
Information System Evolvability, Feedback and Pattern

Languages

Stephen Cooka, Rachel Harrisonb& Paul Wernickc

21st June 2006

Abstract

Information systems for business are frequently heavily reliant on software. This paper identifies

two important feedback-related effects of embedding software in a business process. Firstly, the

system dynamics of the software maintenance process can become complex, particularly in the number

and scope of the feedback loops. Secondly, responsiveness to feedback can have a big effect on the

evolvability of the information system.

In this paper we explore ways to provide an effective mechanism for improving the quality of

feedback between stakeholders durng software maintenance. The difficulty of devising modelling

languages that cover the concerns of all stakeholders is illustrated and the kind of planning process

needed to achieve consensus on the way ahead is also considered.

Understanding can be improved by using representations of Information Stystems that are both

service-based and architectural in scope. The conflicting forces that encourage change or stability can

be resolved using patterns and pattern languages. We describe a morphology of Information Systems

pattern languages to facilitate the identification and reuse of patterns and pattern languages.

1 Introduction

Over the last 30 to 40 years, organisations of every kind and size have gradually become more dependent

on information systems for their success, and it is now almost ubiquitous that those information systems
a Applied Software Engineering Research Group, School of Systems Engineering, University of Reading, UK
b Stratton Edge Consulting, Gloucestershire, UK
c Centre for Empirical Software Process Research, School of Computer Science, University of Hertfordshire, UK

1

depend, often critically, on software [1]. Over the same period, the performance and reliability of IT

hardware have improved dramatically and the functionality that software can offer has also expanded.

Consequently users’ expectations of information systems have increased, particularly in terms of systems’

quality.

The increased dependency of business processes on their supporting information systems raises par-

ticular issues when adaptive change is required. Regardless of whether a specific change originates within

the business process, or is a consequence of technological developments or some exogenous cause such as

government regulation, it is likely to have an impact on both the business process and the information

system. However, these impacts will often be asymmetrical; i.e. a trivial change in one may require a

major re-engineering of the other. These differential impacts may be difficult to anticipate.

Consequently, the issue of information system evolution is becoming increasingly important for many

organisations. There is a widespread perception that software is difficult to adapt, particularly in the con-

text of Internet-related changes in business methods. Organisations increasingly want agile information

systems that can co-evolve with business systems [2].

These pressures are generating a growing need to understand how and why information systems

become misaligned over time with the business processes that they were intended to support. However,

this need is often neglected or even unrecognised. The immediate tasks of keeping existing systems

running and delivering urgently required improvements often absorb all the available resources in an IT

organisation — systems in this state are sometimes described as ‘support-bound’. The medium- and

long-term processes of software evolution are often ignored, even though they may be exacerbating day-

to-day problems. In this paper we will show how the concepts of evolvability and feedback in information

systems impinge on each other, both in theory and practise. We examine the problem of raising awareness

of information system evolution within organisations, and suggest that people need:

• models to help them understand how evolution processes work.

• languages and processes for communicating the architecture of information systems.

In both cases, solutions are needed that are adaptable to both technology- and business-oriented perspec-

2

tives.

This paper presents conjectures that indicate directions for further research. As these conjectures

become more refined they should be tested in carefully designed experiments or studied in suitable case

studies. Case studies and simulation models [3], [4] are invaluable for exploring the complex interactions

that are common in feedback processes and for eliciting experiences from software engineers and other

stakeholders. Some simple examples of these techniques are presented in later sections, taken from various

case studies.

2 The FRS Case Study

The principal case study in this paper concerns a financial management information system (MIS) called

the Financial Reports System (FRS). It is a specialised, bespoke, intranet-based MIS for scientists and

engineers who are managing projects in a laboratory. The FRS produces online reports showing income

and expenditure. Users, who are predominantly project managers, request and receive reports through

their web browser (although originally (in 1984) the system produced reports centrally). The laboratory’s

many other requirements for financial enquiries and reports are handled by other systems. The objectives

of the FRS case study were to:

• pilot the study of evolvability issues in real-world information systems

• collect examples of evolvability problems in a long-lived management information system

• explore concepts and techniques for helping designers to understand and improve system evolvability.

The main data inputs to the FRS concern budgets, income, expenditure, assets and resources. The

main outputs are dynamically-generated reports that can be displayed in a web browser. The reports

provide snapshots of the current financial state of a project. The aim of the FRS is to enable managers

to compare projections with current balances, both in summary and in detail.

The system’s growth has been modest but continual. There have been major changes in the input

data due to changes in accounting systems, and major technological changes to keep pace with the

3

organisation’s computing strategy. Changes in the organisation’s accounting policies have affected both

input data and output reports.

The FRS is relevant because it has a long history of continual evolution and there have been recurrent

difficulties in implementing the changes that were required. The current version of the FRS is the latest

descendent in a family of information systems that dates back to 1984. Over this period the core concepts

of these systems have remained intact but many technical and business details have changed and will

continue to. FRS has, at different times, been written in various SQL dialects, glued together with various

scripting languages such as REXX (when it ran on an IBM mainframe) and Perl (when it ran on other

platforms). On average, a team of 2 full-time staff was needed to develop and maintain FRS. The major

COTS component of FRS throughout its lifetime has always been its RDBMS.

There are three main sources of evolution in the FRS, arranged here in descending order of impact:

Source data : There have been several major changes in both the laboratory’s choice of accounting

system (which supplies the input data) and in accounting practices.

IT environment : An important success factor for the FRS is its compatibility with users’ normal

desktop computing environment, which has changed from a mainframe with text terminals to a

network of graphical PCs and workstations. On the server side of the system there are also recurrent

issues about retaining compatibility with the laboratory’s evolving IT architecture.

Users’ business process : As the laboratory’s customers become more diverse there is an increasing

need for flexibility and customisation in the way that project reports are compiled and presented.

These three sources of change are characteristic of MISs although clearly their relative importance might

be different in other systems.

3 Primary Concepts

This section discusses the terms evolution, information system and software evolvability.

