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Abstract

Fatigue experienced during post-stroke rehabilitation and its implications for the therapy
outcome are often overlooked in existing rehabilitation programmes. Past studies have shown
that intensive and repetitive robot-mediated upper limb therapies improve the neuroplasticity
of stroke survivors. However, it is more likely that the increased motor/cognitive processing
demands required during post-stroke motor retraining exercises may exacerbate stroke
patients’ fatigue levels. The elevated fatigue levels may impair motivation and compliance to
effectively perform the rehabilitation tasks and the long-term commitment towards it. Hence,
it is highly questionable whether continuing a stroke therapy while or beyond fatigue would
impede motor performance and motor skill relearning during the session.

While robot-mediated rehabilitation has been gaining traction over the past 40 years, EEG
feature modulations associated with fatigue induced by robot-mediated interactions has not
yet been comprehensively explored. Personalised rehabilitation sessions that incorporate the
knowledge of patient fatigue levels and the effects of fatigue on brain activity are thought
to improve the intervention’s efficiency. Moreover, EEG-based fatigue indices could also
be used to mitigate fatigue accumulated during human-robot collaboration tasks, thereby
managing the fatigue-related risks in the automotive industry. Therefore, the present research
aims to investigate the modulations in spectral and nonlinear EEG features due to fatigue
in a range of robot-mediated interactions involving gross motor, fine motor and visuomotor
tracking tasks.

This research work analysed and evaluated EEG correlations of fatigue induced by three
different robot-mediated interactions using two experimental studies. A comparison of
EEG spectral feature modulations following robot-mediated gross motor and fine motor
interactions was conducted in experiment 1. An in-depth analysis of spectral and nonlinear
EEG feature modulations during a robot-mediated visuomotor tracking task was conducted in
experiment 2. Healthy participants were considered since this is an early-stage investigation.
The two experiments have shown that fatigue was induced during robot-mediated interactions
and has differently changed the EEG features and cortical sites depending on the type of



interaction. Experiment 1 revealed that the robot-mediated gross motor interactions most
likely change the EEG activity around the central and parietal brain regions. In contrast, this
experiment found that the robot-mediated fine motor interactions most likely change the
EEG activity around the frontopolar and central brain regions. Experiment 2 revealed that
the robot-mediated visuomotor tracking tasks most likely change the EEG activity around
the central, parietal and occipital brain regions. These observations were supported by the
subjective measures of the level of fatigue. The correlation analysis performed in experiment
2 also revealed that the participants who maintained increased tracking accuracies during the
robot-mediated visuomotor tracking task experienced an increase in their physical fatigue
level, thereby contributing to a greater change in EEG features. Taken together, the findings
presented in this thesis suggest that the modulations in EEG features and the cortical regions
that are mostly affected due to fatigue induced by the robot-mediated interactions are specific
to the physical and cognitive nature of the task performed. Therefore, the findings presented
in this thesis confirm the hypothesis of this research “EEG correlates of fatigue during
robot-mediated interactions are specific to the physical or cognitive nature of the task and
the differences in the usage of proximal or distal upper limb”.
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Chapter 1

Introduction

Fatigue experienced during post-stroke upper limb rehabilitation and its implications for
the therapy outcome are often overlooked in existing post-stroke rehabilitation programmes.
Many stroke survivors (about 30% to 70%) have reported persistence of fatigue as a debilitat-
ing symptom (Lerdal et al., 2009; Staub and Bogousslavsky, 2001). For instance, up to 85%
of stroke patients show some degree of upper limb deficits following a stroke (Feys et al.,
1998; Lawrence et al., 2001), thereby may find profoundly challenging to perform activities
of daily living independently without getting help from others. Many studies have shown
that intensive and repetitive robot-mediated upper-limb therapies improve neuroplasticity of
stroke survivors (Bütefisch et al., 1995; Fasoli et al., 2003; Kwakkel, 2006; Lohse et al., 2014;
Oujamaa et al., 2009; Veerbeek et al., 2014). However, since stroke survivors experience
significant musculoskeletal and cardiorespiratory deterioration, there is a higher possibility
that the intensive therapeutic interactions may accelerate the depletion of skeletal muscle
energy reserves. Consequently, the force production capabilities may rapidly decrease and
cause fatigue (Sterr and Furlan, 2015). Therefore, repetitive and sustained upper limb move-
ments practised during a therapeutic session with the intention of performance improvement
over time may eventually exacerbate the patient’s fatigue level. The elevated fatigue levels
may impair motivation and compliance to effectively perform the rehabilitation tasks and
the long-term commitment towards it. Hence, it is highly questionable whether continuing a
stroke therapy while or beyond fatigue levels would impede motor performance and motor
skill relearning during the session and beyond. However, the evidence is still lacking in the
domain of stroke rehabilitation.

During the past years, many researchers investigated the relationship of fatigue to motor
performance and/or learning (Alderman, 1965; Aune et al., 2008; Branscheidt et al., 2019;
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Carron, 1972, 1969; Cotten et al., 1972; Gates and Dingwell, 2008; Godwin and Schmidt,
1971; Smith et al., 2016; Thomas et al., 1975; Van Cutsem et al., 2017; Williams and Singer,
1975), but the findings were diverse and not conclusive. Most studies have reported that
fatigue is detrimental to motor performance (Alderman, 1965; Branscheidt et al., 2019;
Carron, 1972, 1969; Cotten et al., 1972; Godwin and Schmidt, 1971; Smith et al., 2016;
Thomas et al., 1975; Van Cutsem et al., 2017; Williams and Singer, 1975). However,
some findings have shown that participants preserved the task performance by altering their
movement patterns with fatigue progression, thereby suggesting a potential adaptive role for
fatigue (Aune et al., 2008; Gates and Dingwell, 2008). Furthermore, several investigators
have found that practice under fatigued conditions impaired motor skill learning efficiency
(Branscheidt et al., 2019; Carron, 1972; Godwin and Schmidt, 1971; Thomas et al., 1975;
Williams and Singer, 1975), whereas the others have found that the learning was unaffected
by fatigue (Alderman, 1965; Carron, 1969; Cotten et al., 1972). The relationship between
exercise-induced fatigue and motor performance and learning in motor skill learning tasks
has suggested showing an inverted-U or inverted-J shape behaviour (Carron, 1972; Thomas
et al., 1975; Williams and Singer, 1975). Thus, the minimal exercise that would result in
little or no fatigue has little or no effect upon motor performance. As the exercise intensity
increases, a facilitative effect on performance and learning is visible until a certain intensity
(optimal point) is reached. If the intensity is increased beyond this point, fatigue build-up
will have detrimental effects on task performance. Furthermore, at the extreme levels of
physical exertion, the performance would deteriorate, thereby impairing motor skill learning.
The optimal exercise intensity may vary between tasks performed.

There is some, but limited evidence on fatigue’s effects on motor task performance and
learning following post-stroke therapies. Sterr and Furlan (2015) argued that the relationship
between training intensity and motor outcomes of constraint-induced therapy in chronic
hemiparetic stroke is modulated by residual motor ability (i.e. the stage of recovery) and
fatigue. As shown in Figure 1.1, the authors hypothesised that the motor task performance
increases with the increasing training intensity, until the optimal point is reached. When
the therapy intensity is further increased, the performance is deteriorated, which presum-
ably reflects the impact of fatigue. Thus, this optimal point could be the fatigue threshold.
Moreover, the optimum training intensity is comparatively different between the stroke
survivors with high-functioning hemiparesis and those with low-functioning hemiparesis.
Low-functioning chronic stroke survivors, in general, show reduced performance and reach
the optimum training intensity earlier than the stroke patients with high-functioning hemi-
paresis. Thus, when determining the optimal therapy intensity, the individual fatigue levels
should be taken into consideration in addition to the residual motor ability. Furthermore,
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Foong et al. (2019) also suggested that the poor performance in the nBETTER (neurostyle
brain exercise therapy towards enhanced recovery) system which is an EEG-based motor
imagery (MI) brain-computer interface (BCI) employing visual feedback for upper limb
stroke rehabilitation, could be due to the mental fatigue progressed during the therapy. In
Prasad et al. (2010)’s study where chronic hemiplegic stroke patients performed both physi-
cal practice and MI, a trend of more considerable variability in the BCI performance was
observed with the rise in individual fatigue levels measured via the visual analogue scale.
Fatigue was also reported to be associated with the concentration of attention after about
20-30 min of training by most stroke patients, and an increase in inter-trial or inter-session
intervals was visible during MI-based BCI training due to fatigue build-up (Frolov et al.,
2017). Therefore, the aforementioned findings in the literature emphasise that continuing a
stroke rehabilitation program while fatigued may degrade the task performance and learning.
Furthermore, the optimal therapy intensity level that each individual should practise to get
performance enhancements may vary between patients, depending on their level of fatigue.
Therefore, to get optimal recovery rates, it is essential to monitor fatigue progression during
the therapy session and provide feedback or adapt the session while addressing individual
fatigue levels. Since the advancements in technology have enabled the use of robotic inter-
faces to assist with physiotherapy, adapting the delivered therapy intensity and task difficulty
in real-time according to the patients’ fatigue level is possible when reliable physiological
fatigue biomarkers are known. However, the neurophysiological biomarkers that can best
describe the effects of fatigue during stroke rehabilitation are relatively unknown.

Figure 1.1: Hypothetical relationship between training intensity and outcomes in chronic
hemiparetic stroke (Sterr and Furlan, 2015).
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Despite its clinical importance, there exists no unambiguous and universally agreed definition
for the term fatigue. In general, fatigue is defined as a sensation of tiredness, weariness
or lack of energy experienced following or during prolonged physical or mental activity,
and is broadly categorised as mental fatigue and physical (or muscular) fatigue. Mental
fatigue is characterised by a subjective feeling of tiredness, and a lack of energy during
prolonged periods of demanding cognitive activity (Lorist et al., 2005; Marcora et al., 2009).
In contrast, physical fatigue is defined as a failure to maintain physical force (or power output)
during prolonged voluntary, and rhythmic contractions of muscles (Gibson and Edwards,
1985). Physical fatigue also impairs coordination and increases errors and the risk of injuries
(Grandjean, 1979).

Electroencephalogram (EEG) has shown to be the most predictive and promising biomarker
of fatigue (Lal and Craig, 2001; Tran et al., 2020). EEG is a recording of the electrical activity
originated by the brain that is obtained using electrodes placed on the surface of the human
scalp. It reflects the resultant excitatory and inhibitory cortical postsynaptic potentials of the
pyramidal cell membrane. The electrodes establish contact between the recording system’s
input terminal and the electrical source(s) that generates the electrical activities of interest
(Schomer and Da Silva, 2012). To date, many studies have investigated the alterations in
EEG activity associated with fatigue, including fatigue induced by driving tasks (Borghini
et al., 2014; Craig et al., 2012; Eoh et al., 2005; Jap et al., 2009; Lal and Craig, 2001, 2002;
Tran et al., 2008; Zhao et al., 2012), voluntary motor tasks (Wang et al., 2017; Yao et al.,
2009), cognitive tasks (Tanaka et al., 2012; Trejo et al., 2015), brain-computer interfaces
(Käthner et al., 2014), exercises and sports related activities (Bailey et al., 2008; Barwick
et al., 2012; Baumeister et al., 2012; Xu et al., 2018), visual display terminal tasks (Cheng
and Hsu, 2011; Fan et al., 2015), visual tasks in 3D displays (Chen et al., 2013; Zou et al.,
2015). However, the influence of fatigue induced by robot-mediated interactions on EEG
activity has not yet been comprehensively explored to the author’s knowledge. The main
aim of this research is to compare and contrast the modulations in spectral and nonlinear
EEG features caused by fatigue accumulated during robot-mediated interactions. Also, this
research aims to determine the EEG feature(s) and electrode location(s) that best describe
the underlying changes in the processing capacity of sensory information and motor output,
and the complexity of the brain with the progression of fatigue.

Healthy participants were considered for this study due to several reasons. Firstly, the fatigue
caused by the experiments is unknown; therefore, stroke patients cannot be directly employed.
There is evidence that over-exhaustion can adversely affect the rehabilitation process (Sterr
and Furlan, 2015). Secondly, stroke patients may exhibit different initial fatigue levels and
motor function impairments due to the nature of their brain injury. Therefore, including stroke
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patients would increase the experiment’s complexity and extent by introducing more control
variables. Furthermore, because this study is an early-stage investigation, it is customary to
employ healthy participants, and in future investigations, stroke patients can be considered
with care and attention paid to their health and rehabilitation status.

1.1 Research Hypothesis

The hypothesis of this research work was that the “EEG correlates of fatigue during robot-
mediated interactions are specific to the physical or cognitive nature of the task and the
differences in the usage of proximal or distal upper limb”. Therefore, the following two
research questions were considered as the main focal points of this research work.

1.1.1 Research Question 1

Are the EEG spectral feature modulations associated with fatigue localised to different
brain regions depending on the type of robotic interaction and the underlying physical
and mental workload?

A. Rationale

EEG consists of a wide frequency spectrum, and the EEG spectral features are frequently used
as indicators of fatigue. The systematic review conducted as part of this research (Table 2.1)
found that many researchers study the modulations in EEG delta (δ ), theta (θ ), alpha (α), and
beta (β ) band power associated with fatigue. Although findings in literature are equivocal, it
was evident that in the majority of studies, theta and alpha band power significantly increased
with the progression of fatigue, whereas the beta band power decreased significantly (Barwick
et al., 2012; Chen et al., 2013; Cheng and Hsu, 2011; Craig et al., 2012; Eoh et al., 2005;
Fan et al., 2015; Jap et al., 2009; Käthner et al., 2014; Lal and Craig, 2002; Tanaka et al.,
2012; Trejo et al., 2015; Wang et al., 2017; Xu et al., 2018; Zhao et al., 2012; Zou et al.,
2015) . Some studies investigated the variations in delta band power as well; however, not
many studies were able to identify significant variations with fatigue (Caldwell et al., 2002;
Chen et al., 2013; Craig et al., 2012; Fan et al., 2015; Jap et al., 2009; Lal and Craig, 2002;
Tanaka et al., 2012; Zhao et al., 2012). In these studies, the EEG band power is given either
in terms of absolute band power or relative band power. Furthermore, variations in the power
ratio between slow and fast wave activities were also examined since the basic band power
indices can be insufficient to observe the shift of brain activity from fast waves to slow waves
during the transition to fatigue (Cheng and Hsu, 2011; Eoh et al., 2005; Fan et al., 2015; Jap
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et al., 2009; Tanaka et al., 2012; Xu et al., 2018; Zou et al., 2015). The most commonly used
power ratios were (θ +α)/β , α/β , (θ +α)/(α +β ), and θ/β and a significant increase in
the ratio power indices were mostly reported (Chen et al., 2013; Eoh et al., 2005; Fan et al.,
2015; Jap et al., 2009; Tanaka et al., 2012; Xu et al., 2018). Eoh et al. (2005) stated that
the index (θ+α)/β was a more reliable fatigue indicator during a simulated driving task
due to the mutual addition of α and θ activity during the repetitive phase transition between
wakefulness and microsleep. Jap et al. (2009) also reported a greater increase in the index
(θ+α)/β , in comparison to the other power ratios, when a person experienced a fatigued
state at the end of a monotonous simulated driving task. Modulations in EEG spectral features
exhibited a widespread topographical distribution in the majority of the studies. Variations in
methodological approaches, including differences in the fatiguing study protocol, low sample
size, differences in the number of electrodes used, the electrode placement and the feature
definition could explain the discrepancies present across the studies.

The literature does not comprehensively explore how the fatigue induced by robot-mediated
exercises affect brain activities. The type of fatigue experienced during visuomotor exercises
performed with the assistance of robotic interventions may depend on the exercise mode,
intensity, and the condition of the patient. For instance, in physiotherapy, the upper limb
joints and muscles involved in an exercise may differ from one therapy to another, depending
on the severity in the loss of fine or gross motor skills. Gross motor skills retraining exercises
such as the arm reach/return exercises are mostly involved in movement and coordination of
the upper limb’s proximal joints and muscles (shoulder and arm). Fine motor skills retraining
exercises, on the other hand, involve coordination of the distal joints and muscles of the upper
limb (hand, wrist, and fingers). Cowley and Gates (2017) found that proximal fatigue in a
repetitive, timed movement task, significantly changes the movement in trunk shoulder, and
elbow kinematics, whereas the changes were mainly in wrist and hand movement due to distal
muscle fatigue. Therefore, in general, repetitive gross motor skill retraining exercises may
induce a higher physical fatigue level than fine motor skill retraining exercises. Moreover,
most therapeutic fine motor activities require considerable attention and decision-making
skills combined with hand, wrist and finger movements; therefore, could induce more
significant mental fatigue than most gross motor activities. As the type of prominent fatigue
developed during a robot-mediated interaction may vary depending on the physical and
mental workload associated with the task, the cortical sites that show significant variations
in EEG spectral features following fatigue may differ between interactions. However, these
differences between gross and fine motor robot-mediated interactions are not systematically
investigated. The above research question was formulated to address this, and an experiment
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was conducted to compare and contrast the modulations in EEG spectral features caused by
the fatigue induced by robot-mediated gross motor and fine motor interactions.

B. Experiment Design in Summary

In this preliminary experiment, an arm reach/return task performed with the assistance of the
HapticMASTER (Motekforce Link, The Netherland) (Amirabdollahian et al., 2007; Chemu-
turi et al., 2013a) was considered as the robot-mediated gross motor task. A hand open/close
task that was performed by wearing the SCRIPT passive orthosis (Amirabdollahian et al.,
2014) was considered as the robot-mediated fine motor task. EEG data were recorded from
FP1, F3, FC3, C3, C4, P3, O1, and T7 electrode locations using an eight-channel EEG data
acquisition system, g.MOBIlab+ (g.tec medical engineering GmbH, Austria). The EEG
spectral features obtained from EEG data recorded before and after the robotic interactions
were compared to evaluate how the type of robotic interaction and the underlying physical
and mental workload affect fatigue progression. Given the differences in the two tasks, it
could be expected that the gross motor task might induce more physical fatigue than the
fine motor task, in which more mental fatigue may be visible. Therefore, it was anticipated
that the resulting statistically significant differences in the EEG spectral features might show
varying topographical distributions between the two robot-mediated interactions. Follow-
ing the robot-mediated gross movements, significant changes to the EEG spectral features
localised around the motor cortex were expected, as fatigue may affect motor coordination
skills. In the fine motor robot-mediated interaction that requires more attention and decision
making, significant changes to the frontopolar brain activities were expected in addition to
the attenuation in the motor cortex.

C. Summary of Main Findings

• A significant increase in relative alpha band power (αrelative), (θ+α)/β , α/β and a
significant decrease in relative delta band power (δrelative) following the robot-mediated
gross motor interaction.

• A significant increase in αrelative and a significant decrease in δrelative following the
robot-mediated fine motor interaction.

• The gross motor task mostly changed the EEG activity around central and parietal brain
regions whereas the fine motor task mostly changed the EEG activity around frontopolar
and central brain regions, thereby suggesting that the effects of fatigue in robot-mediated
interactions are specific to the physical or cognitive nature of the task performed using
the proximal or distal upper limb.
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• More physical fatigue was reported following the gross motor task performed using the
HapticMASTER, whereas more mental fatigue was reported following the fine motor
task performed using the SCRIPT passive orthosis.

1.1.2 Research Question 2

Which spectral and nonlinear EEG features and which EEG electrode locations are most
capable and reliable in estimating the progression of fatigue during a robot-mediated
visuomotor tracking task?

A. Rationale

The findings of the preliminary experiment showed that the modulations in EEG spectral
features with fatigue were specific to the physical or cognitive nature of the task performed
using the proximal or distal upper limb. This experiment’s major drawback was the use of a
limited number of electrodes since the EEG data acquisition system used in this experiment
only had eight EEG channels. Therefore, the association of the regional changes in the EEG
features with fatigue were not fully understood. The GENTLE/EEG robot-mediated system
which included a higher number of EEG electrode locations was implemented to perform a
visuomotor tracking task using HapticMASTER and to further explore the regional variations
in EEG features caused by fatigue in robot-mediated interactions.

The human brain is known to be composed of more than 86 billion neurons, interacting with
other neurons via synapses. The transfer characteristic of neurons is essentially deterministic
and inherently nonlinear (Galka, 2000). Therefore, the EEG signals recorded from the scalp
via electrodes can be in general considered as the output of a nonlinear system (Sanei and
Chambers, 2013). The recent investigations also stated that the linear analysis methods such
as frequency domain analysis, movement-related cortical potential, and coherence analysis
could not fully describe the underlying complex dynamics of EEG. The nonlinear dynamics
of the EEG are often studied to detect and predict epileptic seizures (Acharya et al., 2012;
Kannathal et al., 2005; Osowski et al., 2007), to analyse sleep stages (Fell et al., 1993;
Pradhan and Sadasivan, 1996; Röschke et al., 1993; Zhao et al., 2019), to measure the depth
of anaesthesia (Bruhn et al., 2000; Ferenets et al., 2007; Jordan et al., 2006), to predicting the
prognosis of unconscious subjects in a persistent vegetative state or minimally conscious state
(Wu et al., 2011), to diagnose and get a deeper understanding of the brain functionality of
Alzheimer’s disease, depression, autism spectrum conditions, Parkinson’s disease, dementia,
and schizophrenia (Abásolo et al., 2005; Ahmadlou et al., 2010; Hosseinifard et al., 2013;
Stam et al., 1994).
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Some researchers have recently applied nonlinear time series analysis methods to detect
fatigue, but there are only a few studies conducted to date. For example, Yao et al. (2009)
found that the largest Lyapunov exponent decreased significantly with muscle fatigue induced
by handgrip maximal voluntary contractions. Liu et al. (2010) reported a significant decrease
in two complexity parameters: approximate entropy and Kolmogorov complexity of EEG
with increasing mental fatigue levels. Driver fatigue also caused a decrease in approximate
entropy (Xiong et al., 2016), sample entropy (Tran et al., 2007, 2008; Xiong et al., 2016) and
correlation dimension (Wang et al., 2014), indicating the brain’s reduced complexity due to
fatigue. Furthermore, Kar et al. (2010) evaluated the variations in five types of entropies, i.e.
Shannon’s entropy, Rényi entropy of order 2 and 3, Tsallis wavelet entropy and Generalised
Escort-Tsallis entropy with driver fatigue. Min et al. (2017) suggested that the multiple
entropy fusion features (spectral entropy, approximate entropy, sample entropy and fuzzy
entropy) can be used to characterise driver fatigue. Wang et al. (2019) also proposed a method
to classify driver fatigue based on fusion entropy analysis (spectral entropy, sample entropy,
and approximate entropy) combining EOG and EEG. The driver fatigue detection method
implemented by Wang et al. (2020) considered the alterations in the spectral entropy, sample
entropy, approximate entropy, fuzzy entropy, correlation dimension, and largest Lyapunov
exponent with the fatigue progression.

The second research question further evaluates the association of modulations in EEG relative
band powers, band power ratios, largest Lyapunov exponent and approximate entropy with
fatigue induced by a robot-mediated visuomotor tracking task. Therefore, this investigation
will identify the EEG feature(s) that can best describe the underlying changes in the pro-
cessing capacity of sensory information and motor output, and the complex dynamics of
the brain during the transition to fatigue. Also, the optimal number and placement of EEG
electrodes will be suggested since using a larger set of EEG channels will include noisy
and redundant channels that may reduce the classification accuracy and system performance
(Shan et al., 2015). Moreover, the use of a minimum number of EEG electrodes may facilitate
faster processing of EEG signals, thereby reducing the computational complexity (Lahiri
et al., 2017). The preparation time and the cost of hardware can also be reduced. Given
that the findings will be used in future to facilitate robot-mediated post-stroke therapies that
adapt to individual fatigue levels, the use of a lower number of EEG electrodes may be more
convenient to stroke patients.
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B. Experiment Design in Summary

A robot-mediated visuomotor tracking task performed using the HapticMASTER was devel-
oped by the author to gradually build a fatigued state during the experiment. The participants
were instructed to move the HapticMASTER robot arm between target points presented in
the virtual reality environment, while tracking the trajectory of a guide point that moves at
a constant speed. The robotic interaction lasted for 25 minutes or until volitional fatigue.
Also, it consisted of five levels with gradually increasing difficulty. The damping coefficient
of the HapticMASTER was increased at each level, thereby increased tracking accuracies
maintained during the task may induce more fatigue on the participants. The EEG data were
recorded from a 32-channel EEG data acquisition system, g.GAMMAbox (g.tec medical
engineering GmbH, Austria). The EEG electrode locations: FP1, FP2, F3, Fz, F4, FC3, FCz,
FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz,
O2, T7, T8, P7, and P8 were selected so that a wider brain region could be explored. This
implementation will be referred to as the ‘GENTLE/EEG robot-mediated system’ in this
thesis.

C. Summary of Main Findings

• A significant increase in αrelative and a significant decrease in δrelative, (θ +α)/(α +β ),
δ/α , largest Lyapunov exponent during the robot-mediated visuomotor tracking task.

• A significant decrease in the new EEG feature, LLyapExp/αrelative proposed in this
investigation.

• Significant differences were mostly localised around the central, parietal and occipital
brain regions.

• A significant increase in the subjective measures of physical and mental fatigue lev-
els, thereby confirming transition to fatigue following the robot-mediated visuomotor
tracking task.

• The greater change in the substantive EEG features was mostly associated with a greater
increase in the physical fatigue level, and either a decrease or a smaller increase in the
mean absolute distance, thereby suggesting that the more attention, focus, and physical
energy drawn to maintain increased tracking accuracies during the robot-mediated
visuomotor tracking task may have gradually increased the individual fatigue levels.

• The (θ +α)/(α +β ) is the most reliable EEG feature that can be used to quantify the
progression of fatigue during a robot-mediated visuomotor tracking task. The αrelative,
largest Lyapunov exponent and LLyapExp/αrelative could also be used to estimate fatigue
in robot-mediated visuomotor tracking tasks.
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1.2 Thesis Layout

Chapter 1: Introduction

Chapter 1, firstly, introduces the importance of measuring the level of fatigue during robot-
mediated interactions, followed by the research hypothesis and research questions explored
in the present work to find EEG correlates of fatigue in robot-mediated interactions.

Chapter 2: Background

Background information on EEG, previous work related to EEG-based fatigue measures, and
robot-mediated stroke rehabilitation are discussed in this chapter. A detailed review of the
operational mechanisms of two robotic interfaces: HapticMASTER and SCRIPT passive
orthosis used in the present work is also presented.

Chapter 3: EEG data processing pipeline

The EEG data processing pipeline followed to analyse the EEG data recorded from each
participant in the two experiments conducted as part of the present research work is described
in this chapter. The chapter provides information on the EEG data preprocessing methods,
including DC correction, filtering, and blind source separation by independent component
analysis (ICA), used to remove the artifacts contaminated with the recorded EEG data. Also,
a detailed description of the EEG features evaluated in this research is given. Finally, the
statistical analysis methods and the general interpretations used to compare and contrast the
modulations in EEG features due to fatigue in robot-mediated interactions are discussed.

Chapter 4: Experiment 1: EEG spectral feature modulations associated with fatigue in
robot-mediated upper limb gross motor and fine motor interactions

The experimental protocol conducted to address the research question 1 is given in Chapter 4.
The chapter also presents the modulations in spectral EEG features including relative delta,
theta, alpha and beta band powers, and (θ +α)/β , α/β , (θ +α)/(α +β ), and θ/β band
power ratios during transition to fatigue following robot-mediated upper limb gross motor
and fine motor interactions. Regional differences in EEG features that may have caused
by the differences in the underlying physical and mental workload of the two tasks and the
association with the subjective measures of fatigue are also further explored in this chapter.
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Chapter 5: Experiment 2 - Part I: Modulations in spectral and nonlinear EEG fea-
tures associated with fatigue in a visuomotor tracking task performed using the GEN-
TLE/EEG robot-mediated system

This chapter describes the GENTLE/EEG robot-mediated system implemented by the author
to gradually build a fatiguing state on the user while performing a visuomotor tracking
task using HapticMASTER. The GENTLE/EEG robot-mediated system is used to address
research question 2 and investigate the effects of fatigue on sensory information and motor
output processing capacity and the complexity of the brain. The modulations in both spectral
(relative delta, theta, alpha and beta band powers, (θ +α)/β , α/β , (θ +α)/(α +β ), and
θ/β band power ratios) and nonlinear (largest Lyapunov exponent and approximate entropy)
EEG features during transition to fatigue following the robot-mediated visuomotor tracking
task is described in this chapter. Also, a new EEG feature, LLyapExp/αrelative is proposed,
and its variations due to fatigue are evaluated.

Chapter 6: Experiment 2 - Part II: Association of the modulations in EEG features
with subjective measures of the level of fatigue and movement variability measures

This chapter discusses the changes in subjective measures of the level of fatigue following
the robot-mediated visuomotor tracking task, and the mean absolute distance and root mean
square distance between control and guide points during the task. Also, the association
between the modulations in substantive EEG features with the change in subjective measures
of the level of fatigue and movement variability measures are discussed. Therefore, findings
in this chapter reveal the EEG features and electrode locations that are most capable and
reliable in estimating fatigue progressed during a robot-mediated visuomotor tracking task.

Chapter 7: Conclusions and Future Works

In this chapter, the conclusions on assessing fatigue in robot-mediated interactions using
EEG and the contributions to knowledge are discussed. The shortcomings of the present
research work are outlined, and the possible applications of the findings presented in this
thesis are suggested as future works.
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Chapter 2

Background

In this chapter, background information on electroencephalogram (EEG) such as the physio-
logical basis of EEG, external anatomy of the brain, standard EEG frequency bands, EEG
recording techniques, electrode placement, montages and artifacts are firstly introduced. This
chapter also gives a detailed literature review on EEG-based measures of fatigue including
spectral and nonlinear EEG features, self-administered questionnaires, and the movement
variability associated with fatigue. The chapter concludes by introducing the therapeutic
strategies used for stroke rehabilitation and providing a detailed review of the operational
mechanism of two robotic interfaces: HapticMASTER and SCRIPT passive orthosis used in
the present work.

2.1 Electroencephalogram (EEG)

Electroencephalogram (EEG) is a non-invasive method used to record electrical activity of
the brain with electrodes placed on the human scalp. EEG data recorded at each electrode
channel is a linear mixture of underlying electrical signals which originated from the cortex
or from other physiologic or nonphysiologic sources that overlap with cerebral activity. EEG
has a high temporal resolution and is relatively low cost.

Richard Caton (1842-1926), a physician practising in Liverpool, explored electrical phenom-
ena of the exposed cerebral hemispheres of rabbits and monkeys in 1875 using a galvanometer.
The first human EEG was recorded by Hans Berger (1873–1941), a German neuropsychiatrist
in 1924 (Haas, 2003). His first report published in 1929 features alpha rhythm and alpha
blocking response (Schomer and Da Silva, 2012). The British scientists, Edgar Douglas
Adrian and Brian Matthews has confirmed the Berger‘s observations (Adrian and Matthews,
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1934). Since then, EEG is widely used in medicine, neuro-, phycho-, physiological measures
and in many other brain-related research to identify human brain functionality.

2.1.1 Physiological Basis of EEG

EEG reflects the resultant excitatory and inhibitory cortical postsynaptic potentials of the
pyramidal cell membrane. Neurons (nerve cells) transmit impulses from one neuron to
another via a synapse. Sequence of events involved in transmission at a typical chemical
synapse is shown in Figure 2.1. The presynaptic neuron is the neuron where the impulse
is initiated while the postsynaptic neuron is the neuron that receives the impulse. Synapse
is the junction between the pre-and postsynaptic neuron that allows a neuron to pass an
electrical or chemical signal to another cell. The cell membrane separates the interior of the
cell from the outside environment. The electrical potential difference between the interior
of the cell and the surrounding extracellular space is known as the membrane potential
of the cell. Like all other neurons, while at rest (i.e., unstimulated), cortical neurons also
have a resting membrane potential of about -65 mV (typically -40 to -90 mV) (Fisch and
Spehlmann, 1999). The membrane potential changes when the impulse reaches the axon
terminal of the presynaptic neuron. Consequently, the voltage-gated calcium channels in the
presynaptic membrane open and Ca2+ influxes into the presynaptic terminal. The increase
in Ca2+ concentration, in turn, allows synaptic vesicles which contain neurotransmitters
(chemical agents acting as messengers between the communicating neurons) to fuse with the
cell membrane. This fusion releases neurotransmitters into the synaptic cleft (a small space
adjacent to another neuron) (Purves et al., 2004).

Neurotransmitters that diffuse across the synaptic cleft then bind with the postsynaptic
receptors thereby opening (or sometimes closing) the ion channels in the postsynaptic
membrane. Ions flowing through these channels change the postsynaptic conductance,
thus leading to ionic current flow, the postsynaptic current and a change in the membrane
potential of the receiving cell, the postsynaptic potential. The postsynaptic potentials can
be categorised into two types: the excitatory and inhibitory postsynaptic potentials. The
positively charged sodium ion flow into the postsynaptic membrane leads to local increment in
the positivity inside the cell (depolarisation), thus increasing the likelihood of a postsynaptic
action potential occurring. Hence, this local reduction in the membrane potential is termed
excitatory postsynaptic potential. On the other hand, when negatively charged chloride ions
flow into the cell or potassium ions exit the cell, the intracellular negativity is increased
(hyperpolarisation), thereby inhibiting the firing of an action potential. Hence, this transient
increment in the intracellular negativity is called inhibitory postsynaptic potential (Fisch and
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Spehlmann, 1999; Kirschstein and Köhling, 2009). These postsynaptic potentials induce
currents that flow within and around the neuron. The summation of these excitatory and
inhibitory postsynaptic potentials of the pyramidal neuron in the cortex is recorded as the
EEG from the scalp (Kirschstein and Köhling, 2009).

Figure 2.1: Sequence of events involved in transmission at a typical chemical synapse (Purves
et al., 2004).
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2.1.2 Neuroanatomical Terminology

An understanding of anatomical terminology is required to describe the organisation of any
neural system. The anatomical terms used to specify the location in the central nervous
system are same as the terms used to describe the anatomy of the rest of the body. Figure 2.2
gives a pictorial representation of these neuroanatomical terminology (Purves et al., 2004).
The terms anterior, posterior, superior, and inferior refer to the long axis of the body, which
is straight and indicate the same direction for both the forebrain and the brainstem. The
terms anterior and posterior indicate front and back (head and tail); superior and inferior
indicate above and below. The terms dorsal, ventral, rostral, and caudal, in contrast, refer
to the long axis of the central nervous system, which has a bend in it. Therefore, the dorsal
direction is toward the back for the brainstem and spinal cord, but toward the top of the head
for the forebrain; the ventral is the opposite direction. The rostral direction, on the other
hand, is toward the top of the head for the brainstem and spinal cord, but toward the face for
the forebrain; the opposite direction is caudal.

Figure 2.2: Anatomical terminology (Purves et al., 2004).

2.1.3 The External Anatomy of the Brain

The human brain is made up of the cerebrum, cerebellum, and brainstem. The cerebrum is the
largest part of the brain and has a highly convoluted surface. The ridges of these convolutions
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are known as gyri, and the valleys (grooves) between them are called sulci. The outermost
layer of the cerebrum is known as the cerebral cortex. The cerebrum is divided into right and
left hemispheres by a longitudinal fissure (a deep groove) (Jones Jr et al., 2013). The left
hemisphere controls the right side of the body, while the right hemisphere controls the left
side of the body. Hence, any damage or lesion to one hemisphere will affect the functionality
of the contralateral side of the body. The brainstem is collectively composed of the midbrain,
pons, and medulla. The cerebral hemispheres and diencephalon are collectively called the
forebrain. The cerebellum is essential for coordination and planning of movements, balance,
posture, learning motor tasks and storing that information (Purves et al., 2004). Each cerebral
hemisphere is further subdivided into four lobes, namely the frontal lobe, the parietal lobe,
the temporal lobe, and the occipital lobe (Figure 2.3), each with a multitude of functions. The
names of the lobes are derived from the cranial bones that overlie them. The central sulcus
divides the frontal lobe at the rostral end of the hemisphere from the more caudal parietal
lobe (Purves et al., 2004). The Sylvian fissure divides the temporal lobe from the frontal and
parietal lobe while the parieto-occipital fissure divides the parietal and occipital lobes (Javed
and Lui, 2019).

(a) The four lobes of the brain. (b) Some of the major sulci and gyri.

Figure 2.3: Lateral view of the human brain. (a) The four lobes of the brain, and (b) some of
the major sulci and gyri (Purves et al., 2004).

A. Frontal Lobe

The frontal lobe is the largest lobe of the brain and extends from the frontal pole posteriorly
to the central sulcus. It controls the complex behaviours related to social functioning and
individual personality, expressive speech, cognition skills, and motor functions (Watson et al.,
2010).The prefrontal cortex and motor cortex resides in the frontal lobe. The prefrontal
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cortex is composed of the anterior portion of the frontal lobes and plays vital roles in memory,
judgment, planning, decision making, emotional responses, mood regulation, personal and
social behaviour, categorisation, error detection, and empathy (Borden et al., 2015). The
motor cortex is responsible for planning, initiating, and directing sequences of voluntary
movements. The motor cortex can be divided into three areas, namely the premotor cortex,
primary motor cortex, and supplementary motor area. The premotor cortex uses information
from other cortical regions to select a specific movement or a sequence of movements from
the repertoire of possible movements that are appropriate to the context of the action (Purves
et al., 2004). Therefore, the premotor cortices are in general responsible for planning and
selecting movements. The primary motor cortex, which is located in the precentral gyrus,
on the other hand, is responsible for the voluntary control and execution of movement. The
German physiologists, G. Theodor Fritsch and Eduard Hitzig, had shown that the electrical
stimulation of the motor cortex in animal studies cause contractions in the muscles on the
contralateral side of the body. The motor homunculus (‘little man’) (Figure 2.4) visualises the
primary motor cortex areas and proportions that are dedicated to processing motor functions
of different anatomical divisions of the body. The most medial parts of the motor cortex
are responsible for controlling muscles in the legs, whereas the most lateral portions are
responsible for controlling muscles in the face. The supplementary motor area mediates
the initiation and programming of body movements (Ramachandran, 2002). Broca’s area
is involved in the generation of speech (Borden et al., 2015) Damages to the frontal lobe
may lead to weakness and impaired planning, control and execution of motor tasks of the
contralateral side, a variety of language deficits, personality changes, deficits and disinhibition
in orientation, concentration, and judgment (Javed and Lui, 2019; Ramachandran, 2002).

B. Parietal Lobe

The parietal lobe is positioned in between frontal and occipital lobes. This area is responsible
for perception, sensation, and integration of sensory information such as touch, pressure,
determination of texture, weight, size and shape. The primary somatic sensory (or so-
matosensory) cortex, which is located in the postcentral gyrus of the parietal lobe responds to
stimulation of proprioceptors, cutaneous stimuli, and process both tactile and proprioceptive
stimuli (Purves et al., 2004). The somatosensory homunculus shown in Figure 2.4 visualises
the brain areas that are dedicated to sensory processing of different anatomical divisions of
the body. A larger amount of somatic sensory cortex is dedicated to the face and hand since
facial expression, manipulation, and speaking are essential to humans. The visual areas in
the parietal lobe are concerned with motion and are critical for understanding the spatial
relations between objects in the visual field (Purves et al., 2004). Lesions of the parietal lobe
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Figure 2.4: Somatosensory and motor homunculus. “Image Provided by EBM Consult”

result in sensory ataxia (loss of coordination), defective recognition of sensory impulses, a
lack of interpretation of spatial relationships, and a loss of general awareness (Jones Jr et al.,
2013).

C. Occipital Lobe

The occipital lobe, located at the posterior portion of the human cerebral cortex is primarily
responsible for interpreting visual stimuli and information. The primary visual cortex resides
in the occipital lobe. Hence, lesion of the occipital lobe results in either complete or partial
blindness and other vision-related problems. For example, tracking an object moving from
right to left will be difficult when the left parieto-occipital region is damaged (Purves et al.,
2004).

D. Temporal Lobe

The temporal lobe is located under the parietal and frontal lobes just above the ear. The
temporal lobe is concerned with the reception and interpretation of auditory information,
language reception, understanding and recognising different categories of objects. The
primary auditory cortex is located on the superior temporal gyrus in the temporal lobe.
Also, the hippocampus and the amygdala that lies in the temporal lobe are involved in the
acquisition of declarative memories and emotional behaviour, respectively. Visual areas in
the temporal lobe are responsible for object recognition. Lesion of the temporal lobe causes
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difficulty in understanding spoken language and an inability to recognise and identify faces
and objects (Purves et al., 2004).

2.1.4 EEG Frequency Bands and Amplitudes

The EEG contains a wide frequency spectrum, and the predominant frequencies vary from
one state (e.g., alert, wakefulness, drowsiness, sleep) to another in healthy adults and reflect
various aspects of cognitive activity. In the normal adult EEG, medium (8 to 13 Hz) and fast
(14 to 30 Hz) frequency ranges predominate, whereas the slow (0.3 to 7 Hz) and the very fast
(above 30 Hz) ranges are sparsely represented (Schomer and Da Silva, 2012). The frequency
range of the EEG is often divided into five frequency bands, namely delta (δ ), theta (θ ),
alpha (α), beta (β ), and gamma (γ). EEG amplitude, usually measured in microvolts (µV) is
a measure of the change of EEG signals with respect to the mean value. It is often expressed
as the difference between the maximum and minimum deviation (i.e. peak-to-peak) or in
rectified EEG from baseline-to-peak (Kane et al., 2017). The amplitude of normative EEG
oscillations lies between 10 and 100 µV (in adults, more commonly between 10 and 50 µV)
(Schomer and Da Silva, 2012). In general, there exists a negative correlation between the
frequency of brain oscillations and the amplitudes; i.e., the amplitude of the brain oscillations
decreases with the increasing frequency. Thus, the slow frequency waves (e.g., δ and θ )
show large synchronised amplitudes, whereas high frequencies (e.g., β and γ) show small
amplitudes. The term EEG activity refers to an EEG wave or sequence of waves of cerebral
origin (Kane et al., 2017).

A. Delta frequency band (0.5 - <4 Hz)

Delta frequency band lies within the frequency range 0.1 Hz to <4 Hz and has a higher
amplitude value between 20 µV to 200 µV in comparison to the other frequency bands. The
lower frequency limit of the delta band is set to 0.5 Hz for practical purposes. In adults, delta
activity is particularly prominent during light and deep sleep stages (i.e., sleep stages 2 to 4),
during anaesthesia and in neurological pathology (Schomer and Da Silva, 2012).

B. Theta frequency band (4 - <8 Hz)

Theta rhythm occurring in the frequency range from 4 to <8 Hz, has an amplitude ranging
from 20 µV to 100 µV. The normal adult waking EEG recordings show a small amount
of theta frequencies (Schomer and Da Silva, 2012) and a predominant rise in the theta
activity is visible during the transition from waking to sleeping (Klimesch, 1999). The theta
activity is linked to the reduction in the alertness, which results in impaired processing of
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(a) Raw EEG waveform.

0.0 0.2 0.4 0.6 0.8 1.0

(b) Delta (δ ) waveform.

(c) Theta (θ ) waveform.
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(d) Alpha (α) waveform.

0.0 0.2 0.4 0.6 0.8 1.0

(e) Beta (β ) waveform.

0.0 0.2 0.4 0.6 0.8 1.0

(f) Gamma (γ) waveform.

Figure 2.5: EEG frequency bands (Hz) and amplitudes (µV ). (a) Raw EEG waveform
recorded from Oz electrode at a sampling frequency of 256 Hz. (b) delta, (c) theta, (d)
alpha, (e) beta, and (f) gamma waveforms. (created by Hugo Gambo, CC BY-SA 3.0,
https://commons.wikimedia.org/wiki/User:Hgamboa)

21

https://commons.wikimedia.org/wiki/User:Hgamboa


2.1 Electroencephalogram (EEG)

various kinds of information (Schacter, 1977). Theta oscillations were more evident during
problem solving and perceptual processing tasks with focused attention (Schacter, 1977)
and showed a significant rise with the increase in the working-memory load (Jensen and
Tesche, 2002). Theta oscillations have also been associated with sensorimotor processing; for
example, during the onset of fast ballistic movements an increase in theta band activity in the
contralateral motor area was found in Ofori et al. (2015). Furthermore, the theta band power
increases during the transition from waking to sleeping (i.e., hypnagogic state) (Klimesch,
1999; Williams and Gruzelier, 2001), Theta activity has also been associated with meditation
(Lagopoulos et al., 2009). Finally, a rise in the theta activity was also observed during the
state of fatigue induced by graded cycle exercise (Bailey et al., 2008), and simulated driving
(Craig et al., 2012; Lal and Craig, 2002).

C. Alpha frequency band (8 - 13 Hz)

Alpha rhythm spans within the frequency range 8 to 13 Hz (inclusive). Alpha rhythm over
the posterior regions of the head is visible during wakefulness (Kane et al., 2017; Schomer
and Da Silva, 2012). Alpha frequency varies inter- and intraindividually as a function of
processing capacity. From early childhood to adulthood, the alpha frequency increases and
then decreases with increasing age or age-related neurological diseases. Also, a variety
of neurological disorders lowers the alpha frequency. Although most research use a fixed
range (e.g. 8-13 Hz), due to interindividual differences in alpha frequency, parts of alpha
power distribution may fall outside the fixed range for some individuals (Klimesch, 1997).
The amplitude of the EEG alpha rhythm varies considerably from individual to individual
as well as from moment to moment in a given person (Schomer and Da Silva, 2012). In
adults, the alpha rhythm amplitude is mostly below 50 µV (Kane et al., 2017) and higher
alpha amplitudes are mostly associated with slow alpha frequencies (Schomer and Da Silva,
2012). The phenomenon of increased alpha power is termed as alpha synchronisation,
whereas the decrease in alpha power is termed as alpha desynchronisation. In terms of alpha
desynchronisation, a decrease in alpha frequency indicates that the upper alpha band shows a
more pronounced reduction than the lower alpha band.

Alpha frequency is a sensitive measure for cognitive and memory processing capacity and
shows a positive correlation with the speed of processing information (Klimesch, 1996, 1999).
Klimesch (1996, 1997) states that the upper alpha band is sensitive to semantic memory
demands and the lower alpha band is sensitive to to attentional demands. For instance,
the upper alpha power decreases after sustained wakefulness and during the transition
from waking to sleeping (i.e., during the hypnagogic state) when the ability to respond to
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external stimuli ceases (Klimesch, 1999). In contrast, an increase in the lower alpha band
power is visible in old people and people with difficulties in maintaining a state of alert
wakefulness (i.e., fatigued or drowsy individuals) as well as during a state of sustained
wakefulness (Klimesch, 1999; Torsvall and Others, 1987). Thus, this increase in lower
alpha band power may reflect the increased efforts (and probable difficulties) taken by old or
drowsy individuals to maintain their attention and alertness particularly under less favourable
conditions. Moreover, the increase in lower alpha band power is visible only when an
individual is forced to stay awake without falling sleep; a decrease in alpha power is visible
if the fatigued individual is allowed to fall asleep (Klimesch, 1999).

Alpha activity is most visible during physical relaxation and relative mental inactivity with
the eyes closed and is greatly attenuated or blocked by eye opening, mental effort and
attention (Schomer and Da Silva, 2012). Alpha synchronisation serves as an indicator of
cortical idling as well as is associated with active internal processing and creative thinking
(Benedek et al., 2011). The event-related desynchronisation of alpha band presumably
reflects arousal and activated cortical areas with an increased excitability level of neurons
(Neuper and Pfurtscheller, 2001). For example auditory, tactile, and other somatosensory
stimuli, or increased mental activity such as solving difficult arithmetical problems, usually
decreases the alpha band power, but is less pronounced than the blocking effect of eye
opening (Schomer and Da Silva, 2012). Many studies have observed an inverse relationship
between task difficulty and alpha power: i.e., alpha band tend to be attenuated in the high-load
task relative to the low-load task. Thus, it is hypothesised that the magnitude of alpha activity
during cognitive tasks are inversely proportional to the fraction of cortical neurons recruited
into a transient functional network for purposes of task performance (Gevins and Smith,
2007; Mulholland, 1995)

According to the cortical areas involved with the sensory perception, three independent alpha
rhythms have been reported. The occipitoparietal alpha associated with the visual system
generally shows the maximum amplitude and is suppressed (reduced) with visual attention.
The central alpha, also called mu rhythm, is associated with the sensorimotor areas and is
reactive to sensorimotor stimuli. The mu rhythm occurs during a state of muscular relaxation
and attenuates or blocks with contralateral movement, thought of movement, readiness to
move or tactile stimulation (Kane et al., 2017). The temporal alpha (also known as the tau
rhythm) localised in the auditory cortex desynchronises following auditory stimuli.
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D. Beta frequency band (<13 - 30 Hz)

The high-frequency and low-amplitude beta waves are found in almost every healthy adult.
The frequency range of the beta rhythm spans from 13 to 30 Hz. Rhythmical beta activity
is mainly visible over the frontal and central regions during wakefulness, with a variable
amplitude but mostly below 30 µV. (Okogbaa et al., 1994) pointed out that beta wave is
associated with states of excitement or arousal, and the presence of high components of beta
rhythm is associated with increased alertness. Contralateral movement or tactile stimulation
attenuates or blocks the EEG beta activity (Kane et al., 2017).

E. Gamma band (>30 - 80)

The gamma frequency band spans from >30 to 80 Hz, is not often used in literature on EEG
fatigue studies. Thus, this frequency band was not considered in this thesis.

2.1.5 EEG Recording Techniques

The first ink-writing biological amplifies to record brain potentials was developed by Toennies
(1902–1970). Rockefeller Foundation (1932) later introduced a differential amplifier for
recording EEGs. Kornmüller recognised the importance of recording EEG from multiple
brain regions, thereby giving rise to more discoveries on multichannel EEG recording
technologies (Sanei and Chambers, 2013; Schomer and Da Silva, 2012). The advances
in technology have brought different EEG recording devices to the market, with varying
technologies used for the data recording, processing and display. The non-invasive EEG
acquisition systems commercially available today for research purposes mainly consists of
several surface electrodes, a set of differential amplifiers (one for each EEG channel) with
filters, analogue-to-digital converter, and a personal computer or other relevant data storage
and processing device.

The summated electrical changes of the underlying cortex are recorded using electrodes
placed on the skull (Fisch and Spehlmann, 1999). The electrodes establish contact between
the input terminal of the recording system and the electrical source(s) that generates the
electrical activities of interest (Schomer and Da Silva, 2012). The electrical conductive
properties of the tissues in between the electrical source(s) and the recording electrode(s)
(e.g., skull, scalp, brain parenchyma (the functional tissue in the brain), cerebrospinal fluid),
the electrode size, electrical properties of the electrode material, skin impedance, and the
orientation of the electrical generator to the recording electrode modifies the amplitude and
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the morphology (shape) of the cortical signal before it reaches the recording electrodes (Fisch
and Spehlmann, 1999).

EEG electrodes are mainly categorised into two types, namely ‘wet’ and ‘dry’ electrodes,
depending on whether there is a liquid junction between the scalp and the electrode or metal
contact. The electrodes that use a conductive gel (also known as electrode or electrolyte gel)
in between the electrode and the skin to form an electrolyte bridge are termed wet electrodes.
Wet electrodes are the most frequently used and are also considered as the gold standard
(Lopez-Gordo et al., 2014). Most of the wet electrodes also require rubbing the skin below
the electrode contact with an abrasive paste before applying the electrode gel so that the
skin-electrode interface impedance is lowered (Lin et al., 2011), typically to a value less than
5 kΩ (g.tec medical engineering GmbH, 2014a). Hence, the setting up for an EEG recording
using wet electrodes is a time consuming and laborious process. The electrode gel should be
applied with great care, especially if the electrodes in the close proximity are used for the
studies, as the excess gel could cause electrical bridges between electrodes, thus affecting
the quality of the recording. The conductive gel dries when the recording last for several
hours, thus deteriorating the impedance value (Lopez-Gordo et al., 2014) and reducing the
signal quality (Lin et al., 2011). Moreover, the skin preparation and the application of the
electrode gel cause an uncomfortable situation to the subject under test and may leave its
residue on the scalp, thus reducing the interest and preventing most people from taking part
in EEG related studies. These aforementioned difficulties can be overcome with the use
of dry electrodes that create direct contact with the skin without any electrolyte bridge in
between. However, the dry electrodes result in higher skin-electrode impedance than the
wet electrodes; thus, the recordings are susceptible to distortions due to electrodes and cable
movement artifacts (Guger et al., 2011; Pinegger et al., 2016). Hence, the accuracy and the
reliability of EEG signals acquired from dry electrodes are yet questionable and more studies
are needed before using them as an alternative to the standard wet electrodes (Guger et al.,
2011; Lopez-Gordo et al., 2014; Pinegger et al., 2016). Therefore, gel-based electrodes were
used in this research.

The EEG signal of interest is susceptible for distortions as the electrode cable that transmit
the signal to the amplification unit of the recording system pick up an ambient electrical
activity such as 50/60 Hz line noise, electrical noise created by nearby electrical equipments,
artifacts caused by electrode or cable movement. These distortions can be avoided or reduced
by amplifying the signal directly at the electrode before the signal enters the electrode lead.
This method is named as active amplification (Laszlo et al., 2014), and the electrodes that
have inbuilt circuitry to provide active amplification are termed active electrodes. Moreover,
the use of active electrodes eliminates the need for skin preparation using abrasive gel, as
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they provide a cleaner signal than that is acquired via passive electrodes (electrodes that have
no inbuilt pre-amplification circuitry) at higher skin-electrode interface impedance (Laszlo
et al., 2014). Ag/AgCl active electrodes (g.LADYbird active and g.GAMMAearclip) are
used in the EEG data recordings related to this research, except for the ground electrode.

The differential amplifiers of the recording system (one per each EEG channel) amplifies the
potential difference between an active electrode and a referential electrode in referential or
monopolar recordings or the potential difference between two active electrodes in bipolar
recordings. Analogue anti-aliasing, high-pass and notch filtering are applied to the amplified
signal, before digitisation. The anti-aliasing filter is a low pass filter (pass low frequency
while attenuating high frequency signals) that is designed to pass frequencies below the
Nyquist frequency and to attenuate the frequencies above it. A high-pass filter can be used to
attenuate the DC offset and low-frequency noise components. A notch filter can be used to
eliminate 50/60 Hz power line noise. The analogue-to-digital converter converts the analogue
EEG signal into a digital format. The acquisition system is connected to a personal computer
or other relevant data storage and processing device to record, store, process and display
the signals. Most commercial EEG data acquisition systems enable users to customise the
filter parameters and sampling frequencies according to the task at hand. Two EEG data
acquisition systems developed by Guger Technologies OG (g.tec), Austria was used to record
EEG data in the present research work.

