.stat>
input output output output output

If the correct number of files is not specified HSS will output an error

message conveying the correct usage and will then exit.
The output files all serve different purposes as follows:

The lines of assembly code in file.u are numbered to make it easier to see
which instructions have been moved up during scheduling. In file.ps the
scheduled code is output as parallel instruction groups for viewing by the user.
In file.ins the same code is output with only one instruction per line in a
format suitable for the HSA Simulator. Finally, file.stat contains statistics
about the code gathered during instruction scheduling such as the number of

instructions contained in the program both before and after scheduling.

HSS is configured by changing parameters in the file hsp_const.h. There are
two types of configuration parameter. The first type selects the target
machine model. For example, the number of arithmetic units available is
determined by assigning a value to the parameter “ARITH_UNIT”. The
second type selects the various scheduling options available. For example, the
decision whether to percolate code into a basic block ending in a BSR is
determined by assigning the value YES or NO to the parameter
“PERCOLATEINTOBSR”. Full details and an explanation of these

parameters can be found in Appendix B.

7. The HSS Scheduling Mechanism

This section is concerned with the scheduling process and examines both local

Fleur Steven 19 Spring 1998

and global percolation. Firstly, it presents an overview of the scheduling
process. Secondly, it goes on to describe two major processes involved in
instruction percolation, that is, checking to determine whether instructions can
coexist within instructions groups and if so whether they can pass these
instructions to move into the next instruction group. Thirdly, the percolation
of a single instruction both at the local level and at the global level is outlined.
Finally, an example is presented showing the addition of guards to a
percolating instruction from a sequential successor basic block and a branch

target basic block.

7.1 Overview of HSS
The HSP GNU CC Compiler was generated using GNU CC (Stallman, 1989).
The benchmarks compiled with this compiler can then be presented to HSS for

scheduling.

Fig 7.1 shows a structural overview of the HSS scheduler. For simplicity,
only certain of the modules are shown in the diagram. The code presented for
scheduling can be optionally inlined (indicated by the shaded inlining box).

Inlining is fully described in Section 15.

The HSS Backedge Algorithm is at the highest level of this system and
incorporates both local and global percolation. Local percolation takes place
first and then calls global percolation to percolate an instruction into another
basic block. Within percolation, dependencies must be checked and this
involves both a check to see whether an instruction can coexist with another
instruction, that is, be executed in the same cycle as another instruction and
also whether an instruction can pass another instruction, that is, be executed
before another instruction. CheckCoexist also checks for any instruction
merging (Section 12) that is possible. This is one technique for removing the
problems associated with true data dependencies. During CheckPass, the
memory disambiguation function (Section 14) is invoked in order to ascertain

whether load and store instructions access the same memory locations.

Fleur Steven 20 Spring 1998

HSP Gnu CC Compiler
Generated Code

i

4 HSS Backedge)
Percolation

4 Percolation

CheckCoexist
. C Merge)

Machine < | Heuristics

Model
CheckPass
|samb|guat)
\ i /

Scheduled Code

for HSP

Fig 7.1 Structure of HSS

7.2 Coexistence and Passing Within Instruction Groups

During the scheduling process, whether a percolating instruction can coexist
with or pass other instructions already within an instruction group is checked
and determined by code contained in files hsp_checkcoexist.c and
hsp_checkpass.c

Fleur Steven 21 Spring 1998

7.2.1 Checking for Imnstruction Coexistence

File hsp_checkcoexist.c contains a number of functions which compare
pairs of instructions for coexistence. Each of the functions deals with a
particular pair of instructions according to their types. For example function
“CoexistTypesl_1" compares two instructions both of which must have a value
between one and four inclusive in their type fields. These values indicate that
each instruction is one of four types: arithmetic, logical, multiplication or
relational. In contrast to this, function “CoexistTypes6_5" compares two
instructions, the first of which must be of type 6 which indicates a store
instruction, and the second or percolating instruction must be of type 5 which

indicates a load instruction. There are 16 such functions.

A check for coexistence is invoked during the percolating process. A
percolating instruction can coexist within an instruction group if there are no
true data dependencies between it and the instructions already in the group,
and if there are also enough resources available in terms of functional units.
Consider two instructions, instl already in an instruction group and a
percolating instruction, inst2. If an anti-dependence occurs between the two
there is no problem because the percolating instruction is added by default to
the end of the instruction group. Where possible, output dependencies are
dealt with by deleting instl. Alternatively, if inst2 is guarded it may not
always be executed whenever instl is executed. In this case it is not safe to
delete inst]l and the output of inst2 is renamed. If a true data dependence
occurs between the percolating instruction and an instruction in the group, it
may be possible to remove it either through merging (Section 12) or
combining (Section 13). However, for the moment we can assume that a true

dependence halts the percolation process.

7.2.2 Checking for Instruction Passing
If a percolating instruction can coexist within an instruction group the
percolation process will then call the function “CheckPass” in the file

hsp_checkpass.c to determine whether the percolating instruction can move

Fleur Steven 22 Spring 1998

past all the other instructions in the group. If there is an anti-dependence
between an instruction in the group and the percolating instruction then the
output register of the percolating instruction must be renamed before it can
pass that instruction. In the case of instruction pairs with references to
memory locations, memory disambiguation is invoked (Section 14), and a
check is made to compare the addresses of the two instructions. If the
addresses are different then the percolating instruction can move past the first

instruction, otherwise it cannot.

7.3 Percolating Individual Instructions

When considering the percolation of an individual instruction its movement
both within its initial basic block and its subsequent movement beyond the
initial basic block must be examined. In general, an instruction may be able to
move up several different paths during percolation. The scheduler even has to
cope with multiple copies of a percolating instruction which may enter the
same basic block from several different paths. Thus many problems have to

be resolved to maintain the semantic validity of the program.

7.3.1 Instruction Percolation Within a Basic Block
The following fragments of code illustrate the process of calling
“CheckCoexist” and “CheckPass” discussed in Sections 7.2.1 and 7.2.2.

The following example shows that although inst3 can pass all the instructions
in LIW2 it has a true data dependence with the LD instruction in LIW1 and
cannot percolate any further.

LIWO: SUB R2, R3, #4

LIW1: LD RI1, (RO, RS);

LIW2: MOV R7,R2; ADD R2, R3, R4

inst3: ADD RS5, R1, R6 /*percolating instruction*/

inst3 can coexist within the LIW2 group as shown below:

Fleur Steven 23 Spring 1998

LIWO: SUB R2, R3, #4
LIW1: LD RI, (RO, RS);
LIW2: MOV R7,R2; ADD R2, R3, R4; ADD RS, R1, R6

inst3:

In the following example, the LD instruction in LIW1 has been modified by
changing the destination register R1 to R3 The percolating instruction can
now move further up, as there is no longer a true data dependence between the
LD instruction and the percolating instruction. However, there is still an anti-
dependence between the two instructions, and the destination register of the
percolating instruction will have to be renamed to pass the LD, as shown
below. If the renaming option is not enabled a FAIL is returned and the

instruction cannot percolate any further.

LIWO0: SUB R2, R3, #4; ADD R10, R1, R6

LIW1: LD R3, (RO, RS)

LIW2: MOV R7,R2; ADD R2, R3, R4

inst3: MOV R5, R10 /#MOV instruction introduced during renaming*/

7.3.2 Instruction Percolation Beyond a Basic Block

If an instruction reaches the top of its basic block, as is shown in the above
example, it is then percolated into both the sequential predecessor and branch
target predecessor basic blocks. The instruction must succeed in percolating
into all the predecessor blocks to retain the semantic validity of the program
otherwise a FAIL is returned. Percolation therefore, in general, involves
inserting one or more versions of an instruction in new locations and deleting

or removing the original version of the instruction from the schedule.

However, there have been previous versions of the scheduler where, if one of
the basic block predecessors is a sequential predecessor and the instruction
fails to percolate into it but succeeds in percolating into the basic block’s other

predecessors, then to retain the semantic validity of the program the basic

Fleur Steven 24 Spring 1998

block that the percolating instruction started from is duplicated and inserted

immediately after the sequential predecessor (Fig 7.2).

BB_Pred_BT BB_Pred_SS
ADD R5, R6, R7
SUCCEEDS ¥
ADD R5,R6,R7 |
ADD RS, R6, R7 "DupUcated BB"

is percolating
instruction from
Original BB

BIR’A to BB_SSA

4

Original BB

Y

BB_SS

Last BB in Proc

FAILS

|__ Original BB duplicated

and inserted

| New BB inserted to

branch to sequential
successor of Original BB

Dashed line indicates
original path

Fig 7.2 Percolating Instruction Failure in a Sequential Predecessor BB

Similarly, if one of the basic block predecessors is a branch target predecessor

and the percolating instruction fails to percolate into it but succeeds in

percolating into the basic block’s other predecessors, the percolating

instruction’s original basic block is inserted at the end of the procedure and all

branches are updated to retain the semantics of the program (Fig 7.3).

Fleur Steven

25

Spring 1998

BB_Pred_BT BB_Pred_SS

ADD R5, R6, R7
FAILS \ SUCCEEDS
\
ADD R5, R6, R7
\ is percolating
\ instruction from
\ Original BB
branch updated —_— e — —
to br‘anch to new Original BB Dashed line indicates
duplicated BB =
original path
BB_SS G
Last BB in Proc

Original BB duplicated__| ADD RS5, R6, R7
and inserted "Duplicated BB"

New BB insertedto —LBRA to BB SS
branch to sequential —

successor of Original BB

Fig 7.3 Percolating Instruction Failure in a Branch Target Predecessor BB

The problem of duplicate instructions was referred to at the start of this
section and there are two major circumstances which will need to be resolved
by the scheduler. Firstly, if an instruction moves up several different paths
and meets itself in a basic block further up, it can only be successfully inserted
into that block if any guards or other alterations acquired during percolation
permit both copies of the instruction to be combined to form a single
instruction; otherwise the second percolation to reach the basic block will fail.
Secondly, if one copy of an instruction has already successfully percolated all
the way through a basic block on one path, then a second copy of the

Fleur Steven 26 Spring 1998

instruction following another path cannot be inserted into that block. It also

has to percolate all the way through the block otherwise its percolation fails
(Fig 7.4).

Single insertion of form

C ADD R1, R2, R3 allowed.
O%Hélon < (R1 could also be renamed).

Guards acquired must allow

instructions to combine into
a single instruction
If one of the source

operands changes on

2> redecessor redecessor
one path only, it will —>>P P
fail when it enters the BB on path BB on path

common basic block

Initial BB | ADD R1, R2, R3

Fig 7.4 Conditions for Instruction Combining in a Common Basic Block

7.3.3 The Addition of Guards

On entry to a new basic block, a guard may be added to an instruction if the
control flow from the block is determined by a conditional branch (BT or
BF). Let us assume the branch is BT B1, Label. If the prédecessor block is a
sequential predecessor then the opposite guard, F B1, is added. If, on the
other hand, the predecessor block is a branch target predecessor the same
guard, T BI1, is added. Any number of guards may be added up to a
predefined number set by the user. As an instruction percolates through
several basic blocks it may therefore acquire multiple guards. An example of
instructions in sequential and branch target basic blocks percolating up is
shown below:

NE B1, R11, R12
BT B1, L8

ADD R10, R6, #-1 /*sequential successor moving up*/

Fleur Steven 27 Spring 1998

L8: MOV R5, # /*sequential branch target moving up*/
becomes:

NE B1, R11, R12

BT B1, L8

F B1 ADD R10, R6, #-1

T B1 MOV RS, #6

During percolation an instruction might acquire more than the maximum
permitted number of guards. If the instruction is not a branch or a store then
the guard which was acquired the earliest is removed and the destination
register is renamed. In the case where the instruction is a branch or a store a
different approach is required. Firstly, a branch instruction must never lose a
guard. Secondly, a store instruction cannot be executed speculatively as to do
so would irretrievably alter the state of the program. Therefore, in these two
cases if the number of guards exceeds the permitted maximum, the percolation
fails.

8. Dealing with Long Latency Instructions

Certain instructions require more than one cycle to execute and these are
termed long latency instructions. The number of cycles a long latency
instruction requires is defined by the user in file hsp_const.h. HSA
simulations traditionally allow three cycles for a multiplication and 16 cycles
for a divide while the number of cycles assigned to a load instruction directly
depends on the number of cycles required to access the data cache. One cycle
results in a load latency of one, while two cycles gives a load latency of two.
When a long latency instruction is percolated up through the code a
mechanism 1s required to deal with the extra cycles. For example, if a load
instruction with a latency of two is moved up into a new instruction group, the
following instruction group must not contain an instruction which uses the
load instruction’s destination register as a source operand. At run time, such

an instruction would stall for one cycle while the load instruction completed

Fleur Steven 28 Spring 1998

and therefore the schedule would not be optimal. The example below
demonstrates the problem:

LIW1 ADD R1, R2, R3; LD R5, (RO, R6)

LIW2 SUB RS, R5, R4
The LD in LIW1 has RS as the destination. The SUB in LIW2 will therefore
stall waiting for the LD to complete. To obtain an optimal schedule, the
scheduler must therefore insert an additional instruction group between LIW1
and LIW2.

HSS optimises its schedule by inserting placeholders, one for each cycle
required to execute a long latency instruction, in the instruction groups
immediately following the instruction group occupied by a long latency
instruction. These placeholders are called virtual copies (VCOPYs) and take
the form VCOPY Ri, Ri where Ri is the destination register of the long
latency instruction. VCOPYs are just placeholders introduced during
scheduling; they do not use any resources and are not included in the final
output code that is executed by the simulator. They are merely there to
enforce optimal scheduling. The above example is now transformed as shown
below: '

LIW1 ADD R1, R2, R3; LD RS; (RO, R6)

LIW?2 VCOPY R5, R5

LIW3 SUB RS, RS, R4
The VCOPY has ensured that the SUB instruction cannot move into LIW2 as

it has a true data dependence on register R5.