4

3.1 Software Evolution

The word evolution is commonly used in at least three senses in relation to software:

1. The term evolution is sometimes used to refer to the changes in a software product over its lifetime.

This sense of evolution is closely associated with the work of Lehman et al.; [5] [6]. One of their

fundamental conclusions is that software evolution is a complex feedback-driven process of change

that affects a broad class of software products, and some of its effects are emergent properties (i.e.

they can occur independently of the intentions of the system’s stakeholders, as discussed in section

4.3).

2. The term evolve is sometimes used as a transitive verb to refer to the act of intentionally changing

software [7]. For example, ”we evolved the software to meet the users’ needs”.

3. The term evolutionary is sometimes used to characterise software that has been designed to automat-

ically adapt to changing circumstances (such as autonomic software). The principal applications of

evolutionary computation and genetic programming [8, 9] have been in optimisation and searching.

This paper is concerned with evolution in the first of these senses. That is, we view evolution as what

happens to software over time, as seen from outside the technical process; it is the result of maintenance

and other changes [10]. By contrast, the second sense is concerned with the people who do the work on

the system actually changing the software to meet the users’ changing needs (i.e. the acts of analysing,

designing, programming, etc.).

3.2 Information System

In order to understand the role that feedback plays in software evolution, a holistic, systemic approach

is needed. In addition to code, systems include:

• specifications and designs

• technical and managerial processes

• business processes

5

• viewpoints of the system’s stakeholders

In other words, an information system is characterised by interactions between software, people and

organisations [11]. Some authors also use the term information system in a broader sense that need not

necessarily include software. Consequently, a more precise term would be software-dependent information

system, which draws attention to the symbiotic effects that emerge when software is embedded in business

processes. However, for brevity we use the less cumbersome term information system.

3.3 Information System Evolvability

Software varies in its capability for evolution; this quality is its evolvability. It may be a result of internal

characteristics, or the balance between external pressures for change and stability, or a combination

of both. For software products, there is a large overlap between the concept of evolvability and more

general concepts of software quality, such as maintainability. The ISO 9126 standard [12] identifies five

sub-characteristics of maintainability (analysability, changeability, stability, testability and compliance)

These are relevant to evolvability, as are some of the metrics in the standard [13].

For information systems in the holistic sense, there is little existing work on identifying the constituent

factors that influence evolvability. From theoretical work and case studies [13, 14] that we have done we

suggest an extension to the definition of evolvability such that it can be refined into the factors listed

below.

3.3.1 Adaptability

This is essentially the same quality as maintainability in ISO 9126 but scaled up from the product focus

to encompass the processes of both software maintenance and information system evolution.

3.3.2 Responsiveness to feedback

In systems that have multiple levels of feedback counter-intuitive behaviour often occurs [15]. In other

words, the system may exhibit behaviour that cannot be inferred from its constituent parts. A common

cause of this is when feedback loops with different time delays contribute to the level of some system

6

variable. This kind of emergent behaviour may reduce the system’s evolvability because it does not

respond to events in the ways that participants expect. Even in simple systems, feedback chains that

are either very long or that include major delays can also have counter-intuitive effects. Emergent

behaviour may result in unpredictable changes being necessary and the system structure deteriorates as

these changes are made across the grain of the system architecture, reducing evolvability (and increasing

the risk of a change having unexpected side-effects) as the elegance of the system structure worsens.

3.3.3 Compliance with constraints

Maintenance changes must not violate requirements or other constraints on a system. The main driver

for compliance is the extent to which concerns have been separated. Concerns that can be expected to

evolve at different speeds should be separated by clearly defined interfaces that remain unchanged.

This requires going beyond the immediate requirements and trying to anticipate which of its con-

straints are inherent and which are time-dependent. For example, most business information systems are

likely to achieve better evolvability if there is a clear separation of concerns between unchanging domain

concepts, volatile business rules and the details of data manipulations.

4 Towards an Improvement Process for Evolvability

The improvement of information system evolvability is essentially about finding sustainable resolutions

of the conflicting forces that encourage either change or stability in the system.

4.1 Forces Affecting Evolvability

The forces that affect evolvability are both technical and organisational, and may be internal or external

to a system. The following broad categories can be distinguished:

• Forces arising from the actions and aspirations of the system’s stakeholders.

• Forces that are emergent properties of the evolution process.

• Exogenous forces, which can be particularly unpredictable in timing and effect.

7

Part of the process of discovering a balance between these forces involves understanding the charac-

teristics of the various feedback paths between the different stakeholders. It is useful to assess the relative

importance of different paths and to locate any significant delays or other timing properties. This will

often reveal actual or potential conflicting forces at several levels of detail and in different domains.

Examples of tensions between stakeholders during maintenance of the FRS are given below.

• The Finance Department wanted to restrict the system’s outputs to a small number of precisely de-

fined reports (to minimise the problems of misinterpretation). However, some users were requesting

more flexibility to meet the management needs of particular projects.

• The system’s customer wanted continuity of staffing in the maintenance team (to maintain high

levels of productivity). However, the professional development needs of staff and the demands

from other projects put pressure on the project manager to divert development resources into re-

engineering the system so that some maintenance tasks could be shared amongst a wider pool of

staff.

• The maintenance team experienced pressure to short-cut design decisions due to urgent deadlines.

For example, a decision was made to replace an unsatisfactory COTS report generator with a locally

developed module with fewer proprietary dependencies. However, in order to meet delivery deadlines

this module was released prematurely; some aspects of the report structure had been implemented

without flexibility, increasing the cost of changes such as user customisation of reports.

If the stakeholders have a good, shared understanding of the system’s dynamics, they will be more able

to anticipate evolution issues before they become crises. However, it is also characteristic of information

systems that unpredictable conflicts can occur from unexpected sources. Consequently, agile evolution

requires information systems to have flexibility in both their architecture and their use of resources.

These kinds of tensions often result in organisational responses such as committee meetings, arbitration

and other conflict-resolution procedures. However, such mechanisms may be less effective in resolving

(rather than merely containing) tensions if they are not based on an understanding of the feedback

dynamics of the evolving system or if the participants lack a shared language for describing the system.

8

The issue of feedback models is discussed in section 4.2.