2.1.6 Electrode Placement

With the increased investigations on simultaneous EEG recordings from multiple brain loca-
tions, an urge to standardise the placement of electrodes on the head to facilitate comparison
of different patient recordings taken in different laboratories over different time durations.
Hence, the International Federation of Societies for Electroencephalography and Clinical
Neurophysiology recommended a standard electrode placement method to be used in all
laboratory settings (Jasper, 1958). This recommendation is currently known as the Inter-
national 10-20 system (Figure 2.6). In this system, 21 electrodes are positioned based on
measurements from standard landmarks on the skull, namely nasion, inion, and left and
right preauricular points. Nasion is the depressed area at the top of the nose. Inion is the
bony lump at the lowest point of the skull on the midline, at the back of the head (g.tec
medical engineering GmbH, 2014a; Malmivuo and Plonsey, 1995). The preauricular points
are felt as depressions at the root of the zygoma (a bone of the human skull commonly
referred to as the cheekbone), just anterior to the tragus (a small pointed eminence of the
external ear) (Klem et al., 1999). The name ‘10-20’ is given as the distances between adjacent
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electrodes are either 10% or 20% of the total measurement from nasion to inion or from
left preauricular point to the right preauricular point as illustrated in Figures 2.6a and 2.6b.
This system is applicable for different head sizes and shapes as the electrodes are places in
proportional measurements.

(a) Lateral view of the skull illustrating the
measurements from nasion to inion at the
mid-line.

(b) Superior view with cross section
of skull through the temporal line
of electrodes.

(c) A single plane projection of the head showing all 21 electrode positions.

Figure 2.6: The International 10-20 EEG electrode positioning system for the placement of
21 electrodes. Fp = frontal polar, F = frontal, C = central, P = parietal, O = occipital, T =
temporal, and A = ear lobe (Malmivuo and Plonsey, 1995).

The electrode position designations are named in anatomical terms of the underlying brain
areas except for the central region electrodes. Central region partly belongs to the frontal lobe
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and partly to the parietal lobe as it represents the cortex in the vicinity of the central sulcus,
both pre and post-central and is sometimes known as the sensory-motor area (Jasper, 1958).
Therefore, the expressions FP (or Fp), F, C, P, O and T represent the frontopolar, frontal,
central, parietal, occipital and temporal areas, respectively. In order to differentiate between
homologous positions over the right and left hemispheres, even number (2, 4, 6, 8) subscripts
are used for the right hemisphere electrode locations, and odd number (1, 3, 5, 7) subscripts
are used for the left hemisphere locations. The numbers increase with distance from the
midline. Also, the electrodes at the midline are designated with a subscript of letter ‘z’ (z for
zero). The electrodes placed at the left and right earlobes are called A1 and A2, respectively.
The complete International 10-20 system of electrode placements with designations is shown
in Figure 2.6c.

The International 10-10 system of electrode placement (Epstein, 2006) illustrated in Figure
2.7 is an extension of the International 10-20 system, with additional electrode positions
designated over the four 10% intermediate coronal lines lying between the five standard
coronal lines of the 10-20 system, thereby giving rise to 81 electrode positions altogether.
The electrode positions in the intermediate coronal lines are named by the expressions FT,
FC, TP, CP, PO, AF representing frontotemporal, frontocentral, temporal-posterior temporal,
centroparietal, posterior temporo-occipital/parieto-occipital, and anterior frontal positions,
respectively. In addition, the modified combinatorial terminology replaces the T3/T4 and
T5/T6 designations with T7/T8 and P7/P8 terms so that except for FP1/FP2 and O1/O2
positions, all electrode positions along the same coronal line have the same letter(s) and all
electrode positions along the same sagittal line have the same postscript number. However,
the electrode locations designated with the letter ‘P’ and a numeral value of 7 or greater
represent posterior temporal, whereas the letter P with numeral values of 6 or less represent
the parietal region.

2.1.7 Electrode Montage

The term electrode montage refers to the logical and orderly arrangements of electrode pairs
over the scalp (Society and Others, 2006). In referential montage or monopolar montage,
the EEG signal of each channel is represented as the voltage difference between an active
electrode and a designated reference electrodes. The vertex (Cz), ipsilateral or contralateral
ear lobe, linked-ear, and linked mastoid can be used as the reference electrode position for
referential montage (Sanei and Chambers, 2013). In the bipolar montage, each channel
represent the voltage difference between the two active electrodes is recorded. A common
reference which is calculated by summing and averaging the voltage of the channel-wise
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Figure 2.7: The International 10-10 EEG electrode positioning system for the placement of
81 electrodes. Fp = frontal polar, F = frontal, C = central, P = parietal, O = occipital, T =
temporal, FT = frontotemporal, FC = frontocentral, TP = temporal-posterior temporal, CP =
centroparietal, PO = posterior temporo-occipital/parieto-occipital, AF = anterior frontal, and
A = ear lobe.

EEG data is used in the average reference montage. Each channel in the Laplacian montage
on the other hand represents the voltage difference between an electrode and a weighted
average of the surrounding electrodes. In this research, EEG was recorded in reference to the
right earlobe (A2).

2.1.8 EEG Artifacts

EEG recordings are highly susceptible to extracerebral interferences or ‘artifacts’. EEG
artifacts can obscure the EEG signal of interest and may lead to misinterpretation of the EEG.
These artifacts can be of physiologic and nonphysiologic origins (Schomer and Da Silva,
2012). The physiologic artifacts are generated by the biological activities of participant’s
eyes, heart, muscles of the head and face, respiration and movement, which are typically
not of interest. The nonphysiologic artifacts, on the other hand, are generated by the EEG
recording system due to the electrode and lead movement or from the environment. The
physiologic artifacts, in general, show characteristic waveform morphologies and electric
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fields. Therefore, the artifactual components can be identified easily by observing the EEG
data recording manually. The nonphysiologic artifacts, on the other hand, show a wide
variety of morphologies.

A. Ocular Artifacts

Ocular artifacts, including eye blinks and movement, is visible in every awake and conscious
individual during EEG recording sessions. These artifacts distort the low-frequency EEG
activity with maximal frequencies below 4 Hz and are easy to recognize. The eye blinks
generate abrupt amplitude changes (250 - 490 µV) in frontal electrodes with maximal
deflections at frontopolar electrodes (FP1 and FP2) relative to more posteriorly placed
electrodes (Iwasaki et al., 2005). Eye blinks occur with an approximate frequency of 20
blinks per minute with a 50 - 500 ms duration in between (Halder et al., 2007). The horizontal
and verticle eye movements, also known as saccades, are visible in frontal electrodes (F7 and
F8) (Schomer and Da Silva, 2012). The eye movements can be slow or quite rapid and show
a characteristic deflection that includes a rapid rise and more gradual fall with the corrective
movement (Schomer and Da Silva, 2012). The strength of the interference depends on the
proximity of the electrodes to the eyes and the direction of the eye movement (Urigüen and
Garcia-Zapirain, 2015). Figure 2.8 shows the waveform morphologies of the eye blink and
eye movement artifacts. Ocular artifacts can be minimized by instructing the subject to avoid
unnecessary eye blinks and movements.

B. Muscle Artifacts

Muscle or myogenic artifact is a high-frequency activity often visible in EEG data taken
from awake participants. Muscle artifacts have a wider spectral distribution (from 0 to >200
Hz (Goncharova et al., 2003)), thereby obscuring the EEG signal frequencies of critical
importance. The frontalis and temporalis muscles are major contributors to muscle artifacts.
Frontalis muscles become active with forced eye closure and photic stimulation, and the
frontalis muscle activity peaks around 20 - 30 Hz (Muthukumaraswamy, 2013). Temporalis
muscles, on the other hand, involved with jaw clenching, chewing, or bruxism are also major
contributors for artifacts (Schomer and Da Silva, 2012). The temporalis activity has a board
plateau around 40 - 80 Hz with an amplitude of ∼100 µV (Muthukumaraswamy, 2013)
visible over temporal region electrodes. Figure 2.9 shows the waveform morphologies of the
jaw clenching artifact visible in the EEG data recorded in experiment 2. In order to reduce
this artifact during an EEG recording session, participants can be asked to open the mouth so
that the jaws are relaxed.
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(a) Eye blink artifact (b) Eye movement artifact

Figure 2.8: Ocular artifacts visible in the EEG data recorded in experiment 2. (a) eye blink
artifact. (b) eye movement artifact. EEG data was sampled at 256 Hz and was referenced to
the right earlobe (A1).

31



2.1 Electroencephalogram (EEG)

1 2 3 4 5
-1000

-500

0

500

F
P

2

1 2 3 4 5
-1000

0

1000

F
3

1 2 3 4 5
-1000

-500

0

500

F
4

1 2 3 4 5

-500

0

500

F
z

1 2 3 4 5

-1000

0

1000

C
4

1 2 3 4 5

-500

0

500

P
4

1 2 3 4 5

-500

0

500

T
7

1 2 3 4 5

time

-400

-200

0

200

T
8

Figure 2.9: Jaw clenching artifact visible in the EEG data recorded in experiment 2. EEG
data was sampled at 256 Hz and was referenced to the right earlobe (A1).
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C. Cardiac Artifacts

The cardiac artifact or electrocardiogram (ECG) artifact is also visible in EEG recordings
depending on the size of the participant and the montage used. It is often visible when using
a referential montage, especially on EEG data recorded with ipsilateral ear reference due to
the greater inter-electrode distances. It can be reduced by using linked ears montage or with a
common average reference montage. EEG data recorded from overweight patients with short,
stocky necks may also be contaminated with cardiac artifacts since the dipole is situated
closer to the recording electrodes and better able to transmit the current, and this may be
reduced by altering the head position (Schomer and Da Silva, 2012). ECG interference will
be visible as a periodic slow-wave with a regular interval that follows a small spike with a 1
Hz frequency. Furthermore, if an EEG electrode is positioned over an artery, pulse artifact
will appear approximately 200 ms after the QRS complex. This artifact can be eliminated
by moving the electrode away from the artery (Schomer and Da Silva, 2012). Figure 2.10
shows the waveform morphologies of the cardiac (ECG) and pulse artifacts.

D. Perspiration Artifacts

Perspiration artifact is caused by the changes in the DC electrode potential from scalp
perspiration. It appears as a very low frequency (<0.5 Hz) and low-amplitude waveform.
Perspiration artifact is mostly visible in multiple adjacent channels or over the entire scalp
and can be reduced by drying the skull and reapplying the gel or by increasing the high pass
filter cut-off frequency (Schomer and Da Silva, 2012).

E. Participant Movements

The movements of the participant during the EEG recording session causes electrode or
lead movement, thus result in a physiologic artifact. This artifact can be identified using
synchronous video recordings taken during the EEG recording session.

F. Nonphysiologic Artifacts

Electrode and input lead artifacts, electric interference from mains power supplies (50/60 Hz),
malfunction of some parts of the EEG data acquisition system, electrostatic and electromag-
netic artifacts are the most common nonphysiologic artifacts visible in EEG recordings. Poor
electrode contact, loose electrode or a movement in an electrode, drying of the electrode gel,
broken lead wires, poor connection of the electrode to the electrode wire or faulty connection
may result in an unusual waveform that is restricted to a single electrode (Schomer and Da
Silva, 2012). Figure 2.11 shows the 60 Hz power line noise obscuring the EEG recording.
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(a) Cardiac artifact

(b) Pulse artifact

Figure 2.10: Cardiac and pulse artifacts visible in the EEG recording. (a) ECG artifact
accentuated when using an ipsilateral ear reference. (b) pulse artifact is visible at O1 time-
locked to the ECG, but occurring 250 ms after the QRS (Schomer and Da Silva, 2012).
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Figure 2.11: The 60 Hz power line noise obscuring the EEG recording (Schomer and Da
Silva, 2012).

G. Artifact Detection and Rejection

The literature on EEG artifact detection and rejection is extensive and is yet evolving. Most
physiologic and nonphysiologic artifacts can be identified by visual inspection, remontaging,
an digital filtering (Schomer and Da Silva, 2012). The removal of EEG channels, time
segments, or epochs that are contaminated with artifacts may result in a loss of data if only
limited data is available. Low-pass, high-pass or band-pass filters can be applied to the
raw EEG data if the analysis is restricted to certain frequency bands. However, alternative
techniques are needed if the EEG data of interest and interferences are with spectral overlap.
Blind source separation (BSS) (Delorme et al., 2001; Jung et al., 1998, 2000; Sahonero-
Alvarez and Calderón, 2017), regression (Waser and Garn, 2013; Woestenburg et al., 1983),
EOG correction (Croft and Barry, 2000), the wavelet transform method (Krishnaveni et al.,
2006; Safieddine et al., 2012), empirical mode decomposition (Molla et al., 2010; Safieddine
et al., 2012) are some of methods that can be used to remove artifacts in EEG recordings.
Independent component analysis (ICA) is one of the most widely BSS technique to separate
artifactual EEG components (Jung et al., 1998, 2000; Makeig et al., 1996). An extensive
review on the artifact removal algorithms can be found in (Croft and Barry, 2000; Jiang et al.,
2019; Mannan et al., 2018; Urigüen and Garcia-Zapirain, 2015). A detailed description of
the artifact removal methods used in this thesis is given in Chapter 3.
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H. Automatic Artifact Removal Methods

It is of great interest to separate and remove artifactual EEG components in real-time with the
increase in the use of EEG in real-time applications. Many studies have explored methods to
automate the identification and removal of artifactual EEG components using ICA (ICA is
explained in Section 3.1.4). Bian et al. (2006) proposed an automatic artifact removal method
for EEG data, by analysing three exponents, largest Lyapunov exponent (LLE), kurtosis and
Hurst exponent (HE) of each independent component (IC). Delorme et al. (2001) developed
a semi-automated method that jointly uses kurtosis and Shannon’s entropy variations of ICs
as a measure of artifactual ICs. The joint use of kurtosis and Reny’s entropy proposed by
Mammone and Morabito (2008) outperforms the method introduced by Delorme et al. (2001).
An automatic method for removing the eye blink artifact is proposed by Li et al. (2006) based
on a spatial template matching of the eye blink artifact. Zhu et al. (2008) used sample entropy
as a measure of artifactual ICs. Kong et al. (2013) automatically detects eye blink component
based on correlation index and power topography characteristics. Modified multiscale sample
entropy and kurtosis have been used by Mahajan and Morshed (2014) to distinguish eye blink
artifactual ICs. Moreover, probability density, the central moment of frequency, spectral
entropy, and fractal dimension are also used to identify artifacts from ICA decomposition
(Phothisonothai et al., 2012). A fully automated and on-line artifact removal method based
on ICA, wavelet decomposition and thresholding was proposed by Daly et al. (2014), and
it can remove ocular and electromyographic artifacts. ADJUST (Automatic EEG artifact
Detection based on the Joint Use of Spatial and Temporal features) algorithm proposed by
Mognon et al. (2011) classifies eye blinks, eye movements, and generic discontinuities. It is
based on the joint use of artifact-specific spatial and temporal features of ICA components,
and the threshold value for features is calculated by using automatic image processing
thresholding algorithm based on the Expectation-Maximization (EM) technique. FASTER
(Fully Automated Statistical Thresholding for EEG artifact Rejection) applies a statistical
thresholding method to ICA data and uses ICA to subtract the EOG contribution to the EEG
data (Nolan et al., 2010). The IClabel classifier recently developed by Pion-Tonachini et al.
(2019) computes IC class probabilities across seven IC categories: brain, eye, muscle, heart,
line noise, channel noise and other.

2.1.9 Applications of EEG

In recent years, there has been significant growth in the study of cerebral activity using EEG.
EEG has been mostly used to study the physiological and psychological brain states, such as
sleep (Fell et al., 1993; Pradhan and Sadasivan, 1996; Röschke et al., 1993; Zhao et al., 2019),
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attention (Harmony et al., 1996; Klimesch et al., 1998), anaesthesia (Bruhn et al., 2000;
Murphy et al., 2011), drowsiness (Eoh et al., 2005; Santamaria and Chiappa, 1987; Vuckovic
et al., 2002), alertness (Vuckovic et al., 2002), fatigue (Barwick et al., 2012; Baumeister et al.,
2012; Borghini et al., 2014; Chen et al., 2013; Craig et al., 2012; Eoh et al., 2005; Fan et al.,
2015; Käthner et al., 2014; Tran et al., 2020; Trejo et al., 2015; Yao et al., 2009; Zhao et al.,
2012), pain (Chen, 2001; Sarnthein et al., 2006), anxiety (Blackhart et al., 2006), and emotions
(Liu et al., 2011). Diagnose and study of various neural diseases and brain disorders such as
epilepsy (Acharya et al., 2012; Osowski et al., 2007), attention deficit hyperactivity disorder
(Arns et al., 2013; Snyder and Hall, 2006), depression (Blackhart et al., 2006; Bruder et al.,
1997), Parkinson’s disease (Oh et al., 2018; Stam et al., 1995), schizophrenia (Boutros et al.,
2008; Li et al., 2008), and Alzheimer’s disease (Abásolo et al., 2005). EEG is also extensively
used to identify the neural mechanisms critical for enhancing sports performance (Cheron
et al., 2016; Haufler et al., 2000). Brain-computer interface (BCI) is a “a communication
system that does not depend on the brain’s normal output pathways of peripheral nerves and
muscles.” (Wolpaw et al., 2000). BCIs could provide a new augmentative communication
option for many people with severe motor disabilities. Therefore, a growing number of
studies have been conducted on implementation and application of EEG-based BCI systems
and evaluation of translation algorithms and signal processing methods to achieve greater
speed and accuracy (Hoffmann et al., 2008; Schalk et al., 2004; Wolpaw et al., 2000, 1991).
EEG-neurofeedback (also known as biofeedback) is a promising non-invasive technique
where the participants learn to self-regulate their brain activity. EEG-neurofeedback is used
to treat many neurological and physiological disorders such as attention deficit hyperactivity
disorder, depression, epilepsy, anxiety, and learning disorders (Hammond, 2005; Hurt et al.,
2014). It is also used to enhance the cognitive performance of healthy individuals (Gruzelier,
2014; Zoefel et al., 2011).

2.2 Fatigue

Fatigue is a common sensation that confronts everyone in their day-to-day activities as well as
in many clinical and rehabilitation settings, yet, there exists no unambiguous and universally
agreed definition for the term fatigue, nor the underlying mechanisms involved in causing a
fatigued status are clearly understood. The definitions used for ‘fatigue’ may vary depending
on the experimental context. Fatigue, in general, is a sensation of tiredness, weariness
or lack of energy that is associated with a reduction in alertness and task performance
that develops during prolonged physical or mental activity and can be relieved by rest.
Psychological, physical and physiological factors may induce fatigue. It is a complex and
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highly subjective phenomenon, that impairs reaction and response time (Boksem et al., 2005),
muscle strength (Enoka and Stuart, 1992), and proprioception (Myers et al., 1999) leading
towards a decrement in the mental and physical task performance. Grandjean (1979) defined
fatigue as a reduction in efficiency and a disinclination for effort. Fatigue can be broadly
categorised into two types: physical (or muscular) fatigue and mental fatigue.

2.2.1 Physical Fatigue

Physical fatigue is defined as a failure to maintain force (or power output) during sustained
muscle contractions (Gibson and Edwards, 1985). Physical fatigue also impairs coordination
and may lead towards changes in the human movement patterns, thus increasing the liability
to errors, accidents and acute or overuse injuries (Cowley and Gates, 2017; Grandjean,
1979). Underlying causes of physical fatigue are manifold, and may not only relate to
processes of peripheral (i.e. outside of the central nervous system (CNS)) origin but also
processes of central (i.e. within the CNS) origin. Peripheral fatigue occurs as a result of
impairments in the function of the peripheral nerves, neuromuscular junction transmission,
electrical activity of muscle fibres or the processes of activation within the fibre. Factors
contributing towards central fatigue are motivation, impaired recruitment of motor neurons,
and impaired transmission down the spinal cord (Gibson and Edwards, 1985). In comparison
to the physical fatigue that is widespread over several muscles, fatigue that is localised to a
specific group of muscles may cause greater changes in the muscle coordination, movement
amplitude and speed (Cowley and Gates, 2017). Furthermore, the effects of physical fatigue
may also vary depending on the joints and muscles extensively used by the task. For instance,
tasks that heavily use the proximal joints and muscles (e.g., overhead lifting, reaching tasks)
may lead to fatigue in proximal muscles whereas the tasks that use the distal joints and
muscles (e.g., assembly tasks) may lead to fatigue in distal muscles; tasks that use both
proximal and distal joints and muscles may lead to fatigue in both proximal and distal joints
(e.g., ball-throwing task). Studies have also shown that the distal and proximal muscle fatigue
differentially affect the kinematic and movement variability (Côté et al., 2005; Cowley and
Gates, 2017; Huffenus et al., 2006; Qin, Lin, Faber, Buchholz and Xu, 2014). Moreover,
exercise-induced acute muscle fatigue will be experienced shortly after the onset of exercise
and delayed exercise-induced fatigue will be experienced following a constant, high-intensity
exercise for a prolonged period (Finsterer, 2012).

38



2.2 Fatigue

2.2.2 Mental Fatigue

Mental fatigue can be conceptualised as a feeling that an individual may experience during
or after a prolonged period of cognitive activity (Boksem et al., 2005). Mental fatigue is
a functional state which grades in one direction into sleep and in the opposite direction
into a relaxed and restful condition. The functional state of a person at any moment is
determined by the level of activity of the cerebral cortex ranging from a deep sleep, light
sleep, drowsy, weary, hardly awake, relaxed, resting, fresh, alert, very alert, stimulated and a
state of alarm (Grandjean, 1979). Mental fatigue is generally associated with a sensation of
weariness, feelings of inhibition, heaviness, and drowsiness, reduced alertness, and impaired
performance leaving an individual with no desire for either mental or physical effort. The
effects of mental fatigue on cognitive performance (Boksem et al., 2005; Lorist et al., 2000;
Tanaka et al., 2015; Van der Linden et al., 2003) and vehicle driving and pilot performance
(Caldwell, 2005; Ting et al., 2008; Wang et al., 2006) is extensively studied in the past.
Recent studies have also shown that mental fatigue impairs physical performance, especially
in sports (Marcora et al., 2009; Mehta and Parasuraman, 2014; Van Cutsem et al., 2017).

2.2.3 Measurement of Fatigue

There are various subjective and objective measurements of fatigue that have been described
in the literature. Many self-administered questionnaires have been used to evaluate fatigue in
general practice settings and a variety of medical and neurologic disorders (Neuberger, 2003;
Shahid et al., 2010). The Chalder fatigue scale (CFQ 11) (Chalder et al., 1993), Fatigue
Assessment Scale (FAS) (Michielsen et al., 2003), fatigue severity scale (FSS) (Krupp et al.,
1989), multidimensional assessment of fatigue (MAF) (Belza, 1995), checklist individual
strength (CIS) (Vercoulen et al., 1994), fatigue assessment inventory (FAI) (Schwartz et al.,
1993), and fatigue impact scale (FIS) (Fisk et al., 1994) are some of these subjective rating
scales. Furthermore, behavioural indices such as reaction time (Cao et al., 2017), percentage
of eyelid closure (PERCLOS) (Mandal et al., 2016; Sommer and Golz, 2010), movement
variability (Cortes et al., 2014; Cowley and Gates, 2017), and error ratio are widely used
to characterise the subjective experience of fatigue and related changes in the day-to-day
activity. With the recent advancements in neuroergonomics, neurophysiological changes
caused by fatigue were extensively investigated using electroencephalogram (EEG) (Bailey
et al., 2008; Barwick et al., 2012; Baumeister et al., 2012; Borghini et al., 2014; Craig et al.,
2012; Jap et al., 2009; Lal and Craig, 2002; Tanaka et al., 2012; Tran et al., 2020; Trejo et al.,
2015; Yao et al., 2009), electrooculogram (EOG) (Hu and Zheng, 2009; Morris and Miller,
1996; Zhao et al., 2012), electromyogram (EMG) (Bigland-Ritchie, 1981; Bigland-Ritchie
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et al., 1983; Cifrek et al., 2009), electrocardiogram (ECG) (Wang et al., 2018; Zhao et al.,
2012), functional magnetic resonance imaging (fMRI) (Bakshi et al., 1999; DeLuca et al.,
2008; Liu et al., 2002), functional near infra-red spectroscopy (fNIRS) (Ahn et al., 2016).
These measures provide an objective measure of the level of fatigue. Among these fatigue
indicators, EEG recordings have shown to be the most predictive and reliable measure of
fatigue (Lal and Craig, 2001, 2002; Tran et al., 2020). Therefore the following section
summarises the findings in the literature on quantitative EEG feature modulations with
fatigue.

2.2.4 Quantitative EEG Measures of Fatigue

To date, many studies have investigated the variations in quantitative EEG features associated
with the fatigue induced by driving tasks (Borghini et al., 2014; Craig et al., 2012; Eoh et al.,
2005; Jap et al., 2009; Lal and Craig, 2001, 2002; Zhao et al., 2012), voluntary motor tasks
(Wang et al., 2017; Yao et al., 2009), cognitive tasks (Tanaka et al., 2012; Trejo et al., 2015),
brain-computer interactions (Käthner et al., 2014), exercises and sports related activities
and conditions (Bailey et al., 2008; Barwick et al., 2012; Baumeister et al., 2012; Xu et al.,
2018), visual display terminal tasks (Cheng and Hsu, 2011; Fan et al., 2015), visual tasks
in 3D displays (Chen et al., 2013; Zou et al., 2015), and many more. Modulations in the
EEG spectral features were mostly studies in the literature (Table 2.1). With the recent
advancement in the nonlinear time series analysis methods, current research is also focused
on evaluating the variations in nonlinear EEG features such as largest Lyapunov exponent
(Wang et al., 2020; Yao et al., 2009), approximate entropy (Min et al., 2017; Wang et al.,
2020, 2019; Xiong et al., 2016), sample entropy (Tran et al., 2007, 2008; Wang et al., 2020,
2019; Xiong et al., 2016), fuzzy entropy (Min et al., 2017), spectral entropy (Wang et al.,
2019) and correlation dimension (Wang et al., 2020, 2014) with the development of fatigue.

To the author’s knowledge, the influence of fatigue induced by robot-mediated exercises
on EEG activity has not been yet fully explored. Therefore, in this thesis, variations in
the EEG spectral features (band power and power ratios), largest Lyapunov exponent and
approximate entropy with fatigue induced by robot-mediated upper limb interactions were
further analysed. A systematic literature review on the EEG features considered in this thesis
is given below.

A. Spectral EEG Features as Fatigue Indices

Over the past years, many researchers have focused on decomposing the recorded EEG data
into its frequency bands, and evaluating the variations in the absolute or relative band power
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or band power ratios with fatigue. In a neurophysiological sense, EEG power represents
the sum of neurons discharging synchronously (Kanda et al., 2009). A greater proportion
of fast frequency activity reflects decreased neural synchrony; i.e., many different neural
circuits in the brain are actively processing information. Desynchronised activity occurs
when a person is actively thinking or at an alert and attentive state. Conversely, a higher
proportion of slow frequency activity reflects increased neural synchrony; i.e., decreased
brain activation (Carlson, 1994). Many studies have reported that when a person is fatigued,
EEG power shifts towards the lower frequency bands; i.e., the proportion of low-frequency
EEG waves such as theta and alpha increase with fatigue whereas high-frequency EEG waves
such as beta decrease with fatigue (Barwick et al., 2012; Craig et al., 2012). Modulations in
both absolute and relative band power measures are considered in the literature. In addition,
band power ratios such as (θ+α)/β , α/β , (θ+α)/(α+β ), and θ/β are also used in the
literature since the basic band power measures can be insufficient to observe the shift of brain
activity from fast waves to slow waves (Eoh et al., 2005; Fan et al., 2015; Jap et al., 2009).

Table 2.1 summarises 16 studies identified by a systematic review on the association between
EEG spectral features and fatigue over the last two decades. The majority of the studies
(15/16 studies) evaluated the variations in alpha activity with fatigue and a significant increase
in in alpha band power was observed in 10 studies. Alpha synchronization was associated
with mental, physical and visual fatigue. Theta activity (evaluated by 13 studies) was found
to be significantly increasing in 8 studies and significantly decreasing in 1 study. The increase
in the theta band power was mostly associated with mental fatigue, whereas the decrease was
observed during a fatiguing knee joint reproduction task. The majority of the studies (8/12
studies) showed a significant reduction in beta activity with fatigue. However, the variation
associated with driver fatigue is equivocal since both significant increment (Craig et al., 2012;
Lal and Craig, 2002) and decrement (Eoh et al., 2005; Jap et al., 2009) in beta band power
was reported. Delta activity was only explored in seven studies, where two studies showed a
significant increase delta activity while four studies showed no significant difference with
fatigue. The changes in the relative band power was considered in eight studies. Furthermore,
the ratio between slow and fast frequency activities was reported in eight studies, where a
majority of studies (6/8 studies) showed a significant increase in band power ratios with
fatigue. Eoh et al. (2005) stated that the index (θ+α)/β was a more reliable fatigue indicator
during a simulated driving task due to the mutual addition effect of alpha waves and theta
waves during the repetitive phase transition between wakefulness and microsleep. Jap et al.
(2009) also reported a greater increase in the index (θ+α)/β , in comparison to the other
power ratios, when a person experienced a fatigued state at the end of a monotonous simulated
driving task. Moreover, the modulations in EEG spectral features exhibited a widespread
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2.2 Fatigue

topographical distribution in the majority of the studies. Although it is evident that fatigue
significantly alters the EEG spectral features, some findings are equivocal and needs further
exploration (Baumeister et al., 2012; Chen et al., 2013; Cheng and Hsu, 2011; Jap et al.,
2009; Tanaka et al., 2012). Variations in methodological approaches, including differences
in the fatiguing study protocol, low sample size, gender bias, differences in the number
of electrodes used, the electrode placement and the feature definition could be a possible
explanation for the discrepancies present across the studies. However, changes in brain
activities due to fatigue induced by robot-mediated exercises have not been yet fully explored.
Moreover, the current studies do not systematically investigate whether the modulations in
EEG spectral features are specific to the physical or cognitive nature of the task performed
using the proximal or distal upper limb.

B. Largest Lyapunov Exponent of EEG as a Fatigue Index

In recent years, there has been an increasing interest in the modulations in largest Lyapunov
exponents of EEG to investigate the chaotic behaviour of the brain. Lyapunov exponents
provide a qualitative and quantitative characterization of dynamical behaviour and are related
to the exponentially fast divergence and convergence of nearby orbits in phase space (Section
3.2.2). Although many studies have used largest Lyapunov exponents of EEG to analyse
different sleep stages (Acharya et al., 2005; Fell et al., 1993, 1996; Röschke et al., 1995a,b),
mental stages (Natarajan et al., 2004), and emotion functioning (Aftanas et al., 1997) or to
test for differences among healthy and diseased subjects (Osowski et al., 2007; Röschke
et al., 1995a,b; Stam et al., 1995), only a few studies have investigated the association of
largest Lyapunov exponent with fatigue (Wang et al., 2020; Yao et al., 2009). Yao et al.
(2009) reported a significant decrease in largest Lyapunov exponent with muscle fatigue
induced by intermittent handgrip maximal voluntary contractions. They showed that the
largest Lyapunov exponent values were lower under severe fatigue conditions than those
under minimal and moderate fatigue conditions. Also, higher largest Lyapunov exponent
values were visible in the frontal lobe and contralateral (left) hemisphere under minimal and
moderate fatigue conditions. A significant positive correlation was also observed between
the largest Lyapunov exponent values and force. Therefore, the largest Lyapunov exponent
may be used to classify fatigue stages of the brain and to measure motor control-related
cortical signal adaptations. Table 2.2 summarises the study Yao et al. (2009) that found an
association between the largest Lyapunov exponent and fatigue.
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2.2 Fatigue

Table 2.2: Literature summary on modulations in the largest Lyapunov exponent with fatigue.

Reference Description No of
participants

No of
electrodes

Parameters Used
Largest Lyapunov

exponentDimension Time lag

Yao et al. (2009)
Intermittent handgrip maximal voluntary
contractions that resulted in significant fatigue

8
M=6, F=2 63 5 4 ms ↓

Notes. ↓ = significant decrease.

C. Approximate Entropy of EEG as a Fatigue Index

Approximate entropy, introduced by Pincus (Pincus, 1995), measures the complexity of
a time series (Section 3.2.3). Approximate entropy was also considered when designing
automated driver fatigue detection system (Hu, 2017; Hu and Min, 2018; Min et al., 2017;
Mu et al., 2017; Xiong et al., 2016; Zhang et al., 2013). Xiong et al. (2016) observed a
significant decrease in approximate entropy with fatigue induced by a simulated driving
task on P4, Pz, P3, and Oz electrodes. Liu et al. (2010) investigated the modulations in
approximate entropy with mental fatigue induced by three types of simple cognitive tasks:
vigilance task, arithmetic calculation task, and simple switch task. They extracted the EEG
components of the delta, theta, alpha, beta and total frequency bands and evaluated the
variations in approximate entropy of the five frequency bands with fatigue. In general, the
findings of this study showed a significant decrease in approximate entropy values with
the increase in mental fatigue level. The decrement in the mean values of the approximate
entropy was visible on Fp2, Fp1, F4, Fz, F3, C4, Cz, C3, P4, Pz, and P3 electrodes for total
frequency band; on prefrontal electrodes for alpha frequency band, on parietal electrodes
for beta frequency band. However, no significant difference was visible on mean value of
approximate entropy in delta and theta frequency band on all electrodes. Wang et al. (2019)
also reported a decrease in the approximate entropy in occipital area due to fatigue induced
by a simulated driving task. Table 2.3 summarises the significant variations in the EEG
approximate entropy values with fatigue found in the literature.

Table 2.3: Literature summary on modulations in the approximate entropy with fatigue.

Reference Description No of
participants

No of
electrodes

Parameters Used
Approximate

entropym r

Liu et al. (2010)
Mental fatigue induced by a cognitive tasks
(vigilance task, arithketic calculation task,
simple switch task)

50
M=50 11 2 0.2 ↓

Xiong et al.
(2016)

Fatigue during simulated driving task 50
M=25, F=25 12 1 0.2 ↓

Notes. ↓ = significant decrease.
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2.2 Fatigue

2.2.5 Movement Variability Associated With Fatigue

Human movement variability addresses the natural variations observed in the motor perfor-
mance by an individual under repetitive tasks over time (Stergiou and Decker, 2011; Stergiou
et al., 2006). It is defined as the variability in kinematic properties of movements (Yang
et al., 2018). Linear statistical tools such as mean, standard deviation, coefficient of variation
and root mean square distance, quantify the amount or magnitude of the variability around
a central point (mean) (Colombo et al., 2005; Cortes et al., 2014; MacKenzie et al., 2001;
Madeleine and Madsen, 2009; Selen et al., 2007). The non-linear dynamics tools, such as
approximate entropy, sample entropy , Lyapunov exponent, correlation dimension, canonical
correlation analysis evaluate the structure or organization of variability and uncover the
underlying complexity (Cortes et al., 2014; Madeleine and Madsen, 2009; Stergiou et al.,
2006). A substantial increase in the measures of movement variability indicates a higher
variability (Cignetti et al., 2009).

Several studies have explored the association between movement variability and fatigue,
but the findings are still unclear. Some studies have reported that the increase in movement
variability with fatigue was associated with a decrement in task performance (Singh et al.,
2010; Srinivasan and Mathiassen, 2012). A higher movement variability may also reflect
adaptation strategies followed by an individual to lower the load on fatiguing tissues such
that task performance is preserved (Cignetti et al., 2009; Fuller et al., 2009; Huysmans et al.,
2008; Selen et al., 2007; Yang et al., 2018). For example, Huysmans et al. (2008) reported a
significant increase in the mean and standard deviation of the distance to target following
the fatigue protocol and suggested that the higher variability of the distance to target may
indicate larger corrective movements that have been made at the expense of a higher muscular
effort to meet the task requirements. Similarly, Yang et al. (2018) showed that fatigue during
a repetitive pointing task increased the shoulder and elbow angle variability and the shoulder-
elbow coordination variability; the increase in the shoulder-elbow coordination variability
may indicate the greater use of motor abundance to preserve the global task performance.
Selen et al. (2007) also reported a change in the target tracking control strategy with increasing
fatigue; thus, despite the increase in overall kinematic variability, task performance was
retained by staying closer to the centre of the target when fatigued. It was also stated that the
increases in movement variability in athletes when fatigued can act as a protective mechanism
to counteract the negative effects of fatigue that may lead to the risk of injury (Edwards
et al., 2012). The theoretical model of movement variability developed by Stergiou et al.
(2006) assumes that the neuromuscular system becomes noisier and less adaptable when the
variability is increased beyond its optimal value. Cignetti et al. (2009) observed increased
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and more random fluctuations of the limb movements of the skiers with fatigue, thereby,
supporting the theoretical model of movement variability developed by Stergiou et al. (2006).
As discussed in Cortes et al. (2014), fatigue can also have a differential effect on movement
variability during a side-step cutting task, thereby causing both an increase and a decrease in
the different indices of variability. Thus, the authors argue that the fatigue not only decreases
the force producing capacity of an individual, but also limits the ability of an individual to
perform a smooth and controlled action.

2.3 Robot-Mediated Upper Limb Stroke Rehabilitation

2.3.1 Stroke

A. Pathophysiology of Stroke

Stroke, clinically known as cerebrovascular accident, yet remains as a leading cause of
morbidity and mortality worldwide, despite the advances in diagnosis and treatment of stroke
risk factors. It is a clinical syndrome that is caused due to an interruption in the blood flow to
the brain. Blood supply interruption deprives the oxygen and nutrients flow to the brain cells
and leads to a brain cell death. There are two main types of stroke: ischemic and hemorrhagic.
Ischemic stroke results from a blockage in a brain artery or a small blood vessel deep within
the brain, due to a blood clot or fatty deposit buildup within the walls of the arteries. These
plaques narrow the inside diameter of the arteries and inhibit normal blood supply to parts
of the brain. Ischemic stroke can occur in two ways, namely thrombotic and embolic. In a
thrombotic stroke, a blood clot is formed inside one of the arteries supplying blood to the
brain. In contrast, an embolic stroke occurs if a blood clot or fatty deposits are migrated from
a distant location and blocks the cerebral vessel (Bendok et al., 2011). Haemorrhagic stroke
occurs due to rupture or leaking of an artery within or on the surface of the brain, which will
result in a seeping of blood into or around the brain. Accumulation of blood creates pressure
and swelling and damages brain cells and tissues. Haemorrhagic stroke encompasses both
intracerebral haemorrhage and subarachnoid haemorrhage. Intracerebral haemorrhage is
caused by bleeding within an artery inside the brain, whereas subarachnoid haemorrhage is
caused by bleeding into the space surrounding the brain.

B. Epidemiology of Stroke

Annually, 15 million people around the world experience a stroke; 5 million of these instances
are fatal, and an equal amount is left with long-term disabilities (Mackay et al., 2004). In the
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United Kingdom, more than 100,000 strokes occur each year (i.e. on average, one stroke
per every 5 minutes) and over 1.2 million stroke survivors are living in the United Kingdom.
In 2016, almost 38,000 lives were lost in the United Kingdom due to stroke, making it the
fourth leading cause of death (Stroke Association, 2018). Epidemiologic studies show that of
all strokes, 85% are ischemic, and 13% are haemorrhagic. Approximately, 60% of ischemic
strokes are caused by a thrombus, and an embolus causes 25%. Intracerebral haemorrhage
strokes account for nearly 8% of all haemorrhagic strokes, whereas 5.4% are subarachnoid
haemorrhage strokes (Bendok et al., 2011). The mortality rates of stroke patients have
significantly decreased over the past few years due to the improvements in acute treatment
and supportive care. However, the number of first-time strokes (stroke incidence) and the
number of stroke survivors (stroke prevalence) are expected to rise in future with the increase
in the ageing population (Bendok et al., 2011).

C. Stroke Related Disability

Stroke impairs the physical, psychological or anatomical structures and functions of the
human body and the severity of the impairment depend on the location and size of the
lesion in the brain. For example, people who have experienced a stroke will face partial or
complete paralysis, limited movement coordination, spasticity, hemispatial neglect, muscle
weakness, memory and attention deficits, sensory loss, aphasia, chronic fatigue, depression,
behavioural changes and many more health issues (Molier et al., 2011). Almost two-thirds
of stroke survivors have a disability leading towards long-term difficulties in independently
performing activities of daily living. Hence, stroke survivors have to depend on carers or
personal assistants as well as need to undergo inpatient and outpatient rehabilitation to regain
control and independence to perform daily living activities. Therefore, the burden on health
care systems and the economic impact of stroke and rehabilitation is a pressing concern
worldwide.

D. Risk Factors of Stroke

Owing to the economic and social burden of stroke patient rehabilitation, it is essential to
recognise, control, and treat risk factors in advance to prevent a stroke. Although some of the
stroke risk factors such as age, gender, race/ethnicity, and genetics are non-modifiable, many
are easily modifiable by adjusting to an active, healthy lifestyle and by following proper
medical advice. For example, lifestyle and behavioural factors such as physical inactivity,
obesity, excessive alcohol intake, smoking/tobacco usage, sleep apnea and unhealthy diet
increase the risk of stroke and can be prevented by adopting healthy lifestyle choices. In
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2012, the governmental organisations and charities in the United Kingdom spent £56 million
on stroke research (Luengo-Fernandez et al., 2015), on helping patients and understanding
treatment methods and rehabilitation programs.

E. Fatigue After a Stroke

Fatigue after a stroke is a common and persistent, yet often overlooked consequence of
stroke (Staub and Bogousslavsky, 2001). Many stroke survivors (about 30% to 70%) have
reported persistence of fatigue as a debilitating symptom (Lerdal et al., 2009; Staub and
Bogousslavsky, 2001). The presence of fatigue in patients with upper limb deficit following
a stroke may severely impair their functional capabilities, thereby impeding their motivation
and commitment to actively participate in rehabilitation sessions. Also, the physical inability
to exert the desired forces required during repetitive and sustained upper limb movements
may impair patient’s motivation to actively participate in the training exercises. Fatigue
conditions may also affect the precision of sensorimotor control, thereby leading to a decrease
in performance and an increase in the risk of injury (Baumeister et al., 2012). However,
the existing rehabilitation programs often neglect the adverse effects of fatigue on therapy
outcome.

2.3.2 Therapeutic Strategies and Stroke Rehabilitation

As a direct consequence of the stroke, patients will suffer from a variety of sensory, cognitive,
motor, and psychological impairments. Some degree of upper limb deficits is mostly experi-
enced by stroke survivors, occurring in about 77% of patients with a first-in-a-lifetime stroke
(Lawrence et al., 2001). However, since the human brain has a potential capability to com-
pensate for lesions, it is possible to regain these lost functions partially or entirely (Johansson,
2000). Following a brain injury, the human brain can change both functional and anatomical
structure, by reorganising and forming new neural connections between intact neurons. This
process of cortical reorganisation mechanism is commonly known as neuroplasticity (also
called brain plasticity or neural plasticity). The cortical reorganisation can occur in both
in the infarcted and opposite hemispheres around the brain regions immediately adjacent
to the infarct or on regions remote from the infarct (Krakauer, 2005). The rate and extent
of the neural reorganisation are greatly influenced by the size and location of the lesion as
well as the age of the patient (Staines et al., 2009). Non-invasive mapping and neuroimaging
studies in the human brain provide evidence for neuroplasticity following brain injury and
rehabilitation (Johansson, 2000; Turner et al., 2013).
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Owing to the population ageing, the number of people needing upper extremity poststroke
therapy is rising rapidly. The early intervention of physiotherapy can accelerate neurological
and functional recovery following a stroke. Longitudinal studies have shown that only about
5% to 20% of hemiplegic stroke patients achieve full upper limb functional recovery at
six months after stroke. About another 30% to 66% of patients remain with chronic upper
limb impairments (Kwakkel et al., 2003; Wade et al., 1983), thereby may find it profoundly
difficult to perform activities of daily living independently without getting help from others.
Although upper limb motor functional recovery is quite challenging, there is evidence that
high-intensity and task-specific exercises consisting of active, functional and highly repetitive
movements of the paretic upper limb may lead to long-lasting cortical reorganisation and
functional improvements, even in chronic stages of stroke (Bütefisch et al., 1995; Fasoli et al.,
2003; Kwakkel, 2006; Lohse et al., 2014; Oujamaa et al., 2009; Veerbeek et al., 2014). In
the context of rehabilitation, intensity refers to the duration and frequency (repetitions) of
treatment within a given time, usually a day or week. Task-specificity refers to the extent to
which the treatment is tailored to the needs and stage of recovery of the patient (Keith, 1997).

The conventional physical therapies used for motor task rehabilitation are usually labour-
intensive, time-consuming and often require one-to-one manual interactions with a therapist
(Volpe et al., 2002). Therefore, intensive, task-specific therapy sessions can result in exces-
sive fatigue for therapists and may lead to failures in delivery. Thus, the therapy sessions
are typically limited to approximately 30 – 60 min sessions per day (Norouzi-Gheidari
et al., 2012). The evaluation of the patient’s performance and progress during conventional
physiotherapy sessions solely rely on the therapist. Moreover, as the cost of hospitalisation is
a considerable economic burden to most of the patients, the motivation towards lengthy inpa-
tient rehabilitation is not promising. Therefore, the use of robotic technology to complement
conventional therapy is promising since high-intensity, task-specific, interactive exercises
can be delivered to the plegic limb with the aid of robotic interventions while reducing the
workload of the therapist.

2.3.3 Robot-Mediated Upper Limb Stroke Rehabilitation

Robotics Industry Association ( 1980) has defined “a robot is a re-programmable, multi-
functional, manipulator designed to move material, parts or specialized devices through
variable programmed motions for the performance of a task” (Pignolo, 2009). Thus, a robot
can be programmed to deliver varying degrees of assistance during the exercises depending
on the stage of recovery (Fasoli et al., 2004; Lum et al., 2002; Prange et al., 2006). For
instance, if the patients are at the early stages of recovery with very low voluntary control,
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the robot can be programmed to fully assist the limb movements (passive mode), whereas
the patients can perform the the movements with little or no assistance from the robot when
they reached the later stages of recovery (active-assisted and active non-assisted modes).
The robot can provide a force opposing the movements (progressive-resistive mode) the
robot provides a force opposing the movements. Moreover, since robotic motions can be
performed in constrained directions (planar, spatial, unilateral or bilateral)(Fasoli et al., 2004)
and in controlled velocities, treatments can be tailored to the needs and stage of recovery
of the patient. Furthermore, with the use of virtual reality technologies, highly interactive
and motivational therapeutic environments can be designed, thereby encouraging active
participation and enhancing the motivation towards long-term rehabilitation. (Masiero et al.,
2011; Prange et al., 2006). The patient progress and performance can also be estimated in
real-time by means of the kinetics (i.e., measures of applied force, torque) and kinematics
(i.e., measures of position, velocity, acceleration) of the motion of the robot. Thus, a real-time
feedback (visual, auditory or haptic) on the therapy progress can be provided to the patient
so that they would be encouraged more to engage in further therapy. Moreover, it allows the
patients to continue the rehabilitation therapy independently at home, with lesser expenditure
and therapist supervision. The performance measures also allow therapists to customise
the treatments to facilitate the individual needs, thus enabling better rehabilitation. Hence,
robot-assisted therapies can facilitate longer dedicated and highly motivational training
sessions featuring repetitive, intensive, and task-specific exercises to the paretic limb, with
no additional work for the therapist.

Many studies have shown that robot-assisted upper limb therapy elicit significant long-lasting
improvements in the paretic arm functionality, leading to better rehabilitation (Bertani et al.,
2017; Chang and Kim, 2013; Fasoli et al., 2003; Franceschini et al., 2019; Lum et al.,
2002; Masiero et al., 2011; Prange et al., 2006), especially when provided in addition to
conventional therapy (Masiero et al., 2007; Rosati et al., 2007; Volpe et al., 2000). Lum
et al. (2002) showed that when the intensity and duration of conventional rehabilitation are
matched with that of robot-assisted movement training, the robot-assisted movement training
showed a decrease in impairment, improvement in strength, and increase in reach extent after
two months of treatment; however, no significant differences between the two groups were
found at the 6-month follow-up. The systematic review by Norouzi-Gheidari et al. (2012)
shows that when the intensity/duration of robot-assisted therapy is matched with that of
conventional therapy, no statistically significant difference in motor recovery, motor control,
strength and activities of daily living were found between intensive conventional therapy
and robot-assisted therapy groups. They also found that when compared with standard
conventional therapy, additional robot-assisted therapy sessions improve motor recovery of
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stroke patients. Volpe et al. (2000) also found improvements in the motor performance of
trained shoulder and elbow and functional outcome of stroke patients who received robotic
training.

Classification Based on the Mechanical Structure of Rehabilitation Robots

Rehabilitation robots used to provide upper limb post-stroke therapy can be classified into
two categories based on the mechanical structure of the robot, namely end-effector-based
and exoskeleton- based robots. The end-effector-based robot interacts with the patient
through a single distal part (i.e. end effector) which is attached to the forearm or hand. The
joints and the rotation axes of the end-effector robot do not align with that of the human
upper limb, thereby are simpler in structure, easier to fit with different patient arm lengths
and ambidextrous. However, it is challenging to perform isolated movement therapy at
a single upper limb joint with an end-effector-based robot, since movements of the end-
effector indirectly change the position of the proximal parts of the upper limb due to the
existing mechanical chain between the segments of the upper extremity (Maciejasz Pawełand
Eschweiler et al., 2014). Exoskeleton-based robots, on the contrary, are wearable robots
with a structure that resembles the human arm anatomy. The joints and the rotation axes are
aligned with the corresponding upper limb joints and the rotation axes, thereby allow direct
control of individual joints to facilitate assistance in retraining a wide variety of movements.
In general, these type of robots are specific to a particular side of the arm and require extra
adjustments to fit different sizes of paretic limbs due to its design complexity. To date, many
end-effector-based and exoskeleton-based robots have been developed to facilitate upper
limb stroke rehabilitation, and Table 2.4 summarises the main features of some of them.

2.4 Robotic Interfaces Used in this Thesis

The present research hypothesised that the EEG correlates of fatigue during robot-mediated
interactions are specific to the physical or cognitive nature of the task and the differences in
the usage of the proximal and distal upper limb. Three robot-mediated interactions, including
gross motor, fine motor and visuomotor tracking tasks, were considered to evaluate this
hypothesis. HapticMASTER is an end-effector robot that can be customised to provide arm
reach/return (gross motor) and visuomotor tracking tasks. Therefore, the HapticMASTER
was selected to provide gross motor and visuomotor tracking tasks that mainly involved
moving and coordinating the upper limb’s proximal joints and muscles (shoulder and arm).
In contrast, the SCRIPT passive orthosis is an exoskeleton-based robot designed to perform
fine motor skill retraining exercises, including hand open/close. Therefore, SCRIPT passive
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2.4 Robotic Interfaces Used in this Thesis

orthosis was selected to provide fine motor interactions that mainly involved the movement
and coordination of the upper limb’s distal joints and muscles (wrist, fingers, and hand).
The following subsections provide a detailed review of the operational mechanisms of both
devices while introducing control strategies based on haptic interfaces.

2.4.1 Haptic Interfaces

Haptic interfaces are devices that enable human-robot interaction by accommodating the
sense of touch. The term ‘haptics’, derived from the Greek verb ‘haptesthai’ meaning
‘to touch’, refers to the ability to sense a natural or synthetic mechanical environment
through touch (Hayward et al., 2004). Based on the underlying sensory inputs, the human
sense of touch mainly comprises of two sub-modalities, namely cutaneous and kinesthetic.
The cutaneous sense receives sensations such as temperature, pain, pressure from receptors
embedded in the skin, while the kinesthetic sense receives sensory inputs related to the feeling
of motion (such as position, movement, weight) from the receptors within muscles, tendons
and joints (Dahiya and Valle, 2012; El Saddik et al., 2011; Otaduy and Lin, 2006). In human-
robot interaction, haptic feedback encompasses both tactile (cutaneous) and kinesthetic
(force) feedback. Haptic devices initially track the physical manipulation by the human
operator on the device (input) and then provide feedback to the operator (output) depending
on the interaction in the virtual world. Two control paradigms, namely impedance control
paradigm and admittance control paradigm, which differs from each other by the type of
input and output, are widely used in haptic interface design.

A. Impedance control paradigm

Hogan first introduced the impedance control paradigm in 1985 (Hogan, 1985). In the
impedance control paradigm, the motion exerted by the user is measured, and the reaction
force is fed back to the user by the haptic device if a virtual object is met (der Linde et al.,
2002; Wen et al., 2008). Hence, from the haptic device point of view, displacement is the
input and force is the output. Impedance control devices are by nature lightly built and highly
backdrivable with low friction and inertia (Abbott et al., 2007; der Linde and Lammertse,
2003). The TouchTM, Touch X, Phantom® PremiumTM haptic devices from 3D Systems1

utilizes the impedance control paradigm.

1https://www.3dsystems.com/haptics
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2.4 Robotic Interfaces Used in this Thesis

B. Admittance control paradigm

Admittance control devices generate positional changes according to the force exerted by
the operator on the device (der Linde and Lammertse, 2003; Wen et al., 2008). As a result,
in the admittance control paradigm, the force acts as the input providing a displacement
as the output. Therefore, it can be seen as the inverse of the impedance control paradigm.
Admittance control allows considerable freedom in the mechanical design of the device since
tip inertia and backlash can be eliminated. Therefore, admittance control devices are quite
robust and are capable of displaying high force and high stiffness (Abbott et al., 2007; der
Linde and Lammertse, 2003). The HapticMASTER (der Linde et al., 2002) is an example
for an admittance control device.

2.4.2 HapticMASTER

The HapticMASTER, manufactured by FCS Control Systems (now known as Motekforce
Link), is a high-performance haptic device that is specially designed for interacting with the
human hand. The HapticMASTER operates under the admittance control paradigm. Thus,
the robot controls the displacement (i.e. position, velocity, and acceleration) depending on
the force applied by the user and is capable of rendering high stiffness, high forces and high
force sensibility. Hence, effective and interactive upper limb therapy sessions with haptic
sensation can be designed using the HapticMASTER software architecture.

A. Hardware Arrangement

The HapticMaster hardware mainly consists of the robot arm and the control box (der Linde
and Lammertse, 2003; der Linde et al., 2002) (Figure 2.12). The robot arm serves as the
actual force display while the control box houses the required electronics such as the haptic
server, motor amplifiers, and safety relays. A sensitive strain gauge force sensor attached to
the front end of the robot arm (right after the end effector) measures the interaction force
applied by the user. The robot arm mechanism facilitates zero backlashes to avoid adverse
vibration effects, but this feature results in some increased friction in the robot arm joints. In
order to ensure smooth motion at the end effector, this friction is completely eliminated up
to the accuracy of the force sensor by the HapticMASTER control loop. The actuators of
the HapticMASTER enables three different movements: base rotation, arm up/down, and
arm in/out, as illustrated in Figure 2.13. The actuator arrangement allows a 3 degree of
freedom at the end effector and creates a volumetric workspace of approximately 80 litres.
The workspace uses a right-handed Cartesian coordinate system, as depicted in Figure 2.14.
In addition, exchangeable end effectors can be mounted according to different applications.
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The haptic server is a dedicated PC with a VxWorks© real-time operating system. Both
haptic render and the robot control loop run on the haptic server at a fixed update rate of
2500 Hz, enabling smooth and realistic haptic experience.