When VCOPYs were intially implemented in HSS, they were generated only
once during the entire scheduling process for each long latency instruction.
They were then treated in exactly the same way as any other instruction and
were percolated up through the code in their turn. However, problems
occurred when long latency instructions percolated up several different paths
and were finally inserted in several different basic blocks. As there was only
one initial generation of the VCOPYs, they could not be shared by all the

Fleur Steven 29 Spring 1998

newly inserted long latency instructions. Furthermore, they tended to get
separated from their long latency instructions during scheduling. This
separation made renaming particularly difficult since the associated VCOPYs
must also renamed. The implementation was changed and now whenever a
long latency instruction is percolated and inserted into a group, the required
number of VCOPYs is also generated and inserted into the following
instruction groups. A distinct set of VCOPYs is therefore generated for each
instantiation of the long latency instruction. This process involves retracing
the percolation path, possibly through several basic blocks. Similarly,
whenever a long latency instruction is deleted from the schedule, its associated
VCOPYs are also deleted.

Fig 8.1 shows how the VCOPYs are inserted when a multiply instruction is

successfully percolated into two basic blocks.

BlOCkl BlOCkZ BlOCkl BIOCkZ
Pred BB Pred BB Mult
VCOPY Mult

N\

Mult J—Long Latency VCOPY VCOPY
Instruction VCOPY

Fig 8.1 Insertion of VCOPYs after a Long Latency Instruction

A multiply instruction typically requires three cycles to execute and therefore
requires two VCOPYs per instruction. In Blockl1 the multiply has percolated
into the penultimate instruction group. In Block2 the multiply has percolated
into the last instruction group. The VCOPYs are then inserted as follows:
Blockl has one VCOPY in the last instruction group. The other VCOPY
belonging to the multiply is inserted in the first instruction group of the
successor block, that is, the block the multiply originally started from. In
Block2 because the multiply is already in the last instruction group both
VCOPYs have to be inserted in Block2’s successor in the first and second

Fleur Steven 30 Spring 1998

instruction groups If the long latency instruction is subsequently successfully
repercolated, new VCOPYs will be inserted with every new instantiation of
the multiply instruction, while the original VCOPYs will be deleted along with
the earlier multiply instructions. To facilitate the deletion process each
VCOPY’s instruction node contains a pointer to the associated long latency

instruction that caused it to be generated.

9. Delayed Branch Mechanism
HSA provides a delayed branch mechanism where the number of instructions
to be executed after the branch is specified in the branch instruction as an
immediate value. In the scheduler, however, it is more convenient to think in
terms of the number of instruction groups, after the group containing a
branch, that must be executed before the branch is taken. These groups are
known as delay slots and their number is defined by the user.

LIW1 BT B1, Label (#3); T B1 SUB R6, R11, #10

LIW2 T B1 ADD R5, R6, R7

LIW3 T B1 ASR R4, RS, #2

Section 2 described the HSA pipeline. A branch instruction is fetched in the
IF stage and resolved in the ID stage (computing PC + offset, and testing the
boolean register condition). There is therefore an inherent delay before an
instruction fetch can be initiated from a branch target. If it takes one cycle to
fetch an instruction from the ICACHE, and another cycle to resolve the
branch, then the minimum number of delay slots required will always be equal
to the number of fetch cycles in the ICACHE, that is, one. If the IF stage

takes two cycles then the number of delay slots required will be two and so on.

The number of delay slots required after the branch is defined by the user by
setting the parameter “ICACHE_CYCLES” in the file hsp_const.h to an
appropriate integer value. “ICACHE_CYCLES”, in turn, is used to give a
value to the parameter “DELAY_SLOTS” which ultimately determines the

number of slots inserted during scheduling. A slow icache is modelled by

Fleur Steven 31 Spring 1998

setting the parameter to two and a fast icache is modelled by setting the
parameter to one. The branch instruction then specifies the number of
instructions to be executed after the branch instruction. This variable count is
implemented by providing a count field in all branch instructions. Initially,
the compiler sets all count fields to zero After instruction scheduling, HSS
sets the count equal to the number of instructions successfully scheduled
between the branch instruction and the end of the final delay slot group. For
example, below is a fragment of code showing a branch instruction with two

delay slots:

46 T B6 ADD R16, R19, #4; BT B6, L10 (#6); VCOPY R1, R1;

VCOPY R7,R7; FB6 LD R17, 12 (SP); FB6 LD R18, 16 (SP);

F B6 ADD RS, SP, #256

49 VCOPY R17,R17; VCOPY R18, R18; FB6 LD R19, 20 (SP)

F B6 MOV R16,R7; F B6 MOV SP, R8
51 VCOPY R19, R19
The above fragment of code shows a branch instruction BT B6, L10 (#6)
followed by several other instructions. The immediate value of six means that
six instructions after the branch are to be executed, before the branch is taken.
The branch will only execute if B6 is true. The virtual copy (VCOPY)
instructions are only inserted during scheduling to enforce long instruction
latencies. As VCOPYs are not included in the output code executed by the

HSA simulator, they are not included in the branch count.

10. Branch Percolation

HSS maintains information concerning the branches associated with each basic
block in a data structure called “listofbranches”. Initially, for each basic block
containing a branch, the ‘branchlistptrhead’ and ‘branchlistptrtail’ pointer
fields in the basic block descriptor are set to point to a “listofbranches” data
structure which contains information about the initial location of the branch.
As the branch percolates up through predecessor basic blocks, these structures

are updated to maintain the current state of the branch. With each new

Fleur Steven 32 Spring 1998

instantiation of a branch in a predecessor basic block a new “listofbranches”
node is added to the list (Fig 10.1). If a branch happens to be the only
instruction in the basic block and it then moves up into a predecessor basic
block the now empty original basic block is retained and its branch pointers
are updated to point to the newly scheduled branch. Thus, HSS always retains

the concept of only one branch per basic block.

Basic Block Descriptor listofbranches
ints to
branchptr $E:£c; branchptr
points to . BBcurrent instruction BBcurrent
branchlistptrhead - basic block(bit mask records
: - branch is ercpath path branch ~ —i- ercpath
branchlistptrtail -1 currently in Perep percolates through PETeD
prev 4 prev
next > next

A

Fig 10.1 Branch Information Descriptors

HSS treats branch instructions in a similar manner to other instructions during
percolation in that both CheckCoexist and CheckPass are invoked to see if
there are any dependencies between the boolean register of a branch and the
boolean registers of other instructions. However, the percolation of branches
differs in two important respects. Firstly, branches can only move up the
number of delay slots specified (Section 9). Secondly, if a branch (second
branch) moves up into a predecessor basic block which already contains a
branch instruction (first branch), then the second branch becomes an
instruction in the first branch’s delay slot, and other instructions in those delay
slots after the second branch are also included in the second branch’s delay
slots. An example showing the situation in which a branch has moved up into

a predecessor basic block is shown below:

Fleur Steven 33 Spring 1998

36 SUB R4, R6,R4; BT B8, L10 (#6); F B8 BT B9, L10 (#14)
37 ADD R4, R4, #-60
38 ST (RO, R16), R4; MOV R16,R7; T B8 LD R4, _seed;
7 F B8 T B9 LD R6, _seed
11 ~ VCOPY R6, R6; T B9 MOV R17, #1; T B9 MOV R16, R10;
F B9 MOV R16, R11; FB9 MOV R17, R8; F B9 MOV R18, R9;
F B9 MOV R19,R12; F B9 MOV PC, RA (#2);
F B9 MOV SP, R13
11 TB9 MOV R4, R6
0 NOP

L10:
ADD R7, R16, #4; LES B8, R17, #9; etc...

The branches are highlighted in bold. The BT B8, L10 instruction is already
in the predecessor basic block. The BT B9, L10 instruction has moved up
from the sequential successor and obtained the guard F B8. This branch
instruction then becomes one of the instructions in the first branch’s delay
slots. In turn, its own delay slots include LIWs from the sequential successor
it moved up from. In the second branch’s delay slots a MOV PC, RA
instruction has also moved up from a sequential successor and obtained the
guard F B9. In its delay slots an instruction has moved up from a branch
target successor, labelled L10, and has obtained the guard T B9. A NOP is
inserted in the final delay slot of the MOV PC, RA as two delay slots have
been defined in the hsp_const.h file.

11. Merging

HSS uses a technique termed merging as one way of overcoming the
limitations associated with true data dependencies. Merging involves
combining or collapsing two instructions into a single instruction. The case

analysis is very extensive and all the code concerned with merging can be

Fleur Steven 34 Spring 1998

found in the HSS file hsp_merge_instructions.c.

There are three different categories of merged instructions. The first
category involves a pair of instructions in which the first instruction is a MOV
instruction (MOV merging). The second category involves a pair of
instructions where both of the instructions contain an immediate source
operand (immediate merging). The third category has a MOV instruction as
the second or percolating instruction which can be converted to the same type
as the first instruction (MOV Reabsorption). Merging is enabled by setting
the parameters “MOV_MERGE” and “LD_MOV_MERGE” in file
hsp_const.h to true.

11.1 MOV Merging

When a true data dependency occurs between a MOV instruction and any
percolating instruction, a check is made to see whether the two instructions
can be merged. If successful the percolating instruction can continue its
progress through the basic block. A very comprehensive set of MOV merges
has been implemented on HSS. Below are several examples to show the sorts

of cases that have been implemented.

In the following example an ADD instruction merges with a MOV:
MOV R6, R7
ADD R3, R6, RS /*percolating instruction™*/
becomes:
MOV R6, R7; ADD R3, R7, R5
Thus the replacement of R6 by R7 in the ADD instruction removes the true
data dependency.

In the following example both instructions contain an immediate operand:
MOV R6, #4
ADD R3, R6, #5 /*percolating instruction*/

becomes:

Fleur Steven 35 Spring 1998

MOV R6, #4; MOV R3, #9
The immediate values have been added together and the ADD instruction has

been changed to a MOV instruction.

The example below shows a ST instruction merging with a MOV containing a
zero value immediate operand:
MOV R3, #0
ST (R1, R2), R3 /*percolating instruction*/
becomes:
MOV R3, #0; ST (R1, R2), RO
The R3 in the ST instruction has been changed to RO (in HSP RO always has

the value zero).

The code below shows a relational instruction merging with a MOV
nstruction containing an immediate operand:

MOV R4, #4

GT B1, R4, R3 /*percolating instruction*/
becomes:

MOV R4, #4; LTE B1, R3, #4 ‘
The true data dependence is between the register R4 in both instructions and
therefore the GT has become LTE to allow the operands of the relational

instruction to be exchanged.

There is another related group of merge cases that involve the Boolean guards
which are used by HSP to conditionally execute instructions. Here the true
data dependence is between a Boolean register set by the first instruction,
either a relational instruction or a MOV Bi, Bj instruction, and a percolating
instruction which is guarded. In these cases the guard itself can be changed or

removed to allow the percolation to continue.

The following example shows the result of an ADD instruction guarded by

Boolean register B3 merging with a special relational instruction:

Fleur Steven 36 Spring 1998

EQ B3, RO, RO /*B3 = true*/

T B3 ADD R10, R11, R12
becomes:

EQ B3, RO, RO; ADD R10, R11, R12
The instructions EQ Bi, RO, RO and NE Bi, RO, RO are only used because of
the absence of the instruction forms MOV Bi, #true or MOV Bi, #false in
HSA. Because we know that B3 is always going to be true, the guard T B3
can be removed from the ADD instruction. If B3 always evaluated to false the

percolating instruction would be replaced by a NOP.

The example below shows a LD instruction guarded by Boolean register B1
merging with a MOV instruction where both of its operands are Boolean
registers:

MOV B1, B2

T B1 LD R4, (RO, R6) /*percolating instruction with guard*/
becomes:

MOV B1, B2; T B2 LD R4, (R0, R6)
The guard has now changed from B1 to B2 allowing the LD to coexist with
the MOV. Relational moves will also combine with branch instructions in the
same way as above and this is shown below:

MOV B1, B2

BT B1, Label
becomes:

MOV B1, B2; BT B2, Label

If the boolean is a constant, the branch will either be removed or altered to a
branch always (BRA) instruction. For example:

EQ B1, RO, RO

BT B1, Label
becomes:

BRA Label

Fleur Steven 37 Spring 1998

11.2 Immediate Merging
Immediate merging involves any pair of instructions which both have
immediate values as their third operands. For example:

SUB R3, R6, #3

ADD R4, R3, #1
becomes:

SUB R3, R6, #3; ADD R4, R6, #-2
In this case, the first immediate value has been subtracted from the second
immediate value, and has been added to the substituted first source operand in
the ADD instruction.

11.3 MOV Reabsorption
In this type of merging the second instruction which is a MOV is converted to
the same type as the first instruction:

ADD R3, R4, RS

MOV R6, R3 /*percolating instruction*/
becomes:

ADD R3, R4, R5; ADD R6, R4, R5
Thus R3 in the MOV instruction has been replaced by R4 and RS in the first
ADD instruction thereby converting the MOV to an ADD instruction. The
1dea behind this type of merging is to reabsorb MOVs generated by renaming
and hence reduce code expansion. In the case where the first instruction is a
Load, the parameter “LD_MOV_MERGE” can be set independently from
“MOV_MERGE” to disable this type of merging. Two parameters are
provided because duplication of loads can reduce speedup by pre-empting the

use of a limited number of cache read ports.