4.2 Feedback Models and the Software Maintenance Process

Responsiveness to feedback is an important part of evolvability. This implies the existence of effective

feedback channels between the system’s stakeholders but many existing development and maintenance

methodologies fail to deal with this effectively. They tend to concentrate attention on the feedback

loops between stages of technical development, such as coding and testing, that are internal to the

development team. When other stakeholders are considered, it is often assumed that feedback between

them is straightforward. However, the most influential feedback loops in long term evolution have been

found to be the longest, outermost ones, in terms of the number of identifiable steps in the feedback loop

and its normal cycle time [16].

The FRS study confirms this. Concepts from system dynamics [15] were used to model the business

process for maintaining this software product. Based on interviews with stakeholders, an influence dia-

gram [17] was built that shows the processes and decisions that are involved in transforming resources

(primarily staff time) and change requests into information system services and stakeholders’ satisfaction.

This diagram is complex (it contains more than 20 cause-and-effect loops) and some of its variables are

specific to the FRS. However, it is possible to abstract from it some a more generic, qualitative model of

the software maintenance business process which is shown in Figure 1.

4.2.1 Schematic model

Figure 1 shows a schematic model which was constructed using the Vensim1 modelling tool. This can be

interpreted as a generic description of software maintenance as a business process. The model is probably

more valuable to business managers and process designers than to developers and maintainers. Users

actions may well result in pressure in Opportunities for IS Improvements; emergent properties of process

arise from the structure of the model itself and the inter-relationships of its variables, so are distributed

over it as a whole. Exogenous forces are shown explicitly as an input in the diagram.
1See http://www.vensim.com/

9

http://www.vensim.com/

Figure 1 shows the variables and cause-and-effect loops that are fundamental to the maintenance

process. Because this model is very abstract, with some variables summarising complex phenomena, not

all the influence arcs can be labelled with a simple polarity.

The QoS gap variable represents the size of the gap between stakeholders’ perception of the current

quality of the information system and the desired quality. The gap tends to increase with the quantity

of Outstanding change requests; after some delay, the Maintenance work done reduces the QoS gap both

directly (by improving the service) and indirectly (by shortening the queue of change requests).

Variations in the QoS gap cause a variety of Stakeholder responses, which are often complex and may

be conflicting. For example, an increase in the gap might stimulate the maintenance team to bid for

additional resources but the customer may conclude that the system was becoming unmaintainable.

The stakeholders’ responses influence the Opportunities for Information System improvement. So, for

example, if users are delighted with the system, they will be more likely to see opportunities to extend

their use of it. Some of these opportunities will be converted into change requests, effectively raising

the desired quality of the system. Other change requests will be generated by the impact of Exogenous

changes.

The overall behaviour of the model depends upon the relative strength of the different causal influences

and the length of any significant delays. Even in a comparatively simple model such as figure 1, this can

be difficult to assess but simulation tools, such as Vensim, can be used to explore the effects of different

parameters.

4.2.2 Intermediate model

Figure 2 shows an intermediate model of the software maintenance process that is less complex than a

full model but more realistic than figure 1. We have found this to be a useful model for analysis. System

dynamics models do not need to be fully quantified to produce results which stakeholders can use to

understand evolution [18].

This model illustrates a number of features that are likely to be found in the evolution of similar

information systems.

10

• Many of the feedback loops in other process models such as [19] have been subsumed into the

causal influences between the Domain expert’s requirements, Work to do and Work done variables,

as evidence suggests that organisational forms of feedback are the most important.

• Most of the feedback loops that are important for explaining an evolving system’s behaviour are

not shown in process models such as the waterfall and spiral models, or in more recent models such

as Extreme Programming [20].

• The external variables Technical environment changes, Collaborating systems’ changes and New user

requirements have an immediate effect of reducing the level of Quality of service. They also stimulate

the processes for getting maintenance work done but there is an unavoidable delay, indicated by

the bar on the arc from Work to do to Work done, before the level of Quality of service is restored.

This kind of emergent behaviour has to be taken into account when, for example, a decrease in

User satisfaction needs to be explained.

• The users’ satisfaction and requirements influence the Work done variable only indirectly. The

diagram shows that many other variables also influence it, for example, by revising, delaying or

prioritising the requests for change.

4.3 Kinds of feedback

Several kinds of feedback are important to the evolvability of information systems. Some of these feedback

loops are internal to the software maintenance team.

Architectural review : Reviewing past changes may uncover previous assumptions that have been

broken by unexpected changes (and may therefore indicate a need for greater flexibility in the

system architecture).

Design review : Reviewing maintenance activity to abstract implicit design patterns that have been

revealed by unexpected changes. This builds on established mechanisms such as code inspections

[21].

11

These forms of feedback can be thought of as meta-maintenance processes that internally review the

technical quality of the team’s work. As with all reviews, the developers should not be the only reviewers;

this is a very effective way to reveal assumptions and undocumented knowledge. It obliges the team to

explain the rationale of decisions and will often identify areas where code and design have drifted apart

[21, 22].

Other kinds of feedback occur between groups of stakeholders; they provide the content for some of the

causal influence arcs shown in figure 2 (for example, Evolving usage is related to Customer satisfaction).

Intra-subsystem : Developing a shared understanding of the semantics of subsystem/component inter-

faces so that future change impact assessments will become more accurate.

Evolving usage : Reviewing the co-evolution of the business process and information system to identify

emerging usage patterns, expectations and needs.

These kinds of feedback are becoming increasingly important to the continuing effectiveness of many

information systems. In particular, where the task of transferring information between loosely coupled

business processes has been automated through information systems, there has to be a feedback process

that reviews whether interfaces have changed significantly.

For example, consider a MIS, such as the FRS, that extracts data from various sources that are not

under its direct control and generates reports. The systems share a data interface that has syntax, gram-

mar, and semantics. If a data source changes this interface unilaterally at the syntactic or grammatical

level, for example by supplying text in a field where a date was expected, then the non-conformance

can usually be detected immediately by the data recipient and the problem can be addressed. However,

even if the MIS incorporates an unusually rich conceptual model of its domain, it is much harder to

automatically detect semantic non-conformance.