B. Control Algorithm

The HapticMaster utilizes an admittance control algorithm as depicted in Figure 2.15 (der
Linde et al., 2002). The force exerted by the user is measured and is converted to a posi-
tion/velocity/acceleration set-point vector by a virtual model, considering the virtual motion
that this force would result on an object in space. The virtual model defines the space
in which the object lives (e.g. environmental friction, gravity, etc.) as well as the object
properties (e.g. mass, stiffness, damping friction, etc.) (der Linde and Lammertse, 2003).
The position/velocity/acceleration vector is commanded to the robot realised by a PID servo
control servo loop (der Linde and Lammertse, 2003) and the movement of the robot arm is
made. The control loop cancels the actual mass and the friction of the device, and a small
amount of virtual mass will be presented instead to avoid commanding infinite accelerations.

C. Application Programming Interface

The HapticMASTER is programmed using an application programming interface (API)
known as HapticAPI, which is written using the C++ programming language. HapticAPI
enables the user to create and manipulate the virtual environment and to control the internal
state machine via an Ethernet connection with the HapticMASTER. Haptic effects like spring
effects, damper effects, constant force effects, or any combination of them can be added to
the virtual haptic world. The virtual world created using haptic objects like spheres, cubes,
cones is rendered graphically on the screen by the Open Graphics Library (OpenGL) graphics
engine (Ruiter, 2003).

D. GENTLE/S Rehabilitation System

The GENTLE/S rehabilitation system (Amirabdollahian et al., 2007; Coote et al., 2008;
Loureiro et al., 2001, 2003) illustrated in Figure 2.16 is designed to provide challenging and
motivating upper limb rehabilitation to stroke patients in conjunction with HapticMASTER
and virtual reality techniques. A gimbal end effector mounted on the HapticMASTER,
as shown in Figure 2.17 enable patients to interact with the haptic environment without
grasping the end effector. Three passive rotational degrees of freedom of the gimbal allows
flexion and extension of the wrist as well as the pronation and supination of the elbow.
Patient’s hand is attached to the robot arm by a wrist-orthosis that is connected to the gimbal
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Figure 2.12: HapticMASTER system
overview (Ruiter, 2003).

Figure 2.13: The actuator arrangement
and the kinematics of the HapticMAS-
TER (der Linde et al., 2002).

(a) 3D volumetric workspace (der Linde et al.,
2002).

(b) 3D volumetric workspace x, y, z coordi-
nates (Ruiter, 2003).

Figure 2.14: 3D volumetric workspace of the HapticMASTER.

Figure 2.15: The general control scheme used by the HapticMASTER (der Linde et al.,
2002).
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end effector via a magnetic quick-attach/quick-release mechanism. The elbow-orthosis
suspended from the overhead frame (Figure 2.18) is used to support the arm by eliminating
the effects of gravity. This ensures user comfortability during the therapy session. Moreover,
a harness arrangement is attached to the chair to restrain the user’s trunk movement. Three
virtual environments (empty room, real room (Figure 2.19) and Joaquim’s room) of varying
complexity are designed to provide arm reaching-returning exercise. A detailed description
of the game interfaces is given in (Loureiro et al., 2003).

The robot arm is controlled in a straight line trajectory (the configuration of the user’s wrist
in the space) with the minimum jerk (the change of acceleration with respect to time, i.e. the
third time derivative of the position) using a model derived from the 7th order polynomial
given in equation 2.1,

p = a+bτ +dτ
3 + f τ

5 +hτ
7; where−1 < τ < 1 (2.1)

and the polynomial coefficients are calculated as,

a =
(p|τ=−1 + p|τ=1)

2
b =

15
16

(p|τ=1 − p|τ=−1)

d =
35
16

(p|τ=1 − p|τ=−1)−3b f = 3b− 21
8
(p|τ=1 − p|τ=−1)

h =
15
16

(p|τ=1 − p|τ=−1)−b

Here p|τ=−1 and p|τ=1 denote the start and end point position of the movement respectively.
A detailed description of the point-to-point generalised minimum jerk approach is given in
(Amirabdollahian et al., 2002). The robot end-effector is connected to a virtual spring-damper
combination, as shown in Figure 2.20. This virtual configuration constrains the movement
of the bead along the pathway defines by the minimum jerk polynomial. The start and end
positions of the points, the duration of the movement between two points, spring stiffness,
and damping coefficient can be varied depending on the therapeutic needs of the patient.

Three different therapeutic modes are implemented in GENTLE/S system as described below.

• Patient passive therapy:
In this mode, HapticMASTER moves the patient’s arm attached to the gimbal on a
predefined trajectory while the patient remains passive. When the patient’s arm reaches
the target, the movement pauses momentarily and then proceeds to the next segment of
the movement. This mode is designed for early-stage stroke patients who cannot move
their arm alone.
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Figure 2.16: The GENTLE/S rehabilita-
tion system (Amirabdollahian et al., 2007)

Figure 2.17: Gimbal end effector mounted
on the HapticMASTER (Loureiro et al.,
2001)

Figure 2.18: Elbow-orthosis used to de-
weight patient’s hand (Loureiro et al.,
2001)

Figure 2.19: GENTLE/S virtual environ-
ment (Amirabdollahian et al., 2007)

Figure 2.20: Spring-damper combination (Loureiro et al., 2003)
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• Patient active-assisted therapy:
Here the patient has first to initiate the movement, and then the HapticMASTER helps to
move along the defined trajectory within a set duration. This mode encourages patients
to initiate movement, although they are unable to move without assistance.

• Patient active therapy:
The patient active mode is implemented for patients who can perform arm movement
but lack arm coordination or power. Hence, in this mode, patients have to initiate the
movement and reach the target point by themselves. The robot stays passive and only
assists the users if they have deviated from the predefined path. No time limitation
is provided for the patient to complete the movement between two points, and the
spring-damper combination provides the error correction when the patient’s hand has
deviated from the defined pathway.

E. GENTLE/A Rehabilitation System

The GENTLE/A (‘A’ for Adaptive) rehabilitation system (Chemuturi et al., 2013a) is a
successor of the GENTLE/S rehabilitation system. In comparison to the GENTLE/S system,
this system can change the assistance/resistance offered by the robot during a therapy based
on the contribution of the participant. The GENTLE/A rehabilitation system uses the
HapticMASTER similar to the GENTLE/S rehabilitation system to provide robot-mediated
therapy, but the gimbal end effector is replaced with the standard end effector that comprises
a simple ball grip. This system also inherits the minimum jerk trajectory model (equation
2.1) to create a reference pathway between two points in the workspace. The system is
programmed to work in patient active, active-assisted and passive modes with the addition of
a lead-lag performance model. Chemuturi et al. (2013a) provides a detailed description about
the lead-lag performance model. As illustrated in Figure 2.21, the virtual reality interface
of GENTLE/A system consists of 12 virtual balls that are placed in the corners of a cube
(points on a cube). This interface facilitates different combinations of movements, including
reach-return, ground level-against gravity-towards gravity movements.

2.4.3 SCRIPT Passive Orthosis

The SCRIPT (Supervised Care and Rehabilitation Involving Personal Tele-robotics) 2 passive
orthosis is a custom-made wrist, hand and finger orthosis, developed to provide home-based
stroke rehabilitation. The SCRIPT passive orthosis can passively offset the excessive involun-
tary flexion torques caused by spasticity and abnormal synergies, so that the individuals can

2http://scriptproject.eu/
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Figure 2.21: The GENTLE/A virtual environment. Green balls represented source and target
points (Chemuturi et al., 2013a)

actively engage with the therapeutic environment using their impaired arm (Amirabdollahian
et al., 2014). The components of the SCRIPT passive orthosis is illustrated in Figure 2.22.
The forearm shell, the hand plate and individual finger (digit) caps of the orthosis are used to
physically interface with the forearm, hand and fingers of the users respectively. The hand
plate prevents overextension of the metacarpophalangeal (MCP) joint and the finger caps
blocks most of the distal interphalangeal (DIP) rotations (Ates et al., 2013). The double
parallelogram mechanism between forearm shell and the hand plate (Figure 2.23a) allows
wrist flexion/extension while preventing other wrist movements. The rotary potentiometer
attached to the wrist double parallelogram is used to measure the wrist flexion/extension. The
pronation/supination at the wrist and the translational movement of the forearm are measured
by an inertial measurement unit (Ates et al., 2014). Furthermore, external torque to assist the
extension of each finger is applied via a leaf spring that is connected to the corresponding
finger cap through an elastic tension cord (Leon et al., 2014) (Figure 2.23b). The external
extension forces on the fingers and the wrist can be adjusted by tensioning the elastic cord
more or less using the tension-cord stops on the top of the hand plate. Also, the freedom of
movement of the finger relative to the leaf spring is controlled by the tension cord. Finger
abduction/adduction and thumb opposition are also possible due to the use of elastic tension
cords, but these movements are not supported nor sensed by the SCRIPT passive orthosis
(Leon et al., 2014).

The resistive flex sensors3 attached to each leaf spring measure the flexion of the correspond-
ing finger with approximately 1-degree resolution. The rotation of MCP, PIP (Proximal
Interphalangeal), and DIP joints are estimated using equations 2.2 and 2.3 with the assump-

3Spectra Symbol, SEN-10264, 55 [mm]
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Figure 2.22: SCRIPT Passive Orthosis (Ates et al., 2013)

(a) Wrist mechanism (b) Finger mechanism

Figure 2.23: SCRIPT passive orthosis wrist and finger mechanisms (Ates et al., 2013)
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tions that there is no dead signal zone4 with the flex sensors and rotation of each phalanx is
linear and covers the full range of motion except the distal phalanx.

θ joint(k = θ jointmax.|BSensornorm(k)−1| (2.2)

BSensornorm(k =
BSensor(k)−BSensormin

BSensormax −BSensormin
(2.3)

In equation 2.2 θ joint(k) and θ jointmax refer to estimated rotation of joints and maximum
rotation of joints in degree respectively. The index joint refers to a set of variables, {MCP,
PIP, DIP}. The flex sensor reading at sample k is denoted by BSensor(k) and the indices
max, min, and norm refers to maximum, minimum and normalized values of BSensor. The
BSensormin and BSensormax are measured while all fingers are stretched on a flat surface
and while the user performs a full grasp without any object respectively. Arduino Nano
microprocessor board is used to sample the flex sensor readings and the potentiometer output
of the wrist mechanisms, and also to send the sampled data to the main PC where the SCRIPT
games reside. The 3D position of the hand in space is measured by optically tracking a green
colour spherical marker placed on the hand plate of the orthosis (Nijenhuis et al., 2016).

The SCRIPT system enables self-administrated home-based therapy for hand and wrist.
Since the SCRIPT passive orthosis can assist and sense different finger, hand, wrist and arm
motion (finger flexion/extension, thumb flexion/extension and adduction/abduction, wrist
flexion/extension and pronation/supination, and translational movement of the forearm),
interactive therapeutic sessions are designed to retrain different hand and wrist gestures. The
virtual environment of the game, ‘Sea Shell’, that is used to retrain hand and wrist movements
is shown in Figure 2.24. In this game, the user is put in control of opening and closing a
seashell underwater to catch as many fishes. Firstly, the user is required to open hand to
open the seashell and keep it ready to catch a fish. The user should open and close the hand
when a fish reaches the seashell in order to open and close the seashell, thereby to catch the
fish. Also, if the wrist is flexed for a certain threshold duration (50% of the range of motion
(Qin, Rahman and Amirabdollahian, 2014)), the seashell goes to sleep mode. Hence, the
user needs to bend the wrist up to activate the shell. This feature encourages the patients
to perform wrist extension before flexion of the fingers as the stroke patients hands are
excessively flexed due to spasticity and abnormal synergies. Each patient exhibits a different
range of motion, depending on his/her recovery progress. Therefore, a calibration procedure
is included at the beginning of each game, so that the game is adapted to the subject’s range

4zero offset change of the sensor
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of motion. Also, a mobile arm support (SaeboMAS) is used to unweight the proximal arm
so that the gravity compensation and fatigue are minimised. The SCRIPT system has two
different interfaces available for both patients and the healthcare professionals. The patient
user interface allows the user not only to quickly access the games and performance history
to monitor progress (game scores and training duration) but also to communicate with the
healthcare professionals by sending a message. The user interface available to healthcare
professionals enables them to remotely and indirectly monitor the progress of the patient
and to provide feedback and assign therapy accordingly (Amirabdollahian et al., 2014). The
remote supervision facility could reduce the burden on the patient to visit therapists and has
many indirect benefits.

The SCRIPT system has been clinically tested in terms of user acceptance, the actual amount
of use, usability and patient motivation and the arm and hand function. The system was
successfully used at home by chronic stroke patients with impaired arm/hand function.
Although some usability issues are present in the SCRIPT system, the findings in (Nijenhuis
et al., 2016) shows that the system is feasible since the patients accepted the training and were
motivated to continue therapy at home. In addition, participants also showed improvements
in arm and hand function and dexterity after training.

(a) ‘Sea Shell’ game interface (b) Hand movement instructions

Figure 2.24: ‘Sea Shell’ game interface and hand movement guidelines to operate the sea
shell and catch fish.
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Chapter 3

EEG Data Processing Pipeline

The present research work was focused on assessing fatigue in robot-mediated interactions
using EEG. In this chapter, EEG data processing pipeline followed for each participant and
each recording in the two studies conducted is discussed in detail. As shown in Figure 3.1,
EEG data processing pipeline adopted for this research mainly consisted of three steps: EEG
data preprocessing, EEG feature extraction and statistical analysis.

3.1 EEG Data Preprocessing

EEG data are preprocessed to obtain relatively clean EEG data by removing or reducing
the artifactual components. When limited data are available, rejecting EEG segments with
artifacts may result in a considerable loss of information. Therefore, DC correction, high-
pass and low-pass filtering, bad channel removal, and blind source separation (BSS) by
independent component analysis (ICA) were considered in the present work to remove or
attenuate the artifacts and improve the signal-to-noise ratio. The following sections will
discuss each step taken in detail.

3.1.1 DC Correction

EEG signals can be contaminated with DC offset due to the analogue circuits involved in the
data acquisition. The DC offset makes the signals mean amplitude not equal to zero. Hence,
the channel-wise mean was deducted from each data point to perform DC correction.
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Raw EEG

Remove the DC offset

High-pass filter 
(Experiment 2 only)

Remove artifactual EEG components using ICA
Algorithm used: JADE algorithm

Segment the cleaned EEG data to a sequence of 30s epochs

Extract EEG features for each epoch
(Experiment 1 - EEG spectral features, experiment 2 - spectral and nonlinear EEG features)

Calculate the average EEG features for each state

Perform the statistical analysis

Low-pass filter

Remove bad channels

Figure 3.1: EEG data processing pipeline used in this thesis. The dotted box represents
the three main steps involved in the pipeline: data preprocessing, feature extraction, and
statistical analysis.
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3.1.2 Filtering

Filtering can be used to remove or attenuate high-frequency noise components, low-frequency
drifts, and electrical line noise mixed in the EEG recording while preserving the signal
of interest. Since filtering cause changes to the temporal signal, filter parameters (filter
type, cutoff frequencies, order, attenuation, ripple, roll-off) should be selected cautiously
considering the effects of filtering on the signal of interest and the application; thereby the
signal-to-noise ratio can be improved (Widmann et al., 2015). The characteristics of a filter
are described by filter responses (Figure 3.2). The impulse response gives the transfer function
of a filter in the time domain. The impulse response shows the filter output when filtering a
single very sharp pulse (i.e., an impulse). The filter’s characteristics in the frequency domain
are described by the Fourier transform of the impulse response (i.e., the frequency response).
The frequency response consists of two parts, namely the magnitude and the phase response.

(a) Time domain (b) Frequency domain

Figure 3.2: Time domain and frequency domain responses of an example filter of order 18
linear-phase finite impulse response (FIR) low-pass filter. Black dashed lines represent the
impulse signal. (1) cutoff frequency, (2) transition band, (3) passband, (4) stopband, (5)
passband ripple, and (6) stopband attenuation. (Widmann et al., 2015)

The cutoff frequency characterises a boundary between the passband and stopband of the filter.
Depending on the type of the filter, the -3dB (half-energy) cutoff or -6dB (half amplitude)
cutoff are used when designing a filter. The transition region between passband and stopband
is defined as the transition band. The cutoff frequency always lies in the transition band.
The roll-off is the slope of the magnitude response in the transition band. Filters with a
shallow roll-off have a wide transition band whereas filters with a steep roll-off have a narrow
transition band. Frequency bands in the passband ideally have magnitude values of one,
whereas the frequency bands in the stopband ideally have zero magnitude values. Hence,
the spectral components in the passband pass without changing the amplitude, whereas
the spectral components in the stopband are completely removed. However, digital filter
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characteristics usually deviate from the ideal filter characteristics (zero/one) depending on
the design criteria. The deviation in the passband and stopband are known as passband ripple
and stopband attenuation. For example, with a passband ripple of 0.002, the filter output in
the passband does not amplify or attenuate the signal by more than 0.2%. With a stopband
attenuation of -60 dB (or 0.001), the signal in the stopband is attenuated by a factor of 1000.
Passband ripple of 0.002-0.001 (0.2-0.1%) and stopband attenuation of -54 to -60 dB can be
chosen for EEG signal processing (Widmann et al., 2015). Filtering also introduces a delay
in the output signal relative to the filter input. However, a zero-phase delay can be achieved
using the ‘filtfilt’ function in MATLAB.

High-pass, low-pass, band-pass and band-stop filters are commonly used in EEG signal
processing. In high-pass filtering, signals with frequencies below the defined cutoff frequency
are attenuated. Therefore, a high-pass filter with a cutoff frequency of 0.1 or 0.5 Hz is useful
and recommended to minimise slow drifts. Furthermore, since the edge artifact of a 0.5
Hz high-pass filter may last up to 6s, high-pass filters should be applied on the continuous
data before segmented into epochs (Cohen, 2014). The frequencies above the defined cutoff
frequency are attenuated with the use of low-pass filters, thereby smoothing the filter output.
In band-pass filtering, signals with frequencies within the given frequency band are passed
while the signals outside the range are attenuated, and the opposite is true in band-stop filters.
A separate successive application of a steep high-pass filter and a shallow low-pass filter
is preferred in electrophysiology instead of a band-pass filter (Widmann et al., 2015). In
addition, a notch filter is widely used to suppress line noise (50/60 Hz). A notch filter is a
bandstop filter which attenuates signals over a narrow range of frequencies.

There are two types of digital filter implementations, namely, infinite impulse response (IIR)
and finite impulse response (FIR) filters. The cutoff frequency of IIR filters is usually defined
as -3 dB cutoff, whereas the cutoff frequency of FIR filters is usually defined as -6 dB cutoff.
Butterworth IIR filters have no passband and stopband ripples and have a shallow roll-off
in comparison to Chebyshev and elliptic IIR filters. Elliptic filters have a steep roll-off near
the cutoff frequency and also have ripple in both the passband and the stopband. Chebyshev
filters have a steeper roll-off. Chebyshev Type I filters only allow ripple in the passband,
whereas the Chebyshev Type II filters have ripple only in the stopband.

In this research work, both high-pass and low-pass filtering was considered when preprocess-
ing EEG data in experiment 2, whereas only low-pass filtering was considered in experiment
1. The characteristics of the filters used in the two experiments are given in Chapter 4 and 5,
respectively.
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3.1.3 EEG Bad Channel Removal and Interpolation

An EEG electrode is considered as a bad channel when the EEG data recorded from that
electrode has a low signal-to-noise ratio or very low or no signal throughout a considerable
time span (Pedroni et al., 2019). Changes in the electrode-skin interface impedance or
displacement of an electrode due to head or body movement during the recording session
may cause bad channels. Since bad channels are localised to specific electrodes, it is more
sensible to exclude the bad channel from the original EEG data and interpolate the EEG
signal of that channel by combining the signals.

In this research work, bad channels were identified and removed after filtering the DC
corrected EEG data. Following the removal of remaining artifacts using ICA, the missing
channels were interpolated using the spherical spline interpolation procedure (‘eeg_interp’
function) which is implemented in EEGLAB toolbox (Debnath et al., 2020).

3.1.4 Blind Source Separation by Independent Component Analysis

A. Blind Source Separation (BSS)

Blind source separation (BSS) is a signal processing methodology used to recover the
underlying source signals from a set of sensor observations, where the mixing matrix is
unknown. In general, each sensor records a different mixture of source signals when the
sensors are spatially separated (i.e., placed in different locations). The term ‘blind’ means that
neither the source signals are observed, nor the information about how the signals were mixed
is available (Cardoso, 1998). Therefore, estimating the original source signals exactly is not
possible. However, the source signals can be estimated up to certain indeterminacies, i.e., the
estimated source signals preserve the waveforms of the original source signals, but there exist
permutations, arbitrary scaling and change in signs. As the most relevant information about
the source signals are contained in the time-frequency patterns or the temporal waveforms of
the source signals, the change in the signal amplitudes or the order in which they are arranged
in the output of the system has a negligible effect in most applications of BSS (Naik and
Kumar, 2011).

BSS is best explained by the ‘cocktail-party problem’, where one can selectively listen to, and
follow one speaker in the presence of many people talking simultaneously with background
noise and loud noise. This psychoacoustic phenomenon was first proposed by Colin Cherry
(Cherry, 1957). For instance, assume that two people are speaking simultaneously in a room
and two microphones are placed in two different locations. The time-series data recorded
by the two microphones (observations) are a weighted sum of the speech signals emitted by
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the two speakers (sources) and it is of interest to separate each voice into a separate speaker
channel for better understanding. This is the goal of BSS (Hyvärinen and Oja, 2000). If the
amplitudes of the recorded signals at time point t are denoted by x1(t) and x2(t), then the
linear mixing equation could be expressed as:

x1(t) = a11s1(t)+a12s2(t)

x2(t) = a21s1(t)+a22s2(t),
(3.1)

where s1(t) and s2(t) represents the signals emitted by the two speakers (sources) and a11,
a12, a21, and a22 represents the mixing weights (coefficients) that depend on the distances
between the speakers and the microphones. Here both the source signals and the mixing
coefficients are unknown. Thus, BSS is used to find the original acoustic signals generated by
each speaker, si(t) from the recorded mixtures xi(t). The lack of prior information about the
mixture is compensated by the assumption of statistical independence of the source signals
(Cardoso, 1998). An illustration of the above-mentioned signal decomposition process is
shown in Figure 3.3.

s1(t)

s2(t)

a11

a21

a12

a22

x1(t)

x2(t)

u1(t)

u2(t)

BSS

Unknown Observed 

signals

Estimated

sources

Figure 3.3: Illustration of source separation in the ‘cocktail-party problem’.

The simplest BSS model can be represented by the mixing equations:

x(t) = As(t), (3.2)

where x(t) = [x1(t),x2(t),x3(t), . . . ,xn(t)]T is an n× 1 column vector representing the ob-
served signals, and s(t) = [s1(t),s2(t),s3(t), . . . ,sn(t)]T is also an n×1 column vector repre-
senting a finite number of independent source signals. Here [. . . ]T means transpose of a row
vector. In addition, A is the square n×n ‘mixing matrix’ that contains the mixing weights or
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the mixture coefficients as:

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

... . . . . . . ...
an1 an2 an3 · · · ann

 . (3.3)

The aim of BSS is to compute a n×n separation matrix, W, with the coefficients wi j, such
that an estimate of the source signal vector, u(t), can be separated using only the observed
signal vector, x(t) by considering the statistical independence of the source signals. Using
vector-matrix notation, this signal decomposition can be expressed as:

u(t) = Wx(t). (3.4)

Here the recovered source signals are identical to the original source signals up to permu-
tations and changes of scales and signs (Cardoso, 1998). The block diagram in Figure 3.4
illustrates both mixing and separation processes involved in BSS.

A

Source 

signals
Mixing matrix

s1(t)

s2(t)

s3(t)

…
.

sn(t)

W

Recorded 

signals

Separation 

matrix

x1(t)

x2(t)

x3(t)

…
.

xn(t)

Separated 

signals

u1(t)

u2(t)

u3(t)

…
.

un(t)

unknown

Figure 3.4: Block diagram illustrating the blind source separation. The s(t) are the source
signals, x(t) are the recorded signals, u(t) are the separated source signals, A is the mixing
matrix and W is the separation matrix.

BSS techniques are successfully used in many applications including processing biomedical
signals such as EEG (Congedo et al., 2008; Jung et al., 2000; Peterson et al., 2005; Vázquez
et al., 2012; Vorobyov and Cichocki, 2002), ECG (Castells et al., 2005; Zarzoso et al.,
1997) and magnetoencephalograms (Escudero et al., 2007, 2008), speech recognition and
enhancement in noisy environments (Kokkinakis and Loizou, 2008; Rahbar and Reilly,
2005), analysis of mechanical signals such as vibration and engine noise for fault detection
and diagnosis (Li et al., 2001; Roan et al., 2002). In this thesis, BSS is used to remove
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artifacts in recorded EEG data. Among the several techniques developed to perform BSS,
independent component analysis (ICA) is one of the most widely used BSS technique to
separate artifactual EEG components from data recorded from the scalp (Jung et al., 1998,
2000; Makeig et al., 1996). Hence, the following section gives an overview of the ICA model
and how it can be applied to EEG artifact correction.

B. Independent Component Analysis (ICA)

Independent component analysis (often abbreviated as ICA) is a most promising approach
to solve the BSS problem (Hyvärinen and Oja, 2000). ICA is essentially a method used to
recover a set of n independent source signals from m ≥ n observed instantaneous mixtures of
these source signals. If we denote the n independent source signals at time t by a n×1 vector
s(t) and the observed signals (sensor outputs) by a m×1 vector x(t), the mixing model can
be written as,

x(t) = As(t), (3.5)

where the m×n matrix A represents the ‘mixing matrix’:

A =


a11 a12 a13 · · · a1n

a21 a22 a13 · · · a2n
...

...
... . . . ...

am1 am2 a13 · · · amn

 . (3.6)

The elements in each row of A corresponds to the contributions from each source signal to
each observation (i.e., xi(t) = ∑

n
j=1 ai js j(t) for all i = 1 to m).

The ICA model is a generative model as it describes how the observed data are generated by
the process of mixing independent source signal components (Hyvärinen and Oja, 2000). The
independent source signal components are latent source signals, meaning that they cannot
be directly observed. Moreover, the mixing coefficients, ai j, are also unknown. Therefore,
both the mixing matrix coefficients and the original source signals need to be estimated. The
objective of ICA is to find a separating matrix, i.e., a n×m matrix W such that:

u(t) = Wx(t) (3.7)

is an estimate of the original source signals. The elements in the n×1 vector u(t) are known
as independent components (ICs). The independent components obtained by this model are
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identical to the original source signals up to permutations and changes of scales and signs
(Cardoso, 1998).

ICA assumptions

When performing ICA, the following assumptions are made (Naik and Kumar, 2011;
Ullsperger and Debener, 2010).

• The source signals are statistically independent.
Random variables s1,s2, . . . ,sn are said to be independent if information on the value of
si does not give any information on the value of s j for i ̸= j. Mathematically, statistical
independence can be defined by the probability densities. If the joint probability density
function of the si is denoted by p(s1,s2, . . . , ,sn) and the marginal probability density
functions of si are denoted by pi(si) for all i = 1 : n, then the random variables si are
said to be independent if and only if p(s1,s2, . . . , ,sn) = p1(s1)p2(s2) . . . pn(sn), i.e, the
joint density p(s1,s2, . . . , ,sn) of si must factorize into the product of their marginal
densities p1(s1)p2(s2) . . . pn(sn).

• The source signals (at least some) must have nongaussian distributions.
The central limit theorem states that although the distribution of independent source
signals are not Gaussian, the distribution of a sum of independent random variables
tends toward a Gaussian distribution, under certain conditions.

• There must be at least as many observed signals than the source signals. i.e, if m
observations are made from n sources, then m ≥ n.

• The location of the sources does not change relative to the location of sensors used to
record the observed signals.

• The observed signals are considered as an instantaneous linear mixture of a number of
source signals.

Ambiguities of ICA

The following ambiguities or indeterminacies are often visible in the ICA model.

• The variances (energies) of the independent components cannot be determined.
Since both s(t) and A are unknown, any scalar multiplier in one of the sources si could
always be cancelled by dividing the corresponding column ai of A by the same scalar.
Therefore, it is assumed that each has unit variance: E{s2

i }= 1, but this will leave the
ambiguity of the sign.

• The order of the independent components cannot be determined.
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Preprocessing Methods Used Before ICA

Generally, before doing ICA, the following preprocessing steps are taken in the given order.

1. Centering the observed data vector x by subtracting its mean vector m = E{x}. (Mean
will be added after extracting the components).

2. Whitening the observed data vector x by linearly transforming the centred observed
data such that its components are uncorrelated and have unit variance (Naik and Kumar,
2011).

ICA Algorithms

There are many ICA algorithms available in the literature. All these ICA algorithms have
the same aim, i.e., separating latent source signals given only sensor observations that are
unknown linear mixtures of source signals. Also, generally all algorithms produce near-
identical results when applied to idealised source mixtures. However, the criteria used to
determine the statistical independence and the method used to maximise it are different
(Delorme, Sejnowski and Makeig, 2007). The Infomax algorithm (Bell and Sejnowski, 1995)
is based on maximising the output entropy, or information flow, of a neural network with
nonlinear outputs whereas FastICA algorithm (Hyvarinen, 1999) maximises the nongaussian-
ity measured by the approximation of negentropy using a fixed-point algorithm. Both JADE
algorithm (joint approximate diagonalisation of eigenmatrices) (Cardoso, 1999; Cardoso and
Souloumiac, 1993) and SOBI (second-order blind identification) (Belouchrani et al., 1997)
are based on joint diagonalisation. The SOBI assumes that the sample data is gathered from
a set of temporally correlated sources and tries to separate sources by joint diagonalisation of
several correlation matrices. JADE algorithm, on the other hand, is based on the diagonalisa-
tion of fourth-order cumulant matrices. Comparisons of the accuracy, convergence speed,
computational load, and other relevant properties of different ICA algorithms have been
published in (Delorme, Plamer, Oostenveld, Onton and Makeig, 2007; Delorme, Sejnowski
and Makeig, 2007; Giannakopoulos et al., 1999; Kachenoura et al., 2007; Sahonero-Alvarez
and Calderón, 2017).

In the present research work, JADE ICA algorithm implemented by Cardoso and Souloumiac
(1993) was used to identify and remove the artifactual EEG components mixed in the multi-
channel EEG data. The JADE ICA was performed offline using the MATLAB code found on
website http://www2.iap.fr/users/cardoso/code/Jade/jadeR.m.
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Applying ICA to EEG Artifacts Removal

The EEG research community widely accepts ICA as a promising method for isolating
artifactual components in multi-channel EEG data, including eye blinks and movements,
cardiac activity, line noise, muscle activity, electrode movements. For example, EEG data
taken at different electrode locations consists of measures of electrical potentials generated
not only by the neural brain activity but also by artifactual signals that overlap with the
cerebral activity. In order to eliminate false results and interpretation of EEG data, the
original components of brain activity need to be separated from the observed signals. This
is closely related to the cocktail party problem explained before. ICA, by its nature, can
separate these observed EEG data into maximally independent waveforms generated either
within the brain or outside of it. These separated signals may have, for instance, specific
activity patterns, power spectrum and component maps, which will enable the identification
of artifactual and brain activity by visual observation. By removing the artifactual signals,
the EEG data can be cleaned up to some extent. Makeig et al. (1996) reported the first results
of applying ICA to EEG and event-related potential (ERP) data recorded during a sustained
auditory detection task. There onwards, ICA has been widely used in the EEG research
community, most often to remove EEG artifacts.

To build intuition about how ICA is used for artifact detection, consider that the EEG signals
recorded from different electrodes at time t are represented by the rows of the input matrix x(t)
and the underlying maximally independent EEG source signal components are represented
by s(t) in the ICA model defined equation 3.5. The column vectors of the mixing matrix
A in equation 3.5 give the projection strengths of the respective source signal components
onto each of the scalp sensors, which is unknown (Jung et al., 2000). Thus, the objective is
to find a linear separation matrix W that can decompose the observed EEG data x(t) into
a mutually independent output u(t) as expressed in equation 3.7, where u(t) is the best
possible estimate of the sources, s(t). The rows of the output matrix, u(t) represents the time
courses of activations of the independent components, and these independent components
represent the underlying cerebral and non-cerebral source activities (Li et al., 2006). The
columns of the inverse separation matrix W−1, which is an estimate of the mixing matrix
A in equation 3.5, gives the relative projection strengths of each independent component
onto the scalp electrodes (Jung et al., 1998). Therefore, information about the location of
the sources can be obtained from the scalp topographies of independent components drawn
from the corresponding column vectors of W−1 (e.g. eye activity should project mainly to
frontal sites, the cardiac activity will look almost like a linear gradient scalp topography).
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The projection of the independent components onto the original data channels is given by,

xprojections(t) = W−1u(t)≈ Au(t). (3.8)

Hence, the ‘corrected’ EEG signal can be derived as,

x̂(t) =W−1û(t), (3.9)

where û(t) is derived from the matrix of activation waveforms u(t), by setting the rows
representing the artifactual components to zero (Jung et al., 2000). Therefore, the rank of the
corrected EEG data is less than the rank of the original data.

Figure 3.5 extracted from Jung et al. (1998) demonstrates the EEG artifact removal by ICA.
The artifactual components can be identified by visually inspecting the time courses, scalp
topographies and power spectrum of activations of the independent components. For example,
the time series of the independent components that captures eye blinks and movement of the
eyes show clear quick or sustained ‘square’ DC-shifts, respectively. The power spectrum
of ocular artifacts, in general, is concentrated on frequencies below 5 Hz. Also, the scalp
topographies show that the source origin of eye blink and movement artifacts are in or near
the eyes since the activities are located in the frontal channels. The independent components
that show near linear gradient scalp topographies and clear QRS complexes in the time series
plots at about 1 Hz represent ECG artifacts (Pion-Tonachini et al., 2019). The independent
components containing muscle artifacts are easy to identify since the power spectrum is
concentrated mostly in higher frequencies (20 Hz and above) and the activities are localised
in the peripheral channels (around the neck, ears, and eyes) (Hames, 2014). Figure 3.6
extracted from Hames (2014) shows the time series, scalp topographies and power spectra
of the eye blink, horizontal eye movement, muscle artifact and cardiac artifact independent
components.

When applying ICA to the observed EEG, the following assumptions are made (Jung et al.,
2000; Makeig et al., 1996):

1. The summation of currents at the scalp electrodes is linear, and the propagation delays
of the ‘mixing medium’ are negligible.

2. Source activations are temporally independent of one another across the input data.
3. The number of independent EEG signal sources is the same as the number of sensors,

meaning that if EEG data is recorded from n EEG electrodes, the ICA algorithm can
separate n sources.

4. Spatial projections of components are fixed across time and conditions.
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Figure 3.5: Illustration of EEG artifact removal by independent component analysis (ICA).
The left image shows a 5-sec portion of an EEG time series. The top center image shows
the time series of the independent components corresponding to eye blinks, muscle, line
noise, cardiac artifacts, and eye movements. The bottom center image shows the scalp
topographies of eye blinks, muscle, cardiac artifacts, and eye movements. The right image
shows the ‘corrected’ EEG signals after removing the selected artifactual components (Jung
et al., 1998).

(a) Eye blink (b) Horizontal eye movement

(c) Muscle artifact (d) ECG artifact

Figure 3.6: Independent components that indicates (a) eye blink, (b) horizontal eye movement,
(c) muscle, and (d) ECG artifacts. The top left image is the scalp topography, top right is the
power spectrum and bottom center is the time series of each independent component (Hames,
2014).

76



3.2 EEG Feature Extraction

5. Statistical distributions of the component activation values are not Gaussian.

Assumption (1) is usually considered to be fulfilled for EEG data (Ullsperger and Debener,
2010) and assumption (2) is reasonable since the sources of the eye, muscle and cardiac
activity, and line noise are not generally time-locked to the sources of EEG activity. Since the
effective number of statistically independent signals contributing to scalp EEG recordings is
unknown, assumption (3) is questionable (Jung et al., 1998).

When using ICA to decompose EEG signals, the number of time points of n-channel data
used in the decomposition must be sufficient to learn the n2 weights of the separation matrix.
Therefore, as a general rule, to find n stable components from n-channel EEG data, k ∗n2,
where k = 20 or a larger number of data points at each channel is required; i.e., if there are
32 channels, ICA decomposition will require 20∗322 = 20480 or more data points (Onton
et al., 2006).

3.2 EEG Feature Extraction

Quantitative electroencephalography (QEEG) analysis techniques are widely used for as-
sessing the functional states of the brain. QEEG is the processing and analysis of digitally
recorded EEG data in order to transform the EEG data into a format or domain that eluci-
dates relevant information, highlight specific waveform components typically derived by
Fourier transform, or associate numerical results with the EEG data for subsequent review or
comparison (Kane et al., 2017; Nuwer, 1997). QEEG techniques include, but not limited to,
time-domain analysis, frequency-domain analysis, spatial-domain analysis, and multiway
processing (Sanei and Chambers, 2013). QEEG measures are widely used to detect abnormal
brain states such as epileptic seizures, to classify sleep stages, fatigue levels, and emotional
states, to measure the depth of anaesthesia, to detect and monitor brain injuries and the
recovery process. In this section, the QEEG analysis methods used in this thesis to estimate
the changes in brain activity with the progression of fatigue is summarised. They are:

1. Spectral features: Relative delta (δ ), theta (θ ), alpha (α) and beta (β ) band powers
and (θ+α)/β , α/β , (θ+α)/(α+β ), θ /β and δ/α ratio band powers.

2. Largest Lyapunov exponent
3. Approximate entropy
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3.2.1 EEG Spectral Features

A. Fourier Transform

Frequency domain analysis or spectrum analysis is a process of decomposing a signal into
a representation of its constituent frequency components, so that information about the
signal that cannot be easily seen in the time domain is revealed for exploration (Tong and
Thakor, 2009). The Fourier transform is a mathematical technique that has long been used to
transform data from the time domain into the frequency domain. It decomposes or separates
a waveform (a function or a signal) into a sum of sinusoids of different frequencies, which
added together gives the original waveform. The Fourier transform of a continuous aperiodic
function x(t) is defined as follows:

X( f ) =
∫

∞

−∞

x(t)e−i2π f t dt, (3.10)

where x(f) is the Fourier transform of X(t), and i =
√
−1. The uppercase X( f ) represents the

frequency domain function, and the lowercase x(t) represents the time domain function. The
inverse Fourier transform is the operator that transforms data from the frequency domain into
the time domain. It represents the synthesis of the continuous aperiodic function x(t) as a
weighted combination of the complex exponential basis functions, and is defined as:

x(t) =
∫

∞

−∞

X( f )ei2π f t d f , (3.11)

where i =
√
−1.

The discrete-time signals are created by sampling a continuous waveform. For instance, the
EEG data are discretely sampled with a frequency of fs =

1
Ts

, where Ts is the sampling time
interval and have finite intervals. The sampling process generates the sequence x(n) where n
denotes the discrete sample time. Therefore, the discrete approximation of the continuous
Fourier transform that applies to the sampled waveforms is defined by:

X(k) =
1
N

N−1

∑
n=0

x(n)e−i2πkn/N , (3.12)

where X(k) is the kth coefficient of the discrete Fourier transform, x(n) is the nth sample
of the time series which consists of N samples, k = 0,1, . . . ,N, and i =

√
−1. The discrete
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inverse Fourier transform is given by:

x(n) =
1
N

N−1

∑
k=0

X(k)e2π jkn/N , (3.13)

Each Fourier coefficient corresponds to one frequency, and each Fourier coefficient contains
information about the amplitude and the phase of each sine wave. The pictorial representation
of the Fourier transform is a diagram which displays the amplitude and frequency of each
of the determined sinusoids (Brigham, 1973). The square of the magnitude of the set of
complex Fourier coefficients (i.e., the periodogram) is used to estimate the power spectrum
of the original signal. The square of the magnitudes at each frequency, usually given by the
units µ2 (or in dB if the values are transformed into log-scale) shows the amount of energy
at each that the original EEG signal carry at each frequency (Nuwer, 1997).

B. Welch’s Averaged Periodogram

The fast Fourier transform (FFT) is a method used to compute the discrete Fourier transform
of time series efficiently, and the spectrum estimation of discrete-time series data is usually
based on procedures employing FFT. In this thesis, the power spectrum was estimated using
Welch’s averaged modified periodogram method that is based on time averaging over short,
modified periodograms. The Welch’s power spectral density estimation method, firstly,
divides the discrete-time series into possibly overlapping segments; then, takes the modified
periodograms of these segments by using FFT and averages these modified periodograms to
obtain an estimation of the power spectra. The advantages of this method are a reduction
in the number of computations, thus requiring less computing time, and a reduction in the
required core storage since the method involves the transformation of sequences which are
shorter than the whole record. The steps involved in Welch’s method for estimating the power
spectral density is as follows (Welch, 1967).

Algorithm: Welch’s Averaged Periodogram

1) Let x[n], n = 0,1, . . . ,N −1, where N is the total number of samples, be a sample from
a stationary, second-order stochastic sequence. Assume for simplicity the mean of the
sequence is zero (i.e., E(x[n]) = 0).

2) Divide the data sequence x[n] into K segments
(

i.e., K = N−L
D +1

)
with L data points

in each segment, possibly overlapping and with the starting points of these segments D
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units apart from the previous segment, i.e.:

Segment 1: x1 = x[0],x[1], . . . ,x[L−1]

Segment 2: x2 = x[D],x[D+1], . . . ,x[D+L−1]
...

Segment N: xK = x[N −L],x[N −L+1], . . . ,x[N −1].

(3.14)

This segmenting is illustrated in Figure 3.7. The number of points in common to
two adjacent segments is L−D; when L = D, the segments do not overlap and when
D = 0.5L, there exists a 50% overlapping between the segments.

3) Select a data window w[ j], where j = 0,1, . . . ,L−1, and form the sequences x1[ j]w[ j],
x2[ j]w[ j], . . . ,xK[ j]w[ j]. Welch (1967) suggests that Welch window (similar to the
Hanning or cosine arch spectral window) or the Parzen window are two reasonable
choices for the data window w[ j].

4) Compute the discrete Fourier transforms, Xk(n) for each sequence xk[ j]w[ j]. Here,

Xk(n) =
1
L

L−1

∑
j=0

xk( j)w( j)e−i2π jn/L, (3.15)

where k = 1, . . . ,K and i =
√
−1.

5) Obtain the modified periodogram, Ik( fn) for each segment:

Ik( fn) =
L
U

∣∣Xk(n)
∣∣2 ; for k = 1,2, . . . ,K, (3.16)

where
fn =

n
L

; for n = 0, . . . ,L/2, (3.17)

and

U =
1
L

L−1

∑
j=0

w2[ j]. (3.18)

6) Average the periodogram values to obtain Welch’s estimate of the power spectra, i.e.,

P̂( fn) =
1
K

K

∑
k=1

Ik( fn). (3.19)

In this thesis, Welch’s averaged modified periodogram method was applied to EEG epochs
of 30 s length, i.e., N=7680. The power spectral density at each frequency (units: µV 2/Hz)
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0 N-1

x[n] 

0 L-1

x1[m] 

D D+L-1

x2[m] 

(K-1)D N-1

xK[m] 

Figure 3.7: Illustration of the data segmentation in Welch’s averaged modified periodogram
method. Here N is the total number of samples in the sequence, x[n], L is the number of points
in each segment, D is the number of points to shift between segments, K is the total number
of segments, n = 0,1, . . . ,N −1 and m = (k−1)D,(k−1)D+1, . . . ,(k−1)D+L−1.

was calculated using the pwelch() command in MATLAB. A 3s segment length (i.e., L=768
samples), 50% overlap and a Parzen window were chosen as parameters for this analysis.

C. Extracting Spectral Features from Welch’s Power Spectral Density

EEG recording contains a broad frequency spectrum and is often divided into five frequency
bands, namely delta (δ ), theta (θ ), alpha (α), beta (β ), and gamma (γ). Therefore, the
interpretation of the association between EEG power and fatigue is often based on examining
the power associated with traditional frequency bands (Kubitz and Mott, 1996). EEG power
is often expressed in terms of absolute and relative band power (basic indices) and a ratio
between different absolute band powers (ratio indices). In this thesis, only the delta, theta,
alpha and beta frequency bands were considered since the modulations in these four band
powers were often studied in fatigue literature (Table 2.1). EEG spectral features were
extracted from the power spectral density, as explained below.

Absolute Band Power

The absolute band power for each frequency band was calculated by taking the average
power at each frequency band (Miyakoshi, n.d.). That means, if the power spectral density
estimated using the Welch’s averaged modified periodogram method is given by P̂( f ), then
the absolute band power is calculated as:

Absolute band power =
∑

f2
f= f1

(P̂( f ))

N[ f1, f2]
, (3.20)
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where f1 and f2 are the lower and upper frequency limit of each frequency band [ f1, f2], and
N[ f1, f2] is the number of data points in the frequency band [ f1, f2].

Relative Band Power

The amplitudes of EEG signals varies from participant to participant due to the variations in
neurophysiological, anatomical, and physical properties of the brain and surrounding tissues.
The effects of inter-subject differences can be reduced by calculating the relative band power
(Kropotov, 2010). Therefore, the relative band powers were often considered. The relative
band power indices for each frequency band was calculated as the ratio between the absolute
band power at each frequency and the total power of all the frequency bands considered.
The total power is usually expressed as the sum of the absolute band powers of interest.
Therefore, the relative power of each frequency band was calculated as follows.

δrelative =
δabsolute

δabsolute +θabsolute +αabsolute +βabsolute

θrelative =
θabsolute

δabsolute +θabsolute +αabsolute +βabsolute

αrelative =
αabsolute

δabsolute +θabsolute +αabsolute +βabsolute

βrelative =
βabsolute

δabsolute +θabsolute +αabsolute +βabsolute

(3.21)

Here, the δabsolute, θabsolute, αabsolute, and βabsolute are the absolute delta, theta, alpha and beta
band powers. The δrelative, θrelative, αrelative, and βrelative are the corresponding relative band
powers.

Power Ratios

Power ratio indices are also used in fatigue studies since the basic band powers can be
insufficient to observe the shift of brain activity from fast waves to slow waves (De Waard
and Brookhuis, 1991; Eoh et al., 2005; Fan et al., 2015; Jap et al., 2009). The most commonly
used power ratio indices to assess fatigue are: (θ+α)/β , α/β , (θ+α)/(α+β ), and θ /β . All
four ratio indices reflect the ratio between slow and fast wave activities over time (Jap et al.,
2009). Eoh et al. (2005) stated that the index (θ+α)/β was a more reliable fatigue indicator
during a simulated driving task due to the mutual addition effect of theta and alpha activity
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during the repetitive phase transition between wakefulness and microsleep. Jap et al. (2009)
also reported a greater increase in the index (θ+α)/β , in comparison to the other power
ratios, when a person experienced a fatigued state at the end of a monotonous simulated
driving task.

The following power ratio indices were considered in the present research work.

(θ +α)

β
=

(θabsolute +αabsolute)

βabsolute

α

β
=

αabsolute

βabsolute

(θ +α)

(α +β )
=

(θabsolute +αabsolute)

(αabsolute +βabsolute)

θ

β
=

θabsolute

βabsolute

δ

α
=

δabsolute

αabsolute

(3.22)

3.2.2 EEG Largest Lyapunov Exponent

Over the past years, there has been an increasing interest in detecting the presence of
chaos in EEG signals by estimating the largest Lyapunov exponent, to better understand
the behaviour of the brain. There is no universal definition for chaos. Strogatz (Strogatz,
2018) provided a working definition for chaos, which is “chaos is aperiodic long-term
behaviour in a deterministic system that exhibits sensitive dependence on initial conditions”.
In this definition, “aperiodic long-term behaviour” means that the trajectories do not settle
down to fixed points, periodic or quasiperiodic orbits as t → ∞, thereby shows irregular
behaviour without periodicity. “Deterministic” means that the systems has no random and
noisy parameters or inputs. Therefore, the irregular behaviour of the system derives from the
system’s nonlinearity. “Sensitive dependence on initial conditions” means that trajectories
starting very close to each other will separate exponentially fast.

Lyapunov exponents can detect and quantify the presence of chaos in a dynamical system.
Lyapunov exponents quantify the average exponential rates at which nearby orbits in phase
space diverges or converges as the system evolves in time (Wolf et al., 1985). For example,
consider x(t) is a point on a trajectory at time t, and the nearby point is x(t)+δ (t), where δ is
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the separation vector between two trajectories (Figure 3.8). If the initial length of separation
is |δ0|, |δ (t)| can be approximated by |δ0| eλ t , where λ is the Lyapunov exponent and e is
the mathematical constant (e ≈ 2.72). There is neither divergence nor convergence of the
trajectories if λ = 0. If λ is positive, then |δ (t)| will have an exponential growth whereas if
λ is negative, then |δ (t)| will have an exponential decay. Therefore the two trajectories will
show exponential divergence when λ is positive and an exponential convergence when λ

is negative (Stergiou, 2018). A system with one or more positive λ is defined to be chaotic
(Strogatz, 2018).

Figure 3.8: Divergence of two nearby trajectories (Strogatz, 2018)

There are many algorithms proposed to calculate the largest Lyapunov exponent. The first
algorithm to compute the largest Lyapunov exponent from experimental time series was
introduced by Wolf et al. (1985) in 1985. The algorithm introduced by Rosenstein et al.
(1993) was used in the present research work to calculate the largest Lyapunov exponent in
EEG data.

A. Rosenstein et al.’s algorithm

The algorithm introduced by Rosenstein et al. (1993) to estimate the largest Lyapunov
exponent expects that two randomly chosen initial conditions will diverge exponentially at a
rate given by the largest Lyapunov exponent. Therefore, the largest Lyapunov exponent λ

can be defined as
d(t) =Ceλ t , (3.23)

where d(t) is the average divergence at time t and C is a constant that normalizes the initial
separation. Rosenstein et al. (1993)’s algorithm is fast and works well with small data
sets. Also, it is easy to implement and robust to the changes in embedding dimension,
reconstruction delay, size of the data set, and noise level. The following steps are involved in
the calculation of largest Lyapunov exponent from a time series.
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The first step in calculating the largest Lyapunov exponent involved reconstructing the
attractor dynamics from the time series using the method of delays. Let x(1), x(2), . . . x(N)

be the time series with N points. The reconstructed trajectory X can be expressed as a matrix
where each row is a phase-space vector. That is,

X = (X1 X2 . . . XM)T , (3.24)

where Xi is the state of the system at discrete time i. Each Xi is given by,

Xi = (x(i) x(i+ τ) . . . x(i+(m−1)τ)), (3.25)

where τ is the reconstruction delay or lag and m is the embedding dimension. Therefore,
X is an M×m where M = N − (m−1)τ . The reconstruction delay or lag τ and embedding
dimension m was estimated using average mutual information method and false nearest
neighbour method, respectively.

Average Mutual Information (AMI) Method

Each state space contains information of the system at a specific time (Stergiou, 2018). There-
fore, an appropriate reconstruction delay, τ should be determined so that new information
about the system, which could not be obtained from the previous state-space can be given. If
τ is small, successive elements of the delay vectors are strongly correlated, thereby no new
information is given from that state-space. If τ is taken too large, successive elements of the
delay vectors are highly independent, and information may be lost (Kantz and Schreiber,
2004; Stergiou, 2018). The τ was estimated using the average mutual information (AMI)
method (Fraser and Swinney, 1986). AMI is a measure of the amount of information one
measurement gives about a second measurement of the same variable and is calculated as,

Ix(i),x(i+T ) =
N

∑
i=1

P(x(i),x(i+T ))log2

 P(x(i),x(i+T ))
P(x(i))P(x(i+T ))

, (3.26)

where N is the length of the time series and T is the lag. AMI was calculated for various
time delays and the first local minimum of the I vs T plot is selected as the best value of
the reconstruction delay τ . For example, Figure 3.9 shows the AMI vs lag plot for the
Lorenz attractor, a well-known sets of equations developed by Edward Lorenz (1917-2008)
to describe a chaotic system (Lorenz, 1963). The best value for τ is 11 since the first local
minimum average mutual information is at a time lag of 11.
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Figure 3.9: Estimation of the reconstruction delay (τ) for the Lorenz attractor using average
mutual information (Stergiou, 2018).

False Nearest Neighbour (FNN) Method

The embedding dimension is the dimension of the space that contains the true structure of the
system. The false nearest neighbour (FNN) method can be used to estimate the embedding
dimension of a time series, thereby determining the number of time-delay coordinates needed
to reconstruct the state-space from a given time series (Abarbanel, 1996; Rhodes and Morari,
1997; Stergiou, 2018). Suppose a state space reconstruction in dimension m with data vectors

Xi = (x(i) x(i+ τ) . . . x(i+(m−1)τ)), (3.27)

is made using a reconstruction delay τ . Consider that the nearest neighbour in phase space
for Xi is XNN

i , where

XNN
i = (x(i)NN x(i+ τ)NN . . . x(i+(m−1)τ)NN), (3.28)

The Euclidean distance between these vectors at m-dimension is given by, ||Xi −XNN
i ||. In

going from dimension m to m+1 by time-delay embedding, x(i+mτ) component is added
to Xi and x(i+mτ)NN component is added to XNN

i ; thereby the distance between the two
vectors at m+1 is give by ||X̂i − X̂NN

i ||. By comparing ||Xi −XNN
i || with ||X̂i − X̂NN

i ||, true
and false neighbours can be identified. The square of the Euclidean distance between the
nearest neighbour points in dimension m is given by,

Rm(i)2 =
m

∑
d=1

[x(i+(d −1)τ)− xNN(i+(d −1)τ)]2. (3.29)
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The square of the Euclidean distance between the nearest neighbour points in dimension
m+1 is given by,

Rm+1(i)2 =
m+1

∑
d=1

[x(i+(d −1)τ)− xNN(i+(d −1)τ)]2

= Rm(i)2 + ||x(i+mτ)− x(i+mτ)NN ||2
(3.30)

Therefore, the distance between points in dimension m+1 relative to the distance in dimen-
sion m is given by, √

Rm+1(i)2 −Rm(i)2

Rm(i)2 =
||x(i+mτ)− x(i+mτ)NN ||

Rm(i)
(3.31)

If this ratio is larger than a certain threshold value, Rtol , the vector is a false neighbour.
Abarbanel (1996) suggested a Rtol value of 15 to define a false neighbour. The number of
false nearest neighbours are computed by examining every point on the trajectory. Then the
percentage of false nearest neighbours to true nearest neighbours is calculated at different di-
mensional spaces and the percentage of false nearest neighbours versus embedding dimension
is plotted. At higher dimensional space, the percentage of false nearest neighbours should
fall since the dynamics of attractor are being unfolded. The value of the dimension where
the percentage of false nearest neighbours drops to zero or is closest to zero is considered as
the dimension that is large enough to describe the dynamics of the system. This dimension
is selected as the embedding dimension m. Figure 3.10 shows the plot of the percentage of
false nearest neighbours versus embedding dimension for the Lorenz attractor. It shows that
the embedding dimension of the Lorenz attractor is 3 since the percentage of false nearest
neighbours becomes zero when the dimension is three (Stergiou, 2018).