There are two major complications associated with merging. Firstly, merging
can result in instructions being inserted in the middle of instruction groups
rather than at the end. Secondly, if an instruction is inserted in the middle it
may have to be renamed. An instruction may have to be inserted in the

middle of a group if it has passed several other instructions in the group and

Fleur Steven 38 Spring 1998

then merges with an instruction. Since merging in general alters the source
operands of a percolating instruction, merging may introduce a false data
dependency with one of the instructions that has already been passed. To
remove this false dependence the percolating, and newly merged, instruction
will have to be inserted directly before the dependent instruction. Insertion in
the middle of a group may in turn result in further false dependencies since
the destination operand may become the source operand of an instruction
further towards the end of the same instruction group. This false dependence
can be removed by renaming the destination register of the inserted
instruction. An example will clarify the above points:

LIW1 ADD R1, R2, R3; MOV R7, R8; LD R8, (R0, R5);

SUB RO, R3, #4

LIW2 ADD R3, R7, R4 /*percolating instruction*/
The ADD instruction in LIW2 will merge with the MOV instruction in LIW1
creating the new instruction ADD R3, R8, R4 and will need to be inserted in
front of the LD instruction to avoid a false dependency with register R8 in
that instruction. However, the SUB instruction in LIW1 now has a true data
dependency on register R3 with the new ADD instruction and therefore
register R3 in the new ADD instruction will have to be renamed. The final
situation is shown below:

LIW1 ADD R1, R2, R3; MOV R7, R8; ADD R6, RS, R4;

LD RS, (RO, RS); SUB R9, R3, #4
LIW2 MOV R3, R6 /*introduced because of renaming*/

Finally, the instruction that a percolating instruction merges with is never
altered or deleted for two reasons: Firstly, the first instruction is always
retained in case its destination value is required by other instructions.
Secondly, even if the destination is clearly dead, the MOVs cannot be deleted
during the percolation process since only potential insertion points are being
selected at this stage. Only later will a higher level control mechanism
determine whether the insertions and hence the merges actually take place. As

a result the MOV instruction can only be deleted if and when a further

Fleur Steven 39 Spring 1998

percolating instruction reaches the group and determines that R6 is dead.

12. Combining

Instruction combining, also called static data dependence collapsing, is
discussed in detail in our recent paper (Steven et al, 1998). Instruction
combining is identical in principle to instruction merging in that it overcomes
the problems associated with true data dependencies by combining and
changing operands in instructions to allow the percolating instruction to
continue moving through a basic block. In fact, the IBM VLIW team led by
Kemal Ebcioglu (Nakatani, 1989) uses immediate merging examples as
examples of instruction combining. However, whereas merging restricts the
instructions that can be combined to those that retain a maximum of three
operands, combining removes this restriction. To implement combining,
special instructions with four operands are required. Appendix A.2 shows the
full set of combined instruction formats available in the HSA architecture.
Two examples are shown below:

ADD Ri, (Rj + Rk), Rl /*Ri := Rj + Rk + R1*/
AND Ri, (Rj ASL #imm), Rk /*Ri := (Rj << #imm) AND (Rk);
0 <=imm < 32%/

When a percolating instruction combines, the result is logically a single
instruction with three source operands. The first instruction is also retained.
In both respects merging and combining are therefore conceptually identical.
Nonetheless, no permanent coupling is attempted at the percolation stage.
Instead the combined instruction pair is inserted into the schedule as two
separate instructions. Omnly a tag on each instruction indicates that the

instructions have been combined.

The crucial advantage of this arrangement is that the first instruction of a
combined instruction pair can be repercolated at a later stage of the
percolation process. It may even recombine with another instruction.
Repercolation therefore dismantles a combined pair into two separate

instructions.

Fleur Steven 40 Spring 1998

It is during the final instruction output that a check is made for any
instructions which can be permanently combined and it is then that they are
output as one combined instruction. The advantages of this approach are that
it is extremely flexible. The instructions are still treated separately by the
scheduler so that the first or both instructions in a pair may repercolate
further through the code at a later stage of the scheduling process. An
example is shown below to clarify these points:

MULT R7, RO, #14

ADD R6, R7, R5
becomes:

MULT R7, R9, #14; MULT R7, RO, #14; ADD R6, R7, R5

/*combined but logically one instruction®/

and during the final output becomes:

MULT R7, R9, #14; ADD R6, (R9 * #14), R5

Results using trace driven simulations to study combining with several
different compiler optimisations have shown a potential improvement in
performance of 50 to 75% (loc. cit).

13. Memory Disambiguation

Data dependencies do not only occur between registers; they also occur
between the memory locations referenced in LD and ST instructions and, as
with other data dependencies, they can severely degrade program performance
if not dealt with.

HSS uses a technique termed static memory disambiguation to differentiate
between the memory locations referenced by two instructions. The code to do
this is in the HSS file hsp_disambiguate.c. For example, to decide whether
a LD can percolate ahead of a ST instruction, which is only safe if the two
addresses are different, the two addresses are compared and one of three

values is returned as follows:

Fleur Steven 41 Spring 1998

Different: Addresses are always different.

Same: Addresses are always the same.

Fail: Address cannot be distinguished.
If the value returned is different, the LD instruction can percolate ahead of the
ST. Also, if the value returned is the same, the LD can be replaced by a MOV
instruction as shown below:

ST (RO, RS), R6

LD R10, (RO, R5)
becomes:

MOV R10, R6

ST (RO, RS), R6
Since the value required is already in the register R6, the register itself can be

used to put the value in R10 rather than loading R10 from memory.

On the other hand, if the case involves a LD instruction followed by a ST
instruction, i.e. the opposite case, then the addresses must be different if the

ST instruction is to percolate ahead of the LD instruction.

Memory locations cannot always be disambiguated at compile time and
therefore dynamic memory disambiguation is one technique‘that could be
considered to deal with the problem. In this case a pair of load and store
instructions is replaced with code that compares the two addresses dynamically
at run-time. For example, consider the pair of instructions below:

ST 4(RS), R8

LD R9, 8(R6)
Dynamic code required:

ADD R3, R5, #4 /*Compute store address*/

ADD R4, R6, #8 /*Compute load address*/

LD R9, 8(R6) /*If addresses differ perform load*/

EQ B1, R3, R4 /*Compare addresses for equality*/

T B1 MOV R9, R8 /*If same obtain value from register*/

ST 4(RS5), RS

Fleur Steven 42 Spring 1998

The use of guarded instruction execution has removed the need for two branch
instructions. The LD instruction is now ahead of both the ST instruction and

the relational instruction.

14. Inlining

Inlining is an effective technique for uncovering additional instruction
scheduling opportunities. Inlining is a mechanism whereby the sequence of
instructions comprising a procedure or function is duplicated and inserted into
the calling procedure in place of the function call. The function call and
return instructions can be removed along with many of the instructions which
manipulate the stack frame and save and restore registers during function

entry and exit.

HSS can optionally inline procedures before scheduling proceeds (Fig 7.1).
There are several parameters provided which control inlining. All the
inlining parameters can be found in file hsp_const.h (Appendix B). The
parameter “INLINEPARAM?” represents the value true or false and controls
whether inlining is invoked by the scheduler. “Inline_Recursive_Calls” also
represents the value true or false and determines whether recursive
procedures are inlined or not. “Inline_Proc_Sizel - Threshold” defines the
maximum number of basic blocks a procedure called from within a loop can
contain for it to be inlined. “Inline_No_Of Callsl_Threshold denotes the
maximum number of times a procedure can be called from within a loop for it
to be inlined. “Inline_Proc_Size2_Threshold” represents the maximum
number of basic blocks a procedure called from outside a loop can contain for
it to be inlined. “Inline_No_Of Calls2_ Threshold” defines the maximum
number of times a procedure can be called from outside a loop for it to be
inlined. “Inline_Proc_Size3_Threshold” denotes the maximum number of
basic blocks a procedure called from within a recursive procedure can contain
for it to be inlined. “Inline_Nesting_Threshold” defines the maximum

number of nested inlinings that can occur when a procedure which has been

® “Inline_No_Of_Calls1_Threshold is not used at present.
Fleur Steven 43 Spring 1998

inlined contains procedure calls which may themselves be inlined. A threshold
is set which avoids endless inlining. Finally,
“UNCALLEDPROCSDELETED” represents the value true or false and if at
the end of inlining, a procedure is no longer called because all possible
inlinings of it have taken place, and this parameter is set to true, then the

procedure is deleted.

Inlining is implemented in the file hsp_inline.c. First, information
regarding both the procedures and the basic blocks within them is recorded.
Those procedures which are recursive are identified and recorded in the
‘recursiveproc’ field in the procedure node concerned. The number of
occasions a procedure is called is recorded in the proc_call_frequency field in
the procedure node concerned. The number of basic blocks in a particular
procedure is recorded in a local variable as the inlining takes place. This
value changes as inlining proceeds because inlined procedures add additional

basic blocks to the enclosing procedure.

The function “InlineProcCalls” in hsp_inline.c checks each basic block for a
BSR instruction which calls a procedure. The basic block that the BSR is in is
then passed to the function “ShouldInline” to determine whether inlining
should occur. The function “ShouldInline” checks various cases against the
inlining parameters in hsp_const.h to decide about inlining a particular
procedure. There are three major cases to consider. Firstly, the call might be
from within a loop. Secondly, the call might be within a recursive procedure

but outside a loop. Thirdly, the call might be from outside a loop.

If the call to a procedure is contained within a loop then aggressive inlining is
used. If the call within the loop is directly recursive, and the parameter
“Inline_Recursive_Calls” is set to false inlining does not occur. However, if
“Inline_Recursive_Calls” is set to true and inlining can occur, then either the
number of basic blocks within the called procedure must not exceed the value

defined by the parameter “Inline_Proc_Sizel_Threshold” or the number of

Fleur Steven 44 Spring 1998

calls to the procedure must not be greater than one.

If a non-recursive call is within a recursive procedure but outside a loop a
different set of parameters is used. In this case inlining will occur if the
number of basic blocks in the called procedure is not greater than the value
defined by the parameter “Inline_Proc_Size3_Threshold” or the number of

calls to that procedure is not greater than one, inlining can occur.

If the call is not within a loop or a recursive procedure then less aggressive
inlining is used and a third set of parameters define the limits. If both the
number of basic blocks in the called procedure is not greater than the value
denoted by the parameter “Inline_Proc_Size2_Threshold” and the number of
calls to the procedure 1s not greater than the number denoted by the parameter
“Inline_No_Of_Calls2_Threshold” or the number of calls to the procedure is
not greater than one then inlining can occur. Note that library routines cannot

be inlined

Once it has been decided that a procedure can be inlined the function “Inline”
is invoked. This function passes in the nesting level of the procedure as one of
its parameters. The very first time a procedure is inlined it has a nesting level
of one. If the procedure, which has been inlined, has calls to procedures
which can 1n turn be inlined, then this is reflected by incrementing the nesting
level for each nested inlining. The nesting level is compared with the
parameter “Inline_Nesting_Threshold” and if the nesting level is less than this
parameter the function “InlineProcCalls” is called again with the nesting level
incremented. Thus, “Inline_Nesting_Threshold” ensures that procedures are
not inlined indefinitely. If a procedure can be inlined the
‘proc_call_frequency’ field in the procedure node is decremented to reflect the
fact that the number of calls to this procedure is now one less than before.
Any procedure called by the newly inlined procedure has its
‘proc_call_frequency’ field incremented to indicate that extra calls to it occur

owing to duplication of the calling procedure.

Fleur Steven 45 Spring 1998

Once the inlined procedure has been inserted all labels in the inlined
procedure are renamed and all branch targets are updated. Any redundant
procedure entry and exit instructions are also removed. These include any
loads and stores which save registers on procedure entry and restore them on
procedure exit where the registers concerned are not used by the calling
procedure. The BSR calling the inlined procedure is also no longer required
so it is deleted. Finally, the MOV PC, RA - the last instruction in the inlined

procedure - is no longer needed, so it too is deleted (Fig 14.1).

Proc2: ["suBsp, Sp, #256
Procl: ST 8(SP), R16

11: [SUBSP, SP, #256
" | STS8(SP),RI6

L2 1 LD R16, 8(sp)

ADD SP, SP, #256 BSR RA, Procl

R I4: | MOVRS,RI16
LD R16, 8(SP)

ADD SP, SP, #256
after inlining ¢ MOV PC, RA

Proc2: | SUB SP, SP, #256

Procl: ST 8(SP), R16

L1: SUB SP, SP, #256
’ ST 8(SP), R16

L2: 1: | SUB SP, SP, #256
LD R16, 8(SP) Q ST 8(SP), R16

ADD SP, SP, #256 N .
MOV PC, RA Q2: Inlined Procl

LD R16, 8(SP)
ADD SP, SP, #256

14: MOV R5, R16

LD R16, 8(SP)
ADD SP, SP, #256
MOV PC,RA

Fig 14.1 Inlining a Procedure

If a procedure has no more calls to it, that is, if every call to it has been

inlined, the ‘proc_call_frequency’ field will have the value zero. Then if the

Fleur Steven 46 Spring 1998

parameter “UNCALLEDPROCSDELETED” is set to true the now uncalled

original procedure will be deleted.

Once inlining has been completed, the now modified benchmarks are

presented to the HSS backedge percolation for scheduling (Fig 7.1).

15. The HSS Algorithm

The objectives of the HSS algorithm are two-fold. The first objective is to
achieve software pipelining with arbitrarily complex loops. The second
objective is to reduce code expansion by avoiding unproductive code motion

across the loop back edge.

The HSS Scheduling Algorithm is shown in Fig 15.1.

Phase 1
Schedule loop with percolation across loop back edge(s) disabled.
Phase 2
Do{
Percolate each instruction from the first instruction group in the loop
around the loop back edge provided:
1. There exists a chain of dependent instructions from the percolating
instruction to an instruction in the final instruction group before the loop
back edge. Note the chain may involve an antidependence. (In the case of a
delayed branch, it is sufficient for the chain to reach the branch)
2. The instruction chain cannot be collapsed using either instruction merging or
instruction combining.
If at least one instruction has been moved, recompact the loop with the
back edge disabled.}
until (no further instructions can be moved)

Fig 15.1 The HSS Scheduling Algorithm

To make the HSS algorithm clearer a single basic block loop is scheduled
below showing how the iteration interval is reduced. It is assumed in this
example that all instructions have a latency of one and that there are no delay

slots after the branch instruction.

Fleur Steven 47 Spring 1998

Example: Original Code
Loop:
LD R16, (R1)
ADD R16, R16, #17
ST (R3), R16
ADD R1, R1, #4;
ADD R3, R3, #4
SUB R2, R2, #1
NE B1, R2, #0
BT B1, Loop

The initial loop requires eight cycles to execute. During the first pass each
instruction is scheduled in turn, starting at the top of the loop, and each

instruction is moved or percolated as far up as possible:

Loop:
LD R16, (R1); ADD R1,R1, #4; ADD R4, R3, #4;
SUB R2, R2, #1
ADD R16, R16, #17; NEBI1,R2,#0
ST (R3), R16; MOV R3, R4; BT B1, Loop

The third ADD instruction has had its R3 register renamed. Each loop

iteration now requires three cycles instead of eight.