Another example from the FRS occurred when a rule in the accounting domain about the calculation

of depreciation was changed. This altered the semantics of some data that the FRS imported from the

accounting system. The FRS had to modify how it used this information to construct valid reports (even

though the format and the physical datatype of the values remained unchanged).

12

Although some semantic problems can be detected using type and integrity checks, this process cannot

be completely automated where an information system is embedded in an evolving real-world business

process. In such a situation, the software becomes part of an open-ended domain and consequently its

assumptions cannot be exhaustively specified; this is the defining characteristic of Lehman’s category of

evolving programs (E-type programs [23]). In practice some kinds of semantic problems in the FRS were

detected more effectively by domain experts and users than by automatic checks.

In these complex situations, merely informing other stakeholders about changes is often ineffective.

There has to be a process of dialogue and feedback using a shared language, so that a stakeholder can

understand whether or not a change in a collaborating system or process invalidates current assumptions

and if so, what the impact will be and how its effects can be mitigated.

4.4 Implications of Incomplete Feedback Models

Basing maintenance processes on incomplete knowledge of the processes of feedback contributes to several

kinds of deterioration in information systems:

• Systems/components may become increasingly irrelevant to users because of divergence between

evolving requirements and their implementation.

• Systems/components may become increasingly incomprehensible to their maintainers because of

divergence between evolving implementation and specification/design documents that have been

incompletely updated.

• The original architecture of the system may become inadequate as requirements evolve. This may

put pressure on maintainers to make ad hoc changes that work around an immediate problem but

often tend to increase the rigidity of the architecture for future changes.

• The interfaces between subsystems/components may become increasingly brittle if the assumptions

and guarantees of each interface are unclear. This risk is particularly applicable when COTS

components are involved; market forces or other events may cause a manufacturer to change a

13

product in ways that a customer did not expect and often cannot influence [24, 25]. In extreme

cases, the product is withdrawn without warning.

Inability to anticipate changes, to know when they will arise and how long we have before these

changes themselves are overtaken by events (all process issues) may contribute to what is experienced by

its users as reduced evolvability of the system. All of these issues could have their effects mitigated by a

greater understanding of the process of software evolution.

5 Using Patterns to Improve Feedback

5.1 Feedback requires a shared language

A central problem in improving the quality of feedback between system stakeholders is finding a shared

framework for describing problems and solutions in information systems. This is a difficult problem to

solve because different stakeholders have partially overlapping concerns about the system but may also

have strong preferences for how they want their knowledge of the system to be structured and presented.

Many of the languages and models that are currently available express the viewpoint of a particular

stakeholder (although this is not always made explicit); less attention has been given to developing

languages that would enable different stakeholders to share information about their overlapping concerns.

Pattern languages [26] and software services [27] may facilitate feedback, as discussed below.

It seems unlikely that there will be a simple, universal solution to this problem. If a single language

had a broad enough spectrum to meet the needs of all the stakeholders in information systems, it would be

impossibly cumbersome. Consequently, stakeholders will continue to use languages and modelling tools

that meet their specialist needs. Translation between these languages will often be difficult. This notion

of distinctive, describable viewpoints for different stakeholders has been recognised by the IEEE/ANSI

Standard 1471-2000 [28].

14

5.2 Example of Languages for Viewpoints

Some of the issues that arise when a single problem is described from multiple viewpoints, can be illus-

trated by considering a very simple information system pattern. The following example describes the

Gateway pattern, that can provide an interface between a local area network (LAN) and a leased-line

connection to an ISP. The forces that it balances are the needs for control and security within a LAN,

user access to resources within the LAN and via the Internet, and protection from Internet-based in-

truders. This pattern can be represented in various ways and each representation implies a viewpoint

that expresses the concerns of particular stakeholders. Three different representations (a box-and-line

diagram, an ADL component and a use case) are used to illustrate this.

5.2.1 Box-and-line diagram

The example in figure 3 is based on the IT architecture of a multi-site company.

This illustrates a viewpoint that could be characterised as an executive summary. It provides an

overview of the main components of a system in a form that can be quickly and easily understood by

non-experts. However, this view would clearly be insufficiently detailed for the specialists who procure,

install, configure and maintain such systems; unfortunately, adding more detail to this sort of diagram

would soon make it unreadable.

5.2.2 Architecture Description Language

Technical specialist stakeholders usually require much more detail and precision than a box-and-line

diagram provides. One way of achieving this is to use an ADL such as Acme [29, 30]. Conceptually, Acme

is intentionally very similar to box-and-line diagrams. Both languages focus on components and their

configuration through connectors. More generally, an ADL can provide succinct and precise descriptions

of what a system does and how it does it from an IT architect’s viewpoint.

An example of an Acme specification for a component type based on the Gateway pattern is shown

in figure 4. This illustrates several features that are shared by many ADLs:

• The provided types (Components, Connectors, Ports, Roles) can be combined to specify more

15

complex types.

• Instances of types can be adapted with local extensions.

• The configuration can be specified precisely using the Attachments clause.

• The internal structure of objects can be specified recursively to any required depth.

• The mapping between the internal and external interfaces of an object can be specified using the

Bindings clause.

5.2.3 Use cases

A component-centric ADL cannot meet the needs of all stakeholders. In particular, users of information

systems are likely to find that it is difficult to deduce from an ADL description how a system interfaces

with business processes. Users may find that use cases express a more helpful viewpoint. An example of

a use case for the Gateway pattern is shown in figure 5 [31].

As a system description language, use cases provide several benefits for representing user viewpoints,

as they:

• are focused on functionality, rather than configuration

• are structured into scenarios that are related to business processes

• use business, rather than technological, vocabularies

• minimise references to specific technologies

Nevertheless, use cases do not completely cover the concerns of users. Firstly, they usually concentrate

on what users can do and only imply the limitations of the system’s functionality; secondly, quality of

service is usually excluded.