After reconstructing the phase-space using τ and m obtained from the above mentioned
methods, the nearest neighbour of each point on the trajectory is found. The nearest neighbour
XNN

j is found by searching for the point that minimizes the distance to the reference point
X j, which is expressed as,

d j(0) = minxNN
j
||X j −XNN

j ||, (3.32)

where di(0) is the initial distance from the jth point to its nearest neighbour. An additional
constraint that is the nearest neighbours have a temporal separation greater than the mean
period of the time series (i.e., | j − jNN | > mean period) is also considered as it allow to
consider each pair of neighbours as nearby initial conditions for different trajectories. The
reciprocal of the the mean frequency of the power spectrum is considered as the mean period.
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Figure 3.10: The percentage of false nearest neighbours for the Lorenz attractor. The
embedding dimension of 3 is considered since the percentage of false nearest neighbours
becomes zero when the dimension is three (Stergiou, 2018).

Then, the largest Lyapunov exponent is estimated as the mean rate of separation of the nearest
neighbours.

From equation 3.23, it was assumed that the jth pair of nearest neighbours diverge approxi-
mately at a rate given by the largest Lyapunov exponent:

d j(i)≈C j eλ (i∆t), (3.33)

where C j is the initial separation. Equation 3.34 is obtained by taking the logarithm of both
sides of equation 3.33.

ln(d j(i))≈ ln(C j)+λ (i∆t), (3.34)

For j = 1,2, . . . ,M, equation 3.34 represents a set of approximately parallel lines, each with
a slope roughly proportional to λ . The largest Lyapunov exponent is calculated using a
least-squared fit to the average line defined by

y(i) =
1
∆t

⟨ln(d j(i))⟩, (3.35)

where ⟨ ⟩ denotes the average over all values of j (Figure 3.11). The unit for largest Lyapunov
exponent is divergence/second, when time is converted to seconds.

Phase space reconstruction of recorded EEG data and the calculation of the largest Lyapunov
exponent were performed using the MATLAB functions phaseSpaceReconstruction() and
lyapunovExponent() available in the predictive maintenance toolbox.
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Figure 3.11: Estimation of the largest Lyapunov exponent. The largest Lyapunov exponent
(LyE) is the slope of the initial region of rapid exponential expansion (Stergiou, 2018).

3.2.3 EEG Approximate Entropy

Approximate entropy, introduced by Pincus (Pincus, 1995), quantify the regularity and
complexity in time series data. Approximate entropy is calculated as follows.

• Given a time series of N data points x(1),x(2), . . . ,x(N), form a sequence of vectors
u(1) through u(N −m+ 1) defined by u(i) = [x(i), . . . ,x(i+m− 1)], where m is the
length of compared runs and r is effectively a filter, also known as the similarity
criterion or the radius of similarity.

• Define the distance between vectors u(i) and u( j), d[u(i),u( j)] as the maximum
difference in their respective scalar components. That is,

d[u(i),u( j)] = maxk=1,2,...,m(| x(i+ k−1)− x( j+ k−1) |) (3.36)

• Then, construct for each i, 1 ≤ i ≤ N −m+1,

Cm
i (r) =

number of j ≤ N −m+1 such that d[u(i),u( j)]≤ r
N −m+1

. (3.37)

• From Cm
i (r), define

Φ
m(r) =

1
N −m+1

N−m+1

∑
i=1

ln(Cm
i (r)), (3.38)

where ln is the natural logarithm.
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• Approximate entropy (AppEn) is then defined as,

AppEn(m,r,N) = Φ
m(r)−Φ

m+1(r). (3.39)

Approximate entropy measures the likelihood that runs of patterns that are close for m obser-
vations remain close on next incremental comparison (Pincus, 1991). A higher approximate
entropy value corresponds to a higher complexity whereas a smaller approximate entropy
value correspond to the greater likelihood of remaining close thereby showing greater regu-
larity. Approximate entropy is robust to outliers and is applicable to noisy, medium sized
data sets (between 100 and 5000 data points). Pincus (1995) have suggested that m = 1 and 2
and r = 0.1 to 0.25× standard deviations (std) of the x(i) produce good statistical validity of
AppEn{m, r, N}. In the present work, m = 2 and r = 0.2× std are selected as the parameters
respectively from literature on EEG-based fatigue estimation. Approximate entropy of the
recorded EEG signals were calculated using the MATLAB function approximateEntropy()
available in the predictive maintenance toolbox.

3.3 Statistical Analysis

Inferential statistics are used to describe and make generalisations about a population based
on samples of data taken from the population. This section summarises the inferential
statistical methods used in the present research work to compare and contrast the EEG
feature modulations with fatigue in robot-mediated interactions. The statistical analysis was
conducted using the IBM SPSS Statistics, Version 25 software.

3.3.1 Statistical Terminology and General Interpretations Used

Hypothesis (a prediction from a theory) testing requires measuring variables that can vary
between subjects or time or location. A variable thought to be the cause of some effect
is expressed as the independent variable (or predictor variable). In contrast, a variable
thought to be affected by changes in an independent variable is expressed as the dependent
variable (or outcome variable). In experimental research, the independent variable is the
variable that is manipulated by the experimenter (Field, 2018). In the design of studies
to test a hypothesis, a between-subjects design is a study where participants are assigned
into different groups with each group experiencing differential experimental conditions
(Bethel and Murphy, 2010). In other words, the independent variable(s) of the study is
manipulated using different participants. Conversely, in within-subject or repeated-measures
study designs, each participant is exposed to all levels of the experimental conditions or
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provide data at multiple time points; i.e., the independent variable(s) is manipulated using
the same participants (Field, 2018). Besides, the mixed-model factorial design includes both
between-subjects and within-subject design components (Bethel and Murphy, 2010).

In inferential statistics, the term “null hypothesis” states that treatment did not have an effect,
while the term “alternative hypothesis” states that the treatment had an effect (Yockey, 2016).
In the present work, the level of significance (α level), i.e., the probability of rejecting a null
hypothesis by the test when it is true, was set at 0.05. It is related to the 95% confidence
interval (CI). A p-value indicates the exact probability of obtaining the specific results if the
null hypothesis is true (Yockey, 2016). If the p-value obtained was less than or equal to the
α value (i.e., 0.05), the null hypothesis was rejected and was concluded that the treatment
had a significant effect. Conversely, if the p-value was greater than α , then it was accepted
that the null hypothesis was plausibly true. In hypothesis testing, a type I error occurs when
the null hypothesis is falsely rejected (i.e., one concludes there is a real effect when it does
not). In contrast, a type II error occurs when the null hypothesis is accepted even when it
is false. Statistical power is the probability of correctly rejecting the null hypothesis when
it is false. Statistical power ranges from 0 to 1 and is inversely related to the probability
of making a Type II error. Therefore, as the statistical power increases, the probability of
making a Type II error or in other words concluding that there is no effect when, in fact, there
is an effect, decreases.

The p-value can only say whether an effect exists; it will not reflect the size of the effect
(Sullivan and Feinn, 2012). Therefore, in addition to the p-value, the effect size is also
reported in this thesis. The effect size is the magnitude of the difference between groups
(Sullivan and Feinn, 2012) and is estimated with different indices depending on the type of
comparison under study. The Pearsons’ correlation coefficient r and partial eta-squared (η2

P)
were used in this thesis to calculate the effect size. The Pearsons’ correlation coefficient, r,
which is a measure of the strength of relationship between two variables, is also a versatile
measure of the strength of an experimental effect (Field, 2018). The r-value can be calculated
using the following equation.

r =

√
t2

(t2 +d f 2)
, (3.40)

where t is the t-statistic and d f is the degree of freedom. Cohen has also interpreted the
effect is large or small depending on the value of r = 0.1 (small), 0.3 (medium) and 0.5
(large). Partial eta-squared (η2

P) is calculated using the variance associated with an effect and
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the associated error variance. The formula for η2
P is

η
2
P =

SSEffect

SSEffect +SSError
(3.41)

where SS is short for “sums of squares”. A small, medium, and large effects would be
reflected in η2

P values of 0.0099, 0.0588, and 0.1379, respectively (Cohen, 2013; Richardson,
2011).

The standard deviation (std) is a measure used to quantify the variability or the dispersion
within the data of interest. Throughout this thesis, the estimates of interest (i.e., mean) is
accompanied by the standard deviation and is written as mean ± std. Also, the error bars
represent the standard deviation of the data sets.

The assumption of normality was tested using the Kolmogorov–Smirnov test. The Kol-
mogorov–Smirnov test compares the observations in the sample to a normally distributed
set of scores with the same mean and standard deviation (Field, 2018). If the test is non-
significant (i.e., p > 0.05), it can be identified that the distribution of the sample is not
significantly different from the normal distribution. In other words, the samples are ap-
proximately normally distributed. In contrast, if the test is significant (i.e., p < 0.05), then
the sample distribution is non-normal. The Kolmogorov-Smirnov test was applied either
to the sampling distribution of the observations at each level or to the difference between
paired observations depending on the type of experiment conducted. Statistical tests for the
analysis of EEG features were selected based on the outcomes of the normality test. For
experiment 1, the difference between paired observations (baseline and recovery as stated
in Chapter 4) of all participants were normally distributed; therefore, paired-samples t-tests
were considered. For experiment 2, the sampling distribution of the EEG features at each
level (baseline, level 1, level 2, level 3, level 4, level 5, and recovery as stated in Chapter 5)
were approximately normally distributed; therefore, two-way repeated-measures analysis
of variance (ANOVA) was used to find the significant variations in EEG features. Robust
statistical methods such as trimmed mean, M-estimators, Winsorized variance, bootstrapping
(Wilcox, 2012) or non-parametric tests (Field, 2018) can be used when the assumption of
normality is not met.
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3.3.2 Statistical Tests Used to Compare and Contrast EEG Feature
Modulations

In this thesis, the paired-samples t-test and two-way repeated-measures analysis of variance
(ANOVA) were used to find the significant variations in EEG features with the development
of fatigue.

The paired-samples t-test (also known as the dependent-means t-test or matched-pairs t-test)
is performed to compare the means of two samples, where the two samples are related in
some way (i.e., the same individuals or entities are exposed to both experimental conditions).
This is applicable if the differences between the paired observations are normally distributed.
The null hypothesis assumes that the means from two random samples are very similar; thus
the difference between the two values is equal to zero. If the p-value corresponding to the
test statistic t is less than 0.05, the null hypothesis is rejected and is assumed that the means
are significantly different from each other. Conversely, if p > 0.05, the null hypothesis is
accepted. The effect size for the paired-samples t test is estimated using Pearsons’ correlation
coefficient, r calculated as in equation 3.40. For paired-samples t-test, the degree of freedom,
df is given by sample size minus 1.

A two-way repeated-measures analysis of variance (ANOVA) (also known as a two-factor
repeated measures ANOVA) compares several means when there are two within-subjects
factors (also known as independent variables), and the same participants have been used in
all experimental conditions (Field, 2018). The sphericity refers to the equality of variances
of the differences between treatment levels and when the variances are roughly equal,
the sphericity is met. The assumption of sphericity is tested using Mauchly’s test and
if Mauchly’s test statistic is non-significant (i.e., p > 0.05), it can be concluded that the
assumption of sphericity is met. However, if the Mauchly’s test statistic is significant (i.e.,
p < 0.05), the assumption of sphericity is violated, thereby it can be concluded that there
are significant differences between the variances of differences. The p-value corrected using
the Greenhouse–Geisser was used if the assumption of sphericity is violated (Field, 2018).
In this thesis, the uncorrected degree of freedom, the corrected p-value and the degree of
sphericity (i.e., epsilon (ε) value) are reported for each two-way repeated measures ANOVA.
The degree of freedom values of the within-subject factors, interaction, and the error degree
of freedom were reported along with the corresponding F-values (i.e., F(dffactor/interaction,
dferror). Effect sizes are expressed as partial eta-squared (η2

P) (Equation 3.41). Moreover,
Tukey least significant difference (LSD) for comparison of means is used to perform the
pairwise comparisons if significant main effects or interaction effects were found.
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Chapter 4

Experiment 1: EEG Spectral Feature
Modulations Associated with Fatigue in
Robot-Mediated Upper Limb Gross
Motor and Fine Motor Interactions

This chapter presents the experiment design and findings of the preliminary EEG-based
fatigue estimation experiment conducted to address the research question 1: ‘Are the EEG
spectral feature modulations associated with fatigue localised to different brain regions
depending on the type of robotic interaction and the underlying physical and mental work-
load?’.

4.1 Methods and Materials

4.1.1 Ethical Approval

The experiment was approved by the Ethics Committees with Delegated Authority for Science
and Technology of the University of Hertfordshire (Protocol numbers: COM/PG/UH/00100
and aCOM/PG/UH/00100).

4.1.2 Participants

Twenty healthy right-handed volunteers (6 females and 14 males), who were at least 20
years of age (average age of the sample was 32 ± 10 years; mean ± SD) and with no
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history of severe injury to the head, brain, or right hand participated in this experiment.
Right-handedness was considered since both robotic interfaces were constrained to be used
only by the right upper limb due to their hardware configurations and setup. The SCRIPT
passive orthosis used in this experiment could only be worn using the right hand. Similarly,
the HapticMASTER was installed to work with right hand and changing the orientation of the
HapticMASTER was hazardous. Participants were informed about potential hazards and risk
mitigations as well as inconveniences associated with the experiment. All participants signed
informed consent forms before participation. A summary of the participant demographic is
given in Table 4.1. All participants had normal vision or corrected to normal vision. The
self-reports showed that most participants had around 7 to 9 hours of sleep the night before
the experiment and can assume that they had sufficient hours of sleep as recommend by
(Hirshkowitz et al., 2015). Therefore, it can be assumed that fatigue build-up was solely due
to the robotic interaction.

Table 4.1: Participants demography of experiment 1.

Subject ID Robotic interface interacted
with Age Gender Wearing glasses/

contacts
Hours slept prior
to the experiment

A01 HapticMASTER 42 Male No 4

A02 HapticMASTER 27 Female No 7

A03 HapticMASTER 33 Male No 8

A04 HapticMASTER 28 Male Yes 6

A05 HapticMASTER 21 Male No 8

A06 HapticMASTER 35 Male No 7

A07 HapticMASTER 31 Female Yes 7

A08 HapticMASTER 24 Male No 8

A09 HapticMASTER 48 Male No 7

A10 HapticMASTER 27 Female No 7

B01 SCRIPT passive orthosis 56 Male Yes 6

B02 SCRIPT passive orthosis 23 Male No 9

B03 SCRIPT passive orthosis 32 Male No 6

B04 SCRIPT passive orthosis 44 Male No 7

B05 SCRIPT passive orthosis 21 Male Yes 8

B06 SCRIPT passive orthosis 32 Female Yes 8

B07 SCRIPT passive orthosis 37 Female Yes 8

B08 SCRIPT passive orthosis 30 Male No 5

B09 SCRIPT passive orthosis 25 Female Yes 7

B10 SCRIPT passive orthosis 21 Male No 6
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4.1.3 Fatigue Inducing Robot-Mediated Interactions

Given the consent to take part in the experiment, participants were randomly assigned to
two groups: A and B, so that each group consists of 10 participants (age of the group A
participants was 32 ± 8 years and group B participants was 31 ± 11 years). The random
assignment of participants also reduces the potential for confounding from individual differ-
ences. Participants in group A performed visually guided arm reach/return movements (gross
motor task) with HapticMASTER (Figure 4.1a) whereas participants in group B performed
hand open/close movements (fine motor task) with SCRIPT passive orthosis (Figure 4.2a).
Both robot-mediated interactions were performed for 20-minutes or until volitional fatigue.
The virtual reality environment of the GENTLE/A rehabilitation system (Chemuturi et al.,
2013a) was used for the gross motor task. Target point locations were modified so that the
trajectory covered by the movement of HapticMASTER robot arm was mapped into a straight
line connecting only two virtual target points, as shown in Figure 4.1b. The HapticMASTER
was set to the active mode so that the participants should initiate the movement and reach the
target points by themselves. The virtual reality game ‘sea shell’ (Figure 4.2b), developed
for the SCRIPT system was used as the fine motor task (Amirabdollahian et al., 2014).
Participants wore the SCRIPT passive orthosis and performed the hand open/close gestures to
open/close a seashell underwater. Participants were asked to perform these hand open/close
gestures when a fish is near to the seashell, thereby catching it. Both robot-mediated inter-
actions were performed using only the right hand, and the participants were asked to keep
their left hand in a relaxed position throughout the task. The distance between the computer
monitor and the participant’s eye was set to around 120 cm for both groups.

(a) Robot-mediated gross motor interaction (b) Virtual reality interface

Figure 4.1: Robot-mediated gross motor interaction (arm reach/return task) using Haptic-
MASTER.
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(a) Robot-mediated fine motor interaction (b) Virtual reality interface

Figure 4.2: Robot-mediated fine motor interaction (hand open/close task) using SCRIPT
passive orthosis.

4.1.4 EEG Data Acquisition

A. Selection of EEG Electrodes

For this experiment, only right-handed participants were recruited and the robot-mediated
movements were performed using their dominant hand. The studies on handedness and brain
activation suggest that movements of the dominant hand are predominantly controlled by
the hemisphere contralateral to that hand. Therefore, more significant contralateral brain
activations are visible (Grabowska et al., 2012; Gut et al., 2007). From the literature review,
it was found that the modulations in the EEG spectral features exhibited a widespread
topographical distribution in the majority of the fatigue studies. However, the EEG data
acquisition system used for the experiment had only eight channels. Therefore, according to
the International 10-10 system of electrode placement (Epstein, 2006), FP1, F3, FC3, C3,
C4, P3, O1 and T7 electrode locations were selected so that majority of the electrodes are
placed in the left hemisphere. All electrodes were referenced to the right earlobe (A2), and
FPz was used as a ground. The electrode placement is shown in Figure 4.3.

B. Hardware Configuration

Continuous EEG signals were recorded using an eight-channel EEG data acquisition system,
g.MOBIlab+ (g.tec medical engineering GmbH, Austria), before, during and after the robotic
interactions. The flow diagram of the hardware configuration of the EEG data acquisition
system is shown in Figure 4.4. The eight Ag/AgCl active electrodes (g.LADYbird) and one
Ag/AgCl passive ground electrode (g.LADYbird) were attached to the FP1, F3, FC3, C3, C4,
P3, O1, T7 and FPz electrode location markers of the EEG electrode cap (g.GAMMACap2).
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Inion

Nasion

A2

FPz

Figure 4.3: EEG electrode placement according to the International 10-10 system of electrode
placement. Red circles represent the eight active electrodes selected for the data acquisition.
The blue circle represents the reference electrode location. The green circle represents the
ground electrode location.

The eight active electrodes, the passive ground electrode, and the Ag/AgCl active ear clip
reference electrode (g.GAMMAearclip) were then connected to the active electrode driver
box (g.GAMMAbox). The active electrode system reduces or avoids artifacts caused by
high impedance between the electrode(s) and the skin (e.g. 50/60 Hz coupling, electrode or
cable movement artifacts, background noise) (g.tec medical engineering GmbH, 2014b). The
g.GAMMAbox provided the interface between the electrodes and the amplifier, g.MOBIlab+
(8 channel monopolar EEG version). The amplifier consists of an integrated 16-bit analogue
to digital converter. The sampling rate, the lower and upper cut-off frequencies of the
bandpass filter of the amplifier are fixed at 256 Hz, 0.5 Hz, and 100 Hz, respectively by the
manufacturer. Therefore, the signals acquired from this device were sampled at 256 Hz and
had a fixed EEG bandwidth of 0.5 to 100 Hz. The amplified, filtered and digitised EEG signal
was transmitted via a Bluetooth connection for display and storage for further analysis.

C. Skin Preparation and Placement of the EEG Electrode Cap

Since a passive electrode was used as the ground electrode, skin near FPz (forehead) was
cleaned using abrasive gel before placing the EEG cap on the participant’s head to reduce
the skin-electrode interface impedance. It was not necessary to abrade the skin around other
electrode locations since the signals acquired by the active electrodes are pre-amplified
directly at the electrode (Pinegger et al., 2016). The EEG cap was positioned correctly

98



4.1 Methods and Materials

Electrode cap

(g.GAMMACap2)

8 x Ag/AgCl 

active electrodes

1 x Ag/AgCl 

active ear clip 

reference electrode

8

1

Active electrode 

driver box
(g.GAMMAbox)

Biosignal amplifier
(g.MOBIlab+              

8 channel monoploar 

EEG version)

Laptop with EEG 

data acquisition 

software

1

1

8

Figure 4.4: Block diagram of the hardware configuration of the EEG data acquisition system.

based on the distances between the anatomical landmarks: nasion and inion, and left and
right preauricular points of the participant so that the deviation between the ‘true’ 10-10
positions and the positions indicated on the cap was minimised. The EEG cap was fixed
firmly to the head using the adjustable chin strap to reduce the movement of the cap during
the robotic interactions (g.tec medical engineering GmbH, 2014a). A highly-conductive,
high-viscosity, non-abrasive, non-greasy and non-irritant electrode gel (g.GAMMAgel) was
used to bridge the gap between the electrode(s) and the skin surface. All electrodes were
filled with electrode gel using a syringe (without needle), and the ear clip reference electrode
was also connected to the right earlobe after applying gel on the electrode. The electrode gel
was wiped out from the hair at the end of the session.

4.1.5 Experimental Procedure

On arrival at the laboratory, participants were informed about the experiment protocol, given
time to familiarise with the assigned robotic interaction and were prepared for the EEG data
collection according to the guidelines given in g.tec medical engineering GmbH (2014a). The
flow diagram of the proposed fatigue estimation experiment is given in Figure 4.5. Following
the standardised EEG recording protocol, EEG data were recorded before, during and after
the robot-mediated interactions. Participants were instructed to close and open their eyes
for 180 s each when EEG data were recorded before and after the tasks. In order to avoid
or reduce artifacts in the eyes open/closed EEG recordings, participants were instructed to
sit still while minimising eye blinks, eye movements, swallowing, jaw clenching or any
other severe body movements. In this preliminary experiment, EEG data recorded before
and after the gross motor and fine motor tasks with eyes opened and closed were further
analysed. Participants also completed two questionnaires before and after the robot-mediated
interactions and provided feedback on the level of fatigue, task-associated workload and
comfortability. Video recordings were also made during the session and were mainly used to
cross-check the artifactual EEG components at the data preprocessing.
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Figure 4.5: Flow diagram of the experimental procedure.

4.1.6 EEG Data Analysis

The EEG data recorded before the robotic interactions will be referred to as ‘baseline’
(e.g.: ‘baseline-eyes-opened’ and ‘baseline-eyes-closed’) and the EEG data recorded after
the robotic interactions will be referred to as ‘recovery’ (e.g.: ‘recovery-eyes-opened’ and
‘recovery-eyes-closed’) throughout this chapter. These states can be considered to reflect the
restfulness of the participant before and after the robotic interactions; thereby, any changes
in these states could be a reflection of the fatigue. Previous studies have also compared EEG
data recorded before and after a task to identify EEG feature modulations associated with
fatigue induced by physical and mental tasks (Chen et al., 2013; Cheng and Hsu, 2011; Ng
and Raveendran, 2007; Tanaka et al., 2012). The EEG data processing pipeline followed
for each participant during each state is illustrated in Figure 4.6. It mainly consisted of
three steps: preprocessing, feature extraction and statistical analysis. EEG preprocessing and
feature extraction were performed offline using custom MATLAB scripts.

A. Preprocessing

EEG data recorded before and after the robotic interactions included artifacts such as blinking,
eye movement, cardiac activity, swallowing, jaw clenching and power line noise to some
extent, although the participants were instructed to relax their muscles, and look straight
without excessively blinking and moving eyes and other body parts. Since limited data were
available and eye blinks and movements frequently occurred in some participants (mainly
in the data recorded with eyes opened), rejecting EEG segments with artifacts may result
in a considerable loss of information. Therefore, the following preprocessing steps were
performed on the data to obtain relatively clean EEG data.

Firstly, the DC offset of each recording was removed by subtracting the channel-wise mean
from each data point. Then, a Type II Chebyshev low-pass filter with a stopband frequency
of 45 Hz and an order of 20 was applied to eliminate the power line noise (50 Hz) distortions.
The stopband frequency was determined so that the filtering would not attenuate the signal
of interest that lies within the frequency range of 1 Hz to 30 Hz. As the recording device
has a bandpass analogue filter with a lower and higher cut-off frequency of 0.5 Hz and
100 Hz respectively, digital high-pass filtering was not considered in this experiment, as it
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Raw EEG
(States: eyes opened and closed before (‘baseline’) and after (‘recovery’) the robot-mediated interactions, 

duration: 180s)

Remove the DC offset

Low-pass filter
(Filter parameters: stopband frequency = 45 Hz, sampling frequency = 256 Hz, order = 20, 

design method = Type II Chebyshev IIR)

Remove artifactual EEG components using ICA
(Algorithm used: JADE algorithm)

Segment the cleaned EEG data to a sequence of 30s epochs
(Total number of epochs per state = 6)

Welch’s power spectrum calculation for each epoch
(Segment length = 768, window = Parzen, overlap = 50%, sampling frequency = 256 Hz)

Extract the EEG spectral features for each epoch
(�relative, �relative, �relative, �relative, (�+�)/�, �/�, (�+�)/(�+�), �/�)

Calculate the average EEG spectral features for each state
(States: eyes opened and closed before (‘baseline’) and after (‘recovery’) the robot-mediated interactions, 

spectral features: �relative, �relative, �relative, �relative, (�+�)/�, �/�, (�+�)/(�+�), �/�)

Perform paired-samples t-test

Figure 4.6: EEG data processing pipeline followed to preprocess the raw EEG data and
to extract EEG spectral features of each state for each participant in order to perform the
statistical analysis. Dotted boxes represent the three main steps involved in the pipeline:
data preprocessing, feature extraction, and statistical analysis. δrelative, θrelative, αrelative, and
βrelative indicate the relative δ , θ , α and β band powers respectively, and (θ +α)/β , α/β ,
(θ +α)/(α +β ), and θ/β indicate the power ratios.

101



4.1 Methods and Materials

may distort the lower frequencies of interest in this analysis. Then, ICA based on the joint
approximate diagonalisation of eigenmatrices (JADE) algorithm (Cardoso and Souloumiac,
1993) was performed to separate and remove in-band (or remaining) artifacts including eye
blinks, eye movement, swallowing, jaw clenching, and cardiac activity from the independent
components. A detailed description of the ICA model and how to identify artifactual EEG
components is given in Section 3.1.4. When applying ICA to separate EEG artifacts from
brain activity patterns, it was assumed that the signals emitted by the unobserved sources are
independent and the number of independent sources is same as the number of electrodes used
in the experiment (i.e., = 8). Figure 4.7 illustrates the artifact removal process using ICA
for a single subject. The low-pass filtered EEG data x(t) were multiplied by the separating
matrix W estimated via JADE ICA algorithm to obtain the time courses of activations of
the independent components u(t); i.e., u(t) = Wx(t) as expressed in equation 3.7. The time
courses of the ICA components represent the separated artifactual and neurally generated
EEG sources which are maximally independent of one another (Li et al., 2006). The relative
projection strengths of each independent component onto the scalp electrodes were given
by the columns of the inverse separation matrix W−1, which is an estimate of the mixing
matrix A in equation 3.5. The ‘corrected’ EEG signal was then derived as, x̂(t) =W−1û(t),
where û(t) was derived from the matrix of activation waveforms u(t), by setting the rows
representing the artifactual components identified by visual inspection to zero (Jung et al.,
2000).

B. Feature Extraction

The corrected EEG signals at the four states: ‘baseline-eyes-opened’, ‘baseline-eyes-closed’,
‘recovery-eyes-opened’ and ‘recovery-eyes-closed’ for each participant were segmented into
epochs of 30 s length (i.e., 7680 samples per epoch, and six epochs in total per state). Previous
studies have reported that reliable changes in EEG during fatigue and brain functional
states were visible in data spanning between 15s to 1 minute (Lal and Craig, 2002). The
power spectral density for all epochs was estimated using the Welch’s averaged modified
periodogram method (Welch, 1967) with a 3s segment length (i.e., 768 samples), 50%
overlap, and a Parzen window. The Welch’s averaged modified periodogram method is
explained in section 3.2.1. Subsequently, the relative band power of delta (1-<4 Hz), theta
(4-<8 Hz), alpha (8-13 Hz), and beta (<13-30 Hz) for each epoch were calculated as a
ratio between the average band power of each frequency band and the total band power
(i.e., the summation of the average delta, theta, alpha and beta band powers). The four ratio
band power measures for each epoch (θ +α)/β , α/β , (θ +α)/(α +β ), and θ/β were
also calculated. Finally, the average of each EEG spectral feature within the 180 s duration
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DC corrected and low-pass filtered EEG signal (x(t))

Artefact removed EEG Signal (xc(t))

Time courses of the Independent Components (ICs)  (u(t))

Scalp maps of the Independent Components (ICs) (W 
-1)

xc(t) = W 
-1

uc(t)

u(t) = Wx(t)

Figure 4.7: Illustration of EEG artifactual components identification using ICA for a single
subject (SubID: A01). The red, blue and green rectangles marked in the time courses of acti-
vations of the independent components represent the independent components corresponding
to cardiac activity, eye blink and eye movement artifacts respectively. The red, blue and green
rectangles marked in the DC corrected and filtered EEG signal show how cardiac activity, eye
blink and eye movement artifacts distort the EEG recordings taken from the eight electrode
locations, respectively. All these data were referenced to the right earlobe (A1).
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(i.e., six epochs) of each state was calculated to represent the corresponding spectral feature
index of the ‘baseline-eyes-opened’, ‘baseline-eyes-closed’, ‘recovery-eyes-opened’ and
‘recovery-eyes-closed’ states. The average of EEG spectral features across the number of
epochs or trials were considered in many past studies (Abásolo et al., 2006; Cao et al., 2014;
Chen et al., 2013; Jap et al., 2009; Lal and Craig, 2002).

4.1.7 Subjective Measures of Level of Fatigue, Workload, and Comfort-
ability

The questionnaires used in this experiment are given in Appendix C.1. The questionnaire
given before the robotic interactions gathered information about the participant’s demograph-
ics and a subjective measure of their physical and mental fatigue level before performing the
assigned robot-mediated interaction. The questionnaire given after the interaction was used
to obtain a subjective measure of the physical and mental fatigue levels following the robotic
interaction. Furthermore, it also obtained the subjective evaluation of physical and mental
workload across the robotic interaction and the comfortability of the session.

The statements used to measure the fatigue levels, workload and comfortability were as
follows,

• Fatigue levels:
How would you rate your current physical fatigue level?
How would you rate your current mental fatigue level?

• Workload:
How physically demanding was the task?
How mentally demanding was the task?

• Comfortability:
How would you rate your current eye strain level?
How comfortable were you with wearing the EEG headset?
How would you think that wearing the EEG headset affected your fatigue state?
How would you think that using the robotic interface affected your fatigue state?

The two questions used to identify the workload during the robot-mediated interactions
was adopted from the National Aeronautics and Space Administration–Task Load Index
(NASA-TLX) (Hart, 1986).

Each statement had a 5-point Likert rating scale to obtain the corresponding subjective
measures, with 1 representing ‘Not at all’, 2 representing ‘somewhat/slightly’, 3 representing
‘moderately’, 4 representing ‘very/largely’ and ‘5’ representing ‘Extremely’. For the two
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statements that reflect the subjective measure of fatigue level, the responses starting from the
extreme left were assigned the scores 0, 1, 2, 3, and 4, so that a score of ‘0’ indicates that
the participant was not fatigued at all while a score of ‘5’ indicates that the participant was
extremely fatigued. Scores assigned to the fatigue level ratings before and after the robotic
interaction were used to compare and contrast the changes in individual physical and mental
fatigue level following the assigned robot-mediated interaction. It was of interest compare
and contrast the effects of underlying physical and mental workload on the development of
fatigue in the assigned tasks. Therefore, the difference between the change in physical and
mental fatigue scores before and after each robotic interaction (i.e., fatigue score after the
task - fatigue score before the task) were calculated and were compared with difference in
the ratings given to the physical and mental demand. The findings obtained by analysing
the subjective measures of level of fatigue, underlying workload and comfortability of the
experiment are discussed in section 4.2.3.

4.1.8 Statistical Analysis

The statistical analysis was conducted using IBM SPSS Statistics 25 software. A p-value<0.05
was considered statistically significant denoting a 95% confidence interval. The normality
was assessed using the Kolmogorov–Smirnov test.

As explained in section 4.1.6, eight EEG spectral features were extracted from each EEG
data recorded before and after the robot-mediated interactions from each participant with the
eyes opened and closed. It was of interest to investigate whether the significant differences
in the EEG spectral features caused by fatigue are localised to different electrodes due
to the differences in the task definition (fine vs gross motor movements). Therefore, the
statistical analysis was separately performed on the eight electrode locations and the two
robot-mediated upper limb interactions for eyes opened and eyes closed states (i.e., in total
8×2×2 = 32 paired-samples t-tests). The differences between the EEG spectral features
extracted from ‘baseline-eyes-opened’ and ‘recovery-eyes-opened’ of all participants were
normally distributed. Similarly, the differences between the EEG spectral features extracted
from ‘baseline-eyes-closed’ and ‘recovery-eyes-closed’ of all participants were normally
distributed. Therefore, upon confirmation of normal distribution of the difference between
‘baseline’ and ‘recovery’ EEG features, two-tailed paired-samples t-tests were performed
on each EEG feature gathered from all participants. The effect sizes were expressed by
the Pearsons’ correlation coefficient, r calculated using the equation 3.40. Multiple paired-
samples t-tests were also used in previous fatigue studies to evaluate the changes in EEG
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features at different brain regions (Chen et al., 2013; Fan et al., 2015; Tanaka et al., 2012;
Zhao et al., 2012).

4.2 Results

4.2.1 Modulations in EEG Spectral Features Following the Robot-
Mediated Gross Motor Interaction with HapticMASTER

Table 4.2 summarises the paired-samples t-test results of the statistically significant EEG
spectral feature modulations and the corresponding electrode locations for eyes opened state
following the gross motor interaction with HapticMASTER. The paired-samples t-test results
of all electrodes are summarised in Appendix A.

Table 4.2: Significant EEG spectral feature modulations and the corresponding electrode
locations for eyes opened state following the gross motor interaction with HapticMASTER.

Spectral Feature Electrode
Location

Sample mean ± std Paired samples t-test Direction of
changeBaseline Recovery t df p-value r

δrelative C3 0.542 ± 0.109 0.476 ± 0.067 2.593 9 0.029 0.654 ↓

αrelative

FC3 0.180 ± 0.068 0.225 ± 0.069 -2.378 9 0.041 0.621 ↑

C3 0.198 ± 0.070 0.259 ± 0.095 -3.148 9 0.012 0.724 ↑

P3 0.271 ± 0.094 0.330 ± 0.154 -2.646 9 0.027 0.661 ↑

(θ+α)
β

C3 8.151 ± 4.349 8.923 ± 4.167 -2.787 9 0.021 0.681 ↑

α

β
C3 4.213 ± 2.612 4.997 ± 2.812 -2.403 9 0.040 0.625 ↑

Notes. ↑ = significant increase. ↓ = significant decrease.

The sample mean and standard deviation of EEG spectral features during the ‘baseline’ and
the ‘recovery’ states with eyes opened following the robot-mediated gross motor interaction
are shown in Figure 4.8. Comparison of the sub-figures in Figure 4.8 shows that αrelative

changed the most as a result of fatigue induced by the interaction with HapticMASTER.
In Figure 4.8c, there is a clear increase of αrelative across all electrodes, with statistically
significant differences visible on the three electrodes placed over the contralateral motor
cortex: FC3 (t(9) = -2.378, p = 0.041, r = 0.621), C3 (t(9) = -3.148, p = 0.012, r = 0.724)
and P3 (t(9) = -2.646, p = 0.027, r = 0.661). As well as being statistically significant, the
effect of the variation in αrelative on FC3, C3, and P3 electrodes were large. These electrodes
correspond to motor activities using the right hand; thereby, the significant increase in αrelative

reflects a decreased cortical activation, which is an indication of fatigue. Similarly, Figures
4.8e and 4.8f show that fatigue induced by the gross motor task significantly increased both
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Figure 4.8: Comparison of the sample mean and standard deviation of EEG spectral features
of all participants between ‘baseline’ and ‘recovery’ states with eyes opened for the gross
motor interaction with HapticMASTER.. The ‘ ’ represents the ‘baseline-eyes-opened’
and ‘ ’ represents the ‘recovery-eyes-opened’. The statistical significance is repre-
sented by an asterisk: i.e., * = p < 0.05. Connecting lines in subfigures do not imply a linear
relationship between electrode locations but merely for the ease of identifying the numerical
changes between baseline and recovery states.
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(θ+α)/β (t(9) = -2.787, p = 0.021, r = 0.681) and α/β (t(9) = -2.403, p = 0.040, r = 0.625)
on C3 electrode, while no significant differences are visible on other electrode locations.
A larger effect size was also visible on C3 electrode for both (θ+α)/β and α/β . These
findings show that fatigue induced by gross movements increased the low-frequency power
on C3 and decreased the fast wave activities; thereby resulting in a significant difference
when combined. In contrast, Figure 4.8d shows that βrelative has not significantly affected in
the ‘recovery’ state. However, the decrease of variation across the sample implies that at the
‘recovery’ state, all participants show similar high-frequency brain activities, which could be
a result of the prolonged robot-mediated interaction. Figure 4.8a indicates that there has been
a drop in δrelative following gross movements (except on T7). Also, a significant variation with
larger effect was found on C3 (t(9) = 2.593, p = 0.029, r = 0.654) electrode. This result is
somewhat counter-intuitive because previous studies have either shown a significant increase
or no change in delta activity as fatigue progressed; however, it is reasonable to assume
that this inconsistency may be related to the differences of experimental protocols. There
are no significant differences visible in θrelative, (θ+α)/(α+β ), and θ/β due to fatigue
induced by the gross motor task. Overall, these results show a reduced activation around the
sensorimotor cortex due to fatigue induced by robot-mediated gross movements. Figure 4.9
shows the brain topographies of the difference between ‘recovery’ and ‘baseline’ states (i.e.,
difference = ‘recovery’ - ‘baseline’) of the substantive EEG features for one participant who
reported a higher increase in the physical fatigue level than the mental fatigue level following
the gross motor task. The topographical distributions also confirm that the modulations in

(a) δrelative (b) αrelative (c) (θ +α)/β (d) α/β

Figure 4.9: Brain topographies of substantive EEG spectral features for the difference
between ‘recovery’ and ‘baseline’ states (i.e., difference = ‘recovery’ - ‘baseline’) with eyes
opened for one participant following the gross motor interaction with HapticMASTER. In
each brain map, the nose is represented by the triangle on the top, and the right hemisphere
is on the right. For αrelative, (θ +α)/β , and α/β , the red-shaded areas indicate a larger
increase whereas the blue-shaded areas indicate a decrease. For δrelative, the blue-shaded
areas indicate a larger decrease whereas the red-shaded areas indicate a smaller decrease.
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δrelative, αrelative, (θ +α)/β , and α/β due to fatigue are localised around the left central and
left parietal regions.

The sample mean and standard deviation of EEG spectral features during the ‘baseline’ and
the ‘recovery’ states with eyes closed following robot-mediated gross motor interaction is
shown in Figure 4.10. There were no significant differences in the EEG spectral features
between the ‘baseline’ and ‘recovery’ states when estimated with eyes closed. However,
similar trends were found on the EEG spectral features that showed significant differences
when estimated from the eyes opened EEG data. For instance, an increase in the αrelative,
(θ +α)/β , and α/β and a decrease in δrelative are visible following the gross motor task.
The findings of the paired-samples t-test performed on eyes-closed EEG spectral features are
summarised in Appendix A.

4.2.2 Modulations in EEG Spectral Features Following the Robot-
Mediated Fine Motor Interaction with SCRIPT Passive Orthosis

Table 4.3 summarises the paired-samples t-test results of the statistically significant EEG
spectral feature modulations and the corresponding electrode locations for eyes opened state
following the fine motor interaction with SCRIPT passive orthosis. The paired-samples t-test
result of all electrodes are summarised in Appendix A.

Table 4.3: Significant EEG spectral feature modulations and the corresponding electrode
locations for eyes opened state following the fine motor interaction with SCRIPT passive
orthosis.

Spectral Feature Electrode
Location

Sample mean ± std Paired samples t-test Direction of
changeBaseline Recovery t df p-value r

δrelative FP1 0.550 ± 0.096 0.504 ± 0.106 3.066 9 0.013 0.715 ↓

θrelative C4 0.193 ± 0.033 0.226 ± 0.039 -3.507 9 0.007 0.760 ↑

αrelative FP1 0.179 ± 0.075 0.211 ± 0.104 -2.871 9 0.018 0.691 ↑

C3 0.202 ± 0.127 0.227 ± 0.117 -2.555 9 0.031 0.648 ↑

Notes. ↑ = significant increase. ↓ = significant decrease.

The sample mean and standard deviation of EEG spectral features during the ‘baseline’ and
the ‘recovery’ states with eyes opened following robot-mediated fine motor interaction are
shown in Figure 4.11. An increase of θrelative and αrelative is visible in both Figure 4.11b
and Figure 4.11c on all electrodes. Further, a significant increase in αrelative is visible on
FP1 (t = -2.871, p = 0.018, r = 0.691) and C3 (t = -2.555, p = 0.031, r = 0.648), whereas
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Figure 4.10: Comparison of the sample mean and standard deviation of EEG spectral features
of all participants between ‘baseline’ and ‘recovery’ states with eyes closed for the gross
motor interaction with HapticMASTER. The ‘ ’ represents the ‘baseline-eyes-closed’
and ‘ ’ represents the ‘recovery-eyes-closed’. Connecting lines in subfigures do not
imply a linear relationship between electrode locations but merely for the ease of identifying
the numerical changes between baseline and recovery states.
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Figure 4.11: Comparison of the sample mean and standard deviation of EEG spectral features
of all participants between ‘baseline’ and ‘recovery’ states with eyes opened for the fine
motor interaction with SCRIPT passive orthosis. The ‘ ’ represents the ‘baseline-eyes-
opened’ and ‘ ’ represents the ‘recovery-eyes-opened’ The statistical significance is
represented by asterisks: i.e., * = p < 0.05 and ** = p < 0.01. Connecting lines in subfigures
do not imply a linear relationship between electrode locations but merely for the ease of
identifying the numerical changes between baseline and recovery states.
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the significant difference in θrelative is on C4 (t = -3.507, p = 0.007, r = 0.760). The effect
of these variations in αrelative and θrelative are also of larger magnitude, thereby suggesting
that these variations are substantive findings. Similar to the aforementioned findings using
gross motor task, Figure 4.11d shows that β activity has not significantly changed, and a
decrease of variation across the sample is visible. Also, a general decrease in δrelative on all
electrodes and a significant decrease on FP1 with a larger effect size (t = 3.066, p = 0.013, r
= 0.715) can be found in Figure 4.11a. No significant differences are visible in ratio band
power measures (Figure 4.11d to Figure 4.11f). In general, these results show that the fatigue
induced by fine motor interactions alters not only the activities around sensorimotor cortex
but also the frontopolar cortex. Figure 4.12 shows the brain topographies of the difference
between ‘recovery’ and ‘baseline’ states (i.e., difference = ‘recovery’ - ‘baseline’) of the
substantive EEG features for one participant who reported a higher increase in the mental
fatigue level than the physical fatigue level following the fine motor task. The topographical
distributions also show that the modulations in the substantive EEG features following the
fatiguing robot-mediated fine motor interaction are localised around frontopolar and central
brain regions.

(a) δrelative (b) θrelative (c) αrelative

Figure 4.12: Brain topographies of substantive EEG spectral features for the difference
between ‘recovery’ and ‘baseline’ states (i.e., difference = ‘recovery’ - ‘baseline’) with eyes
opened for one participant following the fine motor interaction with SCRIPT passive orthosis.
In each brain map, the nose is represented by the triangle on the top, and the right hemisphere
is on the right. The red-shaded areas indicate a larger increase whereas the blue-shaded areas
indicate a larger decrease.

The sample mean and standard deviation of EEG spectral features during the ‘baseline’ and
the ‘recovery’ states with eyes closed following robot-mediated fine motor interaction is
shown in Figure 4.13. Similar to the modulations in EEG spectral features estimated with
eyes closed during the gross motor task, no significant variations are found in the eyes closed
EEG spectral features following the fine motor task. However, similar trends are visible

112



4.2 Results

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

0.1

0.2

0.3

0.4

0.5

0.6

0.7
re

la
ti

v
e

(a) δrelative

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

0.1

0.15

0.2

0.25

0.3

0.35

re
la

ti
v

e

(b) θrelative

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
la

ti
v

e

(c) αrelative

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

-0.05

0

0.05

0.1

0.15

0.2

0.25

re
la

ti
v

e

(d) βrelative

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

0

10

20

30

40

(
+

)/

(e) (θ +α)/β

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

-5

0

5

10

15

20

25

30

/

(f) α/β

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

1

1.5

2

(
+

)/
(

+
)

(g) (θ +α)/(α +β )

FP1 F3 FC3 C3 C4 P3 O1 T7

Electrode location

0

2

4

6

8

10

12

/

(h) θ/β

Figure 4.13: Comparison of the sample mean and standard deviation of EEG spectral features
of all participants between ‘baseline’ and ‘recovery’ states with eyes closed for the fine motor
interaction with SCRIPT passive orthosis. The ‘ ’ represents the ‘baseline-eyes-closed’
and ‘ ’ represents the ‘recovery-eyes-closed’. Connecting lines in subfigures do not
imply a linear relationship between electrode locations but merely for the ease of identifying
the numerical changes between baseline and recovery states.
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on the electrode locations that reported larger effect sizes during the eyes opened states
following the fine motor task. The αrelative on FP1 and C3, θrelative on C4 show an increasing
trend, whereas δrelative on FP1, shows a decreasing trend during the eyes-closed state. The
findings of the paired-samples t-test performed on eyes-closed EEG spectral features are
summarised in Appendix A.

4.2.3 Subjective Measures of Level of Fatigue, Workload, and Comfort-
ability

A summary of the subjective responses on the level of fatigue, underlying workload and the
comfortability of the experiment is given in Table 4.4.

Table 4.4: Summary of the subjective measures of level of fatigue, workload, and comforta-
bility following the robot-mediated gross motor and fine motor interactions.

Subject ID Robotic interface
interacted with

Physical fatigue score Mental fatigue score Workload Comfortability

Before After Before After Physical demand Mental demand Eye strain level Comfortability in
wearing the EEG cap

Effects of wearing the
EEG cap on fatigue level

Effects of robotic
interaction on fatigue

level

A01 HM 2 3 2 3 Moderately Moderately Very Somewhat Moderately Moderately

A02 HM 0 1 1 0 Somewhat Not at all Not at all Moderately Not at all Moderately

A03 HM 0 1 1 1 Somewhat Not at all Not at all Moderately Not at all Slightly

A04 HM 0 2 1 1 Moderately Not at all Not at all Very Not at all Extremely

A05 HM 0 1 0 1 Somewhat Moderately Moderately Very Not at all Slightly

A06 HM 1 2 1 1 Moderately Somewhat Somewhat Moderately Not at all Moderately

A07 HM 1 2 2 1 Somewhat Not at all Moderately Extremely Not at all Slightly

A08 HM 0 1 0 0 Moderately Not at all Somewhat Extremely Not at all Slightly

A09 HM 0 0 0 0 Not at all Not at all Not at all Very Not at all Not at all

A10 HM 3 2 3 2 Moderately Somewhat Somewhat Moderately Moderately Not at all

B01 SPO 0 1 0 1 Somewhat Somewhat Not at all Very Not at all Not at all

B02 SPO 1 3 1 4 Very Extremely Very Very Not at all Slightly

B03 SPO 2 2 2 2 Somewhat Somewhat Moderately Very Not at all Moderately

B04 SPO 0 0 0 1 Not at all Somewhat Not at all Very Not at all Slightly

B05 SPO 1 0 0 3 Moderately Very Moderately Moderately Slightly Slightly

B06 SPO 1 1 1 1 Somewhat Not at all Somewhat Very Slightly Moderately

B07 SPO 0 0 1 1 Not at all Not at all Somewhat Very Not at all Slightly

B08 SPO 1 2 1 2 Somewhat Not at all Moderately Very Slightly Slightly

B09 SPO 2 1 3 1 Not at all Not at all Very Moderately Not at all Slightly

B10 SPO 2 2 2 3 Somewhat Moderately Somewhat Very Slightly Moderately

Notes. HM and SPO represents HapticMASTER and SCRIPT passive orthosis

A. Level of Fatigue and Workload

Figures 4.14 and 4.15 show the variations in physical and mental fatigue scores before and
after the robot-mediated gross motor and fine motor tasks for each participant, respectively.
As can be seen in Table 4.4 and Figure 4.14a, the majority of participants who performed the
robot-mediated gross motor interaction with HapticMASTER reported an increase in their
physical fatigue level following the task (8/10 participants). An increase in mental fatigue
level was reported by two participants, only (Figure 4.14b). Among the participants who
reported an increase in physical fatigue level, six participants showed a higher change in
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physical fatigue scores than the change in mental fatigue scores following the gross motor
task whereas two participants showed an equal rise in both physical and mental fatigue
scores. Only one participant reported that he/she was physically and mentally very tired
after the interaction, whereas the majority reported that they were somewhat to moderately
physically fatigued after performing the gross motor task. Therefore, the subjective ratings
suggest that the gross motor interaction may have induced physical fatigue. In contrast, as
can be seen in Figure 4.15b, the majority of participants who performed the fine motor task
revealed that their mental fatigue levels were increased following the robotic interaction (6/10
participants). An increase in physical fatigue level was only reported by three participants
(Figure 4.15a). Among the participants who reported an increase in mental fatigue level
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(a) Physical fatigue score (b) Mental fatigue score

Figure 4.14: Variations in subjective measures of (a) physical and (b) mental fatigue following
gross motor interaction with HapticMATER for all participants.
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Figure 4.15: Variations in subjective measures of (a) physical and (b) mental fatigue following
fine motor interaction with SCRIPT passive orthosis for all participants.
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following the fine motor task, four participants showed a higher change in mental fatigue
scores than the change in physical fatigue scores whereas two participants showed an equal
rise in both physical and mental fatigue scores. Three participants were very to extremely
mentally fatigued after the fine motor task whereas the others were somewhat to moderately
mentally fatigued. Therefore, the subjective ratings suggest that the fine motor interaction,
on the other hand, may have induced mental fatigue.

The majority of participants (7/10 participants) also rated that the underlying physical
workload of the gross motor task was greater than the mental workload. Most participants
reported that the gross motor task was somewhat to moderately physically demanding whereas
there was no mental demand. Figure 4.16a shows that all participants who experienced a
greater increase in their physical fatigue levels in comparison to the change in mental fatigue
levels also rated that the underlying physical workload of the gross motor task was greater
than the mental workload. Participants feedback on the underlying workload of the fine
motor task was highly subjective. Four participants reported that the fine motor task required
higher mental demand than physical demand whereas two participants reported that the task
required higher physical demand. Two participants also reported that the task was somewhat
physically and mentally demanding whereas two participants reported that the task was not
at all physically or mentally demanding. Figure 4.16b also illustrates that all participants
who experienced a greater increase in their mental fatigue levels than the change in physical
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(a) Gross motor interaction with
HapticMASTER

(b) Fine motor interaction with SCRIPT
passive orthosis

Figure 4.16: Association of the variations in fatigue levels and the rated workload following
the robot-mediated (a) gross motor and (b) fine motor interactions. The ‘IPF’ and ‘IMF’
refers to the increase in physical and mental fatigue scores following the robot-mediated
interactions, respectively. No change refers to no increase or decrease in both fatigue levels.
The ‘PWL’ and ‘MWL’ refers to the rated physical and mental workload, respectively.
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fatigue level rated that the fine motor task required a greater mental demand than the physical
demand. The gross motor task involves the movement and coordination of proximal joints and
muscles of the upper limb (shoulder and arm) to control the robot arm between target points.
The fine motor task requires considerable attention and decision-making skills combined
with hand and finger movements to catch the fish when it reach the seashell. Therefore, the
subjective responses imply that the gross motor task performed with HapticMASTER may
have greatly contributed to the development of physical fatigue due to the increased physical
demand. In contrast, the fine motor task performed with SCRIPT passive orthosis may have
mainly induced mental fatigue due to the increased mental demand required during the task.

B. Comfortability

Figure 4.17 compares the subjective measures of task comfortability between robot-mediated
gross motor and fine motor interactions. As can be seen in Table 4.4, the majority of
participants who performed the gross motor task reported that the task was somewhat or
not at all straining the eyes (7/10 participants). However, the eyes strain level caused by
the fine motor task was highly dependent on the participant since 5/10 participants have
rated the task to be somewhat or not at all straining the eyes, while 5/10 participants have
reported the task very or moderately strained the eyes. Figure 4.17a also shows that the
eye strain caused by the fine motor task is moderately higher than the gross motor task. In
general, the majority of participants were very to extremely comfortable in wearing the EEG
cap (13/20 participants) and reported that wearing the EEG cap does not affect the fatigue
build-up (14/20 participants). Figure 4.17b shows that the participants who interacted with
SCRIPT passive orthosis were very comfortable in wearing the EEG cap in comparison to
the participants who interacted with HapticMASTER. Also, Figure 4.17c shows that wearing
the EEG cap during the session is less likely to affect the fatigue level of an individual.
The majority of participants have reported that the interaction with robot has either slight
(10/20 participants) or moderate (6/20 participants) effect on their fatigue levels, while one
participant reported that the use of the HapticMASTER has extremely affected the level of
fatigue (Figure 4.17d).
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Figure 4.17: Comparison of the subjective measures of task comfortability between robot-
mediated gross motor and fine motor interactions.

4.2.4 Association of the Changes in the Level of Fatigue with Substan-
tive EEG Feature Modulations

The association of the substantive EEG feature modulations and the variations in the rated
physical and mental fatigue levels following the robot-mediated gross motor task are shown
in Table 4.5 and Figure 4.18. As can be seen in Figure 4.18, most participants who reported an
increase in their physical fatigue level following the robot-mediated gross motor interaction
also showed a greater increase in αrelative on FC3, C3, and P3 electrodes, (θ +α)/β on
C3 electrode and α/β on C3 electrode in comparison to the increase in the corresponding
EEG features found in the participants who reported no change or reduction in the physical
fatigue level. Similarly, a greater decrease in δrelative on C3 electrode was also found in most
participants who experienced a rise in their physical fatigue level. Therefore, the above
findings show that the significant changes in δrelative, αrelative, (θ +α)/β and α/β around
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the motor cortex are likely related to the rise in physical fatigue level following the gross
motor task.
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Figure 4.18: Association of the substantive EEG feature modulations with variations in
fatigue levels following the robot-mediated gross motor interaction. The ∆ represents the
difference in each EEG feature following the gross motor task (i.e., ‘recovery’ - ‘baseline’).
The ‘IPF’ and ‘IMF’ refers to the amount of increase in physical and mental fatigue scores
following the robot-mediated interactions, respectively. No change refers to no increase or
decrease in both fatigue levels.