Instructions are then percolated from the first instruction group around the
loop back edge. There must be a chain of dependencies from the percolating
instruction to the end of the loop and instructions are not allowed to percolate
back into the first group. During the first percolation around the back edge a
loop prelude is created. Each instruction that moves around the back edge is
also percolated into the loop prelude. The loop is then rescheduled with the
loop back edge percolation disabled. Once this rescheduling has been done the
back edge percolation is re-enabled and instructions from the first group are
again moved around the loop back edge. This continues until the final code is
produced which is shown below:

Fleur Steven 48 Spring 1998

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17;
LD R17, (R1); ADD R1, R1, #4
Loopl:
SUB R2, R2, #1; ST (R3), R16; ADD R3, R3, #4,
ADD R16,R17,#17; LD R17, (R1); ADD R1, R1, #4

BT B1, Loopl; NE B1, R2, #0;

The loop prelude comprises partial iterations at different stages of completion.
The loop body completes the iterations started in the loop prelude, and has

now been reduced to a single instruction group.

16. Implementation of HSS
HSS is a large program, written in ‘C’, currently comprising 20 modules and

approximately 12,000 lines of code.

In order that HSS can schedule the benchmarks, the assembly instructions of
the benchmark have to be inserted into appropriate data structures or
descriptors. The descriptor has several fields, where each field is devoted to a

particular piece of information about the instruction (Fig 16.1)."

Fleur Steven 49 Spring 1998

e.g. PC

instructions.

scheduler.

No.

— number of instruction

- points to symboltableentry

containing label

|_ boolean register

number array

_type of instruction e.g.

1: arith, 2: logical, 3: mult ..

| register number for

first source operand

| char array holding

hexadecimal operand

— type of srcl operand

if instruction is a branch, points

P> to symboltableentry containing

Array holding label -
condition value of —f— cond
boolean guard T or F boolreg]
opcode of instruction —— fn
insttype —
register number for __[— g egtp
destination operand
register number or srct
immediate value for —— src2
second source operand hexsro |
type of destination operand
eg. 0:R, 1:B,3:F... ——__regtypedest
regtypesrci —
type of src2 operand —— regtypesrc2
char array holding branchtarget —
destination label of —— destlabel

target instruction

branch instruction

specialregdest

—| char array holding special register

e.g. PC

char array holding special register [~

specialregsrci

specialregsrc2

char array holding special register
~ e.g. PC

renaming status e.g.
0: do not rename,

status

add a "!" to opcode

1: rename
2: rename if guard removed

shriek

—1 of instruction if moved

up speculatively

combined_instruction

—1— member of a combined pair

if boolean register number
is changed keeps record of ™|

-orig_boolreg_number

original number

isregsavedorrestored

| applies to LDs and STs:

true or false

points to instruction
associated with VCOPY

-<{— associatedinst

LIWIloc

> IW instruction belongs to

prev

> points to previous instruction

next

points to next instruction <

Fleur Steven

50

Fig 16.1 The Fields in the HSS Instruction Node Descriptor

The benchmarks are presented to HSS in the form of HSA assembly
The file hsp_sched.c contains the code necessary to read in
these instructions and to construct the data structures manipulated by the
The instructions are read in one character at at time and once a
token has been recognised in the form of a meaningful group of characters, its
value is inserted into the appropriate field in the data structure instnode. For
example, if an instruction is guarded, the boolean condition is recorded by

setting the appropriate field in an array of conditions to true or false. The

Spring 1998

boolean register number is recorded by setting the appropriate field in the
‘boolreg’ array to true. Thus T B5 would set cond[5] to true and boolreg[5] to
true. The instruction opcode or function is inserted in the ‘fn’ array as a
string of characters. The operands of the instruction are inserted in the ‘dest’,
‘srcl’ and ‘src2’ fields and their types are inserted in the ‘regtypedest’,
‘regtypesrcl’ and ‘regtypesrc2’ fields. For example, upon recognising a
destination register, R6, the value 6 would be inserted in the ‘dest’ field and a
zero would be inserted in the ‘regtypedest’ field, indicating that R6 was an
integer register. Had it been B6 rather than R6, the ‘regtypedest’ field would
have been set to 2 for a boolean register and so on. When an instruction is
output the ‘regtypedest’ field is checked and the appropriate character B, R or

F is concatenated with the 6 to form a register.

As each instruction is read into an instruction node, it is then assigned to a
LIW node and the LIW nodes are linked together (Fig 16.2). LIW nodes

form the focus of the instruction groups generated during code motion.

If any instruction is labelled, for example:

_Permute: SUB SP, SP, #256
then the label is inserted into a data structure called symboltableentry in the
field ‘instlabel’ which is an array of char. A pointer in the symbol table then

points back to the instruction associated with the label (Fig 16.2).

Fleur Steven 51 Spring 1998

LIWs INSTRUCTIONS

LIWhead |
LIWtail
%

l No. < < 1 |
first . inst1 E) inst2 ;) inst3
last >
prev instruction node
next

mask storage

)rNo‘L<L<| |

first / inst1 (_) inst2 Z inst3
last e
prev

next

symboltableentry

. Label of
/ \ instlabel basic block
, \ st

mask storage

shead 4
| stail

, bblabel /
/

prev 7/

- next | \

ptr to basic block
associated with label

Fig 16.2 HSS Instruction Groups and Symbol Table

Once all the instructions have been read in, code in the file hsp_schedl.c
divides groups of instructions into basic blocks (Fig 16.3). Basic blocks are
sequences of code that have one entry point and one exit point. " Information
about basic block successors, predecessors, branch targets and predecessor
branch targets are inserted into the basic block nodes. The symbol table entry
field ‘inst’ is then compared with the first instruction in the basic block. If it
matches, the field ‘bblabel’ in symboltableentry is updated to point to that

Fleur Steven 52 Spring 1998

basic block (Fig 16.2). In turn, the field ‘Label’ in the basic block points back
to the appropriate symboltableentry node (Fig 16.3).

Procedures are detected and information regarding procedures is inserted in

the procedure nodes (Fig 16.3). For example, pointers to the first and last

basic blocks in the procedure are inserted in ‘headbb’ and ‘tailbb’ fields

respectively.
PROCEDURES BASIC BLOCK
prochead - bbhead -
, proctail { bbtall
tag=P / tag=B
headbb] No.
tailbb N firstLIW —p»first LIW in bb
orev N\ Jast bb lastLIW —P»last LIW in bb
in proc prev
next \\ next sequential
innermostloop ¢ loopstart — bb or A SEPred S5 /r predecessor
re
outermost loop loopfinish loop BB—P d_BT ! list of branch
storage for - 00 targ; t
mask handling branch target <€~ BB_BT predecessors
BB_SS —I» sequential
ptr to first loop BB _Loop successor
Last loop descriptor — —Is. points to
in procedure / storaLarab?c:r symbol table
g containing
points to procedure or mask handling bb's label
loop basic block is
immediately in

Fig 16.3 HSS Procedure and Basic Block Descriptors

Finally, loops are detected and information about loops is inserted in the loop

nodes (Fig 16.4). Information about loops is also inserted into the procedure
nodes (Fig 16.3).

Fleur Steven

53

Spring 1998

LOOP

tag=1L tailbbptr tailbbptr
first b
in loop(_' loophead prev €«—— prev

looptails 1 next —> next
enclosing loopexits 5 looptaillist
loop or<€t- BB_Loop
proe " BB_Pred_BT Exit_BB Exit_BB
bb or target bb of
2 4
prev A loop BB BT BB_BT - Exit BB
next \ bb or BB_SS BB_SS -B» sequential
bblistptr next > next 2%%,?&%3
loopexitlist
Y
ptr to bb ptr to bb
loop target loop target ptr (bb/loop) ptr (bb/loop)
prev < prev prev] prev
next > next next > next
branchtargetlist (list of bbs targeting head of loop) loopbblist (list of bbs in loop backedge)

Fig 16.4 HSS Loop Descriptor

Pointers to the innermost loop and outermost loop are inserted in the fields
‘loopstart’ and ‘loopfinish’ respectively. These fields are used to find which
loops to schedule first. The innermost loop is always scheduled first. A linked
list of loops joins the loopstart to the loopfinish and determine the order in

which loops are scheduled.

Live range analysis is carried out in file hsp_mask_handling.c. Each basic
block descriptor records whether each register is live on entry to the basic
block in the fields marked “storage for mask handling” (Fig 16.3). Similar
fields in the LIW descriptors record whether each register is live immediately

after all the instructions in the LIW group have been executed (Fig 16.2).

Once the instructions have been inserted into the appropriate instruction nodes
and all necessary information has been gathered and inserted into the other

data structures, the benchmark is ready for scheduling.

Fleur Steven 54 Spring 1998

Although procedure nodes, loop nodes and basic blocks nodes have different
functions to perform within the scheduler, they share a single union type
within the scheduler. The tag field indicates whether a particular structure is a
procedure (P), a loop (L) or a basic block (B). This arrangement allows the
HSS scheduler data structures to directly reflect the static structure of the code
being scheduled. In particular, procedure descriptors can point to nested loops
and basic blocks using a single pointer type. Similarly, basic blocks and loops
can point to the data structures which encapsulate them, irrespective of

whether the structure involved is a loop or a procedure.

17. Conclusions

This document has introduced the HSS scheduler. Although this document has
endeavoured to be as comprehensive as possible, many details and features
have been omitted in order to give the reader a clear and straightforward
impression of the scheduler. The scheduler is constantly evolving and
therefore this document should not be regarded as definitive. Future

documents will record further changes to HSS’s implementation.

Fleur Steven 55 Spring 1998

References

Collins, R. “Developing A Simulator for the Hatfield Superscalar Processor,”
Division of Computer Science Technical Report No. 172, University of
Hertfordshire, December 1993.

Collins R and Steven G B "An Explicitly Declared Delayed-Branch
Mechanism for a Superscalar Architecture,” presented at EuroMicro94,
Liverpool, September 1994. Published in Microprocessing and
Microprogramming, Vol.40 , No.10-12, December 1994, pp677-680.

Collins, R. “Exploiting Instruction-Level Parallelism in a Superscalar
Architecture,” PhD Thesis, University of Hertfordshire, October 1995.

Ebcioglu, K. “A Compilation Technique for Software Pipelining of Loops
with Conditional Jumps,” Proceedings of the 20th Annual Workshop on
Microprogramming, ACM Press, 1987, pp69-79

Ebcioglu, K, Groves, R.D., Kim, K. Silberman, G.M. and Ziv, I “VLIW
Compilation Techniques in a Superscalar Environment,” SigPlan94,
Orlando, Florida, 1994, pp36-48.

Egan, C, Steven, F L and Steven, G B “Delayed Branches versus Dynamic
Branch Prediction in a High-Performance Superscalar Architecture,”
Euromicro97, Budapest, September 1997.

Fisher,] A “Trace Scheduling: A Technique -for Global Microcode
Compaction,” IEEE Transactions on Computers, C-30, (7), July 1981,
pp478-490.

Lam, M S “Software Pipelining: An Effective Scheduling Technique for
VLIW Machines,” SIGPLAN 88 Conference of Programming Language
Design and Implementation, Georgia, USA, June 1988, pp318-328

Malik, N, Eickemeyer, R.J., and Vassiliadis, S. “Instruction-Level Parallelism
from Execution Interlock Collapsing,” Computer Architecture News,
September 1992, pp38-43.

Nakatani, T. and Ebcioglu, K. “Combining as a Compilation Technique for
VLIW Architectures,” 22nd Annual International Workshop on
Microprogramming and Microarchitecture, SIGMICRO Newsletter, Vol
20, No. 3, September 1989, pp43-55.

Fleur Steven 56 Spring 1998

Nicolau, A “Uniform Parallelism Exploitation in Ordinary Programs,”
Proceedings of the International Conference on Parallel Processing,
August 1985, pp614-618.

Potter R and Steven G B “Investigating the Limits of Fine-Grained
Parallelism in a Statically Scheduled Superscalar Architecture,” 2nd
International Euro-Par Conference Proceedings, Vol.2, Lyon, France,
August 1996, pp779-788. (Published as Lecture Notes in Computer
Science 1124 by Springer).

Rau, B R “Iterative Modulo Scheduling: An Algorithm For Software
Pipelining Loops,” Micro 27, November 1994, San Jose, California, pp63-
73.

Rau, B R and Fisher, J. A. “Instruction-Level Parallel Processing: History,

29

Overview and Perspective,
1/2, 1993, pp9-50.
Sazeides, Y. and Vassiliadis, S. “The Performance Potential of Data
Dependence Speculation & Collapsing,” IEEE Micro 29, 1996, pp238-
247.
Stallman, R M “Using and Porting GNU CC,” Free Software Foundation,
1989.

Steven G B and Collins R “Instruction Scheduling for a Superscalar

The Journal of Supercomputing, Vol.7, No.

Architecture,” Proceedings of the 22nd Euromicro Conference, Prague,
September 1996, pp643-650.

Steven G B, Christianson D B, Collins R, Potter R. and Steven F L. “A
Superscalar Architecture to Exploit Instruction Level Parallelism,”
Microprocessors and Microsystems, Vol.20, No 7, March 1997, pp391-
400.

Steven F L, Steven G B and Wang L. “Using a Resource Limited Instruction
Scheduler to Evaluate the iHARP Processor,” IEE Proceedings -
Computers and Digital Techniques, Vol.142, No.1, January 1995, pp 23-
31.

Steven F L, Potter, R D, Steven G B and Vintan, L. “Static Data Dependence

Collapsing in a High-Performance Superscalar Processor,” To be

Fleur Steven 57 Spring 1998

presented at the 3rd International Conference on Massively Parallel
Computing Systems, Colorado, April 1998.

Vassiliadis S, Blaner, B and Eickemeyer, R.J. “On the Attributes of the
SCISM Organization,” Computer Architecture News, September 1992,
pp44-53.

Warte, N.J, Mahlke S A, Hwu W W and Rau B R “Reverse If-Conversion,”
SigPlan 93, Albuquerque, New Mexico, June 1993, pp290-299.