A significant disadvantage of use cases for other stakeholders, e.g. system architects, is that they often

treat all constraints uniformly. However, architects need to know whether a constraint is, for example,

a volatile business rule, an implication of a project’s business case, a technological capability limit or

an aspect of a domain’s ontology. That is to say, architects need system description languages that

can express not only the specification of constraints but also metadata about their provenance. This

16

criticism is not specific to use cases, but is also true for a number of other representations of patterns

and specification techniques in general.

5.3 Software as a service

Once an information system has become large and/or complex, stakeholders also need to understand how

usage patterns interact with each other, i.e. a behavioural, rather than structural, model of the system.

This requires a representation of the information system that is both service-based (i.e. expressed as

Requires/Provides relationships) and architectural in scope. This viewpoint is implicit in the depiction

of the software maintenance process in figure 2.

The building blocks of service-centric models of software-dependent information systems are agents,

resources and human actors performing roles [32]. The agents and resources may be purely software

or they may provide a software representation of some physical object (e.g. a database of stocks). The

main feature that distinguishes agents from resources is that agents have some capability for autonomous

behaviour, whereas resources are passive in their relationships with other objects. These relationships,

the interfaces between objects, are defined in terms of what each object provides to and requires from

the objects that it collaborates with.

Software services are an abstraction from this model that allows the behaviour of a collection of agents

and resources to be encapsulated behind a single interface. Many existing ADLs do not provide built-in

support for these behavioural concepts but the W3C initiative in web services2 may lead in this direction

by adding an architectural dimension to fine-grained service-oriented standards such as SOAP.

Bennett et al. [27] have proposed an advanced concept of software services as a means of achieving

ultra-rapid evolution in information systems. Simpler forms of the same concept are already in everyday

use, particularly in e-commerce for providing generic services such as shopping baskets and authenticated

payments.
2 http://www.w3.org/2002/ws/

17

http://www.w3.org/2002/ws/

5.4 Patterns and pattern languages

Patterns (in the sense described by Alexander [33]) may be characterised as reusable elegant solutions to

recurring problems of conflicting forces. Alexander’s ideas provide a conceptual framework for devising

resolutions of the forces that are found in software maintenance processes. In the most general case,

a pattern that improves software evolvability should provide an efficient and elegant resolution of some

forces that encourage and inhibit change in a information system. The pattern must preserve the system’s

valued characteristics (which should themselves be expressed as patterns of design and usage), whilst

allowing desired changes in the state of the system.

A pattern can capture in an explicit and reusable form a good solution to some recurring problem

in software evolution. This makes it easier for the system’s stakeholders to share their knowledge about

problems and solutions. The evolvability of the system should improve if these patterns are used consis-

tently over time to both diagnose and repair whatever problems arise. Alexander’s use of this concept

can be distinguished from the use popularised by Gamma et al. [34] in three important ways:

• patterns are arranged morphologically in a pattern language

• patterns are deployed sequentially in a design-and-repair process

• pattern languages evolve through a process of participatory planning

We suggest that the use of pattern languages has potential benefits over and above the use of patterns.

These ideas are explained in the sub-sections below.

5.4.1 Pattern language morphology

Alexander believes that patterns can only be effective when they are arranged morphologically in a

pattern language that covers all the relevant scales of detail and abstraction in the system. He provides

patterns that cover a range from regional planning to the design of a window alcove. This is a more

powerful concept than a catalogue that groups patterns thematically, as in [34]. In Alexander’s view,

arranging patterns in refinement sequences enables lay people to build up coherent mental models of how

the patterns in a collection relate to each other.

18

In [35] Alexander provides several examples of this process, including a description of how he worked

with staff to design a new clinic. The first pattern that they used was Building Complex, which determined

the total floor area to be built, the number of separate buildings and their relative sizes. The next two

patterns, Main Gateway and Main Entrance, were taken together. The site of the clinic had already been

decided; these patterns produced decisions on how people would identify and reach it from neighbouring

buildings and the street. These patterns needed to be considered early in the process because they would

influence the orientation of the individual buildings. The next pattern in the language was Circulation

Realms, which determines how a group of buildings will be arranged in relation to each other. It focuses on

creating a coherent arrangement in which people will find it easy to understand where they are within the

Building Complex and how to navigate to the building they require. This process of gradual refinement

continued down to the design of individual rooms. The pattern language contained 42 patterns but only

seven were specific to hospital environments, the remaining 35 were reused from Alexander’s existing

repertoire.

A similar concept of refinement can be found in the SADL [36]. This ADL includes a mechanism

for refining descriptions by providing precise mappings between the style vocabularies used at different

levels of refinement. For example, an architecture could be described in terms of a pipe-and-filter style

at one level and an inter-communicating processes style at another, and the mapping between these can

be expressed using SADL.

5.4.2 Morphology of information system patterns

Alexander arranged his patterns along essentially a single dimension from coarse-grained (e.g. Identifiable

Neighborhood) to fine-grained (e.g. Alcove). A similar arrangement could be made for a narrow definition

of software patterns. However, for information systems, in the holistic sense, it seems more realistic to

arrange patterns along two orthogonal dimensions: coarse-grained to fine-grained and Business process

oriented to Technology oriented. This pattern space is depicted in figure 6, which also shows the relative

positions of some broad classes of interesting patterns.

If a pattern language is to fulfil the role of enhancing feedback between the stakeholders of an infor-

19

mation system then it will need to include a very broad range of patterns, for example:

Ergonomic design: how to design tools, forms, screen layouts etc. that people can use efficiently.

IT architecture: how to configure IT components, connectors, services etc. to create IT architectural

styles.

Program design: how to design program modules that collaborate to carry out computations.

Programming idiom: how to write well-crafted code in a specific programming language.

Software service: how to represent agents and resources in software and configure them to provide

services.

Workflow: how to route work items between roles to carry out a business process.

This is not an exhaustive list. In particular, this does not imply that all business processes [37] should

be modelled as workflows (note that some parts of figure 6 fall outside the scope of this paper).

The broad scope of information system patterns implies that the upper bound on the number of

patterns to be developed could be high; for comparison, Alexander’s catalogue [33] contains 253 generic

patterns and his detailed examples of building projects typically use around 30-40 [35]. The development

costs of patterns can be mitigated in two ways:

• Pattern languages can be developed gradually, using the processes described below.