Table 4.6 and Figure 4.19 show the association of the substantive EEG feature modulations
following the robot-mediated fine motor task with variations in the rated physical and mental
fatigue levels. Figure 4.19 shows that all six participants who reported an increase in mental
fatigue level following the robot-mediated fine motor interaction showed a decrease in δrelative

on FP1 electrode. Among them five participants also showed an increase in αrelative on FP1
and C3 electrodes, and four participants showed an increase in θrelative on C4. Therefore, the
modulations in EEG spectral features around the prefrontal cortex presumably reflects an
increase in the mental fatigue level.
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Table 4.5: Association of the substantive EEG feature modulations with variations in fatigue
levels following the robot-mediated gross motor interaction.

Subject ID
∆δrelative ∆αrelative ∆((θ +α)/β ) ∆(α/β ) Comparison of the

fatigue levelsC3 FC3 C3 P3 C3 C3

A01 -0.028 0.035 0.046 0.068 2.567 1.465 IPF=IMF

A02 -0.085 0.035 0.044 0.034 0.170 0.405 IPF>IMF

A03 -0.042 0.088 0.018 0.045 1.004 0.442 IPF>IMF

A04 -0.048 0.067 0.132 0.037 1.745 2.340 IPF>IMF

A05 0.018 -0.073 -0.039 -0.042 -0.126 -1.186 IPF=IMF

A06 -0.276 0.165 0.164 0.111 1.217 0.632 IPF>IMF

A07 -0.084 0.043 0.101 0.057 0.756 1.607 IPF>IMF

A08 -0.080 0.068 0.094 0.231 0.325 1.814 IPF>IMF

A09 -0.002 0.026 0.032 0.031 -0.017 0.249 No change

A10 -0.037 0.005 0.016 0.024 0.075 0.072 No change

Notes. The ∆ represents the difference in each EEG feature following the gross motor task (i.e., ‘recovery’ - ‘baseline’). The ‘IPF’ and ‘IMF’ refers to the amount of increase in
physical and mental fatigue scores following the robot-mediated interactions, respectively. No change refers to no increase or decrease in both fatigue levels.

Table 4.6: Association of the substantive EEG feature modulations with variations in fatigue
levels following the robot-mediated fine motor interaction.

Subject ID
∆δrelative ∆θrelative ∆αrelative Comparison of the

fatigue levelsFP1 C4 FP1 C3

B01 -0.121 0.065 0.024 0.098 IPF=IMF

B02 -0.025 0.025 -0.003 0.020 IPF<IMF

B03 -0.061 0.053 0.021 -0.006 No change

B04 -0.007 -0.012 0.025 0.005 IPF<IMF

B05 -0.040 0.055 0.033 0.029 IPF<IMF

B06 -0.030 0.038 0.013 0.051 No change

B07 0.009 0.067 -0.001 0.014 No change

B08 -0.103 -0.020 0.072 0.033 IPF=IMF

B09 0.012 0.028 0.028 0.007 No change

B10 -0.086 0.031 0.116 -0.001 IPF<IMF

Notes. The ∆ represents the difference in each EEG feature following the fine motor task (i.e., ‘recovery’ - ‘baseline’). The ‘IPF’ and
‘IMF’ refers to the amount of increase in physical and mental fatigue scores following the robot-mediated interactions, respectively.
No change refers to no increase or decrease in both fatigue levels.
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Figure 4.19: Association of the substantive EEG feature modulations with variations in
fatigue levels following the robot-mediated fine motor interaction. The ∆ represents the
difference in each EEG feature following the fine motor task (i.e., ‘recovery’ - ‘baseline’).
The ‘IPF’ and ‘IMF’ refers to the amount of increase in physical and mental fatigue scores
following the robot-mediated interactions, respectively. No change refers to no increase or
decrease in both fatigue levels.

4.3 Discussion

This preliminary experiment investigated the changes in cortical activities associated with
fatigue induced by upper limb robot-mediated gross motor and fine motor interactions. The
findings of this experiment indicate that it is possible to monitor fatigue introduced by these
interactions using EEG spectral features, which can have further utility for robot-mediated
rehabilitation.

The most prominent finding of this experiment was a significant increase of αrelative following
both the robot-mediated gross motor and fine motor interactions. It is known that α activity
is most commonly visible during relaxed conditions and decreased attention levels. Also,
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in drowsy but wakeful states when increased efforts are taken to maintain the level of
attention and alertness, increased α activity is visible (Klimesch, 1999). On the other
hand, when an individual is in an alert state, suppression of α activity is visible. The
task-related desynchronisation, which leads to a decrease in α activity, can be interpreted
as an electrophysiological correlate of increased activation of the cortical areas (excited
neural structures) that produce motor behaviour or process sensory or cognitive information
(Pfurtscheller, 1997; Pfurtscheller et al., 1996). Therefore, the increased αrelative following
the robot-mediated interactions may reflect decreased cortical activity and a reduced capacity
for information processing in the underlying cortical regions as a result of fatigue. This
finding is in agreement with the findings of previous fatigue studies (Barwick et al., 2012;
Eoh et al., 2005; Fan et al., 2015; Zhao et al., 2012; Zou et al., 2015).

The topographical differences found in the prominent EEG spectral features indicate that
the brain regions most affected by fatigue may depend on the physical and mental workload
associated with the task as well as on the differences in the usage of the proximal and
distal upper arm. In the gross motor interaction, participants were instructed to move the
HapticMASTER robot arm in a linear trajectory so that the two target points visible in the
virtual reality environment can be reached. In a visually guided reaching task, the spatial
information about the target is extracted by the sensory system, and a movement plan is
created and executed by the motor cortex (Gevins and Smith, 2007; Sabes, 2000). The
premotor cortex, primary somatosensory cortex, and posterior parietal cortex integrate motor
and sensory information for planning and coordinating complex movements. Also, the
HapticMASTER is an end-effector based robot, and the proximal upper limbs (arm and
shoulder) are predominantly used when moving the robot arm between the target points
during the gross motor task. Therefore, the significant rise in αrelative found over FC3, C3,
and P3 electrode locations presumably reflect the inhibition of premotor cortex, primary
somatosensory cortex, and posterior parietal cortex activation due to the physical fatigue
accumulated during the arm reach/return task. Conversely, in the fine motor task participants
were expected to perform hand open/close gesture only when a fish was near the seashell
in the virtual environment. Therefore, the fine motor task required more sustained attention
and decision-making, in comparison to the gross motor task. Laureiro-Martinez et al. (2014)
also found that a stronger activation in the frontopolar cortex is associated with higher
decision-making efficiency. In addition, active movements consisting of repetitive opening
and closing of the hand are shown to activate the contralateral primary sensorimotor cortex
(Guzzetta et al., 2007). Therefore, the increased αrelative over FP1 and C3 electrodes following
the repetitive fine movements appear to reflect an altered decision-making efficiency of an
individual, in addition to the deactivation in motor cortex associated with fatigue. The
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topographical variations in αrelative were also supported by the participants’ feedback on their
fatigue level after each interaction. The greater changes in αrelative following the gross motor
task were also associated with more increase in the physical fatigue level than the mental
fatigue level. In contrast, the greater changes in αrelative following the fine motor task were
associated with more increase in the mental fatigue level than the physical fatigue level or an
equal increase in both physical and mental fatigue levels.

It has been established in the literature that EEG activity shifts from high frequencies towards
slower waves with the progression of fatigue, thus, the ratio between low-frequency and high-
frequency power can also be considered as a reliable measure of fatigue (Eoh et al., 2005;
Jap et al., 2009). In this experiment, significant differences were found only in (θ+α)/β

and α/β on C3 electrode following the physically fatiguing gross motor task. These findings
were also supported by the participants’ feedback on their fatigue level. There were no
significant differences in the power ratios due to the fine motor task. Although the significant
changes on C3 were only visible for αrelative, a slight increase in θrelative and a decrease in
βrelative were also found after the gross motor task. Therefore, the findings suggest that gross
motor interaction increased the low-frequency activities while suppressing the high-frequency
activities on C3 electrode, which may have caused the significant increase of (θ+α)/β and
α/β . Jap et al. (2009), Eoh et al. (2005), Fan et al. (2015), Chen et al. (2013) also reported a
significant rise in both (θ+α)/β and α/β with fatigue.

The suppression in δrelative following the robot-mediated interactions is contrary to some
previous studies which have suggested a significant increase or no significant difference in δ

activities due to fatigue (Craig et al., 2012; Lal and Craig, 2002; Zhao et al., 2012). Although
not significant, Zhao et al. (2012) also showed a reduction in δrelative around all brain regions
after a simulated driving task. In this experiment, significant decrease in δrelative was found
on C3 electrode following the gross motor task and on FP1 electrode following the fine motor
task. Most participants who reported an increase in their physical fatigue level after the
robot-mediated gross motor task also have experienced a decrease in δrelative on C3 electrode.
Similarly, all participants who reported an increase in their mental fatigue level following the
robot-mediated fine motor task also showed a decrease in δrelative. Therefore, the suppression
in δrelative due to fatigue build-up and the topographical variations found in the two tasks are
supported by the subjective measures of fatigue level. The methodological differences of
the previous studies could be an explanation for these discrepancies as these studies were
based on vehicle driving tasks, whereas our study was focused on gross and fine motor
tasks in a human-robot interaction scenario. Harmony et al. (1996) proposed that increased
attention to internal processing (i.e., ‘internal concentration’) during mental tasks might
cause an increase in the delta activity. In order to accurately perform the two tasks in this
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experiment, higher concentration and attention levels are essential. Therefore, the reduction
in δrelative associated with the robotic interactions may suggest a deficient inhibitory control
and information-processing mechanisms. This finding, while preliminary, suggests that the
fatigue may have negatively affected an individual’s attention and internal concentration
levels.

The ipsilateral primary somatosensory cortex is also shown to increase its level of activation
during prolonged sustained and intermittent sub-maximal muscle contractions to compensate
for fatigue (Liu et al., 2003). In this experiment, the significant change in C4 electrode was
visible only for θrelative following fine motor task. Theta oscillations in EEG have shown to
be prominent during cognitive processing that requires higher mental effort and is positively
related to the task difficulty (Gevins et al., 1997). Barwick et al. (2012), Cheng and Hsu
(2011) and Zhao et al. (2012) also reported an increase in θrelative due to fatigue build-up.
Therefore, the rise in θrelative on C4 may reflect the fatigue-related changes in the ipsilateral
brain activation caused by the fine motor task.

4.3.1 Limitations in the Experiment Design

Although the present experiment found that fatigue in robot-mediated interactions can be
estimated using EEG spectral features, there were some limitations in this experiment
design. The spatial precision of the recordings was limited since the EEG data acquisition
system could only support eight electrode locations. In this experiment the majority of the
electrodes were placed on the left hemisphere and only one electrode was placed on the
right hemisphere. Also, only one electrode location was considered in each brain region,
except in the central region where two electrodes locations were investigated. The findings
showed that regional EEG spectral feature differences exist between the two tasks; and the
differences were associated with the variations in type of fatigue mostly experienced by the
individuals. Therefore, further exploration is needed with a higher number of electrodes to
confirm whether the brain regions mostly affected by fatigue in robot-mediated interactions
depend on the physical and cognitive nature of the task and the differences in the usage
of upper limbs. Moreover, in this study EEG data recorded before and after the robotic
interactions were further analysed since previous studies have found significant alterations
in resting-state EEG spectral features following fatigue-inducing physical and mental tasks
(Chen et al., 2013; Cheng and Hsu, 2011; Ng and Raveendran, 2007; Tanaka et al., 2012).
Further exploration is needed to identify the EEG feature modulations caused by fatigue
build-up during the robot-mediated interaction as well. These limitations were addressed in
the second experiment conducted in this thesis.
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4.4 Conclusions

The modulations in EEG spectral features due to fatigue induced by robot-mediated fine
motor and gross motor interactions were presented in this chapter. The modulations in αrelative

presumably reflect the changes in an individual’s fatigue level following upper limb robot-
mediated interactions. The above inference was also supported by the participants’ feedback
on the changes in their physical and mental fatigue levels following the given task; thereby
suggesting that αrelative is a reliable EEG-based fatigue index that can be used to monitor the
progression in fatigue during human-robot interactions. Although the suppression in δrelative

is contrary to the findings of previous studies, it was supported by the participants’ feedback.
Therefore, δrelative could also be used as an EEG-based measure of fatigue in robot-mediated
interactions. It can also be concluded that (θ+α)/β and α/β can describe the underlying
changes in brain caused by the rise in physical fatigue level following a robot-mediated
interaction.

Investigation of regional differences in EEG spectral feature modulations revealed that the
fatigue induced by gross motor and fine motor tasks suppresses the activation of different
brain regions. The participant’s feedback also revealed that the gross motor task increased
the physical fatigue level of most participants whereas the fine motor task increased the
mental fatigue level of most participants. Also, the gross motor task was found to be more
physically demanding than mentally demanding. In contrast, most participants revealed that
the fine motor task required either a greater mental demand or an equal physical and mental
demand. In conclusion, regional differences in significant EEG spectral features associated
with fatigue are most likely due to the differences in task definition that may have differently
altered the physical and mental fatigue level of an individual. Therefore, EEG correlates of
fatigue during robot-mediated interactions are specific to the physical or cognitive nature of
the task performed using the proximal or distal upper limb. Developing on the findings of
this chapter, the following chapters further explore EEG features and brain regions that can
be used to estimated fatigue induced by a robot-mediated visuomotor tracking task.
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Chapter 5

Experiment 2 - Part I: Modulations in
Spectral and Nonlinear EEG Features
Associated with Fatigue in a Visuomotor
Tracking Task Performed Using the
GENTLE/EEG Robot-Mediated System

The preliminary experiment presented in Chapter 4 showed that the EEG correlates of fatigue
during robot-mediated interactions are specific to the physical or cognitive nature of the
task performed using the proximal or distal upper limb. However, since the experiment was
conducted using a limited number of EEG electrodes, an in-depth analysis of the regional
variations in EEG patterns due to fatigue could not be explored. Developing further on
the outcomes of the preliminary experiment, the GENTLE/EEG robot-mediated system
explained in this chapter was implemented to evaluate the modulations in both spectral and
nonlinear EEG features during a fatiguing robot-mediated visuomotor tracking task. The
association of the substantive EEG-based fatigue indices with the movement variability
measures and subjective measures of fatigue is further discussed in Chapter 6. Therefore,
findings discussed in Chapter 5 and Chapter 6 taken together address the research question
2: ‘Which spectral and nonlinear EEG features and which EEG electrode locations are
most capable and reliable in estimating the progression of fatigue during a robot-mediated
visuomotor tracking task?’.
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5.1 Methods and Materials

5.1.1 Ethical Approval

The experiment was approved by the Ethics Committees with Delegated Authority for Science
and Technology of University of Hertfordshire (Protocol number: COM/PGR/UH/02973).

5.1.2 Participants

Twenty-five healthy individuals (13 females and 12 males) that were at least 18 years of age
(average age of the sample was 32 ± 12 years; mean ± SD) were recruited for the experiment.
Eligibility criteria required individuals to be right-handed with no previous injuries to the
right hand that caused arm functional difficulties and no previous severe injuries to the head
or the brain, and not suffering from epilepsy. Moreover, the participants were instructed to
wash their hair the night before or on the day of the test with shampoo without using any
conditioners and not to use any hair care products such as hair creams, sprays or styling gel as
these products may affect the quality of the recording. They were asked to abstain from taking
caffeine, nicotine, or alcohol, eating a heavy meal or chewing gum, and engaging in any
strenuous exercise at least 2 hours before the experiment as these could create adverse effects
on the progression of fatigue and on the EEG data recordings which are of major interest
in the experiment (Docter et al., 1966; Gilbert, 1987; Hall et al., 2007; Masumoto et al.,
1999; Siepmann and Kirch, 2002). All participants signed the informed consent forms before
participation. A summary of the participant demography is given in table 5.1. All participants
had normal vision or had corrected to normal vision. The participant’s self-reports showed
that most participants had around 7 to 9 hours of sleep the night before the experiment,
that is recommended for adults (Hirshkowitz et al., 2015); thus, it can be assumed that
fatigue build-up was solely due to the robotic interaction. While this experiment aimed at the
observation of EEG feature modulations with increasing level of fatigue, participants were
free to stop the experiment at any point in time. All participants completed 5 levels of the
visuomotor tracking task.

5.1.3 GENTLE/EEG Robot-Mediated System

The GENTLE/EEG robot-mediated system was implemented by the author, as explained
below, to investigate the variations in brain activation patterns caused by the fatigue in
robot-mediated visuomotor tracking task. The complete experiment, including obtaining
the participants consent and questionnaire responses, preparation for EEG data acquisition,
EEG data acquisition before, during, and after the robot-mediated visuomotor tracking
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Table 5.1: Participants demography of experiment 2.

Subject ID Age Gender Wearing glasses/
contacts

Hours slept prior
to the experiment

C01 64 M N 7
C02 21 F Y 6
C03 23 M N 7
C04 19 M N 6
C05 22 F N 5
C06 44 F Y 7
C07 22 M N 6
C08 22 F Y 4
C09 22 F N 7
C10 20 F N >9
C11 39 F Y 7
C12 36 F N 6
C13 36 F Y 7
C14 38 M N 8
C15 29 F Y 7
C16 59 F N 8
C17 33 M Y 6
C18 25 M N 8
C19 24 F N 8
C20 24 F Y 7
C21 32 M N >9
C22 19 M N >9
C23 29 M N 5
C24 35 M N 5
C25 69 M Y 7

Summary 32 ± 12 M=12, F=13 Y=9 ≥ 7 = 16

task, and cleaning the electrode gel after the EEG data recording session lasted for about 1
hour. The duration of the robotic interaction was limited to 25-minutes due to difficulties in
obtaining ethical clearance for more extended duration studies and recruiting participants
in an academic environment. Therefore, to obtain measurable fatigue-induced EEG signal
pattern changes in a duration of 25-minutes, the difficulty level during the robotic interaction
was gradually increased.

128



5.1 Methods and Materials

The GENTLE/EEG robot-mediated system mainly comprised of three components: the
HapticMASTER, 32-channel non-invasive EEG data acquisition system, and a virtual reality
environment that facilitates a visuomotor tracking task (Figure 5.1). The user controls the
movement of the robot arm using their right arm and performs the visuomotor tracking task
as explained in Section 5.1.3. The changes in the brain activities, before, during and after
the robotic interaction were measured using the EEG data acquisition system explained
in Section 5.1.3. Figure 5.2 shows the experimental environment of the GENTLE/EEG
robot-mediated system.

HapticMASTER

Electrode Cap

(g.GAMMACap2)
32 Ag/AgCl active electrodes

1 Ag/AgCl passive ground electrode

1 Ag/AgCl active ear clip reference 

electrode

2 x 16 channel 

biosignal 

amplifiers 

(g.USBamp)

Personal 

Computer

Ethernet connection

USB connection

onnection

Figure 5.1: Components of the GENTLE/EEG robot-mediated system.

Figure 5.2: The experimental environment of the GENTLE/EEG robot-mediated system.

A. Visuomotor Tracking Task

Exercises that involve moving the arm away from the body (reaching) and returning towards
the body (returning) are extensively used in robot-mediated stroke therapies since arm
reach/return is the primary motion involved in many activities of daily living. Therefore,
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a similar arm reach/return task named ‘Grab the Doughnuts’ which involves an additional
point tracking component was implemented as explained below to build a fatiguing state
for the user gradually. In the context of this thesis, this robotic interaction will be called as
a ‘robot-mediated visuomotor tracking task’ since it involves tracking a guide point while
reaching and returning from one target point to the other.

Mode of Operation

The HapticMaster works under the admittance control paradigm in which positional changes
are generated according to the force exerted by the operator on the device. The Haptic-
MASTER API provides the facility to change the spring or damper haptic effects or any
combination of them in real-time to introduce different therapeutic modes. In patient passive,
active and active-assisted modes, the robot assists the arm movement entirely or to some
extent. The assistance provided by the robot could negatively affect the fatigue build-up of
healthy participants within a limited duration of interaction. Therefore, in this experiment,
the damping or ‘accommodation’ mode that is purely viscous and has no stiffness (Carignan
and Akin, 2003) was introduced to let the participants move the robot arm between the target
points voluntarily with no assistance from the robot. In this mode of operation, the diffi-
culty level of the interaction was increased by gradually increasing the damping coefficient
parameter in real-time while keeping the spring stiffness equal to zero. Damping force of
the robot can then be increased if the movement of the robot arm is constraint to a constant
velocity since Fd = Cd ×V , where Fd , Cd and V are Damping force, damping coefficient
and velocity respectively. Movement of the robot arm at a constant velocity was achieved
by instructing the participants to follow the trajectory covered by the guide point visible in
the virtual reality environment while maintaining the movement of the robot arm at a speed
similar to the speed of the guide point. The force exerted by the user will rise in response to
the increment in the damping force, thereby contributing towards an increase in the work
done by the subject. Therefore, the participants will experience a gradual increase in their
fatigue level during the robot-mediated interaction.

Damping Coefficient Parameter and Duration Settings of the Interaction

The robot-mediated interaction had five levels, with each lasting for 5-minutes. Therefore,
the participants would interact with the robot for 25-minutes in total, without having a break
in between each level. The damping coefficient parameter was set to be 80 at level 1, 100 at
level 2, 120 at level 3, 140 at level 4, and 160 at level 5.
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Virtual Reality Environment

The HapticMASTER end effector has a 3D volumetric workspace as explained in Section
2.4.2. Hence, a virtual reality environment resembling a real empty 3D room with three
walls, a marble floor, and a ceiling was created so that a better depth perception could be
achieved when displayed in a 2D monitor (Figure 5.3). Inside the virtual room, the target
points to be reached were represented by the Sienna colour solid tori to resemble the shape
and texture of doughnuts. In addition, the solid tori were set to rotate so that they were
easily distinguishable as target points. Thirteen (13) target points as shown in Figure 5.4
(the (x,y,z) coordinates of set target points are given in Table B.1) were carefully chosen
so that the non-planar robot arm movements throughout the given duration would traverse
the HapticMASTER workspace while positively contributing towards the progression of
fatigue. Moreover, with the use of a substantial number of target locations, random point
placement was achieved, thus prevented the ability of the user to predict the next segment.
The movement between two adjacent target points (or doughnuts) was termed as a ‘segment’.
All target points were reached in twenty-four (24) segments, with 12 segments consisting
of movement from points 1 to 13 (forward loop) and the next 12 segments consisting of
movement from points 13 to 1 (reverse loop). The movement order was repeated until the
maximum interaction duration of the level was reached, and the same movement order was
repeated at each level. Also, the distance between two adjacent targets (i.e., the ‘segment
length’) was equal in each segment. The position of the purple colour ball in the virtual room
represented the projection of the current position of the end effector, thereby giving feedback
to the user on the direction of the next move in real space. In the context of the thesis, this
point will be referred to as the control point. Furthermore, the constrained motion of the
robot arm was introduced by forcing the subject to follow the path covered by the guide point
while maintaining the speed of the control point (i.e. the speed of the robot arm motion)
similar to the speed indicated by the motion of the guide point. The guide point, represented
by a deep sky blue icosahedron, moved towards the target to be reached at a constant set
speed. A straight line trajectory that connects the previously reached target point and the
target to be reached next was considered as the trajectory of the guide point.

Message boxes were used to inform the start of a new level, and the end of the session. The
participants were instructed to press the return key of the keyboard to continue after each
message prompt. The key-press event was used here so that the EEG data recordings can be
synchronised with the interaction level for data post-processing. The robot arm moved to
the starting location (point 1 in Figure 5.4) while following a straight line trajectory with the
minimum jerk settings after the key-press event at the start of each interaction level. Then, a
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Figure 5.3: The GENTLE/EEG virtual environment. The target point is represented as a
doughnut. The purple ball indicated the position of the end effector. The deep sky blue
icosahedron moved according to the assigned speed.
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Figure 5.4: Target point locations in the virtual reality environment. The forward loop of the
motion is from Point 1 to 13. The reverse loop of motion is from Point 13 to 1.
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short sound prompt was played, and the new target point appeared in order to inform the user
to begin the next move.

Updating the System Parameters and Data Logging

Visual C++ programming language enables the use of timers and multi-threading features
to run two or more programs concurrently. Therefore, a 50-millisecond timer was used to
update the damping coefficient and the spring constant values according to the interaction
level settings and to read and update the 3-dimensional values of the force, position and
velocity of the end effector. Simultaneously, a thread function was used to record the kinetic
and kinematic data (applied force, position, velocity) of the HapticMASTER. The thread was
activated at the beginning of the interaction and was called at each 50-millisecond instance,
until the end of the interaction. Thus, the kinetics and kinematics data were logged at a
sampling rate of 20 Hz (with a 50 ms period) using Comma-Separated-Values (CSV) files.

B. EEG Data Acquisition System

Selection of the EEG electrodes

In this experiment, it was of interest to find the EEG electrode locations that best describe
the modulations associated with fatigue in robot-mediated interactions. According to the
International 10-10 system of electrode placement (Epstein, 2006), FP1, FP2, F3, Fz, F4,
FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4,
O1, Oz, O2, T7, T8, P7, and P8 electrode locations were selected so that a wider brain region
can be explored. The electrode distribution among the brain regions was as follows (Liu
et al., 2014):

• Frontal region: FP1, FP2, F3, Fz and F4
• Central region: FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, and C6
• Parietal region: CP3, CPz, CP4, P3, P1, Pz, P2, and P4
• Occipital region: PO3, PO4, O1, Oz, and O2
• Temporal region: T7, T8, P7, and P8

All electrodes were referenced to the right earlobe (A2), and FPz was used as a ground. The
electrode placement is shown in Figure 5.5.

Hardware Configuration

Continuous EEG signals were recorded before, during and after the robot-mediated visuomo-
tor tracking task using a 32-channel EEG data acquisition system commercialised by g.tec
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Inion

Nasion

FP

Figure 5.5: EEG electrode placement according to the International 10-10 system of electrode
placement. Red circles represent the eight active electrodes selected for the data acquisition.
The blue circle represents the reference electrode location. The green circle represents the
ground electrode location.

medical engineering GmbH, Austria. The flow diagram of the hardware configuration of
the EEG data acquisition system is shown in Figure 5.6. The 32 Ag/AgCl active electrodes
(g.LADYbird) and the Ag/AgCl passive ground electrode (g.LADYbird) were mounted on
the electrode cap (g.GAMMACap2). The 32 active electrodes, the passive ground electrode,
and the Ag/AgCl active ear clip reference electrode (g.GAMMAearclip) were then connected
to the active electrode driver boxes. The ground, reference and 16 active electrodes were
connected to the standard g.GAMMAbox and the additional 16 active electrodes were con-
nected to the g.GAMMAbox +16 channel extension box, which is similar to the standard
g.GAMMAbox but without a reference or a ground channel. The outputs of the electrode
driver boxes were connected to the input sockets of two g.USBamps (master and slave)
via two LEMO connectors (a push-pull connector named g.USBampGAMMAconnector).
The g.USBamp is a 16 channel biosignal (EEG, EOG, EMG and ECG) amplifier with an
integrated 24-bit analogue-to-digital converter and a software adjustable sampling frequency
range of 64 Hz to 38.4 kHz per channel. The digital signal processor of the amplifier per-
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forms over-sampling, bandpass filtering, notch filtering, and calculates bipolar derivations
to improve the signal-to-noise ratio (Ortner et al., 2013). The signals acquired from this
device were sampled at 256 Hz, bandpass filtered with a cut-off frequency between 0.1 - 100
Hz and notch filtered with a cut-off frequency 50 Hz. The two g.USBamps were connected
via a synchronous cable. Also, the ground and reference terminals of the two devices were
connected with jumper wires to provide a common reference and a common ground for
both devices. The amplified, filtered and digitised EEG signal was then transmitted to the
PC via USB 2.0 for display and storage for further analysis. Moreover, all participants
wore an anti-static wrist strap in their left wrist so that the artifactual signals resulting from
electrostatic charges in a laboratory environment can be avoided or reduced.
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Figure 5.6: Block diagram of the hardware configuration of the EEG data acquisition system
of GENTLE/EEG robot-mediated system.

EEG Data Acquisition MATLAB Simulink Model

The real-time EEG data acquisition Simulink model used in this experiment was solely de-
veloped by the author using the HighSpeed On-Line Processing (g.HIsys) API (g.tec medical
engineering GmbH, Austria) (g.tec medical engineering GmbH, 2016). The HighSpeed On-
Line Processing API is based on MATLAB Simulink and contains Simulink blocksets that
can be used to customise amplifier settings (sampling frequency, filter characteristics, digital
input/output lines). It is also compatible with all standard Simulink blocksets and allows to
write new blocksets in MATLAB or C code. The data acquisition model implemented in this
experiment was capable of:

• real-time EEG data acquisition, visualisation and storage,
• real-time user activity video recording, visualisation and storage to identify behavioural

changes during the exercise,
• synchronisation of the EEG data acquisition with the robot-mediated visuomotor

tracking task since both software was run in two different platforms.
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Figure 5.7 illustrates the components and the data flow of the EEG data acquisition MATLAB
Simulink model and the functionality of each block is explained below.

• The g.USBamp Simulink block
The g.USBamp Simulink block provides a graphical interface to the g.USBamp hardware
and allows recording the EEG data. The amplifier settings, including the ‘master/slave’
configuration, sampling frequency, bandpass and notch filter, and electrode montage, were
customised using this block. One g.USBamp amplifier was configured as the ‘master’
and the other as the ‘slave’. The sampling frequency of both amplifiers was set to 256
Hz. In addition, a bandpass filter with a higher cut-off frequency of 100 Hz and a lower
cut-off frequency of 0.1 Hz was introduced so that the recorded data were pre-filtered by
the hardware to the most frequently studied EEG frequency range. The notch filter with a
50 Hz cut-off frequency was included to eliminate or attenuate the 50 Hz line noise. The
bipolar setting was set to 0 as the referential montage was of interest. The output of the
g.USBamp block is scaled in microvolts (µV).

• The unbuffer Simulink block
The g.USBamp outputs were fed to the two unbuffer blocks so that the input frames were
unbuffered into a sequence of scalar outputs before storing or displaying.

• The g.CAMERAcapture and audio Simulink blocks
Video and audio recordings were also performed simultaneously using the g.CAMERA-
capture and audio Simulink blocks. The g.CAMERAcapture block was used to record
the behavioural changes of the subject simultaneously with the EEG recording using the
Logitech C930e webcam. The video recordings were mainly used in this context to cross-
check whether the artifacts such as eye blink, swallowing that distort the data are identified
correctly in the data preprocessing stages. Besides, these recordings give an overall view
of the participants’ behaviour throughout the experiment, which could be used for future
data validation processes (this was not performed in the current context).

• The marker Simulink block
The EEG data acquisition software and the virtual reality environment that facilitates the
visuomotor tracking task were developed in two different software packages and was
executed independently. As explained in Section 5.1.3, message boxes were displayed at
the beginning of each level and at the end of the robotic interaction to synchronise the EEG
recordings with the robot-mediated interaction. The participants were instructed to press
the return key of the keyboard provided to continue with the interaction. These key-press
events were captured by the marker Simulink block so that the EEG data corresponding to

136



5.1 Methods and Materials

each level of the robotic interaction could be easily identified during the off-line EEG data
preprocessing.

• g.SCOPE Simulink block
The g.SCOPE was used to display the recorded EEG and return key-press events.

• Data Type Conversion and g.TOfile Simulink block
The EEG data and key-press events were stored in .mat format and were used for post-
processing. As the output of the g.USBamp was in single (float32) a Data Type Conversion
block was used to convert the data in to double before storing. The g.TOfile blocks were
used to save the data under the given file name.
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Save the EEG recording
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Figure 5.7: EEG data acquisition MATLAB SIMULINK model.

C. Comparison of GENTLE/EEG system with GENTLE/A system

The GENTLE/EEG robot-mediated system shares some software components of GENTLE/S
(Amirabdollahian et al., 2007; Loureiro et al., 2001, 2003) and GENTLE/A (Chemuturi
et al., 2013a,b) rehabilitation systems, but with major modifications to the control algorithm
implemented solely by the author to cater the needs of the fatigue-inducing experimental
protocol and the hardware upgrades. Table 5.2 gives a comparison of the major modifications
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made to the GENTLE/A system while developing the GENTLE/EEG system. GENTLE/EEG
system software mainly consists of two parts: software that enables the robotic interaction
with the virtual reality environment and the software used to acquire EEG data in real-
time. The operating system of the HapticMASTER was upgraded to Microsoft Windows 10
Education 64-bit so that both HapticMASTER and the EEG data acquisition system could be
run in the same desktop computer (Intel(R) Core(TM) i7-6700 CPU with NVIDIA GeForce
GTX 980 graphics). The control algorithm of the HapticMASTER and the virtual reality
environment was re-programmed in Microsoft Visual C++ 2015 programming language
using Microsoft Visual Studio Community 2015 platform, solely by the author so that the
robot will be controlled in the damping or ‘accommodation’ mode (Carignan and Akin, 2003).
The Open Graphics Library (OpenGL) was used to render the 3D virtual reality environment.
The EEG data acquisition software was implemented in MATLAB Simulink 2017a.

Table 5.2: Comparison of GENTLE/A and GENTLE/EEG system specifications.

Specification GENTLE/A system GENTLE/EEG system

Operating system Microsoft Windows 7 (64-bit) Microsoft Windows 10 (64-bit)

Visual Studio platform Visual Studio 9.0 Visual Studio Community 2015

Programming language Microsoft Visual C++ Microsoft Visual C++ 2015

Graphics rendering library OpenGL OpenGL

Mode of operation Passive, active-assisted, active Damping or ‘accommodation’

Data logging CSV (Comma-separated values) file CSV file updated via multithreading in C++

EEG data acquisition Not included Included

5.1.4 Experimental Procedure

On arrival at the laboratory, participants were informed about the experiment protocol and
safety measures, given time to familiarise with the robot-mediated visuomotor tracking task,
and were prepared for the EEG data collection as explained in Section 4.1.4. Participants
were instructed to perform, eye blinks, eye movement, jaw clenching, swallowing, and head
movement to identify the individual signal alterations caused by the physiological artifacts
during the robotic interaction. These recordings were used to validate the EEG artifacts during
EEG preprocessing. Figure 5.8 given below illustrates the flow diagram of the proposed
fatigue estimation experiment. Following the standardised EEG recording protocol, EEG
data were recorded with eyes opened for 4-minutes. Afterwards, a continuous EEG recording
was taken while participants performed the robot-mediated visuomotor tracking task with the
HapticMASTER using their right hand, as explained in Section 5.1.3. Simultaneously, the
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kinetics and kinematic data of the robot (force applied, the position and velocity of the end
effector) was also recorded to evaluate the movement variability associated with fatigue in
robot-mediated interactions. Participants were instructed to perform the task for 25-minutes,
without taking any break in between or until volitional fatigue. In this experiment, all
participants interacted with the HapticMASTER until the end of five levels (i.e., 25-minutes).
Finally, another EEG recording was taken with the eyes opened for 4-minutes following the
robotic interaction. When EEG data were recorded before and after the task, participants were
instructed to sit still and minimise eye blinks, eye movements, swallowing, jaw clenching or
any other severe body movement. Video recordings were also made during the session and
were mainly used to cross-check the artifactual EEG components at the data preprocessing.
As all participants were exposed to the same experimental manipulations, this experiment
incorporates a repeated-measures design. Figure 5.9 shows a participant interacting with the
GENTLE/EEG robot-mediated system and performing the visuomotor tracking task.

Robot-mediated visuomotor 

tracking task for 25 minutes 

or until volitional fatigue 

and simultaneous EEG and 

video recording

Questionnaire on participant 

demography and 

fatigue level before the 

robot-mediated visuomotor 

tracking task  

EEG data recording 

with eyes opened for 

4-minutes

Questionnaire on 

fatigue level after the 

robot-mediated visuomotor 

tracking task, workload and 

comfortability

Figure 5.8: Flow diagram of the experimental procedure.

Figure 5.9: Interaction with the GENTLE/EEG system.

139



5.1 Methods and Materials

5.1.5 EEG Data Analysis

The continuous EEG data recorded during the robotic interaction were segmented into the
corresponding interaction levels using the ‘key-press’ event data recorded via the MATLAB
Simulink model. Then, the first and the last 15s of EEG data (i.e., 3840×2 samples) were
eliminated as these EEG data were related to the participant responding to message boxes
and the movement of the robot arm to the starting position following the ‘key-press’ event.
The remaining EEG data belonging to each level (i.e., 69,120 samples per level) are referred
to as level 1, level 2, level 3, level 4, and level 5, respectively, in the following chapters
of this thesis. Similarly, the first and the last 30s of the EEG data (i.e., 7680×2 samples)
recorded before and after the robot-mediated visuomotor tracking task were also removed
from preprocessing. The remaining EEG data belonging to eyes opened before and after the
robotic interaction (i.e., 46,080 samples per state) are referred to as ‘baseline’ and ‘recovery’,
respectively. Therefore, baseline, level 1, level 2, level 3, level 4, level 5, and recovery are
the EEG data measurement time periods that were further analysed in this experiment. A
pictorial representation of the EEG data segmentation at each measurement time is given in
Figure 5.10.

EEG data recorded during the robot-mediated visuomotor tracking task (25 mins = 384,000s)

300s 300s 300s 300s 300s

Level 1

270s

Level 2

270s

Level 3

270s

Level 4

270s

Level 5

270s

15s 15s 15s 15s 15s

(a) During the robot-mediated interaction.
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(b) Before the robot-mediated interaction. (c) After the robot-mediated interaction.

Figure 5.10: EEG data segmentation before, during, and after the robot-mediated visuomotor
tracking task.

The EEG data processing pipeline followed for each participant during each measurement
time is illustrated in Figure 5.11. It mainly consisted of three steps: data preprocessing,
feature extraction and statistical analysis. EEG preprocessing and feature extraction was
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Raw EEG
(Measurement time: Baseline, Level 1, Level 2, Level 3, Level 4, Level 5, and Recovery)

Remove the DC offset

High-pass filter
(Filter parameters: half power frequency = 0.4 Hz, sampling frequency = 256 Hz, order = 15,  design method = Butterworth IIR)

Remove artifactual EEG components using ICA
(Algorithm used: JADE algorithm)

Segment the cleaned EEG data to a sequence of 30s epochs
(Total number of epochs in Baseline and Recovery = 6 epochs per measurement time) 

Total number of epochs in Level 1, 2, 3, 4, and 5 = 9 epochs per measurement time)

Extract EEG features for each epoch
(Relative band powers, band power ratios, largest Lyapunov exponent, and approximate entropy)

Calculate the average EEG features for each state
(Relative band powers, band power ratios, largest Lyapunov exponent, and approximate entropy)

Perform the two-way repeated measures ANOVA for each EEG feature, separately

(Within subject factors: electrode location  (32) and measurement time (7))

Low-pass filter
(Filter parameters: half power frequency = 35 Hz, sampling frequency = 256 Hz, order = 20,  design method = Butterworth IIR)

Remove bad EEG channels

Figure 5.11: EEG data processing pipeline followed to preprocess the raw EEG data and to
extract EEG features in each measurement time for each participant in order to perform the
statistical analysis. The dotted box represents the three main steps involved in the pipeline:
data preprocessing, feature extraction, and statistical analysis.
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performed offline using custom MATLAB scripts, and the statistical analysis was performed
using custom-written SPSS command syntaxes.

A. Preprocessing

The following preprocessing steps were performed separately on the channel-wise EEG
data corresponding to baseline, level 1, level 2, level 3, level 4, level 5, and recovery states
to remove or reduce the EEG artifacts. Since limited data was available, rejecting EEG
segments with artifacts was not considered in this experiment as well, as it may result in a
considerable loss of information.

Firstly, the DC offset was removed by subtracting the channel-wise mean from each data
point. Then, a Butterworth high-pass filter with a half-power frequency of 0.4 Hz and an
order of 15 and a Butterworth low-pass filter with a half-power frequency of 35 Hz and
an order of 20 were applied since the EEG data of interest was in between 0.5 - 30 Hz
frequency range (i.e., δ , θ , α , and β frequency bands). Then, ICA based on the joint
approximate diagonalisation of eigenmatrices (JADE) algorithm (Cardoso and Souloumiac,
1993) was performed to separate and remove in-band (or remaining) artifacts including eye
blinks, eye movement, swallowing, jaw clenching, and cardiac activity from the independent
components as explained in Section 3.1.4. When applying ICA to separate EEG artifacts from
brain activity patterns, it was assumed that the signals emitted by the unobserved sources
are independent and the number of independent sources was the same as the number of
electrodes used in the experiment (i.e., = 32). EEG data recorded from two participants, C12
and C19, contained a bad channel (i.e., P3 electrode in all measurement times for C12 and
FP1 electrode in level 1 and level 2 for C19). Therefore, these bad channels were removed
from the corresponding original EEG data before performing ICA. Following the ICA, these
removed bad channels were interpolated with the spherical interpolation method available in
EEGLAB toolbox.

B. Feature Extraction

The corrected EEG signals at the seven measurement time periods: baseline, level 1, level 2,
level 3, level 4, level 5, and recovery for each participant were segmented into epochs of 30 s
length (i.e., 7680 samples per epoch, and 2×6 epochs in total for the baseline and recovery
measurement times, and 5× 9 epochs in total for the levels 1-5). EEG spectral features
(relative band powers and band power ratios), largest Lyapunov exponent, and approximate
entropy were calculated for all epochs as explained below.
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EEG Spectral Features

The power spectral density for all epochs was estimated using Welch’s averaged modified
periodogram method (Welch, 1967) with a 3s segment length (i.e., 768 samples), 50%
overlap, and a Parzen window. The Welch’s averaged modified periodogram method is
explained in section 3.2.1. Subsequently, the relative band power of δ (0.5-<4 Hz), θ (4-<8
Hz), α (8-13 Hz), and β (<13-30 Hz) (δrelative, θrelative, αrelative, and βrelative, respectively)
for each epoch was calculated as a ratio between the average band power of each frequency
band and the total band power (i.e, the summation of average δ , θ , α and β band powers).
The four ratio band power measures for each epoch (θ +α)/β , α/β , (θ +α)/(α +β ), and
θ/β were also calculated. Since findings in experiment 1 showed a significant decrease
in δrelative and a significant increase in αrelative, the ratio between δrelative and αrelative (i.e.,
δ/α) was also calculated and further analysed in this study. Finally, the average of each
EEG spectral feature within each measurement time (i.e., six epochs each for baseline and
recovery, nine epochs each for levels 1 to 5) was calculated to represent the corresponding
spectral feature index of baseline, level 1, level 2, level 3, level 4, level 5, and recovery. The
average of EEG spectral features across the number of epochs or trials were considered in
many past studies (Abásolo et al., 2006; Cao et al., 2014; Chen et al., 2013; Jap et al., 2009;
Lal and Craig, 2002).

Largest Lyapunov Exponent

The largest Lyapunov exponent values for all epochs in the seven measurement time periods
for each participant was calculated using the function ‘lyapunovExponent()’ available in the

‘predictive maintenance toolbox’ of MATLAB. The embedding dimension, m = 5 and the
reconstruction delay or lag, τ = 11 was estimated using the function ‘phaseSpaceRecon-
struction()’ also available in ‘predictive maintenance toolbox’ of MATLAB. In this function,
m was estimated using the false nearest neighbour methods and τ was estimated using the
average mutual information method as explained in Section 3.2.2. The average of largest
Lyapunov exponent values within each measurement time (i.e., six epochs each for baseline
and recovery, nine epochs each for levels 1 to 5) was calculated to represent the corresponding
largest Lyapunov exponent value of the baseline, level 1, level 2, level 3, level 4, level 5, and
recovery.

Approximate Entropy

The approximate entropy for all epochs in the seven measurement time periods for each
participant was calculated using the function ‘approximateEntropy()’ available in the ‘predic-
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tive maintenance toolbox’ of MATLAB. An embedding dimension (m) of 2 and a similarity
criterion (r) of 0.2× std where std denotes the standard deviation of the time series were
often used in the fatigue literature (Hu and Min, 2018; Min et al., 2017; Mu et al., 2017;
Zhang et al., 2013). Therefore, m = 2 and r = 0.2× std were selected as the parameters in
this experiment. The average approximate entropy value within each measurement time (i.e.,
six epochs each for baseline and recovery, nine epochs each for levels 1 to 5) was calculated
and used with the statistical analysis. These average values represent the corresponding
approximate entropy value of the baseline, level 1, level 2, level 3, level 4, level 5, and
recovery.

5.1.6 Statistical Analysis

The statistical analysis was conducted using IBM SPSS Statistics 25 software. A p-value<0.05
was considered statistically significant denoting a 95% confidence interval. The normality
was assessed using Kolmogorov–Smirnov test.

As explained in section 5.1.5, eleven EEG features were extracted from the EEG data recorded
before, during and after the robot-mediated visuomotor tracking task from each participant.
A series of two-way repeated measures ANOVAs with within-subject factors: measurement
time and electrode location, were performed on these EEG features extracted from all 25
participants to determine whether spectral and nonlinear EEG features significantly varies
before, during and after the robot-mediated interactions (i.e., in total eleven two-way repeated
measures ANOVAs). The measurement time factor consisted of seven levels: baseline, level
1, level 2, level 3, level 4, level 5, and recovery. The electrode location factor consisted
of the 32 electrodes: FP1, FP2, F3, Fz, F4, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6,
CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, T7, T8, P7, and P8, used in this
experiment. The Greenhouse–Geisser correction was applied to the F statistic of each two-
way repeated measures ANOVA since Mauchly’s tests were significant and the assumption
of sphericity was violated (Field, 2018). The uncorrected degree of freedom, the corrected
p-value and the degree of sphericity (i.e., epsilon (ε) value) were reported for each two-way
repeated measures ANOVA. In this experiment, it was of main interest to find whether any
changes in EEG features were due to the interaction between the measurement time and
electrode location (i.e., measurement time × electrode location). Therefore, significant
interaction between measurement time and electrode location were further analysed using
Tukey least significant difference (LSD) for comparison of means to determine specifically
where differences existed. Furthermore, significant main effect of measurement time was
also further analysed using Tukey LSD for comparison of means. Significant main effect of
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electrode locations were not further analysed in this thesis. The effect sizes were expressed by
the partial eta-squared (η2

P) (Equation 3.41) and a small, medium, and large effects would be
reflected in η2

P values of 0.0099, 0.0588, and 0.1379, respectively (Cohen, 2013; Richardson,
2011).

5.2 Results

In the present work nine spectral EEG features (δrelative, θrelative, αrelative, βrelative, (θ +α)/β ,
α/β , (θ +α)/(α +β ), θ /β , and δ /α) and two nonlinear EEG features (largest Lyapunov
exponent and approximate entropy) were extracted from each participant. The aim of
this experiment was to examine how EEG features changed before, during and after the
robot-mediated visuomotor tracking task and to find the associations between EEG feature
modulations and fatigue induced by interacting with the GENTLE/EEG robot-mediated
system. In this section, the main findings related to the effects of fatigue induced by the
visuomotor tracking task are further discussed. The complete analysis of all EEG features is
given in Appendix B.2.

5.2.1 Modulations in EEG Spectral Features

Figure 5.12 shows the variations in sample mean of δrelative, αrelative, (θ +α)/(α +β ), and
δ /α , respectively, on all 32 electrodes across the measurement times: baseline, level 1,
level 2, level 3, level 4, level 5, and recovery. In general, a decreasing trend in δrelative,
(θ +α)/(α +β ), and δ /α was visible when progressing from level 1 to level 5 of the robot-
mediated visuomotor tracking task. The δrelative, (θ +α)/(α +β ), and δ /α during recovery
was also lower than the corresponding values during baseline. The above observations
suggest that the transition to fatigue may have caused a decrease in δrelative, (θ +α)/(α +β ),
and δ /α . In contrast, αrelative increased from level 1 to level 5. The αrelative at recovery was
also greater than the αrelative at baseline. Therefore, the rise in αrelative may also reflect the
effects of fatigue. Moreover, greater differences were visible from baseline to level 1 and
from level 5 to recovery, thereby reflecting a change in EEG activity caused by the task on-set
from the resting state and then when moving back to the resting state following the task.
For example, αrelative during both baseline and recovery were greater than that during the
robotic interaction whereas δrelative, (θ +α)/(α +β ), and δ /α during baseline and recovery
were lower than that during the robotic interaction. The above observation showed that
αrelative decreased during the onset of the robot-mediated interaction whereas and δrelative,
(θ +α)/(α +β ), and δ /α increased in comparison to the resting state EEG activity.

145



5.2 Results

FP1 FP2 F3 Fz F4 FC3 FCz FC4 C5 C3 C1 Cz C2 C4 C6 CP3 CPz CP4 P3 P1 Pz P2 P4 PO3 PO4 O1 Oz O2 T7 T8 P7 P8

Electrode location

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68
re

la
ti

v
e

Baseline

Level 1

Level 2

Level 3

Level 4

Level 5

Recovery

(a) δrelative

FP1 FP2 F3 Fz F4 FC3 FCz FC4 C5 C3 C1 Cz C2 C4 C6 CP3 CPz CP4 P3 P1 Pz P2 P4 PO3 PO4 O1 Oz O2 T7 T8 P7 P8

Electrode location

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

re
la

ti
v

e

Baseline

Level 1

Level 2

Level 3

Level 4

Level 5

Recovery

(b) αrelative

Figure 5.12: Comparison of the sample mean of (a) δrelative, (b) αrelative, (c) (θ +α)/(α +β ),
and (d) δ/α on all 32 electrodes between measurement times (baseline, level 1, level 2, level
3, level 4, level 5 and recovery) of the robot-mediated visuomotor tracking task. The amount
of change in each EEG feature from level 1 to level 5 (i.e., level 2 - level 1, level 3 - level
1, level 4 - level 1, and level 5 - level 1) may reflect the effects of fatigue build-up on the
corresponding EEG feature. The amount of change in each EEG feature from baseline to
recovery (i.e., recovery - baseline) may also reflect the effects of fatigue on the corresponding
EEG feature. Connecting lines in subfigures do not imply a linear relationship between
electrode locations but merely for the ease of identifying the numerical changes between
baseline, level 1, level 2, level 3, level 4, level 5 and recovery states. (continued on next page)
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Figure 5.12: Comparison of the sample mean of (a) δrelative, (b) αrelative, (c) (θ +α)/(α +β ),
and (d) δ/α on all 32 electrodes between measurement times (baseline, level 1, level 2, level
3, level 4, level 5 and recovery) of the robot-mediated visuomotor tracking task. The amount
of change in each EEG feature from level 1 to level 5 (i.e., level 2 - level 1, level 3 - level
1, level 4 - level 1, and level 5 - level 1) may reflect the effects of fatigue build-up on the
corresponding EEG feature. The amount of change in each EEG feature from baseline to
recovery (i.e., recovery - baseline) may also reflect the effects of fatigue on the corresponding
EEG feature. Connecting lines in subfigures do not imply a linear relationship between
electrode locations but merely for the ease of identifying the numerical changes between
baseline, level 1, level 2, level 3, level 4, level 5 and recovery states.
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Two-way repeated measures ANOVAs performed on δrelative, αrelative, (θ +α)/(α +β ), and
δ /α revealed statistically significant interaction between measurement time and electrode
locations (δrelative: F(186,4464) = 4.90, p = 0.000, ε = 0.046, η2

P = 0.170, power = 0.999;
αrelative: F(186, 4464) = 6.182, p = 0.000, ε = 0.026, η2

P = 0.205, power = 0.995; (θ +

α)/(α + β ): F(186, 4464) = 2.310, p = 0.017, ε = 0.048, η2
P = 0.088, power = 0.900;

and δ/α: F(186, 4464) = 2.248, p = 0.010, ε = 0.064, η2
P = 0.086, power = 0.950). The

interaction effect of δrelative and αrelative showed a larger effect size whereas (θ +α)/(α +β )

and δ/α showed a medium to large effect size. All features had sufficient power (i.e, over
80%) to find statistical differences in the interaction between measurement time and electrode
locations. Tables B.4, B.6, B.10, B.12 in Appendix B.2.14 summarise the p-values obtained
from the pairwise comparison of the interaction between measurement time and electrode
locations of δrelative, αrelative, (θ +α)/(α +β ), and δ/α , respectively.

Pairwise comparisons of the interaction between measurement time and electrode location
revealed significant variations in δrelative, αrelative, (θ +α)/(α+β ), and δ/α mostly localised
around central, parietal, and occipital brain regions when progressing from level 1 to level 2,
3, 4, and 5 of the visuomotor tracking task. Figure 5.13 shows the topographical distribution
of these significant differences between level 1-2, level 1-3, level 1-4, and level 1-5. All
electrodes in the central, parietal and occipital brain regions except O2 showed a significant
decrease in (θ +α)/(α +β ) from level 1 to level 5 of the task. Similarly, all electrodes in
the central, parietal and occipital brain regions except C5, C3, and C1 showed a significant
decrease in δ/α during the interaction. The δrelative showed significant decrease in all
electrodes in parietal and occipital brain regions except CP3 and CPz from level 1 to level 5.
In contrast, all electrodes in the central, parietal and occipital brain regions except C5 showed
a significant increase in αrelative from level 1 to level 5. The above observations suggest that
fatigue may have developed during the robot-mediated visuomotor tracking task, thereby
altering the brain activation patterns with time on task. Significant differences in αrelative

were also visible on the majority of electrodes localised around central, parietal and occipital
regions during the transition from level 1 to level 4. Also, (θ +α)/(α +β ) on the majority
of electrodes in central and parietal regions were significantly decreased from level 1 to level
4 whereas the significant decrease in δ/α from level 1 to level 4 were mostly around the
parietal brain region.