Fleur Steven 58 Spring 1998

Appendix A HSP Instruction Set

Appendix A.1: Basic HSP Instruction Set

A1.1 Arithmetic Unit Instructions

ADDR;, Ry Ry R; —R + Ry

ADDR;, R #Imm R;:= RJ + #Imm

ADDV R R], Ry Ri :=Rj+ Ry; trap on signed arithmetic overflow
ADDV R;, Rj, #lmm R;:= Rj + #Imm; trap on signed arithmetic overflow

- #lmm + Carry ; Carry flag set by result

SUB Ri’ Rj, Rk Ri R] Rk
SUB R;, R , #lmm R := R] #Imm
SUBV R;, R] Ry R;:= R} Ry ; trap on signed arithmetic overflow
SUBV Ri, Rj, #Imm R;:= R] #Imm ; trap on signed arithmetic overflow
ADDCR;, Rj, Ry R;:= R] + Ry + Carry; Carry flag set by result
ADDCR;, Ri’ #Imm R;:= R] + #Imm + Carry ; Carry tlag set by result
SUBC R;, R ~~ Ry R;:= R] Ry + Carry ; Carry flag set by result

]

SUBC R;, R], #Imm R; :=R;

DIV R;, R Ry R;:= R DIV Ry ; 32bits X 32 bits --> 32 bits

DIV R R , #lmm R;:= R DIV Imm ; 32bits X 32 bits --> 32 bits

DIVV Ri, R], Ry R;:= R] DIV Ry ; 32bits X 32 bits --> 32 bits; trap on
overflow :

DIVV R; R], #Imm R;: R] DIV Imm ; 32bits X 32 bits --> 32 bits; trap on
ovelﬂow

MODR;, Rj, Ry R;: R MOD Ry ; non pipelined; 32bits X 32 bits -->
%2 blts

MODR;, Rj, #Imm R;:= Rj MOD Imm ; non pipelined; 32bits X 32 bits -->
32 bits

MOV Ri’ Bj If Bj =1 Ri =1 else Ri =0

MOVR;, SR R; := Status Register

MOVSF F,, Rj F;:= Rj; single-length transfer

MOVSF Fj, #lmm F; :=#Imm; single-length transfer

A1.2 Shift Unit Instructions

ASLR;, R;, Ry R;:= R- << (R AND 31)
ASLR;, R #Imm R;: R << #Imm where (0 <= Imm < 32)
ASLV R R Ry R;: R << (Ry AND 31); trap on overflow

Fleur Steven 59 Spring 1998

ASLV R;, Ri’ #Imm

ASR Ri’ Rj’ Rk
ASR Ri’ Ri’ #Imm
LSR Ri’ Rj’ Rk
LSR Ri’ R:, #Imm
AND R;, R]', Ry
AND R;, R;, #Imm
ORR;, Rj’ Ry
OR Ri’ Ri’ #Imm

EORR;, R;, Ry
EOR R;, R;, #Imm

EXTR;, R;

BIC Ri, Rj, R

BIC R;, R;, #Imm

MULTR;, Ri’ Ry

MULT R;, R;, #Imm

r

MULTV Ri’ Rj’ Rk

MULTV R;, R;, #Imm

r

Signed:

GTS B;, Ri’ Ry
GTS By, Ry, #Imm
GES B;, Ri’ Ry
GES Bj, R;, #lmm

LTS B;, Ri’ Ry

Fleur Steven

R;:= Ri << #Ilmm where (0 <= Imm < 32); trap on
overtlow

Ri = Ri >> (Rk AND 31)
R; :=R; >> #lmm where (0 <= Tmm < 32)

Rj :=R;>> (Ry. AND 31)

(= R]- >> #Imm where (0 <= Imm < 32)

R;:= Ri AND Ry
; = Rj AND #Imm

Ri = Ri OR Ry
Ri = Ri OR #Imm

Ri = R]‘ EOR Rk
R; := R; EOR #Imm

R;:= Rj (byte sign extended);

R;:= Rj AND ~(Ry)
Ri = Ri AND ~(#Imm)

A1.3 Multiply Unit Instructions

R;:= Ri MULT Ry ; 32bits X 32 bits --> 32 bits

R;:= R]- MULT #Imm ; 32bits X 32 bits --> 32 bits

R;:= Ri MULT Ry; 32bits X 32 bits --> 32 bits ; trap on
signed overflow
R;:= Ri MULT #Imm; 32bits X 32 bits --> 32 bits ; trap

on signed overflow

A1l.4 Relational Unit Instructions

= (R] > Rk)
= (Ri > #lmm)

Bi:=(Rj>= Ry)
B;:=(Ri >= #Imm)

Biiz(Rj< Ry)

60 Spring 1998

LTS B;, Ri’ #Imm B;:=(R]' < #Imm)

LES Bi’ Ri, Rk Bi = (R]' =< Rk)
LES B;, R‘i, #Imm B := (Ri =< #Imm)
Unsigned:
GTUB R], Rk Bi 2=(Rj> Rk)
GTU B; R], #Imm B;:=(Ri > #Imm)
GEU B;, R] Ry Bi—(R >= Ry)
GEU B;, R], #Imm B :=(R >= #Imm)
LTU B;, Rj’ Ry Bj:=(R] < Ry)
LTU B;, R]-, #Imm B;:=(R]- < #Imm)
LEU Bi’ Rj’ Rk Bi =(R =< Rk)
LEU B;, Ri’ #Imm B :=(R =< #Imm)
Signed and Unsigned
EQB;, Rj, Ry B; = (R Ry)
EQB;, Rj, #Imm B; = (R = #Imm)
NEB‘ ; Rk Bl—(R <> Rk)
NE B;, R #Imm B: -—(R <> #Imm)

r 1

Boolean Instructions

AND B;, B- By B;:=]ANDBk

OR B;, B Bk B, = B]ORBk

EQ Bl’ B By B;:= B] By

NE B;, B] By B; = B] <> By

GTB BV Bk Bi]>Bk

LT B;, B] By B;:= B] < By

LEB B], By B;:= B] <= By

GE B;, B By B; := Bj >= B

MOV B;, R]- B;: R], B, := least significant bit of R]—;
MOV SR, R SR :=R; ; Status Register contains Boolean registers.
MOV SR, #Imm SR :=#Imm

Fleur Steven 61 Spring 1998

ST (Rj’ Ry), B4

STB offset(R) Ry
STB (Rj, Rk) R;

STH offset(Rj), R;
STH (Rj, R), R;

ST offset(Rj), R;
ST (Rj, Ry), R;

STD offset(Rj), R,
STD (R}, Ry,), R

STQ offset(Rj)), R;

STQ (Rj, Ry) Ry R;

STSF offeet(R), B
STSF (R; Rk) F;

STDF offset(R‘)
STDF (R Ry), F

STQF oftset(R-). F;

STQF (R;, Rk) F;

ST offset(R;), SR
ST (R Rk) SR

cleared

Mem| R + Ry]:=

least mgmﬁcant bit of memory byte set to B; ; other bits
cleared

Memloffset + Rj] := R; ; store byte only
Mem[Rj + Ry] :=R;; store byte only

Mem|[offset + Rj] := R; store half word only
Mem|[Rj + Ry] := Ry; store half word only

Mem{[offset + Rj] := R
Mem[Rj + Ry]:=R

Mem[offset + Rj] := R;: R; +1; store double words
Mem[Rj + Ry] :=R;: R; +1

Memloffset + Rj] := R;: R} +1: R; +2: R; +3; store quad
words
Mem[Rj + Rk] = Ri: Ri+1: Ri +2: Ri +3

Mem{offset +R] =
Mem[R + Rk] =

Mem|offset + R]- 1 := Fj; store two words.
Mem[Rj + Ry] :=F; F;+1 '

Mem[offqet+R] :=F;: F; +1 ; store four words
Mcm[R + Rk] =F; F +1

Mem|offset + R] := SR; 32 bits stored
Mem|[R + Rk] = SR; 32 bits stored

A1.6 Branch Instructions
BT B;, label (#delay-count) Branch if B; = true
BF B;, label (#delay-count) Branch if B; = false
BSR R;, label (#delay-count) Save return address in R;
MOV PC, R; (#delay-count)

Fleur Steven 63 Spring 1998

A1.5 Memory Reference
LD B;, offset(R)
LD Bv (R], Rk)
LD B;, Label

LDB R;, offset(R)
LDB R;, (R , Ry)
LDBR;, Label

LDH R; R;, offset(R;)
LDHR;, (Ry, Ry)
LDH R;, Label

LD R;, offset(R)
LDR;, (R], Rk)
LD R;, Label

*LDD R;, offset(R)
*LDD Rv (R], Ry)

*LDQR;, offset(Ri)
*LDQR;, (Rj, Ry)
LDSF Fj, offset(R')
LDSFF;, (R Rk)
LDSF F;, Label
LDDF F;, offset(R)
LDDFF;, (R Ry)
LDDFF;, Label

*LDQF Fj, offset(Ri)
*LDQF F;, (R]', Ry)

LD SR, offset(R)
LD SR, (R], Rk)
LD SR, Label

ST offset(R]), Bi

Fleur Steven

B, := Mem[offset + R 1; B set to Isb of memory byte
B; :=Mem[R + Rk] B; set to Isb of memory byte
B; = Mem[Label]

R, := Mem[offset + R] ; load sign extended byte
R, := Mem[R + Rk] load sign extended byte

Ri := Mem|[offset + Rj] ; load sign extended half word
Ri := Mem[Ri + Ry 1; load sign extended half word

R, := Mem{[offset + R 1 ; load word
i —Mem[R + Rk] load word

Ry R; +1 —Mem[otfset+R 1; load double words
R;: R +1 —Mem[R + Rk]

R;: R; +1: Rj +2: R; +3 := Mem[offset + R]-] ; load quad
words
Ry R +1: Ry +2: R; +3 := Mem[Rj + Ry]

F; —Mem[offset+R 1]; load word"
F; —Mem[R + Rk] load word

F; = Mem[offset + Ri] ; load double words
i =Mem[Ri + Ry]

Fj: F; +1 -Mem[ottset+R] ; load quad words
F;: F;+1 _Mem[R + Rk]

SR := Mem[otfqet+R 1 ; load word
SR := Mem[R + Rk] load word

Mem|offset + R]:=
least significant b1t ot memmy byte set to B; ; other bits

62 Spring 1998

cleared
ST (Rj, Ry), B Mem[Rj + Ry]1:=Bj;
least significant bit of memory byte set to B; ; other bits

cleared

STB offset(Rj) Ry Mem/[offset + Rj] := R; ; store byte only

STB (Rj, Ry), R; Mem[Rj + Ry] :=R;; store byte only

STH offset(Rj), R; Mem[offset + Rj] := R;; store half word only

STH (Rj, Ry), R; Mem[Rj + Ry] :=R;; store half word only

ST offset(R)), R; Meml[offset + Rj] :=R;

ST (Rj, Ry), R Mem[Rj + Ry]:=R;

STD offset(Rj), R; Mem{[offset + Rj] := R;: R; +1; store double words

STD (Rj, Ry), R Mem[Rj + Ry]:=Rj: R +1

STQ offset(Rj), R; MemlJoffset + Rj] := Rj: Rj +1: Ry +2: R; +3; store quad
words

STQ (Rj, Ry), RjR; MemlRj+ Ry]:=Rj Ry+1: R;+2: R +3

STSF offset(Rj), F; Mem{[offset + Rj] =F

STSF (Rj, Ry). F; Mem[Rj + R]:=F

STDF offset(Rj), F, Mem{offset + Rj] :=F;; store two words
STDF (Rj, Ry), Fj Mem| Rj + R]1:=F; F; +1

STQF offset(Rj), K Mem{offset + Rj] =F; F; +1 ; store four words

STQF (Rj, Ry), Fj Mem[Rj + Ry]:=F; F; +1
ST offset(Rj), SR Mem|offset + Rj 1 := SR; 32 bits stored
ST (Rj, Ry), SR Mem| Rj + Ry] :=SR; 32 bits stored

Al1.6 Branch Instructions
BT B;, label (#delay-count) Branch if B; = true
BF B;, label (#delay-count) ~ Branch if B; = false

BSR R;, label (#delay-count) Save return address in R;
MOV PC, R; (#delay-count)

Fleur Steven 63 Spring 1998

TRAP #n, Bi (#delay-count) Normal delayed branch used to enter opsy routines;

Delay count = 0 for debugging and faults
TRAP #n, (#delay count)

Al.7 Special Purpose Instructions

EIL Enable interrupts
DI Disable interrupts

A1.8 Floating-point Add Unit

ADDSFF;, Fj’ Fy F; = FJ + Fk

ADDDF Fi’ Fj’ Fk Fi = FJ + Fk

SUBSF F;, Fj, Fi F,:= Fj - Fi

SUBDF Fi’ Fj’ Fk Fi = F] - Fk

ABSSF F, F_] If FJ >= () then F; = FJ else F;:=- Fj

ABSDF Fi’ F_] If FJ >= () then Fi = FJ else Fi =- F_]

EXTF Fj, Fj F; (double-length) := Fj (single-length)

TRUNCF F;, Fj F; (single-length) := Fj (double-length)

FLTSF F;, Fj F; .= FLOAT (Single length Fj); Fj is single length
FLTDF F;, Fj F; := FLOAT (Single length Fj); F; is double length
FIXSF F;, F; F; := FIX (Single length F;); integer result

FIXDF F;, Fj F; := FIX (Double length Fj); integer result

A1.9 Floating-point Multiply Unit

MULTSF F;, Fj, Fy F;:= Fj MULT Fy
MULTDF F;, Fj, Fic F; = Fj MULT Fy

A1.10 Floating-point Divide Unit

DIVSF F;, Fj, Fy F; = F; DIV Fy
DIVDFF, Fj’ Fic F; = FJ DIV Fy.