• Well-designed patterns are easy to reuse and very few should be specific to a single project.

Eventually most of the patterns in pattern languages will be reused from a stock that has accumulated

over time. As this stock increases, the task of designing a pattern language will become more concerned

with ensuring that the most suitable patterns have been selected and arranged in a coherent way, rather

than developing new patterns, in the same way that interest in frameworks [38] grew once catalogues of

object-oriented patterns became available.

5.4.3 Examples of information system patterns

Three of the patterns observed in the FRS are described briefly here, and classified using our morphology.

20

Data Warehouse Over several versions of the FRS, its designers consciously and successfully reused

the Data Warehouse pattern (figure 7). This IT Architecture pattern achieves a separation of concerns

between one-at-a-time update transactions (which are handled by the data source components) and

batched set report generation. This simplifies the management of the security, optimisation, dependability

etc. characteristics of two different kinds of software service.

Intranet-based MIS Part of the business case for the FRS has been the notion that project managers

need to be able to obtain online financial summaries of specific projects from within their usual desktop

computing environment (rather than waiting for monthly standardised, centrally produced reports). This

approach (an example of a Software Service pattern) is now widely used for delivering management

information.

Materialised View This is an example of a Programming Idiom pattern, in this case for database

languages such as SQL. This pattern builds on the concept of using a database view (i.e. a virtual table)

to encapsulate a piece of business logic; the view is then materialised as a physical table in the database

to improve the performance of queries. In SQL this can be achieved in a database schema by replacing

statements of the form

CREATE VIEW view-name AS SELECT query-spec

with

CREATE TABLE view-name AS SELECT query-spec

This pattern has similarities with the Data Warehouse pattern. Both use additional storage (disk

space) that is redundant in logical terms (and has non-zero cost) to separate otherwise conflicting concerns;

however, they operate at very different scales, with the Materialised View pattern being a much finer

grained pattern than ’Data Warehouse’.

The two patterns are also linked morphologically in an implicit pattern language, because the ’Ma-

terialised View’ pattern conflicts with the ’Normalised Relations’ pattern that database designers use to

minimise update dependencies between data records. Consequently, ’Materialised View’ is only a good

21

solution to query performance problems in the context of ’Data Warehouse’ or a similar pattern that

delegates the updating of individual records to another component or service.

5.4.4 Pattern repair processes

Alexander describes a design-and-repair process in which patterns are deployed sequentially according

to their position in the language. He believed that a satisfying, evolvable environment was more likely

to emerge from the piecemeal outcome of large numbers of small concurrent projects than from the

imposition of a master plan. However, he also recognised the risk that this approach would produce

frustrating chaos rather than enjoyable diversity. He therefore retained significant top-down elements in

his methodology and adapted them to a predominantly user-driven planning process.

The principal elements of Alexander’s planning process [39] are summarised below.

1. The process begins by a community reaching agreement on a pattern language that it will use to

solve recurrent design problems.

2. Gap analysis is undertaken to identify how each part of the current environment compares with

each relevant pattern. This analysis identifies the “hot spots”, i.e. the elements of the environment

that are in greatest conflict with the most patterns.

3. Any member of the community can propose any change project and receive professional design

assistance to present it for approval.

4. The project can only proceed if it is approved by the Planning Committee, which will take into

account both the extent of support for the proposal and how much contribution it makes to closing

the identified gaps. Alexander hoped that this perspective would encourage the committee to

quickly approve many cheap but effective projects, rather than a small number of mega-projects.

5. Similarly, anyone can propose modifications to the pattern language to improve its capability for

identifying problems and proposing elegant solutions. Changes are accepted if they achieve consen-

sus.

22

The above techniques can be used in the software evolution process to reduce the delays and mis-

understandings often found during feedback, particularly in the case of large-scale co-operative system’s

design.

5.4.5 Participatory planning for information systems

Some of the concepts of pattern languages and participatory planning described here may seem to in-

troduce additional risks into the software maintenance process. Many, perhaps most, business change

projects are organised using conventional, hierarchical management structures and it may seem implausi-

ble that a complex information system could be built and maintained by any other style of organisation.

Furthermore, some attempts to use alternative approaches to system design, such as Alexander’s, have

produced disappointing results [40]); further research is needed to identify the critical success factors for

using pattern languages to maintain information systems.

However, in favour of patterns, note that two of the most successful IT projects of recent decades

have consciously used consensual, decentralised approaches and have become part of the infrastructure

many information systems rely on. The organisation of the IETF [41] has many of the participatory

elements described in the previous section. The architecture of the Internet is also a good example of a

pattern language in practice [42]. A relatively small number of patterns is sufficient to describe how the

Internet works. These patterns relate to each other coherently but also retain some independence. So,

for example, email users can send messages and system administrators can add hosts without interfering

with each other’s activities, or needing to know the details of the underlying infrastructure, or needing

to refer to a central authority.

A similar (but different) example can be found in the WWW. Its leading body, the W3C, has a more

formal structure than the IETF but it has similar well-developed mechanisms for seeking rapid feedback

on its proposals. Its design principles of interoperability, evolution and decentralisation3 are consistent

with a pattern language approach. Unlike the Internet, which could be said to be a network rather than

an information system, the WWW provides information services and infrastructure that are critical to
3 http://www.w3.org/Consortium/.

23

http://www.w3.org/Consortium/

the success of many organisations. This suggests that basing the design of a software maintenance process

on concepts of feedback and pattern languages can be successful in the right circumstances. Patterns may

succeed because they make purpose and design explicit by the use of recurring abstractions and hence

improve communication.

5.5 Feedback and Rates of Change in Information Systems

The characteristics of feedback in software maintenance processes have implications for the pace of change

in information systems. The techniques that are advocated here for achieving better evolvability in

information systems (e.g. improved quality of feedback, user-oriented pattern languages and service-

oriented software architectures) imply a slower (but more stable) rate of change. This is because the

system maintenance process is re-engineered to continuously respect the kinds of feedback loops identified

here as critical for evolvability. Conversely, when ultra-rapid change is required, it may be more cost-

effective to build light-weight, disposable systems. In this situation, the operation of feedback loops may

be constrained to intensive bursts of consultation and decision-making at defined points in the system’s

life cycle.