Figure 5.14 shows the comparison of the brain topographies of the difference in δrelative,
αrelative, (θ +α)/(α +β ), and δ/α between level 1 and level 5 (i.e., level 5 - level 1) of
the robotic interaction for four participants who showed higher and lower differences in
the subjective measures of fatigue with the difference in the sample mean. The selected
participants showed an increase in their fatigue levels as follows: physical fatigue level
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Figure 5.13: The topographical distribution of the significant differences in (a) δrelative, (b)
αrelative, (c) (θ +α)/(α +β ), and (d) δ/α between robot-mediated visuomotor tracking task
interaction levels. Circle colours blue, green and red represents p-values < 0.05, < 0.01, and
< 0.001, respectively.

percentages of C04 = 40.00%, C17 = 16.67%, C18 = 66.67%, C21 = 90.00%; mental fatigue
level percentages of C04 = 45.83%, C17 = 0.00%, C18 = 62.50%, C21 = 54.17%; and global
fatigue level percentages of C04 = 42.59%, C17 = 9.26%, C18 = 64.81%, C21 = 74.07%;
respectively. The analysis of the subjective measures of fatigue level is discussed in Chapter
6. A greater reduction in δrelative was visible in the parietal and occipital regions for the
sample mean as well as for these selected participants. Participants C18 and C21 showed
larger decrease in δrelative on the majority of electrodes in posterior region. An increase in
αrelative were visible in the sample mean of all participants and the largest variations were
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Figure 5.14: Comparison of the brain topographies of the difference in (a) δrelative, (b) αrelative,
(c) (θ +α)/(α +β ), and (d) δ/α between level 5 and level 1 (i.e., level 5 - level 1) for
C04, C17, C18, C21, and sample mean of all participants. In each brain map, the nose is
represented by the triangle on the top, and the right hemisphere is on the right. For δrelative,
(θ +α)/(α +β ), and δ/α , the blue-shaded areas indicate a larger decrease whereas the
red-shaded areas indicate an increase. For αrelative, the red-shaded areas indicate a larger
increase whereas the blue-shaded areas indicate a decrease.

observed around the central, parietal, and occipital brain regions. A greater increase in
αrelative for C04 was visible on right parietal region; for C17 on occipital region; and for C21
on central, parietal, occipital and temporal regions. A larger reduction in sample mean of
(θ +α)/(α +β ) were visible around the central and parietal regions, whereas the a larger
reduction in sample mean of δ/α were visible around the parietal and occipital regions. The
participants C17, C18 and C21 also shows a reduction in (θ +α)/(α +β ) around the central
and parietal regions. The participants C04, C18 and C21 shows a reduction in δ/α around
the parietal and occipital regions. Therefore, it was found that the individual variations in the
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brain topographies of the participants C04, C17, C18, and C21 were mostly similar to the
variations in the brain topographies of the sample mean of all participants.

Figure 5.15 shows the topographical distribution of significant differences in δrelative, αrelative,
(θ +α)/(α + β ), and δ/α from baseline to recovery of the robot-mediated visuomotor
tracking task. It can be seen that δ/α on left and midline central, parietal, and occipital brain
regions were mostly changed following the robot-mediated interaction. Also, all electrodes
in left and midline central and parietal regions except FC3 showed a significant decrease
in (θ +α)/(α +β ) from baseline to recovery. The reduction in δrelative from baseline to
recovery was visible on P3, PO3, and Oz electrodes whereas the increase in αrelative was
visible on P3 electrode only. Moreover, the direction of change in each EEG feature from
baseline to recovery were similar to the direction of change during the robot-mediated
interaction (i.e., from level 1 to level 5). Previous studies have also compared EEG data
recorded before and after a task to identify EEG feature modulations associated with fatigue
induced by physical and mental tasks (Chen et al., 2013; Cheng and Hsu, 2011; Ng and
Raveendran, 2007; Tanaka et al., 2012). Therefore, the significant variations observed from
baseline to recovery may have caused by fatigue accumulated during the robot-mediated
visuomotor tracking task.
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Figure 5.15: The topographical distribution of the significant differences in (a) δrelative, (b)
αrelative, (c) (θ +α)/(α +β ), and (d) δ/α from baseline to recovery of the robot-mediated
visuomotor tracking task. Circle colours blue and green represents p-values < 0.05 and
< 0.01, respectively.

Pairwise comparisons also revealed that δrelative, (θ +α)/(α +β ), and δ/α on all electrodes
were significantly increased from baseline to level 1 and then significantly decreased from
level 5 to recovery (except on T8 for (θ +α)/(α +β )). In contrast αrelative on all electrodes
were significantly decreased from baseline to level 1 and then significantly increased from
level 5 to recovery. The widespread significant differences in the EEG features from baseline
to level 1 and from level 5 to recovery may explain the changes in the brain activation patterns
from resting phase to an active movement phase and vice versa.
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5.2.2 Modulations in EEG Nonlinear Features

Figure 5.16 shows the variations in sample mean of largest Lyapunov exponent and approxi-
mate entropy, respectively, on all 32 electrodes across the measurement times: baseline, level
1, level 2, level 3, level 4, level 5, and recovery. In general, a decreasing trend was visible
in largest Lyapunov exponent on all electrodes except T7 when progressing from level 1 to
level 5 of the robot-mediated visuomotor tracking task. Also, largest Lyapunov exponent
values around central, parietal and occipital brain regions during recovery were lower than
the corresponding values during baseline. In contrast, a higher decrease in approximate
entropy from level 1 to level 5 were mostly visible around central and left parietal brain
regions and from baseline to recovery were mostly visible around left parietal brain region.
The above observations suggest that the transition to fatigue may have caused a decrease in
largest Lyapunov exponent and approximate entropy values of the recorded EEG data.

Two-way repeated measures ANOVAs performed on largest Lyapunov exponent and approx-
imate entropy revealed statistically significant interaction between measurement time and
electrode locations (largest Lyapunov exponent: F(186, 4464) = 2.660, p = 0.005, ε = 0.053,
η2

P = 0.100, power = 0.958; and approximate entropy: F(186, 4464) = 6.620, p = 0.000, ε =
0.041, η2

P = 0.216, power = 1.000). The interaction effect of the largest Lyapunov exponent
had a medium to large effect size and the interaction effect of the approximate entropy had
a larger effect sizes. Both nonlinear features had sufficient power (i.e, over 80%) to find
statistical differences in the interaction between measurement time and electrode locations.
Tables B.13 and B.14 in Appendix B.2.14 summarise the p-values obtained from the pairwise
comparison of the interaction between measurement time and electrode locations of largest
Lyapunov exponent and approximate entropy respectively.

Figure 5.17a shows the topographical distribution of the significant differences in largest
Lyapunov exponent between level 1-2, level 1-3, level 1-4, and level 1-5 of the visuomotor
tracking task. Pairwise comparisons of the interaction between measurement time and elec-
trode location showed a significant decrease in largest Lyapunov exponent localised around
parietal and occipital brain regions when progressing from level 1 to level 5. In contrast,
as can be seen in Figure 5.17b, left central brain regions showed a significant decrease in
approximate entropy when progressing from level 1 to level 5. The above observations also
suggest that fatigue may have developed during the robot-mediated visuomotor tracking
task. However, only the variations in largest Lyapunov exponent showed a widespread
topographical distribution similar to the EEG spectral feature modulations. Figure 5.18
which compares the brain topographies of the difference in largest Lyapunov exponent and
approximate entropy between level 1 and level 5 (i.e., level 5 - level 1) for four participants
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(a) Largest Lyapunov exponent.
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Figure 5.16: Comparison of the sample mean of (a) largest Lyapunov exponent and (b)
approximate entropy on all 32 electrodes between measurement times (baseline, level 1,
level 2, level 3, level 4, level 5 and recovery) of the robot-mediated visuomotor tracking
task. The amount of change in each EEG feature from level 1 to level 5 (i.e., level 2 - level
1, level 3 - level 1, level 4 - level 1, and level 5 - level 1) may reflect the effects of fatigue
build-up on the corresponding EEG feature. The amount of change in each EEG feature from
baseline to recovery (i.e., recovery - baseline) may also reflect the effects of fatigue on the
corresponding EEG feature. Connecting lines in subfigures do not imply a linear relationship
between electrode locations but merely for the ease of identifying the numerical changes
between baseline, level 1, level 2, level 3, level 4, level 5 and recovery states.
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Figure 5.17: The topographical distribution of the significant differences in (a) largest
Lyapunov exponent (LLyapExp) and (b) approximate entropy (AppEN) between visuomotor
tracking task interaction levels. Circle colours blue, green and red represents p-values < 0.05,
< 0.01, and < 0.001, respectively.

C04 C17 C18 C21 Sample mean

(a) LLyapExp

(b) AppEN

Figure 5.18: Comparison of the brain topographies of the difference in (a) largest Lyapunov
exponent (LLyapExp) and (b) approximate entropy (AppEN) between level 5 and level 1
(i.e., level 5 - level 1) for C04, C17, C18, C21, and sample mean of all participants. In each
brain map, the nose is represented by the triangle on the top, and the right hemisphere is
on the right. The blue-shaded areas indicate a larger decrease whereas the red-shaded areas
indicate an increase.
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and the sample mean also supported the above finding. As can be seen in Figure 5.18a, the
higher reduction in sample mean of largest Lyapunov exponent were mostly localised around
the posterior brain regions. Similarly, C18 and C21 participants showed larger reduction
in largest Lyapunov exponent around parietal and occipital regions and C17 showed larger
reduction around occipital region. However, the reduction in approximate entropy values
were mostly visible around the central region for the participants C04, C17, C18, and for
the sample mean of all participants (Figure 5.18b). Moreover, significant reduction from
baseline to recovery were only observed in the largest Lyapunov exponent (Figure 5.19). The
significant variations were localised mostly around the left central, left and midline parietal
and occipital brain regions. Therefore, the findings reveal that largest Lyapunov exponent
may be a better fatigue index than the approximate entropy to quantify the changes in the
complexity of brain with fatigue in robot-mediated visuomotor tracking task.
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Figure 5.19: The topographical distribution of the significant differences in (a) largest
Lyapunov exponent and (b) approximate entropy from baseline to recovery of the robot-
mediated visuomotor tracking task.

Pairwise comparisons also revealed that largest Lyapunov exponent on all electrodes were
significantly increased from baseline to level 1 and then significantly decreased from level 5
to recovery. These differences may also reflect the changes in the complexity of the brain
from resting phase to an active movement phase and vice versa since a larger number of
neurons are recruited to perform the task in hand during the active movement phase in
comparison to a resting phase.

5.2.3 Summary of EEG Spectral and Nonlinear Feature Variations
With Fatigue Induced by Robot-Mediated Visuomotor Tracking
Task

Pairwise comparisons of interaction between measurement time and electrode locations
on spectral and nonlinear EEG features found that the significant increase in αrelative and
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the significant decrease in δrelative, (θ +α)/(α +β ), δ/α and largest Lyapunov exponent
from level 1 to level 5 were mostly localised around central, parietal and occipital brain
regions. The EEG electrodes in the central, parietal and occipital brain regions that showed
significant variations are summarised in Table 5.3. These findings suggest that fatigue may
have accumulated during the visuomotor tracking task. Therefore, it can be inferred that
the significant modulations in spectral and nonlinear EEG features observed during level
5 when compared with level 1 may reflect the effects of fatigue on brain activity during a
robot-mediated interaction. The association of the change in these substantive EEG features
with the changes in subjective measures of fatigue and movement variability measures are
discussed in Chapter 6.

Table 5.3: Summary of spectral and nonlinear EEG features that showed significant variations
between level 1 and level 5 of the robot-mediated visuomotor interaction.

EEG Features Electrode locations Direction of
change

δrelative CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2 ↓

αrelative C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2 ↑

(θ +α)/(α +β ) FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz ↓

δ/α Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2 ↓

Largest Lyapunov exponent C2, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2 ↓

Notes. ↑ and ↓ represents the significant increase and decrease in the corresponding EEG features.

5.2.4 Modulations in the Largest Lyapunov Exponent and Relative
Alpha Band Power When Combined Together

Table 5.3 shows that only αrelative significantly increased with fatigue induced by robot-
mediated visuomotor tracking task, whereas the other EEG features significantly decreased.
Furthermore, findings of αrelative and largest Lyapunov exponent were in-line with findings
in the literature. Therefore, the effect of fatigue when both αrelative and largest Lyapunov
exponent features are combined together was also evaluated in this study. A new feature was
derived by dividing the largest Lyapunov exponent values (LLyapExp) from the correspond-
ing αrelative values (i.e., LLyapExp/αrelative).

Figure 5.20 shows the variations in sample mean of LLyapExp/αrelative on all 32 electrodes
across the measurement times: baseline, level 1, level 2, level 3, level 4, level 5, and recovery.
A decreasing trend was visible on all electrodes except T7 when progressing from level 1 to
level 5 of the robot-mediated visuomotor tracking task as well as from baseline to recovery.
Two-way repeated measures ANOVA found a statistically significant interaction between
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measurement time and electrode locations (F(186, 4464) = 2.336, p = 0.010, ε = 0.057, η2
P

= 0.089, power = 0.941). The interaction had a medium effect size and the power to find
differences was also high. The pairwise comparison of interaction between measurement time
and electrode locations is summarised in Table B.15 in Appendix B.2.14 . The topographical
distribution of the significant differences in LLyapExp/αrelative from level 1-2, level 1-3,
level 1-4, level 1-5, and baseline-recovery are shown in Figure 5.21. A significant decrease
in LLyapExp/αrelative localised mostly around the parietal and occipital brain regions were
visible on level 2, 3, 4, and 5 when compared with level 1 of the visuomotor tracking task.
Some EEG electrodes around central brain region (Cz, C2, C6) also showed significant
differences in LLyapExp/αrelative from level 1 to level 5. A significant reduction was also
visible from baseline to recovery around left and midline central, parietal and occipital
brain regions. As can be seen in Figure 5.22, the larger decrease in the sample mean
of LLyapExp/αrelative were mostly localised to the central, parietal and occipital regions.
Similar observations were also made for the participants C18 and C21. The above findings
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Figure 5.20: Comparison of the sample mean of LLyapExp/αrelative on all 32 electrodes
between measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery)
of the robot-mediated interaction. The amount of change in LLyapExp/αrelative from level
1 to level 5 (i.e., level 2 - level 1, level 3 - level 1, level 4 - level 1, and level 5 - level 1)
may reflect the effects of fatigue build-up on LLyapExp/αrelative. The amount of change in
LLyapExp/αrelative from baseline to recovery (i.e., recovery - baseline) may also reflect the
effects of fatigue on LLyapExp/αrelative. Connecting lines in the figure do not imply a linear
relationship between electrode locations but merely for the ease of identifying the numerical
changes between baseline, level 1, level 2, level 3, level 4, level 5 and recovery states.
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suggest that fatigue in a robot-mediated visuomotor tracking task could be evaluated by the
amount of decrease in LLyapExp/αrelative.
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Figure 5.21: The topographical distribution of the significant differences in
LLyapExp/αrelative between visuomotor tracking task interaction levels and from baseline to
recovery of the robot-mediated visuomotor tracking task.

C04 C17 C18 C21 Sample mean

Figure 5.22: Comparison of the brain topographies of the difference in LLyapExp/αrelative
for C04, C17, C18, C21, and sample mean of all participants. In each brain map, the nose
is represented by the triangle on the top, and the right hemisphere is on the right. The blue-
shaded areas indicate a larger decrease whereas the red-shaded areas indicate an increase.

5.3 Discussion

This chapter investigated the modulations in spectral and nonlinear EEG features with fatigue
induced by a robot-mediated visuomotor tracking task. The main findings of this experiment
were a significant increase in αrelative and a significant decrease in δrelative, (θ +α)/(α +β ),
δ/α , largest Lyapunov exponent, and LLyapExp/αrelative from level 1 to level 5 which is
localised mostly around central, parietal and occipital regions. These observations suggest
that fatigue may have accumulated during the robotic interaction. Neurophysiological
evidence has shown that the premotor, motor, parietal and occipital regions are collectively
engaged in visually guided arm reaching tasks (Berndt et al., 2002; Grafton et al., 1996;
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Naranjo et al., 2007). When reaching movements towards a visual target are performed,
the information about the target is selected by integrating both visual and somatosensory
information and the appropriate motor plan is formulated (Naranjo et al., 2007; Sabes, 2000).
The posterior parietal region is predominantly involved in visuospatial attention and spatial
orienting, transforming the location of the visual target into motor coordinates and forming
and updating the internal representations of limb and target positions (Berndt et al., 2002;
Lacquaniti et al., 1998; Yamaguchi et al., 1994). The premotor region is involved in receiving
visual input from parietal cortex and projecting to the primary motor area (Berndt et al.,
2002). Therefore, the topographical distribution of the significant observations may suggest
the deactivation of central, parietal and occipital brain regions due to fatigue progressed
during robot-mediated visuomotor tracking task.

A significant increase in αrelative was observed over the central, parietal, and occipital brain
regions from level 1 to level 5 of the robot-mediated visuomotor tracking task. An increase
in alpha activity with fatigue was also reported in the literature as summarised in Table
2.1. Furthermore, the preliminary experiment performed as part of this thesis also found an
increase in αrelative due to fatigue in robot-mediated gross motor and fine motor interactions.
The localised synchronisation of EEG alpha activity may represent electrophysiological
correlate of deactivated cortical areas, thereby suggesting that the brain regions are not
adequately processing sensory information or motor output and can be considered to be
in an idling state (Pfurtscheller et al., 1996). Therefore, the increase in αrelative during the
robot-mediated visuomotor tracking task may reflect a reduced capacity for information
processing in the central, parietal, and occipital cortical regions as a result of fatigue. The
significant decrease in the largest Lyapunov exponent and approximate entropy was also
consistent with previous observations (Liu et al., 2010; Xiong et al., 2016; Yao et al., 2009).
Both largest Lyapunov exponent and approximate entropy measures of EEG are used to
characterize the complexity and flexibility of information processing by the brain (Fell et al.,
1993; Kim et al., 2000; Liu et al., 2010; Stam et al., 1994). Here, the term ‘flexibility’ means
the facility of the central nervous system to reach different states of information processing
from similar initial states (Fell et al., 1993). Lyapunov exponents estimate the average
exponential rates of divergence or convergence of nearby trajectories in phase space. A
system with at least one positive Lyapunov exponent is defined to be chaotic (Wolf et al.,
1985), reflecting the sensitive dependence on initial conditions (Röschke et al., 1993). The
largest Lyapunov exponents observed were positive, thereby suggesting a chaotic behaviour
of the EEG during robot-mediated interaction. Yao et al. (2009) stated that the increase in
the largest Lyapunov exponents with increasing force levels during intermittent handgrip
maximal voluntary contractions may relate to increased neuronal firing and the recruitment
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of corticomotor cells associated with increased voluntary isometric effort (Thickbroom et al.,
1998). Therefore, the increased largest Lyapunov exponent may reflect increased complexity
in the signal and the increased flexibility of information processing. Furthermore, past studies
on sleep EEG analysis reported a fall in largest Lyapunov exponent as the person moves
from sleep stage I to sleep stage IV, thereby suggesting lesser neurons are available for
information processing due to cortical inactivation (Acharya et al., 2005; Fell et al., 1996;
Röschke et al., 1995a). The observed decrease in the largest Lyapunov exponent following
the robot-mediated visuomotor tracking task mostly over the parietal and occipital regions,
may thereby reflect a decrease in information processing flexibility around the motor cortex.
A larger value of approximate entropy correspond to greater randomness and unpredictability,
whereas a lower value of approximate entropy reflects a higher degree of regularity and
predictability in a time series (Pincus and Viscarello, 1992; Richman and Moorman, 2000).
Bruhn et al. (2000) found a decrease in approximate entropy with increasing desflurane
concentrations during anaesthesia, thereby suggesting an increased amount of regularity
under high desflurane concentrations. Abásolo et al. (2005) found lower approximate entropy
in Alzheimer’s disease patients than in control subjects, thereby suggesting a more regular
and less complex electorphysiological behaviour of the brain. Therefore, the reduction in
approximate entropy values observed around the central brain regions following the robot-
mediated interaction may suggest the deficient information processing of the cortex due to
the progression of fatigue.

The observed suppression in δrelative over parietal and occipital cortical regions following the
robot-mediated visuomotor tracking task is contrary to some previous studies which have
suggested a significant increase or no significant difference in δ activities due to fatigue
(Craig et al., 2012; Lal and Craig, 2002; Zhao et al., 2012). However, a similar observation
was made in the preliminary experiment; therefore, it can be confirmed that fatigue induced
by robot-mediated interactions may suppress δrelative. Since visuomotor tracking task required
more concentration and attention levels, this finding can also be related to deficient inhibitory
control and information-processing mechanisms. In general, an increase in θ band power
was observed in the fatigue literature (Barwick et al., 2012; Cheng and Hsu, 2011; Craig
et al., 2012; Zhao et al., 2012). Therefore, the reduction in θrelative on FC3, C3, C1, Cz,
and CP3 electrodes is also contrary to some previous studies (Section B.2.2). However,
Baumeister et al. (2012) has reported a significant reduction in θ band power over frontal
and fronto-central brain regions due to the effects of fatigue induced by a cycling exercise
on knee joint reproduction task. Thus, the above finding, while preliminary, may suggest
that fatigue induced by robot-mediated visuomotor tracking tasks suppress the θrelative over
central brain regions.
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Both (θ +α)/(α +β ) and δ/α power ratios also significantly decreased following the robot-
mediated interaction. A widespread increase in (θ +α)/(α +β ) was visible with mental
fatigue in visual search task (Fan et al., 2015). Driver fatigue also increased (θ +α)/(α +β )

on temporal brain regions (Jap et al., 2009). Therefore, the decrease in (θ +α)/(α +β ) over
central, parietal and occipital brain regions observed in this experiment do not support the
previous research. Since there was an increase in αrelative (Figures 5.12b) and βrelative (Figure
B.4) and decrease in θrelative (Figure B.2) over the central, parietal and occipital regions,
the suppression in (θ +α)/(α +β ) may be caused by the mutual addition of band powers.
The suppression of δ/α also showed a widespread topographical distribution. Since the
variation in δrelative and αrelative were consistent with findings of the preliminary experiment,
δ/α can be considered collectively as a measure of fatigue in robot-mediated interactions.
Although not significant, an increase in (θ +α)/β over the parietal region and an increase
in α/β on all EEG electrodes were observed from level 1 to level 5 of the robotic interaction
(Sections B.2.5 and B.2.6). These observations were in line with those of previous studies,
thereby suggesting that the fatigue induced by the visuomotor task may have increased the
low-frequency activities while suppressing the high-frequency activities. The modulations in
(θ +α)/β and α/β were not further explored in this study since significant variations were
not found between level 1 and 5.

In addition to the EEG-based fatigue measures used in literature, a new feature was derived
in this study by combing the modulations in αrelative and largest Lyapunov exponent. A
decreasing trend was visible in this new feature, LLyapExp/αrelative for all EEG electrodes.
The significant decrease was localised mostly around central, parietal and occipital brain
regions from level 1 to level 5. Also, the left and midline central, parietal and occipital brain
regions showed significant differences from baseline to recovery. Therefore, this new feature
can be used instead of the two EEG features, αrelative and largest Lyapunov exponent, thereby
reducing the complexity of the EEG-based fatigue estimation system.

A widespread significant differences were also observed from baseline to level 1 and from
level 5 to recovery on the majority of EEG features. These differences explain the changes
in the brain activation patterns from resting phase to an active movement phase and vice
versa. For instance, a suppression in alpha activity over sensorimotor cortex relative to the
resting conditions were observed by active or passive movements of the hand/arm, planning
of voluntary movement, attention to or preparation for activity (Arroyo et al., 1993; Chatrian
et al., 1959; Pellouchoud et al., 1999; Pfurtscheller et al., 1996). Also, the complexity and
the information processing flexibility of the brain greatly increase when a larger number
of cortical neurons are recruited to perform the task in hand (Thickbroom et al., 1998).
A significant increase in the largest Lyapunov exponent on all EEG electrode locations
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from baseline to level 1 of the robotic interaction and a significant decrease from level
5 to recovery were observed in this experiment. The above observations may reflect the
increased neuronal firing and the recruitment of corticomotor cells during the robot-mediated
visuomotor tracking task in comparison to resting state of the brain.

5.4 Conclusions

Modulations in spectral and nonlinear EEG features due to fatigue induced by robot-mediated
visuomotor tracking task were presented in this chapter. The observed significant differences
in δrelative, αrelative, (θ +α)/(α +β ), δ/α , and largest Lyapunov exponent may reflect the
changes in participant’s level of fatigue during the robot-mediated visuomotor tracking task.
Also, a new feature which evaluated the combined effect of modulations in largest Lyapunov
exponent and αrelative was proposed in this chapter. The new feature, LLyapExp/αrelative

also showed a significant decrease following the robot-mediated interaction, thereby may be
considered as a EEG-based fatigue measure in future studies. Furthermore, the significant
differences in the substantive EEG features were mostly localised to central, parietal and
occipital brain regions. Therefore, it can be concluded that the fatigue accumulated during
robot-mediated visuomotor tracking tasks mostly reduce the information processing capacity
and the complexity of the central, parietal and occipital brain regions. Chapter 6 will further
explore the association of these EEG-based fatigue measures with the subjective measures of
level of fatigue and movement-variability measures of the upper limb.
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Chapter 6

Experiment 2 - Part II: Association of the
Modulations in EEG Features with
Subjective Measures of the Level of
Fatigue and Movement Variability
Measures

Chapter 5 discussed the design of experiment 2 in detail and the modulations in spectral
and nonlinear EEG features with fatigue accumulated during the robot-mediated visuomo-
tor tracking task. A significant increase in αrelative and a significant decrease in δrelative,
(θ +α)/(α + β ), δ/α , largest Lyapunov exponent (LLyapExp), and LLyapExp/αrelative

were found mostly localised around central, parietal, and occipital brain regions when pro-
gressing from Level 1 of the visuomotor tracking task to Level 5. Therefore, it was of
interest to see how these EEG feature variations during the task are related to the change in
subjective measures of the level of fatigue following the task and the movement variability
measures estimated during the task. In this chapter, firstly, the participant’s feedback obtained
using questionnaires given before and after the robotic interaction are further analysed to
evaluate the variations in the level of fatigue following the visuomotor tracking task and the
comfortability of the task. Then, the variations in the mean absolute distance (MAD) and
root mean square distance (RMSD) between control and guide points from Level 1 to Level 5
of the robotic interaction are investigated. These two movement variability measures reflect
the accuracy of tracking the guide point during the task. Finally, the association between the
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EEG feature modulations, change in the subjective measures of the level of fatigue and the
movement variability measures are investigated.

6.1 Methods and Materials

In the following sections the methods used to analyse the subjective measures of fatigue and
the movement variability measures are discussed.

6.1.1 Subjective Measures of the Level of Fatigue and Comfortability

The questionnaires used in this experiment are given in Appendix C.2. The questionnaire
given before the task was used to gather information about the participant’s demographics,
and subjective measures of their physical and mental fatigue level before performing the
robot-mediated visuomotor tracking task. The questionnaire given after the task, on the
other hand, was used to obtain a subjective measure of the physical and mental fatigue levels
following the robot-mediated visuomotor tracking task, and a feedback on the underlying
comfortability of the experiment. The following sections describe the questionnaires used to
estimate the level of fatigue and comfortability in this experiment in detail.

A. Subjective Measures of the Level of Fatigue

Many self-administered questionnaires have been developed to obtain a subjective measure of
fatigue (Jackson, 2014; Neuberger, 2003; Shahid et al., 2010). Most of these questionnaires
were explicitly made to assess the effects of fatigue due to medical conditions. In this
experiment, a 9-item questionnaire was used to obtain a self-report of the fatigue state of
each individual before and after the robot-mediated interaction. The nine statements are as
follows,

1. Physically, do you feel exhausted?
2. Do you feel sleepy or drowsy?
3. Mentally, do you feel exhausted?
4. Do you feel less strength in your muscles?
5. Do you have difficulties in concentrating?
6. Do you need to rest?
7. Are you motivated?
8. Do you feel tired?
9. How alert do you feel?
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Statements 1 and 3 were adapted from the Fatigue Assessment Scale (FAS) (Michielsen et al.,
2003) and the statements 2, 4, 5, and 6 from the Chalder Fatigue Scale (CFQ 11) (Chalder
et al., 1993). Statements 1, 2, 4, 6, and 8 are related to the symptoms of physical fatigue.
Statements 3, 5, 7, and 9 are related to the symptoms of mental fatigue. Each statement
contains a 7-point scale, with ‘1’ representing ‘Not at all’ and ‘7’ representing ‘Extremely’.
The scoring of each statement was done by using a Likert score with weights assigned to
each response choice. For statements 1, 2, 3, 4, 5, 6, and 8, the Likert scale responses starting
from the extreme left were assigned the scores 0, 1, 2, 3, 4, 5, and 6. For statements 7 and 9,
the responses starting from the extreme left were assigned the scores 6, 5, 4, 3, 2, 1, and 0, as
a higher rating for motivation or alert reflects a fatigue-free state. The sum of all individual
response scores contributed to the global fatigue level scores. Therefore, the global fatigue
score for this study ranged from 0 to 54, and a higher score indicated a greater fatigue level.
In addition, separate scores for both physical and mental fatigue levels were calculated by
summing the individual response scores corresponding to the statements related to physical
and mental symptoms of fatigue. The physical fatigue scores ranged from 0 to 30, and
the mental fatigue score ranged from 0 to 24. The percentage value of physical, mental
and global fatigue scores from the maximum value of each fatigue type was calculated to
compare the differences between fatigue levels obtained before and after the interaction. The
percentage fatigue levels were also used to identify physical and mental fatigue contributions
towards the global fatigue level.

B. Feedback on the Comfortability of the Robot-Mediated Visuomotor Tracking Task

A subjective assessment was also performed to obtain feedback on the comfortability of the
robot-mediated interaction. The following five statements which also contain a 7-point rating
scale, with ‘1’ representing ‘Not at all’ and ‘7’ representing ‘Extremely’ was used to obtain
the participant’s feedback on the experiment protocol.

1. Performing the task was physically exhausting
2. Performing the task was mentally exhausting
3. It was difficult to move the robot arm in early stages of the interaction
4. It was difficult to move the robot arm in later stages of the interaction
5. Eye strain was experienced during the task

6.1.2 Measures of Movement Variability

In robot-mediated interactions the movement variability is often reported as the mean absolute
values of the distance (MAD) of each point of the path from the theoretic path or as the root
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mean square distance (RMSD) between the target trajectory followed by the user and the
actual trajectory needs to be followed (Colombo et al., 2005; Huang et al., 2020; Song et al.,
2008). In this experiment, participants were instructed to track the trajectory followed by
the guide point at a speed similar to the speed of the guide point. Therefore, both mean
absolute distance and root mean square distance between control and guide points provide
a measure of movement variability during the task. These two measures were calculated
and compared to evaluate the association of fatigue and movement variability measures.
Findings can be used to infer whether fatigue was developed as a consequence of maintaining
increased tracking accuracies or whether participants followed adaptation strategies to reduce
the fatigue build-up. EEG data analysis of this experiment (Chapter 5) found significant
differences in EEG features between level 1 and level 5 of the visuomotor tracking task
localised mostly around central, parietal and occipital brain regions. Therefore, the movement
variability measures for each participant were only calculated for the kinematic data gathered
during level 1 and level 5. A pictorial representation of the kinematic data segmentation at
level 1 and 5 is given in Figure 6.1. Kinematic data recorded when participants respond to
message boxes and the robot arm moves to the starting position following the ‘key-press’
event (Section 5.1.3) were eliminated from further analysis.

Kinematic data recorded during Level 1 of the robot-mediated visuomotor tracking task (5 mins)

Movement of the robot to 

the starting position

Kinematic data used to extract movement variability measures during Level 1

Responding to message 

boxes

(a) Level 1

Kinematic data recorded during Level 5 of the robot-mediated visuomotor tracking task (5 mins)

Movement of the robot to 

the starting position

Kinematic data used to extract movement variability measures during Level 5

Responding to message 

boxes

(b) Level 5

Figure 6.1: Kinematic data segmentation at level 1 and level 5 of the robot-mediated visuo-
motor tracking task.

The mean absolute distance and the root mean square distance between control and guide
points at level 1 and level 5 were calculated separately as explained below. Firstly, the
absolute distance between the control point position, pci = [xci, yci, zci] (a 3 dimensional
space position vector) and the guide point position pgi = [xgi, ygi, zgi] at each sampling point,
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i was calculated as the Euclidean distance between the two points, di,

di =
√

(xci − xgi)
2 +(yci − ygi)

2 +(zci − zgi)
2 (6.1)

where i = 1, . . . ,N and N is the total number of positional data samples within each level.
Then, the mean absolute distance between control and guide points at each level (MAD) was
calculated using equation 6.2,

MAD =
∑

N
i=1 di

N
. (6.2)

The root mean absolute distance between control and guide points at each level was calculated
using equation 6.3,

RMSD =

√
N

∑
i=1

d2
i

N
. (6.3)

For a perfectly traced path, these measures will approximate zero (Colombo et al., 2005;
MacKenzie et al., 2001). An increment in both measures with time may imply a rise in
movement variability during the tracking task.

6.1.3 Statistical Analysis

The statistical analysis was conducted using IBM SPSS Statistics 25 software. A p-value<0.05
was considered statistically significant denoting a 95% confidence interval. The normality
was assessed using Kolmogorov–Smirnov test.

A. Statistical Analysis of Subjective Measures of the Level of Fatigue

Differences in the percentage values of physical, mental and global fatigue levels of all
participants calculated before and after the robot-mediated visuomotor tracking task were
normally distributed. Therefore, paired-samples t-tests were performed separately on each
subjective measure of fatigue level to identify the significant differences in fatigue level
following the robot-mediated visuomotor tracking task. The effect sizes were expressed by
the Pearsons’ correlation coefficient calculated using the equation 3.40. Cohen’s benchmarks
were used to interpret the effect sizes (i.e., r value of 0.1, 0.3, 0.5 represents small, medium
and large effect respectively).

B. Statistical Analysis of Movement Variability Measures

The difference in mean absolute distance between level 1 and level 5 of the robot-mediated
visuomotor tracking task of all participants was normally distributed. Similarly, the difference
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in root mean square distance between level 1 and level 5 of the task of all participants was
normally distributed. Therefore, paired-samples t-tests were performed separately on each
movement variability measure to find whether these measures significantly changed during
the task. The effect sizes were expressed by the Pearsons’ correlation coefficient calculated
using the equation 3.40. Cohen’s benchmarks were used to interpret the effect sizes (i.e., r
value of 0.1, 0.3, 0.5 represents small, medium and large effect respectively).

C. Correlation Analysis of EEG Features, Subjective Measures of the Level of Fatigue
and Movement Variability Measures

The association of the change in prominent EEG features (δrelative, αrelative, (θ +α)/(α +β ),
δ/α , largest Lyapunov exponent (LLyapExp), LLyapExp/αrelative) around central, parietal
and occipital brain regions with the change in subjective measures of fatigue level and
the change in movement variability measures of all participants were analysed using the
Pearson’s correlation coefficient. Also, the relationship between the subjective measures
of fatigue level and the movement variability measures were analysed using the Pearson’s
correlation coefficient. The change in each EEG feature was calculated by deducting the EEG
feature value during level 1 of the task from the EEG feature value during level 5 of the task
(i.e., value of EEG feature at level 5 - value of EEG feature at level 1) around central, parietal
and occipital regions. Similarly, the change in each subjective measure of fatigue level was
calculated by deducting the subjective measure obtained before the robotic interaction from
the subjective measure obtained after the robotic interaction (i.e., subjective fatigue level
percentage after the task - subjective fatigue level percentage before the task). The change
in movement variability measures (MAD and RMSD) were calculated by deducting the
movement variability value during level 1 of the task from the movement variability value
during level 5 of the task (i.e., value of MAD or RMSD at level 5 - value of MAD or RMSD
at level 1).

6.2 Results

6.2.1 Subjective Measures of the Level of Fatigue and Comfortability

A. Subjective Measures of the Level of Fatigue

Tables 6.1 and 6.2 summarise the total number and percentage of responses received for
each Likert scale category of individual statements before and after interacting with the
robot-mediated visuomotor tracking task. The two tables clearly show an increase in the
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ratings given for statements 1, 2, 3, 4, 5, 6, and 8 after the task whereas a decrease in the
ratings given for statements 7 and 9. These observations suggest that the participants fatigue
levels were changed following the robotic interaction.

A summary of the calculated individual physical, mental and global fatigue level percentages
is given in Table 6.3. Figure 6.2 shows the variations in physical, mental and global fatigue
level percentages obtained before and after the visuomotor tracking task for each participant.
It was found that the majority of participants experienced an increase in their physical (23/25
participants) and mental (20/25 participants) fatigue levels following the visuomotor tracking
task, thereby leading towards an increase in their global fatigue levels (23/25 participants).
The participant’s feedback also revealed that most participants experienced a comparatively
larger increase in the physical fatigue levels than the increase in the mental fatigue levels.
Therefore, the subjective responses may imply that the visuomotor tracking task performed
using HapticMASTER caused more physical fatigue than mental fatigue. Also, the greater

Table 6.3: Summary of the subjective measures of the level of fatigue following the robot-
mediated visuomotor tracking task.

Subject ID
Physical fatigue level (%) Mental fatigue level (%) Global fatigue level (%)

Before After After-Before Before After After-Before Before After After-Before

C01 0.00 26.67 26.67 0.00 20.83 20.83 0.00 24.07 24.07

C02 13.33 86.67 73.33 16.67 75.00 58.33 14.81 81.48 66.67

C03 0.00 40.00 40.00 8.33 8.33 0.00 3.70 25.93 22.22

C04 0.00 40.00 40.00 0.00 45.83 45.83 0.00 42.59 42.59

C05 0.00 66.67 66.67 0.00 62.50 62.50 0.00 64.81 64.81

C06 0.00 30.00 30.00 0.00 29.17 29.17 0.00 29.63 29.63

C07 0.00 60.00 60.00 0.00 58.33 58.33 0.00 59.26 59.26

C08 13.33 86.67 73.33 16.67 54.17 37.50 14.81 72.22 57.41

C09 10.00 73.33 63.33 0.00 58.33 58.33 5.56 66.67 61.11

C10 0.00 70.00 70.00 8.33 62.50 54.17 3.70 66.67 62.96

C11 6.67 70.00 63.33 12.50 50.00 37.50 9.26 61.11 51.85

C12 23.33 23.33 0.00 20.83 16.67 -4.17 22.22 20.37 -1.85

C13 13.33 60.00 46.67 16.67 54.17 37.50 14.81 57.41 42.59

C14 3.33 33.33 30.00 0.00 0.00 0.00 1.85 18.52 16.67

C15 20.00 46.67 26.67 25.00 29.17 4.17 22.22 38.89 16.67

C16 0.00 53.33 53.33 0.00 12.50 12.50 0.00 35.19 35.19

C17 0.00 16.67 16.67 4.17 4.17 0.00 1.85 11.11 9.26

C18 0.00 66.67 66.67 0.00 62.50 62.50 0.00 64.81 64.81

C19 0.00 60.00 60.00 0.00 54.17 54.17 0.00 57.41 57.41

C20 0.00 60.00 60.00 4.17 25.00 20.83 1.85 44.44 42.59

C21 0.00 90.00 90.00 0.00 54.17 54.17 0.00 74.07 74.07

C22 0.00 33.33 33.33 16.67 20.83 4.17 7.41 27.78 20.37

C23 6.67 53.33 46.67 0.00 41.67 41.67 3.70 48.15 44.44

C24 10.00 90.00 80.00 0.00 75.00 75.00 5.56 83.33 77.78

C25 20.00 16.67 -3.33 20.83 16.67 -4.17 20.37 16.67 -3.70
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(a) Physical fatigue level percentage.
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(b) Mental fatigue level percentage.
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(c) Global fatigue level percentage.

Figure 6.2: Subjective measures of (a) physical, (b) mental, and (c) global fatigue level
percentages before and after the robot-mediated visuomotor tracking task for all participants.
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increase in physical fatigue level may have mostly contributed to the increase in global
fatigue level following the robot-mediated visuomotor tracking task.

Table 6.4 summarises the paired-samples t-test results of subjective measures of the level of
fatigue. Also, the sample mean and standard deviation of the subjective measures obtained
before and after the robot-mediated visuomotor tracking task is shown in Figure 6.3. The
paired-samples t-test revealed that the physical (t = -10.047, p = 0.000, r = 0.899), mental
(t = -6.461, p = 0.000, r = 0.797) and global (t = -8.800, p = 0.000, r = 0.874) fatigue
levels increased significantly following the robotic interaction. Moreover, these significant
differences had a larger effect size.

Table 6.4: Paired-samples t-test results of the subjective measures of level of fatigue following
the robot-mediated visuomotor tracking task.

Type of fatigue
Sample mean ± std (%) Paired samples t-test

Direction of
changeBefore After t df p-value r

Physical fatigue level 5.60±7.62 54.14±22.76 -10.047 24 0.000 0.899 ↑

Mental fatigue level 6.83±8.58 39.67±22.82 -6.461 24 0.000 0.797 ↑

Global fatigue level 6.15±7.55 47.707±21.83 -8.800 24 0.000 0.874 ↑

Notes. ↑ = significant increase.
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Figure 6.3: Comparison of sample mean and standard deviation of physical, mental and
global fatigue level percentages before and after the robot-mediated visuomotor tracking task.
The statistical significance, p < 0.00 is represented by asterisks (***).
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B. Feedback on the Comfortability of the Robot-Mediated Visuomotor Tracking Task

Table 6.5 summarises the total number and percentage of responses received for each Likert
scale category of the individual statements related to comfortability of the robot-mediated
visuomotor tracking task. The responses showed that the majority of the participants felt
that performing the task was physically exhausting than mentally exhausting. Also, it was
found that the task caused an eye strain on most participants, thereby suggesting that tracking
the guide point may have caused the increase in eye strain. Furthermore, most participants
reported that it was difficult to move the robot arm in latter stages of the interaction than the
early stages of the interaction. These responses showed that although participants were not
aware of the increase in the damping coefficient values with time, they felt the increase in
difficulty level with time.

6.2.2 Measures of Movement Variability

Figures 6.4a and 6.4b illustrate the first forward loop motion (i.e., from Segment 1 to 12) of
the control point and the guide point for two participants, C05 and C11, respectively. Paths of
the control point reflect that both participants were unable to perfectly trace the trajectories
covered by the guide point during the first forward loop of each level. Both participants
also showed an increase in mean absolute distance (MAD) between control and guide points
when progressing from level 1 to level 5 (i.e., MAD at level 1 for C05 = 4.21, C11 = 2.59
and MAD at level 5 for C05 = 6.12, C11 = 3.38). Similarly, an increase in root mean square
distance (RMSD) between control and guide points were also visible from level 1 to level
5 (i.e., RMSD at level 1 for C05 = 4.92, C11 = 3.22 and RMSD at level 5 for C05 = 7.40,
C11 = 4.53). Since both participants reported an increase in their physical and mental fatigue
levels following the task (i.e., physical fatigue level before the task for C05 = 0.00%, C11 =
6.67% and after the task for C05 = 66.67%, C11 = 70.00%; mental fatigue level before the
task for C05 = 0.00%, C11 = 12.50% and after the task for C05 = 62.50%, C11 = 50.00%),
the increased irregularity in the control point trajectory from level 1 to level 5 of the task may
be due to the fatigue accumulated during the interaction.

Table 6.6 summarises the paired-samples t-test results of mean absolute distance and root
mean square distance between control and guide points. Although the sample mean of both
measures showed an increase when progressing from level 1 to level 5 of the visuomotor
tracking task, the differences were not significant. Figure 6.5 shows the variations in both
movement variability measures from level 1 to level 5 of the visuomotor tracking task for each
participant. As can be seen in Figure 6.5a, most participants (15/25 participants) showed an
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(a) Participant ID: C05, change in MAD = 1.92, RMSD = 0.79, physical fatigue = 66.67% and mental
fatigue level = 62.50%
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Figure 6.4: The first forward loop motion (i.e., segments 1 to 12) of the guide point and
control point during the robot-mediated visuomotor tracking task for the participants (a)
C05 and (b) C11. MAD and RMSD refers to mean absolute distance and root mean square
distance between control and guide points.
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Table 6.6: Paired-samples t-test results of movement variability measures between level 1
and level 5 of the robot-mediated visuomotor interaction.

Movement variability
measure

Sample mean ± std (cm) Paired samples t-test

Level 1 Level 5 t df p-value r

Mean absolute distance 3.48±1.55 3.70±2.06 -1.160 24 0.258 0.230

Root mean square distance 4.23±1.83 4.53±2.46 -1.229 24 0.000 0.243
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Figure 6.5: Variations in movement variability measures during level 1 and level 5 of the
robot-mediated visuomotor tracking task for all participants. (a) Mean absolute distance
(MAD) between control and guide points and (b) root mean square distance (RMSD) between
control and guide points.
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increase in mean absolute distance between guide and control points. Also, most participants
(13/25 participants) showed an increase in root mean square distance between guide and
control points. Therefore, findings may suggest that although not significant, an increase in
both movement variability measures from level 1 to level 5 of the task were found for most
participants.

6.2.3 Association of the Subjective Measures of the Level of Fatigue
with the Significant EEG Feature Variations

Chapter 5 found a significant increase in αrelative and significant decrease in δrelative, (θ +

α)/(α +β ), δ/α , largest Lyapunov exponent, and LLyapExp/αrelative EEG features from
level 1 to level 5 of the robot-mediated visuomotor tracking task. The variations in the
substantive EEG features were mainly localised around the central, parietal and occipital
brain regions. Participant’s feedback showed a significant increase in both physical and
mental fatigue levels following the robotic interaction. Also, most participants experienced a
comparatively larger increase in the physical fatigue levels than the increase in the mental
fatigue levels. Therefore, the correlation analysis was performed to identify the association
between the change in substantive EEG features (value of each EEG feature at level 5 - value
of each EEG feature at level 1) and the change in subjective measures of physical and mental
fatigue level (fatigue level percentage after the task - fatigue level percentage before the task).

Table 6.7 summarises the findings of Pearson’s correlation coefficient (r and p-value) per-
formed on the change in subjective measures of physical fatigue level and the change in
δrelative, αrelative, (θ +α)/(α +β ), δ/α , largest Lyapunov exponent, LLyapExp/αrelative, re-
spectively. The change in αrelative on all EEG electrodes around central, parietal and occipital
brain regions were positively correlated with the change in physical fatigue level. Negative
correlations were found between the change in physical fatigue level and the change in
(θ +α)/(α +β ), δ/α , largest Lyapunov exponent, LLyapExp/αrelative, respectively on all
EEG electrodes around central, parietal and occipital brain regions. Significant negative
correlations were visible on FC3, C5, C3, C1, Cz, CP3, CPz, P3, P1, and Pz electrodes
for (θ +α)/(α +β ); on FC3, CP3, and P3 electrodes for largest Lyapunov exponent, and
on FC3, C3, C1, Cz, and CP3 electrodes for LLyapExp/αrelative. Figure 6.6 shows the
correlation between the change in physical fatigue level and the change in (θ +α)/(α +β ),
largest Lyapunov exponent, and LLyapExp/αrelative on CP3 electrode. It was visible that
most participants who reported a greater increase in their physical fatigue level also showed a
greater reduction in (θ +α)/(α +β ), largest Lyapunov exponent, and LLyapExp/αrelative on
CP3 electrode. Table 6.8, on the other hand, summarises the findings of Pearson’s correlation
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6.2 Results

coefficient (r and p-value) performed on the change in subjective measure of mental fatigue
level and the change in δrelative, αrelative, (θ +α)/(α +β ), δ/α , largest Lyapunov exponent,
LLyapExp/αrelative, respectively. Positive correlations were found between the change in
mental fatigue level and the change in αrelative on all EEG electrodes around central, parietal
and occipital brain regions. In contrast, negative correlations were found between the change
in mental fatigue level and the change in (θ +α)/(α +β ) on all EEG electrodes around
central, parietal and occipital brain regions. Significant correlations were not visible between
the change in mental fatigue level and the change in EEG features. Therefore, the above
findings may suggest that the increase in αrelative, and the decrease in (θ +α)/(α +β ), δ/α ,
largest Lyapunov exponent, LLyapExp/αrelative were most likely caused by the increase in
physical fatigue level during the robot-mediated visuomotor tracking task.
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Figure 6.6: Correlation between the change in physical fatigue level and the change in (a)
(θ +α)/(α +β ), (b) largest Lyapunov exponent, and (c) LLyapExp/αrelative from level 1 to
level 5 of the robot-mediated visuomotor tracking task on CP3 electrode.

6.2.4 Association of the Movement Variability Measures with the Sig-
nificant EEG Feature Variations

The correlation analysis was also performed to identify the association between the change
in substantive EEG features (value of EEG feature at level 5 - value of EEG feature at
level 1) around central, parietal and occipital brain regions and the change in movement
variability measures (value of MAD or RMSD at level 5 - value of MAD or RMSD at
level 1) during the robot-mediated visuomotor tracking task. Table 6.9 summarises the
findings of Pearson’s correlation coefficient (r and p-value) performed on the change in
mean absolute distance and the change in δrelative, αrelative, (θ +α)/(α +β ), δ/α , largest
Lyapunov exponent, LLyapExp/αrelative, respectively. The change in αrelative on all EEG
electrodes around central, parietal and occipital brain regions were negatively correlated

179



6.2 Results
Ta

bl
e

6.
9:

C
or

re
la

tio
n

be
tw

ee
n

th
e

ch
an

ge
in

su
bs

ta
nt

iv
e

EE
G

fe
at

ur
es

fr
om

le
ve

l1
to

le
ve

l5
an

d
th

e
ch

an
ge

in
m

ea
n

ab
so

lu
te

di
st

an
ce

be
tw

ee
n

co
nt

ro
la

nd
gu

id
e

po
in

ts
fr

om
le

ve
l1

to
le

ve
l5

.

E
E

G
fe

at
ur

e
Pe

ar
so

n’
sc

or
re

la
tio

n
co

ef
fic

ie
nt

FC
3

FC
z

FC
4

C
5

C
3

C
1

C
z

C
2

C
4

C
6

C
P3

C
Pz

C
P4

P3
P1

Pz
P2

P4
PO

3
PO

4
O

1
O

z
O

2

δ
re

la
tiv

e

r
0.

24
8

0.
12

1
0.

18
0

0.
32

2
0.

34
6

0.
35

5
0.

25
5

0.
21

6
0.

24
4

0.
10

9
0.

32
6

0.
25

4
0.

19
9

0.
28

6
0.

33
0

0.
24

3
0.

21
1

0.
22

3
0.

23
7

0.
25

6
0.

21
6

0.
19

0
0.

19
5

p-
va

lu
e

0.
23

3
0.

56
6

0.
38

9
0.

11
6

0.
09

0
0.

08
2

0.
21

8
0.

30
0

0.
24

0
0.

60
5

0.
11

2
0.

22
0

0.
34

0
0.

16
6

0.
10

7
0.

24
2

0.
31

2
0.

28
4

0.
25

3
0.

21
7

0.
29

9
0.

36
3

0.
34

9

α
re

la
tiv

e

r
-0

.3
56

-0
.4

42
-0

.3
60

-0
.3

54
-0

.4
30

-0
.4

73
-0

.4
57

-0
.4

15
-0

.3
34

-0
.1

67
-0

.4
11

-0
.4

32
-0

.3
28

-0
.3

91
-0

.4
58

-0
.4

23
-0

.3
99

-0
.4

00
-0

.3
67

-0
.4

37
-0

.3
70

-0
.4

20
-0

.4
29

p-
va

lu
e

0.
08

1
0.

02
7

0.
07

7
0.

08
3

0.
03

2
0.

01
7

0.
02

2
0.

03
9

0.
10

3
0.

42
4

0.
04

1
0.

03
1

0.
10

9
0.

05
3

0.
02

1
0.

03
5

0.
04

8
0.

04
7

0.
07

1
0.

02
9

0.
06

8
0.

03
6

0.
03

2

(θ
+

α
)/
(α

+
β
)

r
0.

48
0

0.
49

2
0.

34
4

0.
24

8
0.

40
7

0.
49

8
0.

47
7

0.
33

5
0.

17
0

0.
08

8
0.

36
1

0.
43

8
0.

33
2

0.
42

4
0.

48
3

0.
49

8
0.

46
1

0.
42

1
0.

39
9

0.
41

3
0.

27
3

0.
18

4
0.

21
4

p-
va

lu
e

0.
01

5
0.

01
3

0.
09

2
0.

23
2

0.
04

4
0.

01
1

0.
01

6
0.

10
1

0.
41

6
0.

67
7

0.
07

6
0.

02
9

0.
10

5
0.

03
5

0.
01

5
0.

01
1

0.
02

1
0.

03
6

0.
04

8
0.

04
0

0.
18

7
0.

37
9

0.
30

4

δ
/α

r
0.

26
6

0.
28

0
0.

22
7

0.
24

7
0.

36
6

0.
42

0
0.

36
0

0.
22

4
0.

20
2

0.
04

9
0.

29
3

0.
30

1
0.

23
3

0.
19

3
0.

29
7

0.
24

4
0.

19
0

0.
24

0
0.

13
2

0.
23

4
0.

13
2

0.
08

6
0.

18
4

p-
va

lu
e

0.
19

9
0.

17
5

0.
27

6
0.

23
5

0.
07

2
0.

03
7

0.
07

7
0.

28
3

0.
33

4
0.

81
4

0.
15

5
0.

14
4

0.
26

3
0.

35
4

0.
15

0
0.

24
0

0.
36

4
0.

24
8

0.
53

1
0.

26
1

0.
53

0
0.

68
3

0.
38

0

L
ar

ge
st

Ly
ap

un
ov

ex
po

ne
nt

r
0.

34
5

0.
23

8
0.

11
2

0.
21

7
0.

28
5

0.
36

7
0.

27
0

0.
09

3
0.

03
1

0.
03

5
0.

23
2

0.
19

3
0.

07
2

0.
25

6
0.

24
0

0.
22

5
0.

13
7

0.
12

2
0.

22
9

0.
24

9
0.

20
3

0.
13

8
0.

14
3

p-
va

lu
e

0.
09

1
0.

25
2

0.
59

3
0.

29
8

0.
16

7
0.

07
1

0.
19

2
0.

65
7

0.
88

4
0.

86
7

0.
26

4
0.

35
6

0.
73

3
0.

21
7

0.
24

7
0.

27
9

0.
51

5
0.

56
0

0.
27

1
0.

23
0

0.
33

1
0.

51
1

0.
49

6

L
Ly

ap
E

xp
/

α
re

la
tiv

e

r
0.

22
5

0.
19

0
0.

07
7

0.
12

9
0.

22
5

0.
33

3
0.

24
0

0.
05

6
-0

.0
07

-0
.0

49
0.

17
9

0.
15

6
0.

07
3

0.
16

1
0.

20
4

0.
18

4
0.

08
2

0.
09

0
0.

13
2

0.
18

4
0.

18
5

0.
08

7
0.

12
7

p-
va

lu
e

0.
28

0
0.

36
3

0.
71

3
0.

54
0

0.
28

0
0.

10
4

0.
24

8
0.

79
2

0.
97

2
0.

81
5

0.
39

3
0.

45
8

0.
72

9
0.

44
1

0.
32

8
0.

37
9

0.
69

6
0.

67
0

0.
53

1
0.

37
9

0.
37

6
0.

67
8

0.
54

6

N
ot

es
.T

he
hi

gh
lig

ht
ed

ce
lls

re
pr

es
en

tt
he

el
ec

tr
od

es
th

at
sh

ow
ed

a
si

gn
ifi

ca
nt

co
rr

el
at

io
n

be
tw

ee
n

th
e

ch
an

ge
in

su
bs

ta
nt

iv
e

E
E

G
fe

at
ur

e
an

d
m

ea
n

ab
so

lu
te

di
st

an
ce

be
tw

ee
n

co
nt

ro
la

nd
gu

id
e

po
in

ts
.

Ta
bl

e
6.