A1.11 Floating-Point Relational Unit

GTSSF Bi’ Fj’ Fk Bi = FJ > Fk)
GTSDF By, Fy, Fy B; = (Fj>Fy)

Fleur Steven 64 Spring 1998

GESSF Bi’ FJ', Fk Bi = (F_] >= Fk)

GESDF Bi’ Fj’ Fk Bi =(F_] >= Fk)
LTSSF B;s Fj’ Fic B;:=(F_] <F)
LTSDF B;, Fj’ Fyc B;:=(FJ <Fy)
LESSF Bi’ Fj’ Fj Bi = FJ =< Fk)
LESDF B;, Fj’ Fy B, :=(FJ =<F})
EQSF B;, F;, Fi. B;:=(FJ =Fy)
EQDF B;, F;, Fy B;:=(FJ =Fy)
NESF B;, Fj’ Fy B;:=(FJ <> Fy)
NEDF B;, Fj’ Fy B :=(FJ < F)

A1.12 Floating-Point Move Unit

MOVSF Fi’ F] Fi = FJ
MOVDFF,, Fj F;:= Fj
MOVSFR;, Fj Ri := Single-length Fj; integer result

*Indicates those instructions not yet implemented.

Fleur Steven 65

Spring 1998

A1.13 Assembly Language Abreviations
The following instructions are used as convenient assembly language abreviations for
more complex HSP instructions. These instructions are not present as distinct HSP

instructions. They are simply shortened versions of existing instructions which are used
to inprove clarity at the assembly language level.

The extended forms of these instructions often rely on the fact that RO is always zero and
that BO is always false.

MOV Ri, #imm ADDR;, RO, #imm
MOVR;, Rj ADDR;, Rj’ RO
MOV B;, Bj OR B;, BO, Bj
CLR R ADDR;, RO, RO
NEGR;, Rj SUB R;, RO, Rj
NOT R;, Rj EORR;, Rj’ #-1
BRA label BF B0, label

Fleur Steven 66 Spring 1998

Appendix A.2 Combined Instructions
HSA will also support combined instructions. In general these will have the form:
Dst := F(G(srcl,src2),src3) or Dst := F(src1,G(src2,src3))
The syntax adopted follows HARP syntax as closely as possible using infix notation to
improve readability.

Our latest implementation ideas involve marking pairs of instructions as being combined. We
are therefore no longer contrained by the number of instruction bit patterns available in
32bits. I have therefore used both formats and gone for orthogonality. My objective is to
simplify the programming in both the scheduler and the simulator by minimising the

requirement for special cases.

B.1 Computational (ALU) Instructions

First Instruction

ADD Rj, Rj, Rk
ADD Rj, Rj, Rk
ADD Rj, Rj, Rk
ADD Rj, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm

ADD Ri, Rj, Rk
ADD Rj, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm
ADD Ri, Rj, #lmm
ADD Ri, Rj, #lmm

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmm
SUB Ri, Rj, #lmm
SUB Ri, Rj, #lmm

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm

Fleur Steven

Second Instruction

ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #Imm
ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #Imm

SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm
SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm

ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #lmm
ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #imm

SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm
SUB Rm, Ri, Rn

67

Combined Instruction

ADD Rm, (Rj + Rk), Rn

ADD Rm, Rn, (Rj + Rk)

ADD Rm, (Rj + Rk), #Imm

ADD Rm, (Rj + #Imm), Rn

ADD Rm, Rn, (Rj + #Imm)
Reduces to two operand instruction

SUB Rm, (Rj + Rk), Rn

SUB Rm; Rn, (Rj + Rk)

SUB Rm, (Rj + Rk), #lmm

SUB Rm, (Rj + #Imm), Rn

SUB Rm, Rn, (Rj + #Imm)
Reduces to two operand instruction

ADD Rm, (Rj - Rk), Rn

ADD Rm, Rn, (Rj - Rk)

ADD Rm, (Rj - Rk), #lmm

ADD Rm, (Rj - #Imm), Rn

ADD Rm, Rn, (Rj - #Imm)
Reduces to two operand instruction

SUB Rm, (Rj - Rk), Rn
SUB Rm, Rn, (Rj - Rk)

SUB Rm, (Rj - Rk), #Imm
SUB Rm, (Rj - #imm), Rn

Spring 1998

SUB Ri, Rj, #Imm
SUB Ri, Rj, #Imm

ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Rj, Rj, #Imm
ASL Ri, Rj, #Imm
ASL Ri, Rj, #Imm|

ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Ri, Rj, #Imm
ASL Ri, Rj, #Imm
ASL Ri, Rj, #Imml1

SUB Rm, Rn, Ri
SUB Rm, Ri, #lmm

ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #lmm
ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, #Imm2

SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm
SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm?2

B.2 Relational Unit Instructions

First Instruction
Signed

ADD Ri, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm
ADD Ri, Rj, #lmm
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm1

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm
SUB Ri, Rj, #lmm
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmml1

ADD Ri, Rj, Rk
ADD Rj, Rj, Rk
ADD Rj, Rj, #imm

Fleur Steven

Second Instruction

GTS Bm, Ri, Rn
GTS Bm, Rn, Ri
GTS Bm, Ri, Rn
GTS Bm, Rn, Ri
GTS Bm, Ri, #lmm
GTS Bm, Ri, #Imm?2

GTS Bm, Ri, Rn
GTS Bm, Rn, Ri
GTS Bm, Ri, Rn
GTS Bm, Rn, Ri
GTS Bm, Ri, #Imm
GTS Bm, Ri, #Imm2

GES Bm, Ri, Rn
GES Bm, Rn, Ri
GES Bm, Ri, Rn

68

SUB Rm, Rn, (Rj - #Imm)
Reduces to two operand instruction

ADD Rm, (Rj ASL Rk), Rn

ADD Rm, Rn, (Rj ASL Rk)

ADD Rm, (Rj ASL Rk), #Imm
ADD Rm, (Rj ASL #Imm), Rn
ADD Rm, Rn, (Rj ASL #Imm)
ADD Rm, (Rj ASL #Imm1), #Imm2

SUB Rm, (Rj ASL Rk), Rn

SUB Rm, Rn, (Rj ASL Rk)

SUB Rm, (Rj ASL Rk), #Imm
SUB Rm, (Rj ASL #Imm), Rn
SUB Rm, Rn, (Rj ASL #Imm)
SUB Rm, (Rj ASL #Imm1), #Imm?2

Combined Instruction

GTS Bm, (Rj + Rk), Rn

GTS Bm, Rn, (Rj + Rk)

GTS Bm, (Rj + #Imm), Rn

GTS Bm, Rn, (Rj + #Imm)

GTS Bm, (Rj + Rk), #lmm
GTS Bm, (Rj + #Imm1), #lmm2

GTS Bm, (Rj - Rk), Rn

GTS Bm, Rn, (Rj - Rk)

GTS Bm, (Rj - #lmm), Rn

GTS Bm, Rn, (Rj - #Imm)
GTS Bm, (Rj - Rk), #Ilmm
GTS Bm, (Rj - #Imm1), #lmm2

GES Bm, (Rj + Rk), Rn
GES Bm, Rn, (Rj + Rk)
GES Bm, (Rj + #Imm), Rn

Spring 1998

ADD Ri, Rj, #lmm
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm1

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Ilmm
SUB Ri, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm1

ADD Ri, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm
ADD Ri, Rj, #lmm
ADD Rj, Rj, Rk
ADD Ri, Rj, #lmm1

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmm
SUB Ri, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm1

ADD R, Rj, Rk
ADD R, Rj, Rk
ADD Ri, Rj, #lmm
ADD Ri, Rj, #lmm
ADD Ri, Rj, Rk
ADD Ri, Rj, #lmm1

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm
SUB R, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm!

Fleur Steven

GES Bm, Rn, Ri
GES Bm, Ri, #Imm
GES Bm, Ri, #Imm?2

GES Bm, Ri, Rn
GES Bm, Rn, Ri
GES Bm, Ri, Rn
GES Bm, Rn, Ri
GES Bm, Ri, #lmm
GES Bm, Ri, #lmm2

LTS Bm, Ri, Rn
LTS Bm, Rn, Ri
LTS Bm, Ri, Rn
LTS Bm, Rn, Ri
LTS Bm, Ri, #Imm
LTS Bm, Ri, #Imm?2

LTS Bm, Ri, Rn
LTS Bm, Rn, Ri
LTS Bm, Ri, Rn
LTS Bm, Rn, Ri

LTS Bm, Ri, #Imm
LTS Bm, Ri, #Imm?2

LES Bm, Ri, Rn

LES Bm, Rn, Ri
LES Bm, Ri, Rn

LES Bm, Rn, Ri
LES Bm, Ri, #Imm

LES Bm, Ri, #lmm?2

LES Bm, Ri, Rn
LES Bm, Rn, Ri
LES Bm, Ri, Rn
LES Bm, Rn, Ri
LES Bm, Ri, #Imm
LES Bm, Ri, #Imm2

69

GES Bm, Rn, (Rj + #Imm)
GES Bm, (Rj + Rk), #lmm
GES Bm, (Rj + #lmm1), #Imm?2

GES Bm, (Rj - Rk), Rn

GES Bm, Rn, (Rj - Rk)

GES Bm, (Rj - #Imm), Rn
GES Bm, Rn, (Rj - #Imm)
GES Bm, (Rj - Rk), #Imm
GES Bm, (Rj - #Imm1), #Imm2

LTS Bm, (Rj + Rk), Rn

LTS Bm, Rn, (Rj + Rk)

LTS Bm, (Rj + #Imm), Rn

LTS Bm, Rn, (Rj + #Imm)

LTS Bm, (Rj + Rk), #lmm

LTS Bm, (Rj + #Imm1), #lmm?2

LTS Bm, (Rj - Rk), Rn

LTS Bm, Rn, (Rj - Rk)

LTS Bm, (Rj - #lmm), Rn

LTS Bm, Rn, (Rj - #Imm)
LTS Bm, (Rj - Rk), #Imm

LTS Bm, (Rj - #Imm1), #lmm2

LES Bm, (Rj + Rk), Rn

LES Bm, Rn, (Rj + Rk)

LES Bm, (Rj + #lmm), Rn

LES Bm, Rn, (Rj + #Imm)

LES Bm, (Rj + Rk), #Imm

LES Bm, (Rj + #Imm1), #Imm?2

LES Bm, (Rj - Rk), Rn

LES Bm, Rn, (Rj - Rk)

LES Bm, (Rj - #Ilmm), Rn

LES Bm, Rn, (Rj - #Imm)
LES Bm, (Rj - Rk), #lmm

LES Bm, (Rj - #lmm1), #Imm?2

Spring 1998

Unsigned

ADD Ri, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Rj, Rj, Rk
ADD Ri, Rj, #Imm1

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm
SUB Ri, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmm1

ADD Ri, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm]

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm
SUB Ri, Rj, #lmm
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmm1

ADD Rj, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imml

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm

Fleur Steven

GTU Bm, Ri, Rn
GTU Bm, Rn, Ri
GTU Bm, Ri, Rn
GTU Bm, Rn, Ri
GTU Bm, Ri, #Imm
GTU Bm, Ri, #Imm?2

GTU Bm, Ri, Rn -
GTU Bm, Rn, Ri
GTU Bm, Ri, Rn
GTU Bm, Rn, Ri
GTU Bm, Ri, #Ilmm
GTU Bm, Ri, #Imm?2

GEU Bm, Ri, Rn
GEU Bm, Rn, Ri
GEU Bm, Ri, Rn
GEU Bm, Rn, Ri
GEU Bm, Ri, #Imm
GEU Bm, Ri, #lmm2

GEU Bm, Ri, Rn
GEU Bm, Rn, Ri
GEU Bm, Ri, Rn
GEU Bm, Rn, Ri
GEU Bm, Ri, #Imm
GEU Bm, Ri, #Imm?2

LTU Bm, Ri, Rn
LTU Bm, Rn, Ri
LTU Bm, Ri, Rn
LTU Bm, Rn, Ri
LTU Bm, Ri, #Imm
LTU Bm, Ri, #Imm?2

LTU Bm, Ri, Rn
LTU Bm, Rn, Ri
LTU Bm, Ri, Rn

70

GTU Bm, (Rj + Rk), Rn

GTU Bm, Rn, (Rj + Rk)

GTU Bm, (Rj + #Imm), Rn
GTU Bm, Rn, (Rj + #Imm)
GTU Bm, (Rj + Rk), #Imm
GTU Bm, (Rj + #Ilmm1), #lmm2

GTU Bm, (Rj - Rk), Rn

GTU Bm, Rn, (Rj - Rk)

GTU Bm, (Rj - #Imm), Rn
GTU Bm, Rn, (Rj - #Imm)
GTU Bm, (Rj - Rk), #lmm
GTU Bm, (Rj - #lmm1), #lmm2

GEU Bm, (Rj + Rk), Rn

GEU Bm, Rn, (Rj + Rk)

GEU Bm, (Rj + #Imm), Rn
GEU Bm, Rn, (Rj + #Imm)
GEU Bm, (Rj + Rk), #Imm
GEU Bm, (Rj + #lmm1), #Imm2

GEU Bm, (Rj - Rk), Rn

GEU Bm, Rn, (Rj - RK)

GEU Bm, (Rj - #Imm), Rn
GEU Bm, Rn, (Rj - #Imm)
GEU Bm, (Rj - Rk), #Imm
GEU Bm, (Rj - #Imm1), #Imm2

LTU Bm, (Rj + Rk), Rn

LTU Bm, Rn, (Rj + Rk)

LTU Bm, (Rj + #Imm), Rn

LTU Bm, Rn, (Rj + #Imm)

LTU Bm, (Rj + Rk), #Ilmm
LTU Bm, (Rj + #Imm1), #Imm2

LTU Bm, (Rj - Rk), Rn
LTU Bm, Rn, (Rj - Rk)
LTU Bm, (Rj - #Ilmm), Rn

Spring 1998

SUB Ri, Rj, #lmm
SUB Ri, Rj, Rk
SUB Ri, Rj, #lmm1

ADD Rj, Rj, Rk
ADD Rj, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Rj, Rj, Rk
ADD Ri, Rj, #Imm!

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #imm
SUB Ri, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm!