Currently available technologies allow different kinds of software architecture and components to

provide equivalent functionality. This means that there is a decreasing need for technological choices

to dominate the design of the information system and more opportunities to consider business-oriented

concepts, such as feedback models. The decision on what kind of architecture and feedback model to

adopt for a system should be based on a business case covering its expected life, the relative priorities of

non-functional qualities (e.g. correctness, security, agility), risk analysis of alternative development and

maintenance approaches, and thus its predicted total cost of ownership.

6 Conclusions and Future Directions

The process of maintaining the software of an information system can be very complex. The concept

of feedback provides powerful insights into this complexity. In particular, it draws attention to the

24

communication issues that can arise when stakeholders with different viewpoints need to reach a shared

understanding of the evolution of an information system. This is clearly important when the strategic

evolution of an information system is being considered but it is also relevant at more mundane levels,

such as prioritising bug fixes.

Although some of the issues discussed here might be considered to be outside a narrow definition

of software engineering, in practice software engineers often become involved in trying to resolve them.

One of the implications of information systems is that software engineers often have to consider the

interactions between their specialised domain and the non-software parts of the system.

A significant contribution that software engineers can make is through improving the quality of feed-

back between stakeholders. The concept of patterns has already proved to be useful and popular within

the software engineering community as a means of capturing and sharing design knowledge. This paper

has shown how this concept can be broadened to encompass the whole scope of information systems

evolution. This involves re-discovering some of Alexander’s original concepts, notably pattern languages,

considering carefully how these can be used and adapting them to the information systems domain. A

pattern language approach can be consistent with participatory styles of organisation that have produced

software engineering successes. A taxonomy of patterns and pattern languages constructed around the

morphology of pattern languages suggested here could facilitate this. Guidelines as to what kind of

architecture and feedback model to adopt would also facilitate systems’ developement.

Finally, one of the benefits of focusing on the quality of feedback may well be to reduce the need

for rapid evolution of information systems. If software engineers and other stakeholders share a richer

understanding of the dynamics of an information system and its co-evolution with business processes, it

may be easier to anticipate the software adaptations that will be required and achieve a closer alignment

between software release schedules and business needs.

7 Acknowledgements

The authors would like to thank the University of Reading for supporting this research, and the anonymous

referees for providing very helpful comments.

25

Key for figures 1 and 2

boxed node : External variable

unboxed node : System variable

−→ : Cause-effect influence

+−→ : Cause-effect influence

with delay

+ − : Influence polarity

Figure 1: Schematic influence diagram for a generic software maintenance process

26

Figure 2: Influence diagram for a generic software maintenance process

27

Ethernet LAN Wireless LAN

Gateway Pattern

Internet

Ethernet Hub

Firewall-Router

Authorisation
Server Wireless Hub

Internet Service Provider

leased line

Key

: component

: port

: connector

Figure 3: Gateway pattern – box-and-line diagram

28

Component Type Gateway = {

Port inside : theEthernetPort = new EthernetPort;

Port outside : theWANport = new WANport;

Port wireless : theWirelessPort = new WirelessPort;

Representation {

System Structure : NetworkArchitecture = {

Component theFirewallRouter : FirewallRouter = new FirewallRouter;

Component theEthernetHub : EthernetHub = new EthernetHub;

Component theWirelessHub : WirelessHub = new WirelessHub;

Component theAuthServer : AuthServer = new AuthServer;

Connector c1 : EthernetConnection = new EthernetConnection

extended with {

Role r1 : EthernetSocket = new EthernetSocket;

Role r2 : EthernetSocket = new EthernetSocket;

};

/* similar specification for Connectors c2 and c3 omitted */

Attachments {

theWirelessHub.EthernetPort1 to c2.r1;

theAuthServer.EthernetPort1 to c3.r1;

theEthernetHub.toWireless to c2.r2;

theEthernetHub.toRouter to c1.r2;

theEthernetHub.toAuth to c3.r2;

theFirewallRouter.EthernetPort1 to c1.r1;

};

}; /* end system */

Bindings {

outside to theFirewallRouter.outside;

inside to theEthernetHub.EthernetPort1;

wireless to theWirelessHub.WirelessPort1;

};

};

};

Figure 4: Acme specification of a Gateway component

29

Use case: Access Network Resources

Actors: User (initiator), ISP

Purpose: Obtain access to local and remote network resources

Typical Course of Events :

Actor Action System Response

1. The User uses a workstation connected to either

the wired or the wireless LAN and attempts to log in.

2. If authentication of the User succeeds, open a ses-

sion for the User.

3. The User requests one or more services, either

sequentially or in parallel, from the following kinds of

resource:

(a) resources within the LAN 4(a). Add the resource to the User’s session.

(b) Internet resources 4(b). Forward the request to the ISP.

5. The User logs out. 6. Close the User’s session and release any resources

attached to it.

Alternative courses:

Action 2: Authentication fails ⇒ indicate error.

Action 4(a): This User is not authorised to use this local resource ⇒ indicate error.

Action 4(b): Access to this Internet resource is barred ⇒ indicate error.

Figure 5: Example of a use case

30

Ergonomic
design patterns

Programming
idiom patterns

Workflow
patterns

Software
service

patterns

Program design
patterns

IT architecture
patterns

fine-grained

Business
process

oriented

Technology
oriented

coarse-
grained

Figure 6: Morphological map of pattern languages for information systems

31

Figure 7: Data warehouse pattern

32

List of Figures

1 Schematic influence diagram for a generic software maintenance process 26

2 Influence diagram for a generic software maintenance process . 27

3 Gateway pattern – box-and-line diagram . 28

4 Acme specification of a Gateway component . 29

5 Example of a use case . 30

6 Morphological map of pattern languages for information systems 31

7 Data warehouse pattern . 32

References

[1] Ward J, Griffiths P. Strategic Planning for Information Systems. John Wiley (Wiley Information Systems

series): Chichester, UK; 1996.