10
:C

or
re

la
tio

n
be

tw
ee

n
th

e
ch

an
ge

in
su

bs
ta

nt
iv

e
E

E
G

fe
at

ur
es

fr
om

le
ve

l1
to

le
ve

l5
an

d
th

e
ch

an
ge

in
ro

ot
m

ea
n

sq
ua

re
di

st
an

ce
be

tw
ee

n
co

nt
ro

la
nd

gu
id

e
po

in
ts

fr
om

le
ve

l1
to

le
ve

l5
.

E
E

G
fe

at
ur

e
Pe

ar
so

n’
sc

or
re

la
tio

n
co

ef
fic

ie
nt

FC
3

FC
z

FC
4

C
5

C
3

C
1

C
z

C
2

C
4

C
6

C
P3

C
Pz

C
P4

P3
P1

Pz
P2

P4
PO

3
PO

4
O

1
O

z
O

2

δ
re

la
tiv

e

r
0.

16
6

0.
08

3
0.

12
4

0.
23

9
0.

22
0

0.
24

3
0.

14
3

0.
12

4
0.

14
7

0.
02

4
0.

19
7

0.
11

5
0.

08
3

0.
15

7
0.

19
3

0.
09

8
0.

08
6

0.
11

8
0.

12
2

0.
17

1
0.

15
8

0.
10

5
0.

13
5

p-
va

lu
e

0.
42

8
0.

69
2

0.
55

4
0.

24
9

0.
29

1
0.

24
2

0.
49

7
0.

55
6

0.
48

3
0.

90
8

0.
34

4
0.

58
5

0.
69

3
0.

45
3

0.
35

5
0.

64
1

0.
68

3
0.

57
5

0.
56

0
0.

41
4

0.
45

2
0.

61
7

0.
51

9

α
re

la
tiv

e

r
-0

.2
45

-0
.3

46
-0

.2
50

-0
.2

22
-0

.2
69

-0
.3

35
-0

.3
11

-0
.2

80
-0

.2
01

-0
.0

31
-0

.2
40

-0
.2

50
-0

.1
65

-0
.2

39
-0

.3
02

-0
.2

53
-0

.2
44

-0
.2

58
-0

.2
60

-0
.3

62
-0

.3
42

-0
.3

72
-0

.3
64

p-
va

lu
e

0.
23

8
0.

09
0

0.
22

7
0.

28
6

0.
19

3
0.

10
1

0.
13

0
0.

17
6

0.
33

4
0.

88
3

0.
24

9
0.

22
8

0.
43

1
0.

25
1

0.
14

2
0.

22
2

0.
23

9
0.

21
3

0.
21

0
0.

07
5

0.
09

5
0.

06
7

0.
07

4

(θ
+

α
)/
(α

+
β
)

r
0.

37
1

0.
38

8
0.

23
7

0.
12

8
0.

28
4

0.
37

3
0.

35
8

0.
22

5
0.

06
9

0.
00

8
0.

25
3

0.
31

1
0.

22
6

0.
33

0
0.

39
2

0.
41

5
0.

38
6

0.
35

5
0.

33
7

0.
41

6
0.

28
3

0.
19

2
0.

23
2

p-
va

lu
e

0.
06

8
0.

05
6

0.
25

3
0.

54
2

0.
16

9
0.

06
6

0.
07

9
0.

28
0

0.
74

4
0.

97
0

0.
22

2
0.

13
0

0.
27

6
0.

10
7

0.
05

3
0.

03
9

0.
05

7
0.

08
2

0.
09

9
0.

03
9

0.
17

1
0.

35
7

0.
26

4

δ
/

α

r
0.

08
7

0.
11

3
0.

07
6

0.
11

4
0.

15
1

0.
21

8
0.

15
9

0.
04

4
0.

03
5

-0
.0

95
0.

11
3

0.
11

8
0.

08
3

0.
02

7
0.

13
6

0.
09

2
0.

06
1

0.
13

2
0.

00
7

0.
18

2
0.

09
4

0.
08

0
0.

14
6

p-
va

lu
e

0.
67

9
0.

59
1

0.
71

9
0.

58
6

0.
47

1
0.

29
4

0.
44

6
0.

83
3

0.
86

8
0.

65
3

0.
59

2
0.

57
4

0.
69

5
0.

89
8

0.
51

6
0.

66
1

0.
77

2
0.

52
8

0.
97

5
0.

38
3

0.
65

6
0.

70
4

0.
48

6

L
ar

ge
st

Ly
ap

un
ov

ex
po

ne
nt

r
0.

23
4

0.
16

2
0.

04
1

0.
10

0
0.

14
7

0.
25

0
0.

16
7

0.
00

5
-0

.0
32

-0
.0

04
0.

10
5

0.
06

6
-0

.0
05

0.
11

4
0.

11
4

0.
10

7
0.

02
7

0.
04

6
0.

10
1

0.
19

0
0.

14
3

0.
09

2
0.

11
7

p-
va

lu
e

0.
26

1
0.

43
8

0.
84

5
0.

63
3

0.
48

2
0.

22
9

0.
42

6
0.

98
0

0.
88

1
0.

98
5

0.
61

6
0.

75
3

0.
98

0
0.

58
7

0.
58

6
0.

61
0

0.
89

7
0.

82
6

0.
63

0
0.

36
3

0.
49

6
0.

66
2

0.
57

7

L
Ly

ap
E

xp
/α

re
la

tiv
e

r
0.

05
6

0.
06

0
-0

.0
28

0.
02

4
0.

04
6

0.
16

7
0.

09
2

-0
.0

67
-0

.1
20

-0
.1

22
0.

04
8

0.
02

8
-0

.0
27

0.
03

6
0.

09
8

0.
08

3
-0

.0
05

0.
02

7
0.

03
1

0.
15

5
0.

14
8

0.
08

7
0.

12
7

p-
va

lu
e

0.
78

9
0.

77
7

0.
89

3
0.

91
1

0.
82

6
0.

42
4

0.
66

3
0.

75
0

0.
56

6
0.

56
2

0.
81

9
0.

89
6

0.
89

7
0.

86
4

0.
64

0
0.

69
2

0.
98

0
0.

90
0

0.
88

5
0.

46
0

0.
47

9
0.

68
1

0.
54

5

N
ot

es
.T

he
hi

gh
lig

ht
ed

ce
lls

re
pr

es
en

tt
he

el
ec

tr
od

es
th

at
sh

ow
ed

a
si

gn
ifi

ca
nt

co
rr

el
at

io
n

be
tw

ee
n

th
e

ch
an

ge
in

su
bs

ta
nt

iv
e

E
E

G
fe

at
ur

e
an

d
ro

ot
m

ea
n

sq
ua

re
di

st
an

ce
be

tw
ee

n
th

e
co

nt
ro

la
nd

gu
id

e
po

in
ts

.

180



6.2 Results

with the change in mean absolute distance. Positive correlations were found between the
change in mean absolute distance and the change in δrelative, (θ +α)/(α +β ), δ/α , largest
Lyapunov exponent, respectively on all EEG electrodes around central, parietal and occipital
brain regions. Positive correlations were also found on all EEG electrodes around central,
parietal and occipital brain regions except on C4 and C6 for LLyapExp/αrelative. Among
these findings, significant positive correlations were visible on FC3, FCz, C3, C1, Cz, CPz,
P3, P1, Pz, P2, P4, PO3, and PO4 electrodes for (θ +α)/(α +β ); and on C1 electrode for
δ/α . Significant negative correlations, on the other hand, were visible on FCz, C3, C1, Cz,
C2, CP3, CPz, P1, Pz, P2, P4, PO4, Oz, and O2 electrodes for αrelative. Figure 6.7 shows
the correlation between the change in mean absolute distance and the change in αrelative,
(θ +α)/(α + β ), and δ/α on C1 electrode. It was visible that most participants who
showed an increase in αrelative from level 1 to level 5 also showed either a smaller increase or
a decrease in mean absolute distance from level 1 to level 5. Also, most participants who
experienced a reduction in (θ +α)/(α +β ) and δ/α showed either a smaller increase or a
decrease in mean absolute distance. Table 6.10, on the other hand, summarises the findings
of Pearson’s correlation coefficient (r and p-value) performed on the change in root mean
square distance and the change in δrelative, αrelative, (θ +α)/(α +β ), δ/α , largest Lyapunov
exponent, LLyapExp/αrelative, respectively. A positive correlation was found between the
change in root mean square distance and the change in δrelative and (θ +α)/(α +β ) on all
EEG electrodes around central, parietal and occipital brain regions. In contrast, a negative
correlation was found between the change in mental fatigue level and the change in αrelative

on all EEG electrodes around central, parietal and occipital brain regions. Significant
correlations were only visible on Pz and PO4 electrodes for (θ +α)/(α +β ). The above
findings showed that the change in δrelative, αrelative, (θ +α)/(α +β ), δ/α , largest Lyapunov
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Figure 6.7: Correlation between the change in mean absolute distance and the change in
(a) αrelative, (b) (θ +α)/(α +β ), and (c) δ/α from level 1 to level 5 of the robot-mediated
visuomotor tracking task on C1 electrode.
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6.2 Results

exponent, and LLyapExp/αrelative around central, parietal and occipital brain regions were
mostly associated with the change in mean absolute distance. Therefore, the findings may
suggest that participants who maintained better tracking accuracies during the visuomotor
tracking task were likely to experience a greater change in δrelative, αrelative, (θ +α)/(α +β ),
δ/α , largest Lyapunov exponent, and LLyapExp/αrelative.

6.2.5 Association of the Subjective Measures of the Level of Fatigue
with the Movement Variability Measures

Table 6.11 summarises the findings of Pearson’s correlation coefficient (r and p-value)
performed on the change in mean absolute distance and root mean square distance between
control and guide points from level 1 to level 5 and the change in subjective measures
of physical and mental fatigue levels, respectively. Negative correlations were visible
between the change in mean absolute distance and the change in physical and mental fatigue
levels, respectively. Similarly, the change in root mean square distance and the change in
physical and mental fatigue levels were also negatively correlated. However, no significant
correlations were found between the subjective measures of the level of fatigue and the
movement variability measures. Figure 6.8 shows the correlation of the change in physical
and mental fatigue level with the change in mean absolute distance and root mean square
distance. Negative correlations, although not significant, may suggest that the greater change
in the fatigue levels were most likely related to either a decrease or lower increase in the
movement variability measures.

Table 6.11: Correlation between the change in mean absolute distance and root mean square
distance between control and guide points from level 1 to level 5 of the robot-mediated
visuomotor tracking task and the change in subjective measures of physical and mental
fatigue levels.

EEG feature Pearson’s correlation
coefficient

Physical fatigue level
(%)

Mental fatigue level
(%)

Mean absolute distance (cm)
r -0.182 -0.254

p-value 0.385 0.220

Root mean square distance (cm)
r -0.082 -0.201

p-value 0.696 0.336
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Figure 6.8: Correlation of the change in physical and mental fatigue level with the change
in (a) mean absolute distance and (b) root mean square distance between control and guide
points from level 1 to level 5 of the robot-mediated visuomotor tracking task.

6.3 Discussion

In this chapter, the association of change in substantive EEG features found in Chapter 5 with
the change in subjective measures of fatigue levels and movement variability measures were
investigated. As explained in Section 5.1.3, the guide point in the virtual reality environment
moves at a constant speed. Participants were instructed to follow the path covered by the
guide point while maintaining the speed of the control point (i.e. the speed of the robot
arm motion) similar to the speed indicated by the motion of the guide point. Moreover, the
damping coefficient were gradually increased from level 1 to level 5, thereby increasing
the difficulty level of the task. It was expected that the more attention, focus and physical
energy needed to maintain greater tracking accuracies during the robot-mediated visuomotor
tracking task may gradually increase the individual fatigue levels.

The findings of this chapter showed a significant increase in physical, mental and global
fatigue levels following the robot-mediated interaction. Also, larger effect sizes were visible
in these significant changes in fatigue level. Therefore, the subjective measures of the level of
fatigue confirmed that the majority of participants experienced an increase in their physical
and mental fatigue levels, thereby contributing to an increase in their global fatigue level.
Moreover, most participants experienced a comparatively greater increase in their physical
fatigue levels than the mental fatigue levels. Also, most participants reported that the task
was physically exhausting. Therefore, it can be concluded that the visuomotor tracking task
performed using HapticMASTER induced more physical fatigue due to the increase in the
physical workload during the task. Although not significant, most participants experienced
an increase in the mean absolute distance and root mean square distance when progressing
from level 1 to level 5. Huysmans et al. (2008) also found an increase in mean distance to
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target at a target tracking task following a fatiguing protocol. Also, some previous studies
have reported that a higher movement variability may reflect adaptation strategies followed
by an individual to reduce the load on fatiguing tissues (Cignetti et al., 2009; Fuller et al.,
2009; Huysmans et al., 2008; Selen et al., 2007; Yang et al., 2018). Therefore, the observed
increase in movement variability measures may suggest that either the participants could not
trace the guide point’s trajectory correctly due to fatigue or followed adaptation strategies to
reduce fatigue build-up during the task.

This experiment found a significant decrease in (θ +α)/(α +β ) around central, parietal
and occipital brain regions from level 1 to level 5 of the visuomotor tracking task. Although,
the decrease in (θ +α)/(α +β ) found in this experiment is contrary to previous studies
(Fan et al., 2015; Jap et al., 2009), the findings were supported by the change in both
physical fatigue level and mean absolute distance. In general, the change in (θ +α)/(α +β )

were negatively correlated with the change in physical fatigue level and were positively
correlated with the change in mean absolute distance on all EEG electrodes around central,
parietal and occipital brain regions. Moreover, significant correlations were found on FC3,
C3, C1, Cz, CPz, P3, P1, and Pz electrodes for both physical fatigue and mean absolute
distance. In addition, significant correlations were also found on C5 and CP3 electrodes for
physical fatigue and on FCz, P2, P4, PO3, and PO4 electrodes for mean absolute distance.
The findings suggest that the greater decrease in (θ +α)/(α + β ) were mostly related
to the greater increase in physical fatigue level and the decrease or smaller increase in
mean absolute distance. The decrease or smaller increase in mean absolute distance may
reflect increased tracking accuracies during the visuomotor tracking task. Therefore, the
findings may suggest that more attention, focus and physical energy needed to maintain
greater tracking accuracies during the robot-mediated visuomotor tracking task may have
gradually increased the physical fatigue level of an individual. Moreover, the decrease in
(θ +α)/(α +β ) could be considered as the strongest EEG correlate of fatigue induced by
a robot-mediated visuomotor tracking task since the above finding was supported by both
subjective measures of the level of fatigue and the movement variability measures.

A significant increase in αrelative and a significant decrease in largest Lyapunov exponent were
also found during the transition to fatigue in the visuomotor tracking task. Previous studies
have also reported an increase in αrelative and a reduction in largest Lyapunov exponent
during the transition from alert to fatigue state (Barwick et al., 2012; Craig et al., 2012;
Fan et al., 2015; Käthner et al., 2014; Yao et al., 2009; Zou et al., 2015). It was found that
the change in physical fatigue level following the visuomotor tracking task were positively
correlated with the change in αrelative and negatively correlated with the change in largest
Lyapunov exponent on all EEG electrodes around central, parietal and occipital brain regions.
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In contrast, the change in mean absolute distance from level 1 to level 5 showed a negative
correlation for αrelative and a positive correlation for largest Lyapunov exponent on all EEG
electrodes around central, parietal and occipital brain regions. Significant correlations were
visible on FC3, CP3, and P3 electrodes for the change in largest Lyapunov exponent from
level 1 to level 5 and the change in physical fatigue level following the task. Also, significant
correlations were visible on FCz, C3, C1, Cz, C2, CP3, CPz, P1, Pz, P2, P4, PO4, Oz, and O2
electrodes for the change in αrelative from level 1 to level 5 with the change in mean absolute
distance. Therefore, the above findings may also suggest that greater increase in αrelative and
greater decrease in largest Lyapunov exponent were visible on participants who gained better
tracking accuracies, thereby contributing towards an increase in their physical fatigue level.

The new parameter, LLyapExp/αrelative, proposed in this experiment also showed a signifi-
cant reduction mostly around central, parietal and occipital brain regions. The association
between the change in LLyapExp/αrelative and physical fatigue level were also similar to
the observed negative correlations for (θ +α)/(α +β ) and largest Lyapunov exponent on
all EEG electrodes around central, parietal and occipital brain regions. Significant negative
correlations were found on FC3, C3, C1, Cz, and CP3 electrodes. Although not significant,
similar positive correlations were also visible on all except C4 and C6 EEG electrodes around
central, parietal and occipital brain regions. Therefore, it can be seen that the reduction in
LLyapExp/αrelative were strongly associated with the increase in physical fatigue level.

This experiment also found significant decreases in δrelative and δ/α from level 1 to level 5
of the visuomotor tracking task. The change in both EEG features on all electrodes around
central, parietal and occipital brain regions were positively correlated with the mean absolute
distance. However, significant correlations were found only for the change in δ/α on C1
electrode. Negative correlations were also found on all electrodes around central, parietal and
occipital brain regions between the change in δ/α and physical fatigue level, whereas only
all electrodes in the parietal regions were negatively correlated with the change in δrelative

and physical fatigue level.

As can be seen in Tables 6.9 and 6.10, widespread significant correlations were only visible
for the change in mean absolute distance and the change in αrelative and (θ +α)/(α +β ).
Therefore, this experiment shows that mean absolute distance is better than root mean square
distance to quantify the movement variability associated with fatigue in robot-mediated
visuomotor tracking tasks. Colombo et al. (2005) also considered mean absolute values of
the distance to evaluate the movement accuracy when interacting with a shoulder–elbow
rehabilitation device. Moreover, self-rated questionnaires can provide information on the
fatigue experienced by an individual. Negative correlations found between the change
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in fatigue levels and the change in movement variability measures were not significant.
However, significant observations were found on some EEG electrodes between the change
in physical fatigue level and the change in (θ +α)/(α +β ), largest Lyaounov exponent and
LLyapExp/αrelative; and between the change in mean absolute distance and the change in
αrelative, (θ +α)/(α +β ) and δ/α . Therefore, this experiment shows that questionnaires
cannot be used alone as an indicator of fatigue since the ratings may have a higher individual
bias. In a robot-mediated visuomotor tracking task subjective measures of fatigue level and
the change in movement variability measures could be used together to confirm whether an
individual is fatigued or not following the task.

In summary, this chapter found the associations between the change in substantive EEG
features from level 1 to level 5, mean absolute distance from level 1 to level 5 and physical
fatigue level following the robot-mediated visuomotor tracking task. Table 6.12 summarises
the EEG electrodes that showed significant correlations between the change in substantive
EEG features, mean absolute distance and physical fatigue level. Significant associations
were found between the change in (θ +α)/(α + β ) and physical fatigue level for most
EEG electrodes around central and parietal brain regions. Also, most EEG electrodes
around central, parietal and occipital brain regions showed significant associations for the
change in mean absolute distance. Therefore, (θ +α)/(α +β ) could be considered as the
most promising EEG feature to describe the underlying changes in the brain due to fatigue
in robot-mediated visuomotor tracking tasks. Furthermore, most EEG electrodes around

Table 6.12: Summary of the EEG electrodes that showed significant correlations between the
change in substantive EEG features from level 1 to level 5, mean absolute distance from level
1 to level 5 and physical fatigue level following the robot-mediated visuomotor tracking task.

EEG Features Electrode locations
Significant correlations with the change in EEG feature

Change in physical fatigue level Change in mean absolute distance

δrelative CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2 - -

αrelative
C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz,

P2, P4, PO3, PO4, O1, Oz, O2
-

FCz, C3, C1, Cz, C2, CP3, CPz, P1, Pz,
P2, P4, PO4, Oz, O2

(θ +α)/(α +β )
FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3,
CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz

FC3, C5, C3, C1, Cz, CP3, CPz, P3,
P1, Pz

FC3, FCz, C3, C1, Cz, CPz, P3, P1, Pz,
P2, P4, PO3, PO4

δ /α
Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4,

P03, PO4, O1, Oz, O2
- C1

Largest Lyapunov
exponent

C2, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4,
O1, Oz, O2

FC3, CP3, P3 -

LLyapExp/αrelative
C2, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4,

O1, Oz, O2
FC3, C3, C1, Cz, CP3 -

Notes. The red coloured text represents the EEG electrodes that showed a significant correlation with the change in both physical fatigue level and mean absolute
distance. The green coloured text represents the EEG electrodes that showed a significant correlation with the change in both physical fatigue level only. The blue
coloured text represents the EEG electrodes that showed a significant correlation with the change in mean absolute distance only.
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central, parietal and occipital brain regions that showed a significant increase in αrelative

were associated with the change in mean absolute distance. The significant decrease in
largest Lyapunov exponent observed on CP3 and P3 electrodes and the significant decrease in
LLyapExp/αrelative on CP3 electrode also showed significant negative correlations with the
change in physical fatigue level. Therefore, the amount of increase in αrelative and the amount
of decrease in largest Lyapunov exponent and LLyapExp/αrelative could also be used to
quantify the progression of fatigue during a robot-mediated visuomotor tracking task. Taken
together, EEG electrodes that found significant correlations showed a widespread distribution
across central, parietal, and occipital brain regions. Therefore, the findings summarised
in this chapter revealed that fatigue induced by robot-mediated visuomotor tracking tasks
could be estimated from EEG electrodes placed over the central, parietal and occipital brain
regions. The use of fewer electrodes will enable faster setting up time and more comfort and
convenience to the user. Therefore, the usage of EEG-based fatigue estimation systems to
monitor and control fatigue in rehabilitation sessions may not create additional discomfort to
the patients. In addition, the computational complexity and the cost for hardware could also
be reduced by using a fewer number of electrodes when designing fatigue detection systems
(Min et al., 2017).

6.4 Conclusions

Firstly, this chapter evaluated the changes in physical, mental and global fatigue level per-
centages using the individual feedback given before and after the robot-mediated interaction.
Also, the variations in mean absolute distance and root mean square distance between control
and guide points while progressing from level 1 to level 5 of the task were evaluated. Then
the association between the modulations in substantive EEG features (i.e., δrelative, αrelative,
(θ +α)/(α +β ), δ/α , largest Lyapunov exponent, and LLyapExp/αrelative) around central,
parietal, and occipital brain regions, movement variability measures, and subjective measures
of fatigue level were examined to identify the EEG features and EEG electrode locations that
best describe the underlying changes in the brain due to fatigue induced by robot-mediated
visuomotor tracking task.

The experiment found that the greater change in substantive EEG features were mostly
associated with either a decrease or a smaller increase in mean absolute distance and a greater
increase in physical fatigue level. Therefore, it can be concluded that more attention, focus
and physical energy drawn to maintain greater tracking accuracies during the robot-mediated
visuomotor tracking task may gradually increase the individual physical fatigue level. As
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a consequence, an increase in αrelative, and a decrease in δrelative, (θ +α)/(α +β ), δ/α ,
largest Lyapunov exponent, and LLyapExp/αrelative may be visible.

Significant negative correlations were found between the change in (θ +α)/(α +β ) and
physical fatigue level for most EEG electrodes around central and parietal brain regions.
Also, the change in (θ +α)/(α + β ) on most EEG electrodes around central, parietal
and occipital brain regions were significantly and positively correlated with the change
in mean absolute distance. Most EEG electrodes around central, parietal and occipital
brain regions also showed significant associations between the change in αrelative and the
change in mean absolute distance. Moreover, the change in largest Lyapunov exponent and
LLyapExp/αrelative were significantly and negatively correlated with the change in physical
fatigue level on some EEG electrodes around central and parietal regions (Table 6.12). To
conclude, (θ +α)/(α +β ) is the most reliable EEG-based index to estimate fatigue induced
by robot-mediated visuomotor tracking task. Also, αrelative, largest Lyapunov exponent and
LLyapExp/αrelative could be used to describe the underlying variations in the processing
capacity of sensory information and motor output, and the brain’s reduced complexity due
to fatigue. EEG electrodes placed over central, parietal and occipital brain regions could be
used in future to estimate fatigue accumulated during robot-mediated visuomotor tracking
tasks.
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Chapter 7

Conclusions and Future Works

The EEG feature modulations associated with fatigue induced by robot-mediated interactions
has not yet been comprehensively explored but has been identified as important when design-
ing robot-mediated post-stroke rehabilitation sessions. Personalised rehabilitation sessions
that incorporate the knowledge of patient fatigue levels can be beneficial to the treatment
and may positively impact on efficiency of the intervention. A thorough investigation of the
modulations in both spectral and nonlinear EEG features due to fatigue induced by robot-
mediated interactions was conducted in this thesis. Two human-robot interaction experiments,
as explained in Chapters 4 and 5 were designed and conducted. In addition to the EEG data
recordings, kinematic data and subjective responses reflecting on the fatigue levels before
and after the interaction were obtained to further explore the association between fatigue and
EEG. This thesis highlights the EEG features that can best describe the effects of fatigue on
brain activity patterns. It also proposes the EEG electrode locations to be used in similar
future applications. In the following sections, conclusions made, limitations in the present
work, and future work related to fatigue assessment in robot-mediated interactions using
EEG are discussed.

7.1 Summary of Main Findings

The literature review conducted in this research (Chapter 2) found that previous studies often
investigated the modulations in EEG spectral features with fatigue induced by simulated
driving tasks, cognitive tasks, voluntary motor tasks and sports-related activities. Although
these investigations stated that the linear analysis methods such as frequency domain analysis
could not fully describe the underlying complex dynamics of the brain, only a few studies
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have evaluated the associations in EEG nonlinear features and fatigue level of an individual.
Moreover, to the author’s knowledge, EEG correlates of fatigue accumulated during robot-
mediated interactions have not yet been comprehensively explored. Therefore, the present
research thoroughly investigated the association of both spectral and nonlinear EEG features
with fatigue induced by robot-mediated interactions.

In this research work, EEG correlates of fatigue are explored and evaluated when fatigue is
induced by three different robot-mediated interactions:

i gross motor interaction with HapticMASTER,

ii fine motor interaction with SCRIPT passive orthosis,

iii visuomotor tracking task with HapticMASTER.

In experiment 1, a comparison between gross motor and fine motor interactions was conducted
using EEG spectral features. In experiment 2, an in-depth analysis of both EEG spectral and
nonlinear feature variations during a robot-mediated visuomotor tracking task was conducted.
The two experiments were designed to address the two research questions derived from the
hypothesis of this research, "EEG correlates of fatigue during robot-mediated interactions
are specific to the physical or cognitive nature of the task and the differences in the usage of
proximal or distal upper limb":

1. Are the EEG spectral feature modulations associated with fatigue localised to different
brain regions depending on the type of robotic interaction and the underlying physical
and mental workload?

2. Which spectral and nonlinear EEG features and which EEG electrode locations are
most capable and reliable in estimating the progression of fatigue during a robot-
mediated visuomotor tracking task?

7.1.1 Findings of Experiment 1

Experiment 1 (Chapter 4) was designed and conducted to compare and contrast the modu-
lations in EEG spectral features associated with fatigue induced by robot-mediated gross
motor and fine motor interactions. The significant EEG spectral feature modulations found
in experiment 1 and their associations with the type of fatigue induced following each
interaction is summarised in Table 7.1. It was found that δrelative significantly decreased
and αrelative significantly increased due to the fatigue induced by both robot-mediated gross
motor and fine motor interactions. The gross motor task also showed a significant increase
in (θ +α)/β and α/β . The change in αrelative, (θ +α)/β and α/β were in agreement
with the previous findings. Furthermore, brain regions that showed significant changes were
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different between the two tasks. The robot-mediated gross motor interaction mostly changed
the EEG activity around central and parietal brain regions whereas the robot-mediated fine
motor interaction mostly changed the EEG activity around frontopolar and central brain
regions. Most participants reported an increase in their physical fatigue level following the
gross motor task, and an increase in their mental fatigue level following the fine motor task.
Therefore, the regional differences in the significant EEG spectral features associated with
fatigue are most likely due to the differences in the nature of the task (fine/gross motor and
distal/proximal upper limb) that may have differently altered an individual’s physical and
mental fatigue level.

Table 7.1: Results summary of experiment 1: EEG spectral features that showed significant
variations following the robot-mediated gross motor and fine motor interactions and their
associations with the type of fatigue induced by each interaction.

EEG feature Direction of
change

Brain regions that showed significant differences Associated with the change in fatigue level

Gross motor task Fine motor task Physical fatigue in
gross motor task

Mental fatigue in fine
motor task

δrelative ↓ Central Frontopolar Yes Yes

αrelative ↑ Central, Parietal Frontopolar, Central Yes Yes

(θ +α)/β ↑ Central - Yes -

α/β ↑ Central - Yes -

Notes. ↑ and ↓ represents the significant increase and decrease in the corresponding EEG features.

7.1.2 Findings of Experiment 2

Experiment 2 (Chapters 5 and 6) was designed and conducted to investigate the modulations in
both spectral and nonlinear EEG features associated with fatigue induced by a robot-mediated
visuomotor tracking task. The significant spectral and nonlinear EEG feature modulations
found during the robot-mediated visuomotor tracking task, and their associations with the
change in mean absolute distance during the task and the change in subjective measures of
physical fatigue level obtained before and after the interaction is summarised in Table 7.2.

Modulations in Spectral and Nonlinear EEG Features

It was found that the fatigue induced by the robot-mediated visuomotor tracking task sig-
nificantly increased αrelative and significantly decreased δrelative, (θ +α)/(α +β ), δ/α , and
largest Lyapunov exponent (LLyapExp). These differences were observed mostly around
central, parietal and occipital brain regions. A new EEG feature, LLyapExp/αrelative, which
shows the combined effect of spectral and nonlinear EEG features is proposed in this ex-
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periment. The LLyapExp/αrelative also showed a significant decrease during the visuomotor
tracking task around central, parietal and occipital brain regions. The variations in αrelative

and largest Lyapunov exponent were in agreement with previous findings. The significant
decrease in δrelative and the significant increase in αrelative observed in experiment 2 also
support the findings of experiment 1.

Subjective Measures of the Level of Fatigue

A significant increase in the subjective measures of physical and mental fatigue levels was
found following the robot-mediated visuomotor tracking task, thereby contributing to a
significant increase in the global fatigue level. The participant’s feedback also revealed that
most participants experienced a comparatively larger increase in the physical fatigue levels
than the increase in the mental fatigue levels. The subjective responses may imply that the
visuomotor tracking task performed using HapticMASTER caused more physical fatigue
than mental fatigue. Therefore, the increase in physical fatigue level during the task may
have most likely caused the changes in EEG features.

Measures of Movement Variability

Most participants also showed an increase in the mean absolute distance and root mean
squared distance between control and guide points (i.e., movement variability measures)
during the robot-mediated visuomotor tracking task. Therefore, the observed increase in
movement variability measures may suggest that either the participants could not trace the
guide point’s trajectory correctly due to fatigue or followed adaptation strategies to reduce
fatigue build-up during the task.

Table 7.2: Results summary of experiment 2: Spectral and nonlinear EEG features that
showed significant variations following the robot-mediated visuomotor tracking task and
their associations with the subjective measures of physical fatigue level following the task
and the mean absolute distance during the task.

EEG feature Direction of
change

Brain regions that showed
significant differences

Associated with the change
in physical fatigue level

Associated with the change
in mean absolute distance

δrelative ↓ Parietal, Occipital No Yes

αrelative ↑ Central, Parietal, Occipital Yes Yes

(θ +α)/(α +β ) ↓ Central, Parietal, Occipital Yes Yes

δ/α ↓ Central, Parietal, Occipital Yes Yes

LLyapExp ↓ Parietal, Occipital Yes Yes

LLyapExp/αrelative ↓ Central, Parietal, Occipital Yes Yes

Notes. LLyapExp refers to largest Lyapunov exponent. ↑ and ↓ represents the significant increase and decrease in the corresponding EEG
features.
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Associations of the Changes in Substantive EEG Features, Subjective Measures of
Physical Fatigue Level and Mean Absolute Distance

Variations in the prominent EEG features in experiment 2 were also supported by the change
in subjective measures of physical fatigue level following the task and the change in mean
absolute distance during the task. The correlation analysis performed between the change
in substantive EEG features and the change in subjective measures of physical fatigue
level revealed positive correlations for the change in αrelative from level 1 to level 5 of
the visuomotor tracking task around central, parietal, and occipital brain regions. Also, the
change in (θ +α)/(α+β ), δ/α , largest Lyapunov exponent, and LLyapExp/αrelative around
central, parietal and occipital brain regions were negatively correlated. Significant negative
correlations were found around central and parietal brain regions for (θ +α)/(α+β ), largest
Lyapunov exponent, and LLyapExp/αrelative. In contrast, negative correlations were found
between the change in mean absolute distance from level 1 to level 5 and the change αrelative

from level 1 to level 5 around central, parietal, and occipital brain regions. The change in
δrelative, (θ +α)/(α +β ), δ/α , largest Lyapunov exponent and LLyapExp/αrelative around
central, parietal and occipital brain regions were positively correlated with the change in
mean absolute distance. Significant correlations were found around central, parietal, and
occipital brain regions for αrelative and (θ +α)/(α +β ) and around central brain region
for δ/α . Taken together, these findings suggest that the greater change in the substantive
EEG features was mostly associated with a greater increase in the physical fatigue level and
either a decrease or a smaller increase in the mean absolute distance. Therefore, the more
attention, focus, and physical energy drawn to maintain increased tracking accuracies during
the robot-mediated visuomotor tracking task may have gradually increased the individual
fatigue levels. The increased movement variability found in the participants who reported a
smaller change in their fatigue levels, on the other hand, suggest that these participants may
have followed adaptation strategies to reduce the fatigue build-up during the task. Moreover,
(θ +α)/(α + β ) could be considered as the most reliable EEG feature to describe the
underlying changes in brain activity caused by fatigue in robot-mediated visuomotor tracking
tasks. The αrelative, largest Lyapunov exponent and LLyapExp/αrelative could also be used to
quantify the progression of fatigue during a robot-mediated visuomotor tracking task. EEG
electrodes placed over central, parietal and occipital brain regions could be used in future to
estimate fatigue accumulated during robot-mediated visuomotor tracking tasks.
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7.2 Conclusions

To conclude, two experiments have shown that fatigue was induced during robot-mediated
interactions and has differently affected the EEG features and cortical sites. Significant
EEG feature modulations were observed around central and parietal brain regions for the
robot-mediated gross motor interaction, whereas the frontopolar and central brain regions
showed significant variations in EEG features following the robot-mediated fine motor
interaction. The robot-mediated visuomotor tracking task revealed significant variations in
EEG features mostly localised around central, parietal and occipital brain regions. Also,
participant’s feedback revealed that both gross motor interaction and visuomotor tracking
task performed using HapticMASTER caused more physical fatigue, whereas the fine motor
interaction performed using SCRIPT passive orthosis caused more mental fatigue. Therefore,
the findings suggest that repetitive gross motor tasks such as arm reach/return exercises
that mostly involve the movement and coordination of proximal joints and muscles of
the upper limb (shoulder and arm) are likely to induce a more physical fatigue, thereby
altering the central and parietal brain regions. Since intensive fine motor tasks require
considerable attention and decision-making skills combined with hand, wrist and finger
movements, more mental fatigue is likely to occur, and the EEG activity in the frontopolar
cortex may also significantly change with fatigue. Premotor, motor, parietal and occipital
brain regions are collectively engaged when performing a visuomotor tracking task; thus,
fatigue induced by robot-mediated visuomotor tracking tasks may likely to alter central,
parietal and occipital brain regions. These findings suggest that the modulations in EEG
features and the cortical regions that are mostly affected due to fatigue in robot-mediated
interactions are specific to the physical and cognitive nature of the task performed, thereby
confirmed the hypothesis of this research. Moreover, since both spectral and nonlinear
EEG features showed variations with fatigue, it was most likely that fatigue induced by
robot-mediated interactions reduced the capacity for processing sensory information or
motor output. Due to cortical inactivation caused by fatigue, lesser neurons are available for
information processing; thus, the complexity of the brain is reduced. Therefore, the results of
this investigation strongly suggest that both spectral and nonlinear EEG features are reliable
indicators of fatigue in robot-mediated interactions. Finally, EEG feature modulations during
robot-mediated visuomotor tracking task have shown that fatigue can be estimated from the
EEG electrodes placed over the central, parietal and occipital brain regions. Therefore, the
use of fewer electrodes in future applications will enable faster setting up time, more comfort
and convenience to the user and lesser computational complexity and cost for hardware.
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7.3 Contributions to Knowledge

EEG correlates of fatigue in robot-mediated interactions have not been comprehensively
explored in the literature. The findings reported in this thesis provide more in-depth insight
into the understanding of detecting fatigue during robot-mediated interactions using EEG.
Therefore, this thesis contributes to the knowledge by providing further insight on neural
correlates of fatigue induced by robot-mediated interactions. This research identified EEG
features and electrode locations that can best describe the underlying variations in the
processing capacity of sensory information and motor output, and the brain’s reduced
complexity due to fatigue. This was done by aligning the objectives of the experiments with
human-robot interactions that can support the objectives. For example, fine motor tasks
performed using a distal robot were considered to inform on neural fatigue correlates of fine
motor tasks. This research revealed that (θ +α)/(α +β ) is the most capable and reliable
EEG feature that can be used to estimate fatigue during a robot-mediated visuomotor tracking
task. Also, largest Lyapunov exponent and LLyapExp/αrelative could be used to quantify the
progression of fatigue during a robot-mediated visuomotor tracking task. The increase in
αrelative was found to be associated with the fatigue accumulated in robot-mediated gross
motor tasks, fine motor tasks and visuomotor tracking tasks. Reductions in δrelative and δ/α

were also found in this research. Moreover, the findings of this research contribute to the
understanding of EEG nonlinear feature modulations associated with fatigue.

The findings revealed that the modulations in EEG features with fatigue accumulated during
robot-mediated interactions are specific to the task’s physical or cognitive nature performed
using either proximal or distal upper limb. Differences in the topographical distribution may
also be visible between different robot-mediated interactions depending on the underlying
physical and mental workload. Therefore, when estimating fatigue during robot-mediated
interactions, EEG electrodes should be selected depending on the physical and cognitive
nature of the task and the usage of the proximal and distal upper limb. This thesis showed
that EEG electrodes placed on central, parietal and occipital brain regions could be used to
estimate fatigue in robot-mediated visuomotor tracking tasks in future. A limited number of
electrodes may reduce the setting up time, computational complexity and cost for hardware.

The research work presented in this thesis has also contributed towards the following publi-
cations.

• Dissanayake, U. C., Steuber, V., and Amirabdollahian, F. (2021), ‘EEG spectral feature
modulations associated with fatigue in robot-mediated upper limb gross motor and fine
motor interactions’, bioRxiv, doi:10.1101/2021.04.22.440968.
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• Dissanayake, U. C., Amirabdollahian, F., and Steuber, V., ‘Modulations in EEG
spectral and nonlinear features during a visuomotor tracking task performed using the
GENTLE/EEG robot-mediated system’, [In preparation].

• Dissanayake, U. C., Amirabdollahian, F., and Steuber, V., ‘Robot-mediated stroke
therapy and fatigue [Poster]’, 2nd INSPIRE Conference 2017: Identity, Impact and
Voice, United Kingdom.

7.4 Future Works

This research showed that the EEG correlates of fatigue during robot-mediated interactions
are specific to the task’s physical or cognitive nature and usage of the proximal or distal
upper limb. As stated in Chapter 4, the spatial precision of the recordings was limited in
experiment 1 since the EEG data acquisition system could only support eight electrode
locations. Experiment 1 found differences between the cortical sites that are mostly affected
by the type of fatigue (physical/mental) accumulated during the robot-mediated gross motor
and fine motor tasks. However, the investigation could not explore whether these variations
were localised to specific brain regions or only to a limited number of electrodes within the
brain regions. The present research could only suggest EEG electrodes that can best describe
the fatigue induced by a robot-mediated visuomotor tracking task. Therefore, future studies
can further explore whether the specificity is due to the task nature (physical/cognitive) or
the differences in upper limbs’ usage (proximal/distal) while utilising a higher number of
electrodes.

The present research work has identified EEG features that can best describe the effects of
fatigue induced by robot-mediated interactions on brain activity patterns. The investigation
has also proposed a new EEG feature, LLyapExp/αrelative. Further studies could implement
fatigue countermeasure devices by combining these spectral and nonlinear EEG features
with machine learning techniques to detect fatigue in robot-mediated interactions. These
fatigue detection algorithms could also be used to adapt the physical behaviour of a robot to
mitigate human fatigue and fatigue-related risks during human-robot co-manipulation tasks.

It is more likely that the increased motor/cognitive processing demands required during post-
stroke motor retraining exercises may exacerbate stroke patients’ fatigue level. Therefore,
the findings of this thesis could potentially be used in future to detect and moderate the level
of fatigue during robot-mediated post-stroke therapies, acknowledging that stroke patients
are more likely to be fatigued than healthy individuals. Future research could also explore
whether therapies will induce more recovery in the absence or presence of moderated fatigue.
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7.4 Future Works

Moreover, it would be possible to derive more personalised robot-mediated post-stroke
rehabilitation regimes that would utilise the individual fatigue levels as a tool to increase the
efficacy of upper limb robot-mediated rehabilitation.
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Appendix A

Supplementary Materials and Results of
the Experiment 1

A.1 Paired Samples t-test Results of the Robot-Mediated
Gross Motor and Fine Motor Interactions

The following sections summarise the results of the paired samples t-tests of each EEG spec-
tral feature performed on all eight electrodes under both eyes opened and closed conditions
following the robot-mediated gross motor and fine motor interactions.
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.1 Modulations in the Relative Delta Band Power

Table A.1: Paired samples t-test results for relative delta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.525 ± 0.153 0.497 ± 0.099 0.933 9 0.375 0.297 -
F3 0.542 ± 0.133 0.498 ± 0.064 1.356 9 0.208 0.412 -

FC3 0.555 ± 0.131 0.504 ± 0.073 1.543 9 0.157 0.457 -
C3 0.542 ± 0.109 0.476 ± 0.067 2.593 9 0.029 0.654 ↓
C4 0.543 ± 0.138 0.508 ± 0.107 1.285 9 0.231 0.394 -
P3 0.487 ± 0.068 0.445 ± 0.115 2.119 9 0.063 0.577 -
O1 0.497 ± 0.158 0.490 ± 0.158 0.193 9 0.852 0.064 -
T7 0.530 ± 0.201 0.539 ± 0.130 -0.205 9 0.842 0.068 -

Notes. ↓ = significant decrease.

Table A.2: Paired samples t-test results for relative delta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.550 ± 0.096 0.504 ± 0.106 3.066 9 0.013 0.715 ↓
F3 0.542 ± 0.105 0.533 ± 0.085 0.707 9 0.497 0.229 -

FC3 0.520 ± 0.149 0.499 ± 0.129 1.115 9 0.294 0.348 -
C3 0.546 ± 0.160 0.505 ± 0.106 1.632 9 0.137 0.478 -
C4 0.525 ± 0.117 0.506 ± 0.099 0.518 9 0.617 0.170 -
P3 0.499 ± 0.141 0.480 ± 0.122 0.674 9 0.517 0.219 -
O1 0.490 ± 0.143 0.473 ± 0.116 0.466 9 0.652 0.153 -
T7 0.539 ± 0.100 0.530 ± 0.090 0.300 9 0.771 0.100 -

Notes. ↓ = significant decrease.

Table A.3: Paired samples t-test results for relative delta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.361 ± 0.156 0.329 ± 0.111 0.879 9 0.402 0.281 -
F3 0.405 ± 0.174 0.363 ± 0.159 0.785 9 0.453 0.253 -

FC3 0.357 ± 0.151 0.355 ± 0.126 0.122 9 0.906 0.041 -
C3 0.351 ± 0.189 0.337 ± 0.117 0.331 9 0.748 0.110 -
C4 0.346 ± 0.165 0.321 ± 0.126 1.214 9 0.255 0.375 -
P3 0.263 ± 0.133 0.268 ± 0.134 -0.153 9 0.882 0.051 -
O1 0.299 ± 0.147 0.298 ± 0.142 0.021 9 0.984 0.007 -
T7 0.384 ± 0.144 0.379 ± 0.180 0.110 9 0.915 0.037 -

Table A.4: Paired samples t-test results for relative delta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.456 ± 0.126 0.443 ± 0.144 0.585 9 0.573 0.191 -
F3 0.462 ± 0.104 0.464 ± 0.134 -0.071 9 0.945 0.024 -

FC3 0.441 ± 0.134 0.467 ± 0.146 -0.892 9 0.395 0.285 -
C3 0.421 ± 0.118 0.431 ± 0.133 -0.323 9 0.754 0.107 -
C4 0.439 ± 0.092 0.430 ± 0.111 0.334 9 0.746 0.111 -
P3 0.346 ± 0.152 0.347 ± 0.158 -0.034 9 0.974 0.011 -
O1 0.356 ± 0.172 0.343 ± 0.197 0.417 9 0.686 0.138 -
T7 0.463 ± 0.122 0.457 ± 0.134 0.279 9 0.786 0.093 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.2 Modulations in the Relative Theta Band Power

Table A.5: Paired samples t-test results for relative theta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.187 ± 0.065 0.193 ± 0.054 -0.330 9 0.749 0.109 -
F3 0.195 ± 0.065 0.217 ± 0.044 -1.245 9 0.245 0.383 -

FC3 0.196 ± 0.057 0.202 ± 0.044 -0.391 9 0.705 0.129 -
C3 0.193 ± 0.049 0.199 ± 0.050 -0.458 9 0.658 0.151 -
C4 0.185 ± 0.059 0.181 ± 0.042 0.360 9 0.727 0.119 -
P3 0.175 ± 0.027 0.163 ± 0.043 1.228 9 0.251 0.379 -
O1 0.160 ± 0.046 0.165 ± 0.050 -0.247 9 0.811 0.082 -
T7 0.155 ± 0.048 0.162 ± 0.036 -0.740 9 0.478 0.239 -

Table A.6: Paired samples t-test results for relative theta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.212 ± 0.037 0.222 ± 0.039 -1.886 9 0.092 0.532 -
F3 0.233 ± 0.052 0.235 ± 0.036 -0.202 9 0.844 0.067 -

FC3 0.214 ± 0.044 0.220 ± 0.042 -0.461 9 0.656 0.152 -
C3 0.205 ± 0.059 0.218 ± 0.045 -0.941 9 0.371 0.299 -
C4 0.193 ± 0.033 0.226 ± 0.039 -3.507 9 0.007 0.760 ↑
P3 0.199 ± 0.055 0.210 ± 0.050 -0.776 9 0.457 0.250 -
O1 0.207 ± 0.034 0.211 ± 0.044 -0.255 9 0.805 0.085 -
T7 0.185 ± 0.041 0.201 ± 0.045 -1.404 9 0.194 0.424 -

Notes. ↑ = significant increase.

Table A.7: Paired samples t-test results for relative theta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.169 ± 0.086 0.176 ± 0.080 -0.532 9 0.608 0.175 -
F3 0.186 ± 0.086 0.185 ± 0.079 0.076 9 0.941 0.025 -

FC3 0.188 ± 0.067 0.184 ± 0.071 0.485 9 0.639 0.160 -
C3 0.165 ± 0.053 0.180 ± 0.067 -1.180 9 0.268 0.366 -
C4 0.168 ± 0.058 0.169 ± 0.068 -0.102 9 0.921 0.034 -
P3 0.145 ± 0.056 0.148 ± 0.056 -0.378 9 0.714 0.125 -
O1 0.132 ± 0.051 0.146 ± 0.064 -1.867 9 0.095 0.528 -
T7 0.158 ± 0.044 0.156 ± 0.064 0.313 9 0.761 0.104 -

Table A.8: Paired samples t-test results for relative theta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.222 ± 0.077 0.207 ± 0.051 1.094 9 0.302 0.343 -
F3 0.245 ± 0.088 0.228 ± 0.054 1.129 9 0.288 0.352 -

FC3 0.230 ± 0.098 0.211 ± 0.052 1.071 9 0.312 0.336 -
C3 0.232 ± 0.095 0.212 ± 0.060 1.334 9 0.215 0.406 -
C4 0.220 ± 0.060 0.218 ± 0.056 0.169 9 0.870 0.056 -
P3 0.187 ± 0.081 0.187 ± 0.076 0.055 9 0.958 0.018 -
O1 0.178 ± 0.066 0.182 ± 0.071 -0.660 9 0.526 0.215 -
T7 0.214 ± 0.099 0.198 ± 0.047 0.712 9 0.494 0.231 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.3 Modulations in the Relative Alpha Band Power

Table A.9: Paired samples t-test results for relative alpha band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.212 ± 0.095 0.236 ± 0.093 -1.339 9 0.213 0.408 -
F3 0.187 ± 0.069 0.210 ± 0.057 -1.426 9 0.188 0.429 -

FC3 0.180 ± 0.068 0.225 ± 0.069 -2.378 9 0.041 0.621 ↑
C3 0.198 ± 0.070 0.259 ± 0.095 -3.148 9 0.012 0.724 ↑
C4 0.211 ± 0.094 0.249 ± 0.091 -2.163 9 0.059 0.585 -
P3 0.271 ± 0.094 0.330 ± 0.154 -2.646 9 0.027 0.661 ↑
O1 0.259 ± 0.136 0.277 ± 0.171 -0.556 9 0.592 0.182 -
T7 0.212 ± 0.116 0.222 ± 0.085 -0.430 9 0.677 0.142 -

Notes. ↑ = significant increase.

Table A.10: Paired samples t-test results for relative alpha band power before (‘baseline’)
and after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.179 ± 0.075 0.211 ± 0.104 -2.871 9 0.018 0.691 ↑
F3 0.171 ± 0.078 0.175 ± 0.082 -0.569 9 0.583 0.186 -

FC3 0.183 ± 0.089 0.190 ± 0.089 -0.776 9 0.457 0.250 -
C3 0.202 ± 0.127 0.227 ± 0.117 -2.555 9 0.031 0.648 ↑
C4 0.202 ± 0.066 0.207 ± 0.106 -0.227 9 0.826 0.075 -
P3 0.242 ± 0.107 0.259 ± 0.137 -0.782 9 0.454 0.252 -
O1 0.223 ± 0.109 0.251 ± 0.142 -1.065 9 0.315 0.335 -
T7 0.187 ± 0.067 0.194 ± 0.077 -0.455 9 0.660 0.150 -

Notes. ↑ = significant increase.

Table A.11: Paired samples t-test results for relative alpha band power before (‘baseline’)
and after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.419 ± 0.199 0.450 ± 0.168 -0.967 9 0.359 0.307 -
F3 0.361 ± 0.198 0.406 ± 0.199 -0.959 9 0.363 0.304 -

FC3 0.400 ± 0.185 0.404 ± 0.167 -0.159 9 0.877 0.053 -
C3 0.427 ± 0.188 0.429 ± 0.166 -0.043 9 0.967 0.014 -
C4 0.436 ± 0.174 0.463 ± 0.160 -1.115 9 0.294 0.348 -
P3 0.543 ± 0.170 0.536 ± 0.184 0.188 9 0.855 0.063 -
O1 0.506 ± 0.181 0.500 ± 0.182 0.202 9 0.845 0.067 -
T7 0.379 ± 0.152 0.397 ± 0.170 -0.448 9 0.664 0.148 -

Table A.12: Paired samples t-test results for relative alpha band power before (‘baseline’)
and after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.278 ± 0.142 0.303 ± 0.150 -0.835 9 0.425 0.268 -
F3 0.250 ± 0.112 0.263 ± 0.135 -0.390 9 0.706 0.129 -

FC3 0.245 ± 0.107 0.246 ± 0.124 -0.017 9 0.987 0.006 -
C3 0.304 ± 0.103 0.311 ± 0.140 -0.206 9 0.841 0.069 -
C4 0.297 ± 0.112 0.306 ± 0.133 -0.350 9 0.734 0.116 -
P3 0.420 ± 0.169 0.427 ± 0.178 -0.175 9 0.865 0.058 -
O1 0.416 ± 0.212 0.428 ± 0.212 -0.353 9 0.732 0.117 -
T7 0.254 ± 0.098 0.281 ± 0.131 -1.103 9 0.299 0.345 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.4 Modulations in the Relative Beta Band Power

Table A.13: Paired samples t-test results for relative beta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.077 ± 0.047 0.074 ± 0.040 0.216 9 0.834 0.072 -
F3 0.076 ± 0.043 0.075 ± 0.034 0.164 9 0.873 0.055 -

FC3 0.069 ± 0.044 0.069 ± 0.033 -0.023 9 0.982 0.008 -
C3 0.067 ± 0.041 0.066 ± 0.033 0.178 9 0.862 0.059 -
C4 0.061 ± 0.037 0.062 ± 0.035 -0.112 9 0.914 0.037 -
P3 0.067 ± 0.038 0.062 ± 0.035 0.967 9 0.359 0.307 -
O1 0.083 ± 0.050 0.069 ± 0.026 1.089 9 0.305 0.341 -
T7 0.103 ± 0.091 0.077 ± 0.038 1.189 9 0.265 0.368 -

Table A.14: Paired samples t-test results for relative beta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.060 ± 0.019 0.062 ± 0.032 -0.184 9 0.858 0.061 -
F3 0.054 ± 0.022 0.057 ± 0.024 -0.480 9 0.643 0.158 -

FC3 0.083 ± 0.090 0.091 ± 0.113 -0.942 9 0.371 0.300 -
C3 0.047 ± 0.021 0.050 ± 0.013 -0.495 9 0.633 0.163 -
C4 0.080 ± 0.072 0.061 ± 0.029 0.821 9 0.433 0.264 -
P3 0.061 ± 0.036 0.052 ± 0.015 1.016 9 0.336 0.321 -
O1 0.079 ± 0.061 0.065 ± 0.023 0.812 9 0.438 0.261 -
T7 0.089 ± 0.059 0.074 ± 0.039 0.946 9 0.369 0.301 -

Table A.15: Paired samples t-test results for relative beta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.051 ± 0.032 0.044 ± 0.022 1.559 9 0.153 0.461 -
F3 0.048 ± 0.029 0.046 ± 0.025 0.400 9 0.699 0.132 -

FC3 0.055 ± 0.032 0.058 ± 0.036 -0.638 9 0.539 0.208 -
C3 0.057 ± 0.037 0.054 ± 0.028 0.674 9 0.517 0.219 -
C4 0.050 ± 0.027 0.047 ± 0.023 1.442 9 0.183 0.433 -
P3 0.050 ± 0.026 0.048 ± 0.027 0.427 9 0.679 0.141 -
O1 0.063 ± 0.043 0.056 ± 0.033 0.873 9 0.405 0.279 -
T7 0.079 ± 0.051 0.068 ± 0.055 0.838 9 0.424 0.269 -

Table A.16: Paired samples t-test results for relative beta band power before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 0.044 ± 0.015 0.047 ± 0.017 -0.982 9 0.352 0.311 -
F3 0.042 ± 0.013 0.044 ± 0.016 -1.061 9 0.316 0.333 -

FC3 0.083 ± 0.123 0.077 ± 0.100 0.803 9 0.443 0.259 -
C3 0.043 ± 0.014 0.046 ± 0.017 -1.010 9 0.339 0.319 -
C4 0.045 ± 0.011 0.046 ± 0.014 -0.452 9 0.662 0.149 -
P3 0.046 ± 0.027 0.039 ± 0.019 1.619 9 0.140 0.475 -
O1 0.050 ± 0.024 0.047 ± 0.022 1.304 9 0.224 0.399 -
T7 0.068 ± 0.033 0.065 ± 0.028 0.517 9 0.618 0.170 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.5 Modulations in the (θ +α)/β Power Ratio

Table A.17: Paired samples t-test results for (θ +α)/β power ratio before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 7.548 ± 5.060 7.850 ± 5.015 -0.467 9 0.652 0.154 -
F3 6.851 ± 3.852 7.350 ± 3.936 -0.900 9 0.392 0.287 -

FC3 7.751 ± 4.308 7.714 ± 3.420 0.071 9 0.945 0.024 -
C3 8.151 ± 4.349 8.923 ± 4.167 -2.787 9 0.021 0.681 ↑
C4 8.564 ± 4.450 8.910 ± 4.183 -0.666 9 0.522 0.217 -
P3 9.292 ± 5.588 11.021 ± 7.652 -1.784 9 0.108 0.511 -
O1 7.362 ± 5.148 8.060 ± 7.137 -0.546 9 0.598 0.179 -
T7 6.861 ± 4.868 6.603 ± 3.832 0.449 9 0.664 0.148 -

Notes. ↑ = significant increase.