Signed and Unsigned

ADD Ri, Rj, Rk
ADD Rj, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm]

SUB Rj, Rj, Rk
SUB Ri, Rj, Rk
SUB R, Rj, #imm
SUB Ri, Rj, #imm
SUB Ri, Rj, Rk
SUB R, Rj, #imm1

ADD Ri, Rj, Rk
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imm
ADD Ri, Rj, #Imm
ADD Ri, Rj, Rk
ADD Ri, Rj, #Imml

Fleur Steven

LTU Bm, Rn, Ri
LTU Bm, Ri, #Ilmm
LTU Bm, Ri, #Imm?2

LEU Bm, Ri, Rn
LEU Bm, Rn, Ri
LEU Bm, Ri, Rn
LEU Bm, Rn, Ri
LEU Bm, Ri, #Imm
LEU Bm, Ri, #lmm?2

LEU Bm, Ri, Rn
LEU Bm, Rn, Ri
LEU Bm, Ri, Rn
LEU Bm, Rn, Ri
LEU Bm, Ri, #Imm
LEU Bm, Ri, #Imm?2

EQ Bm, Ri, Rn

EQ Bm, Rn, Ri

EQ Bm, Ri, Rn

EQ Bm, Rn, Ri

EQ Bm, Ri, #Imm
EQ Bm, Ri, #Imm?2

EQ Bm, Ri, Rn

EQ Bm, Rn, Ri

EQ Bm, Ri, Rn

EQ Bm, Rn, Ri

EQ Bm, Ri, #lmm
EQ Bm, Ri, #lmm?2

NE Bm, Ri, Rn

NE Bm, Rn, Ri

NE Bm, Ri, Rn

NE Bm, Rn, Ri

NE Bm, Ri, #Imm
NE Bm, Ri, #Imm?2

71

LTU Bm, Rn, (Rj - #Imm)
LTU Bm, (Rj - Rk), #lmm
LTU Bm, (Rj - #lmm1), #lmm2

LEU Bm, (Rj + Rk), Rn

LEU Bm, Rn, (Rj + Rk)

LEU Bm, (Rj + #Imm), Rn
LEU Bm, Rn, (Rj + #Imm)
LEU Bm, (Rj + Rk), #Imm
LEU Bm, (Rj + #Imm1), #lmm2

LEU Bm, (Rj - Rk), Rn

LEU Bm, Rn, (Rj - Rk)

LEU Bm, (Rj - #Imm), Rn
LEU Bm, Rn, (Rj - #Imm)
LEU Bm, (Rj - Rk), #Imm
LEU Bm, (Rj - #lmm1), #Imm2

EQ Bm, (Rj + Rk), Rn

EQ Bm, Rn, (Rj + Rk)

EQ Bm, (Rj + #Imm), Rn

EQ Bm, Rn, (Rj + #Imm)

EQ Bm, (Rj + Rk), #Imm

EQ Bm, (Rj + #Imm1), #Ilmm2

EQ Bm, (Rj - Rk), Rn

EQ Bm, Rn, (Rj - Rk)

EQ Bm, (Rj - #imm), Rn

EQ Bm, Rn, (Rj - #Imm)

EQ Bm, (Rj - RK), #Imm

EQ Bm, (Rj - #Imm1), #Imm?2

NE Bm, (Rj + Rk), Rn

NE Bm, Rn, (Rj + Rk)

NE Bm, (Rj + #Imm), Rn

NE Bm, Rn, (Rj + #Imm)

NE Bm, (Rj + Rk), #Imm

NE Bm, (Rj + #Imm1), #lmm?2

Spring 1998

SUB Ri, Rj, Rk
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm
SUB Ri, Rj, #Imm
SUB Ri, Rj, Rk
SUB Ri, Rj, #Imm1

Fleur Steven

NE Bm, Ri, Rn
NE Bm, Rn, Ri
NE Bm, Ri, Rn
NE Bm, Rn, Ri

NE Bm, Ri, #Imm
NE Bm, Ri, #imm?2

72

NE Bm, (Rj - Rk), Rn

NE Bm, Rn, (Rj - Rk)

NE Bm, (Rj - #Imm), Rn

NE Bm, Rn, (Rj - #Imm)

NE Bm, (Rj - Rk), #Imm

NE Bm, (Rj - #lmm1), #lmm2

Spring 1998

B.3 Shift Unit
First Instruction

ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Ri, Rj, #Imm
ASL Ri, Rj, #Imm
ASL Ri, Rj, Rk
ASL Ri, Rj, #Imm1

ASR Ri, Rj, Rk
ASR R, Rj, Rk
ASR Ri, Rj, #Imm
ASR Ri, Rj, #lmm
ASR Ri, Rj, Rk
ASR Ri, Rj, #Imm1

ASL Ri, Rj, Rk
ASL Ri, Rj, Rk
ASL Ri, Rj, #Imm
ASL Ri, Rj, #lmm
ASL Ri, Rj, Rk
ASL Ri, Rj, #lmm1

ASR Ri, Rj, Rk
ASR Ri, Rj, Rk
ASR Ri, Rj, #Imm
ASR Ri, Rj, #lmm
ASR Ri, Rj, Rk
ASR Ri, Rj, #Imm]1

B.4 Multiply Unit
First Instruction

MULT Ri, Rj, Rk
MULT Ri, Rj, Rk

MULT Ri, Rj,#Imm
MULT Ri, Rj, #Imm

Fleur Steven

Second Instruction Combined Instruction

AND Rm, Ri, Rn
AND Rm, Rn, Ri
AND Rm, Ri, Rn
AND Rm, Rn, Ri
AND Rm, Ri, #Imm
AND Rm, Ri, #Imm?2

AND Rm, Ri, Rn
AND Rm, Rn, Ri
AND Rm, Ri, Rn
AND Rm, Rn, Ri
AND Rm, Ri, #Imm
AND Rm, Ri, #imm?2

OR Rm, Ri, Rn
OR Rm, Rn, Ri
OR Rm, Ri, Rn
OR Rm, Rn, Ri
OR Rm, Ri, #Imm
OR Rm, Ri, #Imm?2

OR Rm, Ri, Rn
OR Rm, Rn, Ri
OR Rm, Ri, Rn
OR Rm, Rn, Ri

OR Rm, Ri, #Imm
OR Rm, Ri, #Imm?2

Second Instruction

ADD Rm, Ri, Rn
ADD Rm, Rn, Ri
ADD Rm, Ri, Rn
ADD Rm, Rn, Ri

73

AND Rm, (Rj ASL Rk),Rn

AND Rm, Rn, (Rj ASL Rk)

AND Rm, (Rj ASL #Imm), Rn
AND Rm, Rn, (Rj ASL #Imm),
AND Rm, (Rj ASL Rk), #Imm
AND Rm, (Rj ASL #Imml), Imm2

AND Rm, (Rj ASR Rk), Rn

AND Rm, Rn, (Rj ASR Rk)

AND Rm, (Rj ASR #Imm), Rn
AND Rm, Rn, (Rj ASR #Imm),
AND Rm, (Rj ASR Rk), #lmm
AND Rm, (Rj ASR #Imm1l), Imm2

OR Rm, (Rj ASL Rk), Rn

OR Rm, Rn, (Rj ASL Rk)

OR Rm, (Rj ASL #Imm), Rn
OR Rm, Rn, (R} ASL #Imm),
OR Rm, (Rj ASL Rk), #Imm
OR Rm, (Rj ASL #Imml), Imm?2

OR Rm, (Rj ASR Rk), Rn

OR Rm, Rn, (Rj ASR Rk)

OR Rm, (Rj ASR #Imm), Rn
OR Rm, Rn, (R} ASR #Imm),
OR Rm, (Rj ASR Rk), #Imm
OR Rm, (Rj ASR #Imml), Imm2

Combined Instruction

ADD Rm, (Rj * Rk), Rn
ADD Rm, Rn, (Rj * Rk)
ADD Rm, (Rj * #Imm), Rn
ADD Rm, Rn, (Rj * #Imm)

Spring 1998

MULT Ri, Rj, Rk
MULT Ri, Rj, #Imm1

MULT Ri, Rj, Rk
MULT Ri, Rj, Rk
MULT Ri, Rj,#Tmm
MULT Ri, Rj, #Imm
MULT Ri, Rj, Rk
MULT Ri, Rj, #Imm]1

B.5 Memory Reference

No examples

ADD Rm, Ri, #Imm
ADD Rm, Ri, #Imm?2

SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, Rn
SUB Rm, Rn, Ri
SUB Rm, Ri, #Imm
SUB Rm, Ri, #Imm?2

B.6 Boolean Instructions

No examples

B.7 Branch Instructions

All signed
First Instruction

EQ Bi, Rj, #0
NE Bi, Rj, #0

GTS Bi, Rj, #0
GES Bi, Rj, #0
LTS Bi, Rj, #0
LES B, Rj, #0

B.8 Special Purpose
No examples

B.9 Floating-point
No examples

Fleur Steven

Second Instruction

BT, B4, label (#delay-count)
BT, Bi, label (#delay-count)
BT, Bi, label (#delay-count)
BT, Bi, label (#delay-count)
BT, Bi, label (#delay-count)
BT, Bi, label (#delay-count)

74

ADD Rm, (Rj *Rk), #lmm
ADD Rm, (Rj * #lmm1), #Imm?2

SUB Rm, (Rj * Rk), Rn

SUB Rm, Rn, (Rj * Rk)

SUB Rm, (Rj * #Imm), Rn
SUB Rm, Rn, (Rj * #Imm)
SUB Rm, (Rj *Rk), #Imm

SUB Rm, (Rj * #Imm1), #Imm2

Combined Instruction

BEQ R, label (#delay-count)
BNE Ri, label (#delay-count)
BGTS Ri, label (#delay-count)
BGES Ri, label (#delay-count)
BLTS Ri, label (#delay-count)
BLES Ri, label (#delay-count)

Spring 1998

Appendix B HSS Configuration Parameters

/*hsp_const.h*/
[*constant definitions for HSP Scheduler*/

#define true 1
#define false 0
#define dummy -9

#define TENPIPE

#define HADES_OPTION false

#define HADES2_OPTION false /*allows pairing of unscheduled twopipe code*/
#define BRANCHINLINE NO /*allows branch to be moved irrespective of slot no.*/

#define LSIZE 160 /*maximum number of characters per line*/
#define TOKEN_SIZE 20 /*maximum number of characters per token*/

#define LINECOUNT 3
#define opcode_length 10 /*maximum number of characters per opcode/function*/

#define BOOLEAN_REGS 16

#define ROTATEBOOLS true /*change input code to use all available bools*/

#define MAX_GUARDS 1 /*maximum guards per instruction*/

#define BR_MAX_GUARDS 2 /*maximum guards per branch instruction*/

#define PERCOLATION_THRESHOLD 100 /*%age of successful node required*/

#define BACKEDGE_THRESHOLD 100 /*before percolation succeeds*/

#define BACKEDGEPARAM true /*enable percolation across backedge™*/

#define PERC_BACKEDGE_COUNT 1000 /*determines how many loops will get code
percolated across backedges™*/

#define BACKEDGE_ITERATIONS 1000 /*Maximum number of iterations of backedge

algorithm for each loop*/

#define EXTRA_COPY 2

#define Renaming true

#define global_scheduling true

#define BB_duplication true

#define instruction_issue_rate 16

#define instruction_fetch_rate 16

#define MAX_SLOTS instruction_issue_rate
ttdefine ICACHE_CYCLES 2

#tdefine DELAY_SLOTS ICACHE_CYCLES
#define VCOPY_ON false

#define MOV_MERGE true

#define LD_MOV_MERGE false /*allows LD to merge with following MOV*/

#define PERCOLATE_MOVS true /*percolate MOV inserted during renaming*/

#define GLOBAL_MOV_PERCOLATION true /*percolate MOVs from initial BB*/
/*note MOV are percolated across back edges with either setting*/

#define PERCOLATE_BRANCH true /*percolate branch at end of BB percolation®*/

#define REC_GLOBAL_PERCOLATION true

#define ADDGUARDTOREMOVEOUTPUTDEPENDENCE false

#define INTERPROCPERC true

#define ARITH_UNIT 16
#define MULT _UNIT 16
#define REL,_UNIT 16

Fleur Steven 75 Spring 1998

#define MEM_REF_UNIT 4
#define LD_UNIT 2

#define ST _UNIT 2

#define BR_UNIT 3
#define FP_ADD_UNIT 2
#define FP_MULT_UNIT 2
#define FP_REL_UNIT 2

#define FAIL O

#define SUCCEED 1
#define LIWDELETED 2
#define YES 1

#define NO O

#define RENAME 1
#define NORENAME 0

#define RENAMEIFREMOVEGUARD 2

#define RENAMEIFNOTREGSAVED NO /*if reg not in LD and ST*/
#define INSERTATBEGINNING 2

#define RENAMEIFPRELUDE NO

#define ALLREGSPRESERVED NO

#define PERCOLATEINTOBSR YES

#define PERCOLATEINTOCONDBRANCH YES

#define DUPLICATEDELAYSLOTS YES

#define PRINTMASKS NO

#define Pred_SS O
#define Pred_BT 1

#define labellength 150

#define condlength 4

#define reglength 4

#define reg_locations 2

#define BSR_upward_reg 0x0000ffff
#define BSR_bool_upward_reg 0x00000001
#define inst_no 5

/***/
/*debugging constants*/

#define DEBUG true /*will - eventually - disable debugging print statements when false*/

#define PRINTBRANCHTARGETS false /*conditionally prints branch targets when
perc_count expires*/

#define PRINTBBSCHEDULES false /*conditionally prints BB schedules when
perc_count expires*/

/***/

/*constants for latency representation*/

#define INTOPSLATENCY false
#define MULT 3

#define DIV 16

#define LD 2

#define ST 1

#define INTOPS 2

Fleur Steven 76 Spring 1998

/***/

[*mask stuff*/

#define int_proc_live_regs 0x0000ffff
#define float_proc_live_regs 0x0000ffff
#define bool_proc_live_regs 0x00000001

[*register details*/

#define SP 2

#define FIRSTREGSAVED 16

#define LASTREGSAVED 31

#define FIRSTRESERVEDREG 0
#define LASTRESERVEDREG 4
#define FIRSTPARAMREG 5

#define LASTPARAMREG 15

#define RESULTREG 5

#define INT_REGS 32

#define FIRSTBOOLRESERVEDREG 0

/***/

/*Inlining Parameters*/
/*To view inlined code only in *cd.ps, set exit_count to O in hsp_backedge.c*/

#define Inline_Proc_Sizel_Threshold 5
/*proc called from withon a loop will only be inlined if number of basic blocks in proc
is less than or equal to this threshold*/

#define Inline_No_Of_Callsl_Threshold 0
/*proc called from within a loop will only be inlined if static number of calls to proc is less
than or equal to this threshold*/

#define Inline_Proc_Size2_Threshold 5
/*proc called from outside a loop will only be inlined if number of basic blocks in proc
is less than or equal to this threshold*/

#define Inline_No_Of_Calls2_Threshold 1
/*proc called from outside a loop will only be inlined if static number of calls to the proc
is less than or equal to this threshold*/

#define Inline_Proc_Size3_Threshold 5
/*proc called from within a recursive proc will only be inlined if number of basic blocks
in proc is less than or equal to this threshold*/

#define Inline_Recursive_Calls false
/*if true directly recursive calls are inlined. If false they are not*/

#define Inline_Nesting_Threshold 5
/*an inlined procedure may itself contain proc calls which may themselves be in turn inlined.
To avoid endless inlining, the number of nested inlinings must not exceed this threshold*/

#define INLINEPARAM true
/*if true inline, if false do not inline*/

Fleur Steven 77 Spring 1998

#define UNCALLEDPROCSDELETED true
/*if true delete uncalled procs, if false do not*/

Fleur Steven 78

Spring 1998

Appendix C Loop Scheduling

Example: Original Code
Loop:
LD R16, (R1)
ADD R16, R16, #17
ST (R3), R16
ADD R1, R1, #4;
ADD R3, R3, #4
SUB R2, R2, #1
NE B1, R2, #0
BT B1, Loop

First Pass
Schedule each instruction in turn, starting at the top of the loop. Move or percolate each
instruction as high as possible.

Loop:
LD R16, (R1); ADD R1,R1, #4; ADD R4, R3, #4,
SUB R2, R2, #1
ADD R16, R16, #17; NE B1, R2, #0
ST (R3), R16; MOV R3, R4; BT B1, Loop

Note renaming of R3 in third addition.
Each loop iteration now requires 3 cycles instead of 7.

Result of First Pass Repeated
Loop:
LD R16, (R1); ADD R1,R1, #4; ADD R4, R3, #4;
SUB R2, R2, #1
ADD R16, R16, #17; NE B1, R2, #0
ST (R3), R16; MOV R3, R4; BT B1, Loop

Start of Second Pass

Percolate instructions from the first instruction group round the loop back edge. There must be
chain of dependencies from the percolating instruction to end of loop. Instructions are not
allowed to percolate back into the first group.

Loop prelude:
LD R17, (R1)
Loopl:

Fleur Steven 79 Spring 1998

MOV R16, R17; ADD R1,R1, #4; ADD R4, R3, #4,
SUB R2, R2, #1

ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1)

ST (R3), R16; MOV R3, R4; BT B1, Loopl

Note: The disambiguation module on this scheduler is particularly good and has determined
that R1 !=R3.

Loop prelude:
LD R17, (R1)
Loopl:
MOV R16, R17; ADD R1, R1, #4; ADD R4, R3, #4,
SUB R2, R2, #1
ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1)
ST (R3), R16; MOV R3, R4; BT B1, Loopl

Consider ADD R1, R1, #4.
No chain of dependencies, so no percolation attempted.

Loop prelude:
LD R17, (R1)
Loopl:
MOV R16,R17; ADD RI1, R1, #4; ADD R4, R3, #4;
SUB R2, R2, #1
ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1)
ST (R3), R16; MOV R3, R4; BT B1, Loopl

Percolate ADD R4, R3, #4
No chain of dependencies, so no percolation attempted.

Loop prelude:
LD R17, (R1)
Loopl:
MOV R16, R17; ADD R1, R1, #4; ADD R4, R3, #4;
SUB R2, R2, #1
ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1)
ST (R3), R16; MOV R3, R4; BT B1, Loopl

Fleur Steven 80 Spring 1998

Percolate SUB R2, R2, #1

Loop prelude:
LD R17, (R1); SUB R2, R2, #1
Loopl:
MOV R16,R17; ADDRI1, R1, #4; ADD R4, R3, #4;
ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1);
SUB R2, R2, #1
ST (R3), R16; MOV R3, R4; BT B1, Loopl

RESCHEDULE LOOP WITH BACK EDGE DISABLED

Loop prelude:
LD R17, (R1); SUB R2, R2, #1
Loopl:
MOV R16,R17; ADD R1, R1, #4; ADD R4, R3, #4,
ADD R16, R16, #17; NE B1, R2, #0; LD R17, (R1);
SUB R2, R2, #1
ST (R3), R16; MOV R3, R4; BT B1, Loopl

Compacted code:

Loop prelude:
LD R17, (R1); SUB R2, R2, #1
Loop1: ‘
ADD R1, R1, #4; ADD R4, R3, #4; ADD R16, R17, #17;
NE B1, R2, #0; SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl

The loop body has now been reduced to two instruction groups.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1
Loop1:
ADD R1, R1, #4; ADD R4, R3, #4; ADD R16, R17, #17,
NE B1, R2, #0; SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl

Fleur Steven 81

Spring 1998

Percolate ADD R1, R1, #4;

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17; NE B1, R2, #0;
SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl; ADD R1, R1, #4

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
Loopl:
ADD R4, R3, #4; ADD R16, R17, #17; NE B1, R2, #0;
SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4,
BT B1, Loopl; ADD R1, R1, #4

Percolate ADD R4, R3, #4
No chain of dependencies so percolation fails.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17; NE B1, R2, #0;
SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4,
BT B1, Loopl; ADD R1, R1, #4

Percolate ADD R16, R17, #17
Percolation fails.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
Loopl:
ADD R4, R3, #4; ADD R16, R17, #17; NE B1, R2, #0;
SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;

Fleur Steven 82

Spring 1998

BT B1, Loopl; ADD R1, R1, #4

Percolate NE B1, R2, #0

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17; SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl; ADD R1, R1, #4; NE B1, R2, #0
Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0
Loopl:
ADD R4, R3, #4; ADD R16, R17, #17; SUB R2, R2, #1
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl; ADD R1, R1, #4; NE B1, R2, #0

Percolate SUB R2, R2, #1

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl; ADD R1, R1, #4; NE B1, R2, #0;
SUB R2, R2, #1
Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17
LD R17, (R1); ST (R3), R16; MOV R3, R4;
BT B1, Loopl; ADD R1, R1, #4; NE B1, R2, #0;
SUB R2, R2, #1

Fleur Steven 83

Spring 1998

Compact loop

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1
Loopl:
ADD R4, R3, #4; ADD R16, R17, #17; LD R17, (R1);
ADD R1, R1, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2

Loop has not been shortened but since some percolation took place across back edge process
must be repeated.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1
Loop1:
ADD R4, R3, #4; ADD R16, R17, #17; LD R17, (R1);
ADD R1, R1, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2

Percolate ADD R4, R3, #4
No dependent chain, so percolation not attempted.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1
Loopl:
ADD R4, R3, #4; ADD R16, R17, #17; LD R17, (R1);
ADD R1, R1, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2

Percolate ADD R16, R17, #17

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17

Fleur Steven 84 Spring 1998

Loop1:
ADD R4, R3, #4; LD R17, (R1); ADD R1, R1, #4;
NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2; ADD R16, R17, #17

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17
Loop1:
ADD R4, R3, #4; LD R17, (R1); ADD R1, R1, #4,
NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3, R4; BT B1, Loopl;
MOV B1,B2; ADD R16, R17, #17

Percolate LD R17, (R1)

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,
LD R17, (R1)
Loopl:
ADD R4, R3, #4; ADD R1, R1, #4; NE B2, R2, #0;
SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl; ‘
MOV B1,B2; ADD R16, R17, #17; LD R17, (R1)
Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,
LD R17, (R1)
Loopl:
ADD R4, R3, #4; ADD R1, R1, #4; NE B2, R2, #0;
SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2; ADD R16, R17, #17; LD R17, (R1)

Percolate ADD R1, R1, #4

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,

Fleur Steven 85

Spring 1998

LD R17, (R1); ADD R1,R1, #4
Loop1:
ADD R4, R3, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1,B2; ADD R16, R17, #17; LD R17, (R1);
ADD R1, R1, #4

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,
LD R17, (R1); ADDRI, R1, #4
Loopl:
ADD R4, R3, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1, B2; ADD R16, R17, #17; LD R17, (R1);
ADD R1,R1, #4

Percolate NE B2, R2, #0

* No critical chain so percolation not attempted. Note chain could pass through antidependence!

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,
LD R17, (R1); ADD R1, R1, #4
Loop1:
ADD R4, R3, #4; NE B2, R2, #0; SUB R2, R2, #1
ST (R3), R16; MOV R3,R4; BT B1, Loopl;
MOV B1, B2; ADD R16, R17, #17; LD R17, (R1);
ADD R1,R1, #4

Percolate SUB R2, R2, #1
No critical chain so percolation not attempted.

Loop prelude:
LD R17, (R1); SUB R2, R2, #1; ADD R1, R1, #4
NE B1, R2, #0; SUB R2, R2, #1; ADD R16, R17, #17,
LD R17, (R1); ADD R1,R1, #4
Loopl:
ADD R4, R3, #4; NE B2, R2, #0; SUB R2, R2, #1

Fleur Steven 86

Spring 1998

8661 Suldg L8 U9A9)S INA[

0# ‘T9 ‘T °N ‘1dooT ‘19 19
P# 1319 AAV (0D LTI ATALT# LT ‘91 AaV
P e €1 aaVv 9Ty (€9 IS ‘T# ‘79 ‘29 dNS
:1doo
#1914 Aav (1Y) ‘L19 al
SLT# L1991 AAV T# ‘29 ‘TI NS 0# TI ‘19 AN

V#1914 AQV T# ‘TI Ta NS () L1a a1
:opnjerd doo

“UOT)ONI)SUL Yourlq oY) Io)je

PLISSUI 29 YOourIq OU) YIIM PAUIGUIOD U] Sey gN oY} dIoym Mo[eq UIAIS st paxmbar spoo
[eurJ 9y [, ‘uononnsur N Y} Jo uonowoid , Aresseoouun,, IST[Iea U JO JNSAI 3y St Adoo SIy T,
*dnoi3 Teury oy ur 3391 uononysur AJoo ULS[OOY © YIIM S[NPSYDS JAOQR SYI YIIM 1J9] I8 A

7919 AOW ‘1dooT ‘19 19
v# ‘19 ‘194 daV
(I LTI AT LI# LTI 91 AAV “v# ‘€4 ‘€9 aav
OTY (€ LS ‘I# ‘7Y ‘79 dNS ‘0# ‘29 ‘T AN
:17doo
v# 1919 dav (1) ‘L14 a1
SLT# LTI 919 AV (T# ‘29 Ty dNS ‘0# ‘79 ‘19 AN
P T T AQV T4 ‘29 ‘29 9nS ‘) ‘L19 a1
:opnjead doo

79 ‘19 AON ‘1dooT‘1d L9
v# ‘T4 ‘19 Aav
(D) LTI @TELT# L1 9T AAQV v# ‘€9 ‘€9 aav
OTd (€9 LS T# ‘29 ‘29 4N ‘0# ‘TY ‘¢ AN
:1dooT
p# 19 19 Qv (D) ‘L14 d’T
SLT# L1991 AAV ‘T# ‘T ‘T 90S ‘0# ‘TI ‘19 AN
#1919 daV I1# ‘2 ‘2 dnS {0 L1y a1
:opnjaxd doo

pajqesip a8pa yoeq yYum doog joedwo)
v# 18 ‘14 Aav

(LTI ATLI# LT 919 AAV 29 ‘19 AOIN
‘1dooT1d L9 b¥ ‘€I AOIN 9T¥ “(€¥) LS

8661 Surrdg

OJuUnIAsuI 30n1s JopadAy
opousiporad jonms JopadAy
OJUIM T 1o013s JopadL)
JSewoweudl 1on1)s JopadA)y
sopouuorie[oo1ad jonms JopadL)
opowysiiAdoo jonns Jopad4y
IsT[[TR} 30N1)S JopadLy
1s1][re3doo] 100138 JopadA)
apousiy Jon1s JopadA)
AnuasygejoquiAs 1onns JopadLy
opou00[qoIseq 3onns JopadL

OPOUISI[UOTIIASUL 30n1)s JopadA)

SB aJe ISAY],

o-9[qeIfoquAs~dsy
2'S[00q 918101 dsy
yodAydsy
0'9pOUMTT dsy
o'9yengiquiestp” dsy
o' Tuonow opod~dsy

0°1STX2003 090 dsy

88

o' Tpoyos dsy

o opoudorddsy

o Surjpuey ysew dsy
o"opouuononnsur dsy
rore[oop dsy
o'uonow 9pod~dsy

9"opoud0[qorIseqdsy

U9A9)S IN3[

serpe~ouny jonxs JopdoA)

OJUIX JODA 1on1s jopadLy
prooaxped jonis jopadAy
OJuIpIengaI0ls 1onms JopadAy
IsT[pI0od1pIens jon1s JopadLy
SQUOULIqJOISI] JonIIs JopadLy
opous[rejuonjefooradgg jonns JopadA)
1s119qdoot 1onns JopdaA)
1sipxedoo jonmns JopadLy
1sIpe3IRIYOURIq JoNNs JopadA)
OPOUMIT 30n1s JopadL)
opowsurdurje[oorad jonns JopadLy
Jpoujsur 3onxns JopadAy

:SMOT[0J

‘qrodAy dsy o1y oYy ur oI SUOMIUIJOP QINONIS BIEP Y],

o'payos” dsy
o'suononysur o3row dsy
oopoudoo]~dsy

oourur dsy

y'Isuoo~dsy
o'ssedyooyodsy
o'93payoeq dsy

:MO0[0q PAISI] 918 SO[NpoW Y],

"9p09d Jo saul] 000‘¢] Arerewxoxdde pue senpowr (yg Apuelino sesuduiod SSH

q xipuaddy