Table A.18: Paired samples t-test results for (θ +α)/β power ratio before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 7.379 ± 2.699 8.633 ± 4.328 -1.434 9 0.185 0.431 -
F3 8.743 ± 3.452 8.516 ± 4.333 0.212 9 0.837 0.070 -

FC3 7.168 ± 2.927 7.640 ± 4.172 -0.559 9 0.590 0.183 -
C3 9.528 ± 2.618 9.372 ± 2.468 0.203 9 0.844 0.068 -
C4 7.154 ± 3.332 8.441 ± 3.909 -1.422 9 0.189 0.428 -
P3 9.815 ± 6.243 9.904 ± 4.316 -0.078 9 0.940 0.026 -
O1 7.859 ± 4.842 8.232 ± 4.491 -0.519 9 0.616 0.170 -
T7 5.967 ± 3.064 6.675 ± 4.070 -0.647 9 0.534 0.211 -

Table A.19: Paired samples t-test results for (θ +α)/β power ratio before (‘baseline’) and
after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 19.145 ± 17.619 19.070 ± 12.484 0.038 9 0.970 0.013 -
F3 16.755 ± 14.749 17.519 ± 12.660 -0.499 9 0.629 0.164 -

FC3 16.218 ± 13.607 16.239 ± 12.963 -0.020 9 0.985 0.007 -
C3 15.497 ± 11.232 16.378 ± 11.932 -1.071 9 0.312 0.336 -
C4 16.460 ± 11.264 17.479 ± 10.113 -0.654 9 0.529 0.213 -
P3 18.711 ± 11.593 20.291 ± 13.516 -1.621 9 0.139 0.475 -
O1 14.799 ± 11.778 17.310 ± 13.476 -1.729 9 0.118 0.499 -
T7 9.988 ± 6.230 12.761 ± 8.061 -2.077 9 0.068 0.569 -

Table A.20: Paired samples t-test results for (θ +α)/β power ratio before (‘baseline’) and
after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 12.887 ± 5.788 12.058 ± 4.940 1.291 9 0.229 0.395 -
F3 12.968 ± 4.134 12.209 ± 3.598 1.660 9 0.131 0.484 -

FC3 11.381 ± 5.876 10.642 ± 4.874 1.031 9 0.329 0.325 -
C3 14.359 ± 6.668 12.844 ± 4.036 1.001 9 0.343 0.317 -
C4 12.657 ± 5.045 13.012 ± 4.444 -0.530 9 0.609 0.174 -
P3 18.999 ± 14.295 19.802 ± 10.852 -0.530 9 0.609 0.174 -
O1 18.301 ± 16.783 18.489 ± 14.232 -0.157 9 0.879 0.052 -
T7 9.487 ± 6.754 8.993 ± 3.930 0.270 9 0.793 0.090 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.6 Modulations in the α/β Power Ratio

Table A.21: Paired samples t-test results for α/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 4.189 ± 3.587 4.408 ± 3.819 -0.447 9 0.665 0.147 -
F3 3.459 ± 2.346 3.679 ± 2.324 -0.589 9 0.570 0.193 -

FC3 3.706 ± 2.348 4.121 ± 2.231 -1.045 9 0.323 0.329 -
C3 4.213 ± 2.612 4.997 ± 2.812 -2.403 9 0.040 0.625 ↑
C4 4.593 ± 3.012 5.290 ± 3.208 -1.690 9 0.125 0.491 -
P3 5.900 ± 4.482 7.735 ± 7.199 -1.803 9 0.105 0.515 -
O1 4.638 ± 4.408 5.410 ± 7.098 -0.692 9 0.506 0.225 -
T7 3.363 ± 1.964 3.559 ± 1.762 -0.620 9 0.550 0.202 -

Notes. ↑ = significant increase.

Table A.22: Paired samples t-test results for α/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 3.271 ± 1.538 4.074 ± 2.410 -1.877 9 0.093 0.530 -
F3 3.585 ± 1.637 3.499 ± 2.128 0.171 9 0.868 0.057 -

FC3 3.158 ± 1.699 3.396 ± 2.134 -0.649 9 0.532 0.211 -
C3 4.391 ± 1.905 4.602 ± 1.909 -0.694 9 0.505 0.225 -
C4 3.579 ± 1.988 3.854 ± 2.363 -0.632 9 0.543 0.206 -
P3 5.276 ± 3.570 5.354 ± 2.984 -0.132 9 0.898 0.044 -
O1 4.021 ± 3.108 4.432 ± 3.055 -0.993 9 0.347 0.314 -
T7 2.818 ± 1.469 3.021 ± 1.774 -0.478 9 0.644 0.157 -

Table A.23: Paired samples t-test results for α/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 15.147 ± 16.815 14.551 ± 12.086 0.329 9 0.750 0.109 -
F3 12.151 ± 14.170 12.581 ± 12.422 -0.285 9 0.782 0.095 -

FC3 11.808 ± 12.969 11.997 ± 12.168 -0.180 9 0.862 0.060 -
C3 11.104 ± 10.346 12.224 ± 11.022 -1.279 9 0.233 0.392 -
C4 12.282 ± 10.396 13.160 ± 9.158 -0.599 9 0.564 0.196 -
P3 15.001 ± 10.818 16.461 ± 12.554 -1.578 9 0.149 0.466 -
O1 12.208 ± 11.258 14.047 ± 12.914 -1.671 9 0.129 0.487 -
T7 7.223 ± 5.388 9.182 ± 6.898 -1.601 9 0.144 0.471 -

Table A.24: Paired samples t-test results for α/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 7.379 ± 4.900 7.100 ± 4.183 0.451 9 0.662 0.149 -
F3 6.672 ± 3.429 6.294 ± 2.882 0.629 9 0.545 0.205 -

FC3 5.913 ± 3.638 5.543 ± 2.955 0.756 9 0.469 0.244 -
C3 8.069 ± 3.847 7.462 ± 3.397 0.733 9 0.482 0.237 -
C4 7.417 ± 4.081 7.488 ± 3.879 -0.124 9 0.904 0.041 -
P3 13.360 ± 11.187 13.745 ± 9.110 -0.310 9 0.763 0.103 -
O1 13.742 ± 14.542 13.464 ± 12.315 0.244 9 0.813 0.081 -
T7 4.845 ± 2.716 4.988 ± 2.465 -0.268 9 0.795 0.089 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.7 Modulations in the (θ +α)/(α +β ) Power Ratio

Table A.25: Paired samples t-test results for (θ +α)/(α +β ) power ratio before (‘baseline’)
and after (‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 1.490 ± 0.248 1.481 ± 0.317 0.107 9 0.917 0.036 -
F3 1.553 ± 0.246 1.562 ± 0.274 -0.115 9 0.911 0.038 -

FC3 1.649 ± 0.327 1.520 ± 0.266 1.712 9 0.121 0.496 -
C3 1.579 ± 0.298 1.517 ± 0.304 0.916 9 0.384 0.292 -
C4 1.585 ± 0.303 1.467 ± 0.252 1.925 9 0.086 0.540 -
P3 1.392 ± 0.247 1.337 ± 0.251 1.277 9 0.234 0.392 -
O1 1.345 ± 0.296 1.377 ± 0.243 -0.402 9 0.697 0.133 -
T7 1.451 ± 0.546 1.390 ± 0.291 0.611 9 0.557 0.200 -

Table A.26: Paired samples t-test results for (θ +α)/(α +β ) power ratio before (‘baseline’)
and after (‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 1.749 ± 0.344 1.715 ± 0.355 0.444 9 0.667 0.146 -
F3 1.944 ± 0.469 1.920 ± 0.417 0.420 9 0.684 0.139 -

FC3 1.717 ± 0.451 1.696 ± 0.499 0.294 9 0.775 0.098 -
C3 1.868 ± 0.467 1.756 ± 0.324 1.201 9 0.260 0.372 -
C4 1.531 ± 0.330 1.788 ± 0.364 -1.988 9 0.078 0.552 -
P3 1.532 ± 0.251 1.633 ± 0.296 -1.139 9 0.284 0.355 -
O1 1.564 ± 0.375 1.576 ± 0.274 -0.146 9 0.887 0.049 -
T7 1.498 ± 0.442 1.613 ± 0.361 -1.080 9 0.308 0.339 -

Table A.27: Paired samples t-test results for (θ +α)/(α +β ) power ratio before (‘baseline’)
and after (‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 1.359 ± 0.378 1.400 ± 0.422 -0.853 9 0.416 0.273 -
F3 1.479 ± 0.435 1.497 ± 0.476 -0.224 9 0.828 0.074 -

FC3 1.420 ± 0.370 1.384 ± 0.365 0.728 9 0.485 0.236 -
C3 1.384 ± 0.414 1.346 ± 0.292 0.392 9 0.704 0.130 -
C4 1.326 ± 0.298 1.328 ± 0.304 -0.038 9 0.970 0.013 -
P3 1.226 ± 0.264 1.225 ± 0.215 0.026 9 0.980 0.009 -
O1 1.137 ± 0.096 1.198 ± 0.130 -1.458 9 0.179 0.437 -
T7 1.242 ± 0.275 1.311 ± 0.349 -1.014 9 0.337 0.320 -

Table A.28: Paired samples t-test results for (θ +α)/(α +β ) power ratio before (‘baseline’)
and after (‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 1.664 ± 0.344 1.610 ± 0.407 0.531 9 0.608 0.174 -
F3 1.817 ± 0.404 1.787 ± 0.439 0.260 9 0.800 0.086 -

FC3 1.621 ± 0.558 1.602 ± 0.489 0.168 9 0.870 0.056 -
C3 1.619 ± 0.366 1.596 ± 0.362 0.266 9 0.796 0.088 -
C4 1.608 ± 0.325 1.632 ± 0.390 -0.293 9 0.776 0.097 -
P3 1.371 ± 0.246 1.441 ± 0.350 -1.012 9 0.338 0.320 -
O1 1.331 ± 0.173 1.359 ± 0.227 -0.804 9 0.442 0.259 -
T7 1.524 ± 0.420 1.513 ± 0.357 0.094 9 0.927 0.031 -
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A.1 Paired Samples t-test Results of the Robot-Mediated Gross Motor and Fine Motor
Interactions

A.1.8 Modulations in the θ/β Power Ratio

Table A.29: Paired samples t-test results for θ/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated gross motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 3.359 ± 1.742 3.442 ± 1.899 -0.243 9 0.813 0.081 -
F3 3.392 ± 1.664 3.670 ± 1.895 -0.840 9 0.423 0.270 -

FC3 4.045 ± 2.219 3.593 ± 1.485 1.395 9 0.196 0.422 -
C3 3.938 ± 1.962 3.926 ± 1.986 0.046 9 0.964 0.015 -
C4 3.971 ± 1.875 3.620 ± 1.386 1.086 9 0.306 0.340 -
P3 3.392 ± 1.701 3.286 ± 1.512 0.473 9 0.648 0.156 -
O1 2.724 ± 1.638 2.650 ± 1.018 0.187 9 0.856 0.062 -
T7 3.498 ± 3.193 3.044 ± 2.268 1.173 9 0.271 0.364 -

Table A.30: Paired samples t-test results for θ/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated fine motor interaction with the eyes opened.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 4.108 ± 1.610 4.559 ± 2.294 -0.900 9 0.392 0.287 -
F3 5.158 ± 2.427 5.017 ± 2.525 0.234 9 0.820 0.078 -

FC3 4.010 ± 1.629 4.244 ± 2.317 -0.457 9 0.659 0.151 -
C3 5.137 ± 1.899 4.770 ± 1.552 0.693 9 0.506 0.225 -
C4 3.575 ± 1.599 4.587 ± 1.959 -1.856 9 0.096 0.526 -
P3 4.538 ± 2.882 4.550 ± 2.013 -0.017 9 0.987 0.006 -
O1 3.838 ± 2.023 3.800 ± 1.972 0.079 9 0.939 0.026 -
T7 3.149 ± 1.815 3.654 ± 2.442 -0.719 9 0.490 0.233 -

Table A.31: Paired samples t-test results for θ/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated gross motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 3.998 ± 1.584 4.519 ± 1.671 -1.869 9 0.094 0.529 -
F3 4.604 ± 1.888 4.938 ± 2.237 -1.456 9 0.179 0.437 -

FC3 4.410 ± 2.029 4.242 ± 2.041 0.754 9 0.470 0.244 -
C3 4.392 ± 2.711 4.154 ± 1.922 0.446 9 0.666 0.147 -
C4 4.179 ± 1.955 4.319 ± 2.027 -0.562 9 0.588 0.184 -
P3 3.710 ± 2.135 3.830 ± 1.974 -0.547 9 0.598 0.179 -
O1 2.591 ± 1.212 3.264 ± 1.640 -1.442 9 0.183 0.433 -
T7 2.764 ± 1.425 3.579 ± 2.108 -2.225 9 0.053 0.596 -

Table A.32: Paired samples t-test results for θ/β power ratio before (‘baseline’) and after
(‘recovery’) the robot-mediated fine motor interaction with the eyes closed.

Electrode
Location

Sample mean ± std Paired samples t-test Direction of change if
significantBaseline Recovery t df p-value Effect size r

FP1 5.508 ± 2.073 4.958 ± 1.830 1.159 9 0.276 0.360 -
F3 6.296 ± 2.266 5.916 ± 2.156 0.869 9 0.407 0.278 -

FC3 5.468 ± 3.332 5.099 ± 2.653 0.578 9 0.577 0.189 -
C3 6.290 ± 4.223 5.381 ± 2.160 0.962 9 0.361 0.305 -
C4 5.240 ± 1.859 5.524 ± 2.315 -0.615 9 0.554 0.201 -
P3 5.639 ± 4.446 6.058 ± 3.607 -0.721 9 0.489 0.234 -
O1 4.560 ± 3.346 5.025 ± 3.516 -1.882 9 0.093 0.531 -
T7 4.641 ± 4.577 4.005 ± 2.371 0.466 9 0.652 0.153 -
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B.1 Target Point Locations in the Virtual 3D Room

B.1 Target Point Locations in the Virtual 3D Room

The target points that were used for the visuomotor tracking task explained in Section 5.1.3
is given in Table B.1.

Table B.1: Target point locations and reaching order

Loop Point reach
order Point No x/m y/m z/m

Forward
Loop

1 1 0.12 0 -0.19

2 2 -0.01 -0.125 0.015

3 3 -0.14 0 -0.19

4 4 0.028 -0.11 -0.005

5 5 0.172 0.05 -0.173

6 6 -0.017 -0.113 -0.062

7 7 -0.151 0.102 -0.165

8 8 -0.056 -0.123 -0.043

9 9 0.048 0.079 -0.195

10 10 0.156 -0.102 -0.021

11 11 -0.018 -0.218 0.155

12 12 -0.146 -0.053 -0.021

13 13 0 0.099 -0.195

Reverse
Loop

14 12 -0.146 -0.053 -0.021

15 11 -0.018 -0.218 0.155

16 10 0.156 -0.102 -0.021

17 9 0.048 0.079 -0.195

18 8 -0.056 -0.123 -0.043

19 7 -0.151 0.102 -0.165

20 6 -0.017 -0.113 -0.062

21 5 0.172 0.05 -0.173

22 4 0.028 -0.11 -0.005

23 3 -0.14 0 -0.19

24 2 -0.01 -0.125 0.015

25 1 0.12 0 -0.19
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B.2 Complete Analysis of the Two-way Repeated Measures
ANOVA Performed on All EEG Features

Table B.2 summarises the two-way repeated measures ANOVA results of all EEG fea-
ture considered in this experiment (δrelative, θrelative, αrelative, βrelative, (θ + α)/β , α/β ,
(θ +α)/(α+β ), θ /β , δ /α , largest Lyapunov exponent and approximate entropy). In general,
significant main effect of the electrode locations and significant interaction between mea-
surement time and electrode locations were observed on all EEG features. The measurement
time effects were significant only on δrelative, αrelative, (θ +α)/β , α/β , (θ +α)/(α +β ),
δ /α and largest Lyapunov exponent values. Table B.3 summarises the pairwise comparison
of the EEG features that showed a significant measurement time effect. In general, δrelative,
αrelative, (θ +α)/β , α/β , (θ +α)/(α +β ), δ /α showed a significant difference between
baseline and level 1, and between level 5 and recovery, thereby suggesting that there is a
significant change in the EEG features at the onset of the task and when moving to the resting
state following the robot-mediated interaction. Furthermore, the majority of the features (i.e.,
δrelative, αrelative, (θ +α)/(α +β ), δ /α and largest Lyapunov exponent) showed significant
variations between level 1 and level 5.

Comparison of the sample mean of each EEG feature across all measurement times and EEG
electrodes are shown in Figures B.1 to B.12, respectively in Section B.2.13. Tables B.4 to
B.15 in Section B.2.14 summarise the p-values obtained from the pairwise comparison of
the interaction between measurement time and electrode locations of all EEG features. The
topographical distribution of the significant differences of all EEG features before, during
and after the visuomotor tracking task are shown in Figures B.13 to B.23, respectively in
Section B.2.15. The following sections discuss the analysis of EEG feature variations in
detail.

B.2.1 Modulations in δrelative Before, During and After the Robot-
Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on δrelative indicated that there was a significant main
effect in measurement time (F(6, 144) = 24.055, p = 0.000, ε = 0.352, η2

P = 0.501, power =
1.000) and electrode location (F(31, 744) = 8.379, p = 0.000, ε = 0.134, η2

P = 0.259, power =
0.999) with a larger effect size and a sufficient power (i.e, over 80%) to find the statistical
differences in the main effects. It was visible that the sample mean of δrelative on all electrodes
increased following the onset of robot-mediated interaction (i.e., from baseline to level 1)
and decreased following the interaction (i.e., from level 5 to recovery). The δrelative during
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B.2 Complete Analysis of the Two-way Repeated Measures ANOVA Performed on All
EEG Features

Table B.3: Pairwise comparison of the significant measurement time effect on EEG features.

Measurement time δrelative αrelative (θ +α)/β α/β
(θ +α)/(α +

β )
δ /α Largest Lyapunov

Exponent LLyapExp/αrelative

Baseline Level 1 0.000 0.000 0.028 0.001 0.000 0.000 0.000 0.000

Level 1

Level 2 0.369 0.153 0.834 0.125 0.016 0.056 0.189 0.086

Level 3 0.299 0.063 0.626 0.062 0.032 0.063 0.088 0.094

Level 4 0.117 0.013 0.273 0.018 0.006 0.039 0.076 0.068

Level 5 0.040 0.006 0.840 0.072 0.010 0.004 0.035 0.014

Level 5 Recovery 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.000

Baseline Recovery 0.240 0.196 0.151 0.117 0.043 0.042 0.049 0.000

Notes. Cell colours blue, green and red represents p-values < 0.05, < 0.01, and < 0.001, respectively.

recovery was lower than baseline on electrodes belonging to central, parietal, and occipital
regions. Furthermore, a decrease in δrelative on the majority of electrodes was visible when
progressing to level 5 (i.e., from level 1 to level 5) (Figure B.1). The pairwise comparison
on measurement time main effect revealed that there was a significant increase in δrelative

from baseline to level 1, and then a significant decrease from level 1 to level 5 and from
level 5 to recovery. There was a statistically significant interaction between measurement
time and electrode locations as well (F(186,4464) = 4.90, p = 0.000, ε = 0.046, η2

P = 0.170,
power = 0.999). The interaction also had a larger effect size and the power to find differences
was also high. The pairwise comparison of interaction between measurement time and
electrode locations (Table B.4) revealed a significant increase in δrelative from baseline to
level 1 on all electrode locations and a significant decrease from level 1 to level 3 on P7;
from level 1 to level 4 on CP4, P4, PO4, Oz, and O2; from level 1 to level 5 on CP4, P3,
P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, and P8; from level 5 to recovery on all electrode
locations; and from baseline to recovery on P3, PO3, and Oz electrodes. The topographical
distribution of significant differences between visuomotor tracking task interaction levels
(i.e., level 1 to level 2, level 1 to level 3, level 1 to level 4, and level 1 to level 5) showed that
significant variations in δrelative was localised to parietal and occipital regions (Figure B.13).
Furthermore, variation in sample mean and standard deviation of these significant electrodes
revealed that δrelative on parietal and occipital regions significantly decreased following the
robotic interaction.

B.2.2 Modulations in θrelative Before, During and After the Robot-
Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on θrelative revealed a significant main effect in electrode
location (F(31, 744) = 27.613, p = 0.000, ε = 0.057, η2

P = 0.535, power = 1.000) and a

236
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significant interaction between measurement time and electrode locations (F(186, 4464)
= 2.458, p = 0.018, ε = 0.039, η2

P = 0.093, power = 0.874). The significant main effect
in electrode location had a larger effect size whereas the interaction had a medium effect
size. However, both had sufficient power (i.e, over 80%) to find the statistical differences
in the main effects. There was no significant main effect in the measurement time (F(6,
144) = 1.505, p = 0.233, ε = 0.324, η2

P = 0.059, power = 0.301). The pairwise comparison
of interaction between measurement time and electrode locations (Table B.5) revealed a
significant increase in θrelative from baseline to level 1 on C3, P2, PO4, Oz, O2, and T7
electrodes, whereas a significant decrease was visible from level 5 to recovery on FP1, FP2,
PO4, and O2 electrodes. Furthermore, a significant reduction in θrelative was observed from
level 1 to level 2 on C3, P1, P2, PO3, PO4, and O2; level 1 to level 3 on FC3, C5, C3, C1, Cz,
C2, CP3, and CPz; level 1 to level 4 on FC3, C3, C1, Cz, C2, C4, and CP3; level 1 to level 5
on FC3, C3, C1, Cz and CP3 electrodes. The topographical distribution of the significant
differences show that the significant changes in θrelative is localised mostly around the central
region (Figure B.14).

B.2.3 Modulations in αrelative Before, During and After the Robot-
Mediated Visuomotor Tracking Task

A reduction in αrelative after the onset of robot-mediated interaction (i.e., from baseline to
level 1) was visible on all electrodes, followed by an increase αrelative on all electrodes from
level 1 to 5. Following the completion of the robotic interaction, there was again a rise
in the αrelative from level 5 to recovery. In comparison to the αrelative during baseline, a
larger increase were visible during recovery on electrodes belonging to central, parietal, and
occipital regions (Figure B.3). Two-way repeated measures ANOVA on αrelative indicated
that there was a significant main effect in the measurement time (F(6, 144) = 26.613, p =
0.000, ε = 0.291 , η2

P = 0.526, power = 1.000) and electrode location (F(31, 744) = 11.87,
p = 0.000, ε = 0.148, η2

P = 0.331, power = 1.000). The power to find differences in both
conditions was high and the effect sizes were large. Pairwise comparison of measurement
time effect showed that there was a significant decrease in αrelative from baseline to level 1
of the robotic interaction, a significant increase from level 1 to level 4, from level 1 to level
5, and from level 5 to recovery. The interaction between measurement time and electrode
locations was also statistically significant with a larger effect size (F(186, 4464) = 6.182,
p = 0.000, ε = 0.026, η2

P = 0.205, power = 0.995). The power analysis also showed that
the interaction between measurement time and electrode locations of αrelative had sufficient
power to find statistical differences in the interaction. The pairwise comparison showed that
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there was a significant increase between level 1 to level 2 on O1, Oz, and P8; level 1 to level
3 on FP1, Pz, P4, O1, Oz, T7, and P7; level 1 to level 4 on FCz, C3, C1, Cz, C2, C4, C6,
CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, and P8; level 1 to level 5 on C3,
C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, T8, P7, and
P8 electrodes (Table B.6 and Figure B.3). The topographical distribution of the significant
differences shows that these variations shows a widespread distribution across the posterior
brain regions, including central, parietal, occipital and temporal brain regions (Figure B.15).

B.2.4 Modulations in βrelative Before, During and After the Robot-
Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on βrelative also revealed a significant main effect in
electrode location (F(31, 744) = 12.473, p = 0.000, ε = 0.108, η2

P = 0.342, power = 1.000)
and a significant interaction between measurement time and electrode locations (F(186, 4464)
= 2.304, p = 0.026, ε = 0.040, η2

P = 0.088, power = 0.852). The significant main effect
in electrode location had a larger effect size whereas the interaction had a medium effect
size. However, both had sufficient power (i.e, over 80%) to find the statistical differences
in the main effects. The pairwise comparison of the interaction effect showed significant
differences on only a few electrode locations (Table B.7 and Figure B.16). There was a
significant decrease in βrelative on FC3, FCz, C5, C1, and Cz from baseline to level 1; a
significant increase on O1 and P7 from level 1 to level 2, on P7 from level 1 to level 3, on T8
from level 1 to level 5, on FCz from level 5 to recovery.

B.2.5 Modulations in (θ +α)/β Before, During and After the Robot-
Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on (θ +α)/β found that there was a significant main
effect in measurement time (F(6, 144) = 6.350, p = 0.007, ε = 0.259, η2

P = 0.209, power
= 0.812) and electrode location (F(31, 744) = 11.810, p = 0.000, ε = 0.117, η2

P = 0.330,
power = 1.000) with a larger effect size and a sufficient power (i.e., over 80%) to find the
statistical differences in the main effects. The pairwise comparison on measurement time
main effect showed that the significant differences were only visible from baseline to level
1 and from level 5 to recovery. The interaction between measurement time and electrode
locations was also significant (F(186, 4464) = 5.920, p = 0.001, ε = 0.018, η2

P = 0.198, power
= 0.962) and showed a larger effect size and a higher power to find differences. As shown
in Table B.8, the significant differences were visible only on CP3, CPz, CP4, P3, P1, Pz,
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P2, P4, PO3, PO4, O1, Oz, O2, T8, P7, and P8 electrodes from baseline to level 1 and on
FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz,
O2, P7, and P8 electrodes from baseline to recovery. There was no significant difference
in the interaction between the robot-mediated visuomotor tracking task interaction levels
and electrode locations. However, as can be seen in B.5, there was an increase in (θ +α)/β

around the parietal region.

B.2.6 Modulations in α/β Before, During and After the Robot-Mediated
Visuomotor Tracking Task

Two-way repeated measures ANOVA on α/β showed a significant main effect in measure-
ment time (F(6, 144) = 12.596, p = 0.000, ε = 0.235, η2

P = 0.344, power = 0.974), electrode
location (F(31, 744) = 8.502, p = 0.000, ε = 0.097, η2

P = 0.262, power = 0.991) and a signifi-
cant interaction between measurement time and electrode locations (F(186, 4464) = 6.563,
p = 0.001, ε = 0.014, η2

P = 0.215, power = 0.947). Both main effects and the interaction
showed a larger effect size and had sufficient power to find statistical differences in the
main effects. The pairwise comparison of the main effect in measurement time revealed a
significant decrease in α/β from baseline to level 1, a significant increase from level 1 to
level 4 and from level 5 to recovery. As can be seen in Figure B.6, α/β also increased in all
EEG electrodes from level 1 to level 5. The pairwise comparison of the interaction between
measurement time and electrode locations (Table B.9) showed a significant differences on
all electrodes from baseline to level 1 and from level 5 to recovery. Also, there was a
significant increase in α/β from baseline to recovery on CP3. The comparison between the
robot-mediated interaction levels showed a significant increase from level 1 to level 2 on F3,
FC3, FCz, C1, Cz, C2, CPz, and CP4 electrodes; from level 1 to level 3 on Cz, CPz, CP4,
and T8 electrodes; from level 1 to level 4 on Fz, FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3,
CPz, CP4, P3, P1, Pz, P2, P4, and P8 electrodes; and from level 1 to level 5 on CPz and
P8. From the topographical distribution of the significant differences of α/β between the
task interaction levels, it was observed that α/β around central and parietal regions were
significantly changed from level 1 to 4 (Figure B.17).

B.2.7 Modulations in (θ +α)/(α + β ) Before, During and After the
Robot-Mediated Visuomotor Tracking Task

Comparison of the sample mean of (θ +α)/(α +β ) on all 32 electrodes between measure-
ment times is shown in Figure B.7. The (θ +α)/(α +β ) on all electrodes were increased
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from baseline to level 1 and then decreased from level 5 to recovery. Also a larger decrease
is visible from baseline to recovery on the electrodes places over the central, parietal and
occipital brain regions. The (θ +α)/(α +β ) also showed a decreasing trend from level
1 to level 5, thereby suggesting that fatigue induced during the robot-mediated interaction
decreased the (θ +α)/(α +β ) band power ratio. Two-way repeated measures ANOVA also
resulted in a significant main effect in measurement time (F(6, 144) = 20.602, p = 0.000, ε

= 0.427, η2
P = 0.462, power = 1.000), electrode location (F(31, 744) = 32.172, p = 0.000,

ε = 0.086, η2
P = 0.573, power = 1.000) and a significant interaction between measurement

time and electrode locations (F(186, 4464) = 2.310, p = 0.017, ε = 0.048, η2
P = 0.088, power

= 0.900). Both main effects showed a larger effect size and had sufficient power to find
statistical differences in the main effects. The interaction effect, on the other hand, showed a
medium effect size, and the power to find differences was high. The pairwise comparison of
the main effect in measurement time showed significant differences from baseline to level 1,
level 1 to level 2, level 1 to level 3, level 1 to level 4, level 1 to level 5, level 5 to recovery and
baseline to recovery. The pairwise comparison of the interaction between measurement time
and electrode locations (Table B.10) revealed significant differences from baseline to level
1 on all electrodes and from level 5 to recovery on all electrodes except T8. Furthermore,
a significant decrease from baseline to recovery was also found on FCz, C3, C1, Cz, CP3,
CPz, P3, P1, Pz, and T8 electrodes. The (θ +α)/(α +β ) around the central, parietal, and
occipital regions are found to be significantly altered during the robot-mediated interactions
(Figure B.18). There was a significant decrease in (θ +α)/(α +β ) from level 1 to level 2 on
C5, C3, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, T7, and P7 electrodes;
from level 1 to level 3 on FC3, C5, C3, C1, Cz, CP3, CPz, P3, P1, PO3, O1, T7, and P7
electrodes; from level 1 to level 4 on FC3, FCz, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4,
P3, P1, Pz, P2, P4, PO3, PO4, and P7 electrodes; from level 1 to level 5 on FC3, FCz, FC4,
C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz, and P7
electrode.

B.2.8 Modulations in θ/β Before, During and After the Robot-
Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on θ/β showed a significant main effect on electrode
location (F(31,744) = 24.893, p = 0.000, ε = 0.093, η2

P = 0.509, power = 1.000) and a
significant interaction between measurement time and electrode locations (F(186, 4464) =
2.336, p = 0.023, ε = 0.040, η2

P = 0.089, power = 0.860). The main effect on electrode
location had a larger effect size while the interaction effect had a medium effect size. Also,
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both had sufficient power to find statistical differences. There was no significant main
effect on measurement time (F(6, 144) = 0.937, p = 0.415, ε = 0.415, η2

P = 0.038, power =
0.225). The pairwise comparison of the interaction between measurement time and electrode
locations (Table B.11) showed a significant increase from baseline to level 1 on F3, Fz, F4,
FC3, FCz, C5, C3, C1, Cz, and C2 electrodes and a significant decrease from level 5 to
recovery on FP1, F3, and FCz electrodes. Also, θ/β was not much affected during the
robot-mediated interaction. The significant differences were only visible on P7 electrode
from level 1 to level 2, 3, 4, and 5, PO3 and PO4 electrodes from level 1 to level 2, on CP4
electrode from level 1 to level 4, on CP4 electrode from level 1 to level 4, on C5 electrode
from level 1 to level 5 (Figure B.19).

B.2.9 Modulations in δ/α Before, During and After the Robot-
Mediated Visuomotor Tracking Task

As can be seen in Figure B.9, δ/α on all electrodes showed a decreasing trend from level 1 to
level 5 during the robot-mediated interaction and from baseline to recovery. Furthermore, two-
way repeated measures ANOVA showed a significant main effect in measurement time (F(6,
144) = 32.673, p = 0.000, ε = 0.475, η2

P = 0.577, power = 1.000), electrode location (F(31,
744) = 6.945, p = 0.000, ε = 0.128, η2

P = 0.224, power = 0.992) and a significant interaction
between measurement time and electrode locations (F(186, 4464) = 2.248, p = 0.010, ε =
0.064, η2

P = 0.086, power = 0.950). Larger effect sizes were also found on measurement time
and electrode location whereas medium effect size was found on the interaction between
measurement time and electrode locations. The power to find the statistical differences were
high in all conditions and in the interaction. The pairwise comparison of the main effect of
measurement time showed significant differences from baseline to level 1, level 1 to level
4, level 1 to level 5, level 5 to recovery and baseline to recovery. In additions, the pairwise
comparison of the interaction between measurement time and electrode locations (Table
B.12) found a significant increase in δ/α from baseline to recovery on all electrodes and
a significant decrease from level 5 to recovery on all electrodes. Moreover, a significant
decrease in δ/α was visible from level 1 to level 2 on Cz, C2, CPz, CP4, Pz, P2, P4, PO3,
PO4, O1, O2, P7, and P8 electrodes; from level 1 to level 3 on CPz CP4 P3 Pz P2 P4 PO4
O1 Oz O2, and P7 electrodes; from level 1 to level 4 on C2, CPz, CP4, P3, P1, Pz, P2, P4,
PO4, and O2 electrodes; from level 1 to level 5 on Cz, C2, C4, C6, CP3, CPz, CP4, P3, P1,
Pz, P2, P4, PO3, PO4, O1, Oz, O2, P7, and P8 electrodes. The topographical distribution
of the significant differences showed that the changes in δ /α were localised around central,
parietal, occipital and temporal brain regions (Figure B.20).
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B.2.10 Modulations in the EEG Largest Lyapunov Exponent Before,
During and After the Robot-Mediated Visuomotor Tracking
Task

Comparison of the sample mean of largest Lyapunov exponent on all 32 electrodes between
measurement times is illustrated in Figure B.10. The largest Lyapunov exponent values on
all electrodes were increased from baseline to level 1 and decreased from level 5 to recovery.
Also, in the majority of electrodes larger differences were observed between level 1 and level
5 of the robot-mediate interaction that may have caused due to the development of fatigue
during the task. Two-way repeated measures ANOVA on largest Lyapunov exponent showed
that there was a significant main effect in measurement time (F(6, 144) = 21.790, p = 0.000,
ε = 0.445, η2

P = 0.476, power = 1.000) and in electrode location (F(31, 744) = 24.050, p =
0.000, ε = 0.127, η2

P = 0.501, power = 1.000). Also, the effect sizes were large and the power
to find the statistical differences were high in all conditions. The pairwise comparison of
the main effect of measurement time revealed that there was a significant difference from
baseline to level 1, level 1 to level 5, level 5 to recovery and baseline to recovery. The
interaction between measurement time and electrode locations was also significant with a
medium effect size and a larger power to find the statistical differences (F(186, 4464) = 2.660,
p = 0.005, ε = 0.053, η2

P = 0.100, power = 0.958). The interaction had a medium effect size
and a larger power to find the statistical differences. Table B.13 summarises the p-values
obtained from the pairwise comparison of the interaction between measurement time and
electrode locations. There were significant differences from baseline to level 1 and from level
5 to recovery on all electrode locations. Also, a significant decrease in the largest Lyapunov
exponent from baseline to recovery on C3, C1, CP3, CPz, P3, P1, Pz, PO3, O1, and Oz
electrodes was visible. The largest Lyapunov exponent values from level 1 to level 2 on PO3,
PO4, O1, Oz, O2, and P7 electrodes, from level 1 to level 3 on P3, P1, Pz, P4, PO3, PO4,
O1, Oz, and P7 electrodes, from level 1 to level 4 on CPz, CP4, P3, P1, Pz, P2, P4, PO4, and
P7 electrodes, from level 1 to level 5 on C2, CP3, CPz, CP4, P3, P1, Pz, P2, P4, PO3, PO4,
O1, Oz, O2, and P7 electrodes also decreased significantly, thereby suggesting a decreasing
trend in the largest Lyapunov exponent with fatigue. The topographical distribution of the
significant differences between visuomotor tracking task interaction levels showed that the
changes in the largest Lyapunov exponent were mostly localised around parietal and occipital
brain regions (Figure B.21).
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B.2.11 Modulations in the EEG Approximate Entropy Before, During
and After the Robot-Mediated Visuomotor Tracking Task

Two-way repeated measures ANOVA on approximate entropy showed a significant main
effect in electrode location (F(31, 744) = 13.955, p = 0.000, ε = 0.167, η2

P = 0.368, power =
1.000) and a significant interaction between measurement time and electrode locations (F(186,
4464) = 6.620, p = 0.000, ε = 0.041, η2

P = 0.216, power = 1.000). Also, both had larger effect
sizes and larger power to find the statistical differences. The pairwise comparison of the
interaction between measurement time and electrode locations found a significant increase in
the approximate entropy from baseline to level 1 on P3, P1, Pz, P2, P4, PO3, PO4, O1, Oz,
O2, T7, P7 and P8 electrodes. Furthermore, a significant decrease was visible from level 1 to
level 3 on FC3 and C3 electrodes; from level 1 to level 4 on C1 electrode; from level 1 to
level 5 on F3, FC3, C5, C3, C1, and T7 electrodes; and from level 5 to recovery on P2, P4,
PO3, PO4, O1, Oz, O2, P7 and P8 electrodes (Table B.14). The topographical distribution
of the significant differences showed that the changes in approximate entropy were mostly
localised around the central brain region (Figure B.22).

B.2.12 Modulations in the LLyapExp/αrelative Before, During and After
the Robot-Mediated Visuomotor Tracking Task

As can be seen in Figure B.12, LLyapExp/αrelative on all EEG electrodes increased from
baseline to level 1 and then decreased from level 5 to recovery. Also, a decreasing trend
was visible from baseline to recovery. The LLyapExp/αrelative during the robot-mediated
interaction showed a decrease in all EEG electrodes from level 1 to level 5. Two-way repeated
measures ANOVA on LLyapExp/αrelative indicated that there was a significant main effect in
measurement time (F(6, 144) = 21.284, p = 0.000, ε = 0.520, η2

P = 0.470, power = 1.000) and
electrode location (F(31, 744) = 12.912, p = 0.000, ε = 0.080, η2

P = 0.350, power = 0.999)
with a larger effect size and a sufficient power to find the statistical differences in the main
effects. The pairwise comparison on measurement time main effect revealed that there were
significant differences from baseline to level 1, level 1 to level 5, level 5 to recovery, and
baseline to recovery. Furthermore, there was a statistically significant interaction between
measurement time and electrode locations (F(186, 4464) = 2.336, p = 0.010, ε = 0.057, η2

P

= 0.089, power = 0.941). The interaction had a medium effect size and the power to find
differences was also high. The pairwise comparison of interaction between measurement
time and electrode locations is summarised in Table B.15. There was a significant increase in
LLyapExp/αrelative from baseline to level 1 and a significant decrease from level 5 to recovery
on all electrode locations. A significant decrease was also found from baseline to recovery
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on C5, C3, C1, Cz, CP3, CPz, P3, P1, Pz, PO3, O1, and Oz electrodes. When compared with
level 1 of the robot-mediated interaction, significant decrease in LLyapExp/αrelative were
found on P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, and P7 electrodes during level 2, on P3, P1,
Pz, P2, P4, PO3, PO4, O1, Oz, O2, and P7 electrodes during level 3, on C2, CPz, CP4, P3, P1,
Pz, P2, P4, PO3, and PO4 electrodes during level 4 and on Cz, C2, C6, CP3, CPz, CP4, P3,
P1, Pz, P2, P4, PO3, PO4, O1, Oz, O2, and P7 electrodes during level 5. The topographical
distribution of significant differences between visuomotor tracking task interaction levels
showed that significant variations in LLyapExp/αrelative was mostly localised to parietal and
occipital regions (Figure B.23).

B.2.13 Comparison of the Sample Mean of EEG Features on 32 Elec-
trodes Between Measurement Times of the Robot-Mediated
Interaction

Figures B.1 to B.12, respectively show the comparison of the sample mean of each EEG
feature across all measurement times and EEG electrodes. Connecting lines in the figures
do not imply a linear relationship between electrode locations but merely for the ease of
identifying the numerical changes between baseline, level 1, level 2, level 3, level 4, level 5
and recovery states.
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Figure B.1: Comparison of the sample mean of δrelative on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.2: Comparison of the sample mean of θrelative on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.3: Comparison of the sample mean of αrelative on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.4: Comparison of the sample mean of βrelative on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.5: Comparison of the sample mean of (θ +α)/β on all 32 electrodes between
measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.6: Comparison of the sample mean of α/β on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.7: Comparison of the sample mean of (θ +α)/(α+β ) on all 32 electrodes between
measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.8: Comparison of the sample mean of θ/β on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.9: Comparison of the sample mean of δ/α on all 32 electrodes between mea-
surement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery) of the
robot-mediated interaction.
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Figure B.10: Comparison of the sample mean of largest Lyapunov exponent on all 32
electrodes between measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and
recovery) of the robot-mediated interaction.
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Figure B.11: Comparison of the sample mean of approximate entropy on all 32 electrodes
between measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery)
of the robot-mediated interaction.
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Figure B.12: Comparison of the sample mean of LLyapExp/αrelative on all 32 electrodes
between measurement times (baseline, level 1, level 2, level 3, level 4, level 5 and recovery)
of the robot-mediated interaction.
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EEG Features

B.2.14 Pairwise Comparison of the Interaction Between Measurement
Time and Electrode Locations on All EEG Features

Tables B.4 to B.15 summarise the p-values obtained from the pairwise comparison of the
interaction between measurement time and electrode locations of all EEG features.
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B.2 Complete Analysis of the Two-way Repeated Measures ANOVA Performed on All
EEG Features

B.2.15 The Topographical Distribution of the Significant Differences
of EEG Features Between Level 1-2, Level 1-3, Level 1-4, Level
1-5, and Between Baseline-Recovery.

The topographical distribution of the significant differences of all EEG features before, during
and after the visuomotor tracking task are shown in Figures B.13 to B.23, respectively.
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Figure B.13: The topographical distribution of the significant differences in δrelative between
(a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours
blue and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.14: The topographical distribution of the significant differences in θrelative between
(a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours
blue, green and red represents p-values < 0.05, < 0.01, and < 0.001, respectively.
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Figure B.15: The topographical distribution of the significant differences in αrelative between
(a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours
blue and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.16: The topographical distribution of the significant differences in βrelative between
(a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours
blue and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.17: The topographical distribution of the significant differences in α/β between (a)
level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours blue
and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.18: The topographical distribution of the significant differences in (θ +α)/(α +β )
between (a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle
colours blue, green and red represents p-values < 0.05, < 0.01, and < 0.001, respectively.
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Figure B.19: The topographical distribution of the significant differences in θ /β between (a)
level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours blue
and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.20: The topographical distribution of the significant differences in δ/α between (a)
level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery. Circle colours blue,
green and red represents p-values < 0.05, < 0.01, and < 0.001, respectively.
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Figure B.21: The topographical distribution of the significant differences in largest Lyapunov
exponent between (a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-
recovery. Circle colours blue, green and red represents p-values < 0.05, < 0.01, and < 0.001,
respectively.
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Figure B.22: The topographical distribution of the significant differences in approximate
entropy between (a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e) baseline-recovery.
Circle colours blue and green represents p-values < 0.05 and < 0.01, respectively.
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Figure B.23: The topographical distribution of the significant differences in
LLyapExp/αrelative between (a) level 1-2, (b) level 1-3, (c) level 1-4, (d) level 1-5, (e)
baseline-recovery. Circle colours blue and green represents p-values < 0.05 and < 0.01,
respectively.
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Appendix C

Questionnaires Used in the Experiments

C.1 Experiment 1

The two questionnaires given before and after the robot-mediated interactions in experiment
1 are shown in this section. The questionnaire given before the robotic interactions (Question-
naire 1) gathered information about the participant’s demographics and a subjective measure
of their physical and mental fatigue level before performing the assigned robot-mediated
interaction. The questionnaire given after the interaction (Questionnaire 2) was used to
obtain a subjective measure of the physical and mental fatigue levels following the robotic
interaction, the subjective evaluation of physical and mental workload across the robotic
interaction, and the session’s comfortability.
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C.1 Experiment 1

Subject ID: xxxx Ethics protocol number: COM/PG/UH/00100 and aCOM/PG/UH/00100

1 

Questionnaire 1 

Thank you for deciding to participate in the study

answer or write your answer in the provided space. The answers will be anonymous and will only be used 

for the experimental result analysis.  

Section A: Personal Details 

1. How old are you?

2. Are you? : Male Female 

3. Are you? : Left-handed Right-handed 

4. What is your occupation? :

Section B: Medical History 

5. Have you ever had a head/brain injury? : Yes No 

If yes, please provide a detailed description.

6. Have you ever had an injury to the right hand? : Yes No 

If yes, please provide a detailed description.

7. Are you wearing glasses or contacts now? : Yes No 

If yes, please provide a detailed description about your weakness.

8. Do you currently take any prescription medications? : Yes No 

If yes, did you take any medicine during the last 5 hours?  : Yes No 

Section C: Gaming History 

9. Do you often play video games?  : Yes No 

If yes,

i. How many hours, on the average, do you play during a day? :

ii. How many days, on the average, do you play during a week? :

10. Have you ever played any games with external robotic interfaces before?  : Yes No 
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C.1 Experiment 1

Subject ID: xxxx Ethics protocol number: COM/PG/UH/00100 and aCOM/PG/UH/00100

2 

Section D: Other Details 

11. How many hours, on the average, did you sleep last night?

Less than 3 4 5 6 7 8 9 more than 9 

12. How long ago did you last drink a caffeinated beverage (tea, coffee, energy drinks etc.)?

Within the last 30 minutes 

Between 30 minutes and 1 hour ago 

Between 1 hour and 3 hours ago 

Between 3 hours and 5 hours ago 

More than 5 hours ago  

13. How many drinks of alcohol, on the average, did you take during the last 24 hours?

0 1-2 3-4 5-6 7-9 more than 9 

14. Do you currently use any tobacco or nicotine products (for example cigarettes, pipe tobacco, snuff,

chewing tobacco etc.) :   Yes  No

If yes,

i. How often, on the average, do you take these products?

Every day  

At least once or twice a week, but not all the days 

At least few days a month 

ii. How long is it since you last used any of these products?

Within the last 30 minutes 

Between 30 minutes and 1 hour ago 

Between 1 hour and 3 hours ago 

Between 3 hours and 5 hours ago 

More than 5 hours ago  

Section E: Current Physical and Mental States 

15. We would like to know how you feel right now. Please circle a number which closely indicates how you

are feeling right now.

i. How would you rate your current physical fatigue level?

1 2 3 4 5 

ii. How would you rate your current mental fatigue level?

1 2 3 4 5 

Not at all 
fatigued 

Somewhat 
fatigued 

Moderately 
fatigued 

Very fatigued Extremely 
fatigued 

Not at all 
fatigued 

Somewhat 
fatigued 

Moderately 
fatigued 

Very fatigued Extremely 
fatigued 
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C.1 Experiment 1

Subject ID: xxxx Ethics protocol number: COM/PG/UH/00100 and aCOM/PG/UH/00100

3 

Questionnaire 2 

Thank you for completing the study. We would like to know your views about this study and how you feel 

after completing the task. The answers will be anonymous and will only be used to compare the 

experimental results. 

Please circle the number that most closely indicates your response 

16. How physically demanding was the task?

1 2 3 4 5 

17. How would you rate your current physical fatigue level?

1 2 3 4 5 

18. How mentally demanding was the task?

1 2 3 4 5 

19. How would you rate your current physical fatigue level?

1 2 3 4 5 

20. How would you rate your current eye strain level?

1 2 3 4 5 

21. How comfortable were you with wearing the EEG headset?

1 2 3 4 5 

22. How would you think that wearing the EEG headset affected your fatigue state?

1 2 3 4 5 

23. How would you think that using the robotic interface affected your fatigue state?

1 2 3 4 5 

Not at all 
fatigued 

Somewhat 
fatigued 

Moderately 
fatigued

Very fatigued Extremely 
fatigued 

Not at all 
fatigued 

Somewhat 
fatigued 

Moderately 
fatigued

Very fatigued Extremely 
fatigued 

Not at all 
demanding 

Somewhat 
demanding 

Moderately 
demanding 

Very 
demanding 

Extremely 
demanding 

Not at all 
demanding 

Somewhat 
demanding 

Moderately 
demanding 

Very 
demanding 

Extremely 
demanding 

Not at all 
strained 

Somewhat 
strained 

Moderately 
strained

Very strained Extremely 
strained 

Not at all 
comfortable 

Somewhat 
comfortable 

Moderately 
comfortable 

Very 
comfortable 

Extremely 
comfortable 

Not at all Slightly Moderately Largely Extremely 

Not at all Slightly Moderately Largely Extremely 
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C.2 Experiment 2

C.2 Experiment 2

The two questionnaires given before and after the robot-mediated interactions in experiment
2 are shown in this section. The questionnaire given before the robotic interactions (Question-
naire 1) gathered information about the participant’s demographics and a subjective measure
of their physical and mental fatigue level before performing the robot-mediated visuomotor
tracking task. The questionnaire given after the task (Questionnaire 2) was used to obtain a
subjective measure of the physical and mental fatigue levels following the robot-mediated
visuomotor tracking task and feedback on the underlying comfortability of the experiment.
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Ethics Approval Notifications
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UNIVERSITY OF HERTFORDSHIRE 
SCIENCE & TECHNOLOGY 
 

ETHICS APPROVAL NOTIFICATION 
 
 
TO Udeshika Dissanayake  
 
CC Dr Farshid Amirabdollahian 
 
FROM Dr Simon Trainis, Science and Technology ECDA Chairman 
 
DATE 20/07/2015 

 

 
 
Protocol number: COM/PG/UH/00100 
 
 
Title of study: Estimation of fatigue induced by robot-mediated interactions using quantitative 
EEG 
 
 
 
Your application for ethics approval has been accepted and approved by the ECDA for your 
school. 
 
 
This approval is valid: 
 
From: 20/07/2015 
 
To: 20/12/2015 
 
 
Please note: 
 
Approval applies specifically to the research study/methodology and timings as 
detailed in your Form EC1. Should you amend any aspect of your research, or wish to 
apply for an extension to your study, you will need your supervisor’s approval and 
must complete and submit form EC2. In cases where the amendments to the original 
study are deemed to be substantial, a new Form EC1 may need to be completed prior 
to the study being undertaken.  

 
Should adverse circumstances arise during this study such as physical reaction/harm, 
mental/emotional harm, intrusion of privacy or breach of confidentiality this must be 
reported to the approving Committee immediately. Failure to report adverse 
circumstance/s would be considered misconduct. 
 
Ensure you quote the UH protocol number and the name of the approving Committee 
on all paperwork, including recruitment advertisements/online requests, for this study.   
 
Students must include this Approval Notification with their submission. 
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ETHICS APPROVAL NOTIFICATION 
 
 
TO Udeshika Dissanayake 
 
CC Dr Farshid Amirabdollahian 
 
FROM Dr Simon Trainis, Science and Technology ECDA Chairman 
 
DATE 06/08/15  
 
 
 
Protocol number: aCOM/PG/UH/00100 
 
Title of study: Estimation of fatigue induced by robot-mediated interactions using 
quantitative EEG 
 
Your application to modify the existing protocol COM/PG/UH/00100 as detailed below has 
been accepted and approved by the ECDA for your school. 
 
Modification: Correcting a typo error in Questionnaire 2 
 
 
This approval is valid: 
 
From: 06/08/15 
 
To: 20/12/15 
 
 
Please note: 
 
Any conditions relating to the original protocol approval remain and must be complied 
with. 
 
Approval applies specifically to the research study/methodology and timings as 
detailed in your Form EC1 or as detailed in the EC2 request. Should you amend any 
further aspect of your research, or wish to apply for an extension to your study, you 

l and must complete and submit a further EC2 
request. In cases where the amendments to the original study are deemed to be 
substantial, a new Form EC1 may need to be completed prior to the study being 
undertaken.  
 
Should adverse circumstances arise during this study such as physical reaction/harm, 
mental/emotional harm, intrusion of privacy or breach of confidentiality this must be 
reported to the approving Committee immediately. Failure to report adverse 
circumstance/s would be considered misconduct.  
 
Ensure you quote the UH protocol number and the name of the approving Committee 
on all paperwork, including recruitment advertisements/online requests, for this study.   
 
Students must include this Approval Notification with their submission. 
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DATE 17/10/17 
 

 
Protocol number: COM/PGR/UH/02973   
   
Title of study:    GENTLE/EEG rehabilitation system: EEG based fatigue estimation of 
arm reaching and returning exercise 
 
Your application for ethics approval has been accepted and approved by the ECDA for your 
School and includes work undertaken for this study by the named additional workers below: 
 
 
This approval is valid: 
 
From: 17/10/17  
 
To: 27/01/18 
 
Additional workers:  no additional workers named 
 
Please note: 
 
If your research involves invasive procedures you are required to complete and submit 
an EC7 Protocol Monitoring Form, and your completed consent paperwork to this 
ECDA once your study is complete. You are also required to complete and submit an 
EC7 Protocol Monitoring Form if you are a member of staff. 
 
Approval applies specifically to the research study/methodology and timings as detailed 
in your Form EC1A. Should you amend any aspect of your research, or wish to apply for 
an extension to your study, you will need your supervisor’s approval (if you are a 
student) and must complete and submit form EC2. In cases where the amendments to 
the original study are deemed to be substantial, a new Form EC1A may need to be 
completed prior to the study being undertaken.  
 
Should adverse circumstances arise during this study such as physical reaction/harm, 
mental/emotional harm, intrusion of privacy or breach of confidentiality this must be 
reported to the approving Committee immediately. Failure to report adverse 
circumstance/s would be considered misconduct. 
 
Ensure you quote the UH protocol number and the name of the approving Committee on 
all paperwork, including recruitment advertisements/online requests, for this study.   
 
Students must include this Approval Notification with their submission. 
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