[2] Warboys BC, Greenwood RM, Kawalek P. Modelling the co-evolution of business processes and IT systems.

In: Henderson P, editor. Systems Engineering for Business Process Change: Collected Papers from the

EPSRC Research Programme. Springer-Verlag; 2000. p. 10–23.

[3] Chatters BW, Lehman MM, Ramil JF, Wernick P. Modelling A Software Evolution Process. Software

Process: Improvement and Practice. 2000;5:91–192.

[4] Wernick P, Hall T. Simulating Global Software Evolution Processes by Combining Simple Models: An Initial

Study. Software Process: Improvement and Practice. 2002;7:113–126.

[5] Lehman MM. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE. 1980;68(9):1060–

1076.

[6] Lehman MM, Ramil JF, et al. Metrics and laws of software evolution — the nineties view. In: Proceedings

of the 4th International Symposium On Software Metrics (Metrics 97). Albuquerque, New Mexico: IEEE

Computer Society; 1997. p. 20–32.

[7] Lehman MM, Ramil JF, Kahen G. Evolution as a noun and evolution as a verb. In: Proceedings of SOCE

2000. London, UK; 2000. .

33

[8] Banzhaf W, Nordin P, et al, editors. Genetic Programming: An Introduction. Morgan Kaufmann: San

Francisco CA; 1998.

[9] Koza JR. Genetic Programming: On the Programming of Computers By Means of Natural Selection. MIT

Press: Cambridge MA; 1992.

[10] Madhavji N, Ramil JF, Perry D, editors. Software Evolution. John Wiley: Chichester, UK; 2006.

[11] Avison D, Fitzgerald G, Wood-Harper T. The discipline of information systems: the interdisciplinary thing.

Systemist. 1994;16(1):62–69.

[12] Organisation IS. Information Technology — Software Product Evaluation — Quality Characteristics and

Guidelines for Their Use, 1st edn. ISO/IEC 9126; 1991.

[13] Cook SC, Ji H, Harrison R. Dynamic and static views of software evolution. In: Proceedings of the IEEE

International Conference On Software Maintenance (ICSM 2001). Florence, Italy: IEEE Computer Society

Press; 2001. p. 592–601.

[14] Mens T, Hassan G. 4th Workshop on Object-Oriented Architectural Evolution. In: Frohner, editor. Object-

Oriented Technology ECOOP 2001 Workshop Reader: Proceedings of the ECOOP 2001 Workshops, Panel,

and Posters. Budapest, Hungary: Springer Verlag; 2002. p. 150–164. Lecture Notes in Computer Science

series, 2323.

[15] Forrester JW. Industrial Dynamics. MIT Press and John Wiley; 1961.

[16] Kahen G, Lehman MM, et al. Dynamic modelling in the investigation of policies for E-type software evolution.

In: Proceedings of ProSim 2000. London, UK; 2000. .

[17] Wolstenholme EF. System Enquiry: A System Dynamics Approach. John Wiley: Chichester, UK; 1990.

[18] Coyle G. Qualitative and quantitative modelling in system dynamics: some research questions. System

Dynamics Review. 2000;16(3):225–244.

[19] Royce WW. Managing the development of large software systems: concepts and techniques. In: WESCON

Technical Papers, 14(A/1); 1970. p. 1–9.

[20] Beck K. Extreme Programming Explained: Embrace Change. Addison Wesley; 1999.

[21] Fagan ME. Design and code inspections to reduce errors in program development. IBM Systems Journal.

1976;15(3):182–211.

34

[22] Fagan ME. Advances in software inspections. IEEE Transactions on Software Engineering. 1986;12(7):744–

751.

[23] Cook SC, Harrison R, Lehman M, Wernick P. Evolution in software systems: foundations of the SPE

classification system. Journal of Software mainteance and Evolution. 2006;18(1):1–35.

[24] Lehman MM, Ramil JF. Software evolution in the age of component based software engineering. IEE

Proceedings on Software Engineering. 2000;147(6):249–255.

[25] Lehman MM, Ramil JF. EPiCS: Evolution Phenomenology in Component-intensive Software. In: Proceedings

of WESS 2001. Florence, Italy; 2001. .

[26] Harrison N, Foote B, Rohnert H, editors. Pattern Languages of Program Design 4. Addison-Wesley; 2000.

[27] Bennett K, Munro M, et al. An architectural model for service-based software with ultra rapid evolution. In:

Proceedings of the IEEE International Conference On Software Maintenance (ICSM 2001). Florence, Italy:

IEEE Computer Society; 2001. p. 292–300.

[28] Society IC. IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE-

Std-1471-2000. IEEE: New York; 2000.

[29] Garlan D, Monroe RT, Wile D. ACME: an architecture description interchange language. In: Proceedings

of CASCON’97. Toronto, Canada; 1997. p. 169–183.

[30] Garlan D, Monroe RT, Wile D. ACME: architectural description of component-based systems. In: T LG, M

S, editors. Foundations of Component-Based Systems. Cambridge University Press; 2000. p. 47–68.

[31] Larman C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design. Prentice

Hall; 1998.

[32] Jennings NR. An agent-based approach for building complex software systems. Communications of the ACM.

2001;44(4):35–41.

[33] Alexander C, Ishikawa S, Silverstein M. A Pattern Language: Towns, Buildings, Construction. Oxford

University Press; 1977.

[34] Gamma E, Helm R, et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley;

1995.

[35] Alexander C. The Timeless Way of Building. Oxford University Press; 1979.

35

[36] Moriconi M, Riemenschneider RA. Introduction to SADL 1.0: A Language for Specifying Software Archi-

tecture Hierarchies. SRI International; 1997. SRI-CSL-97–01.

[37] Ould MA. Business Processes: Modelling and Analysis for Re-Engineering and Improvement. John Wiley:

Chichester, UK; 1995.

[38] Johnson R, Foote B. Designing reusable classes. JOOP. 1988;p. 22–35.

[39] Alexander C, Silverstein M, et al. The Oregon Experiment. Oxford University Press: New York; 1975.

[40] Gabriel RP. The failure of pattern languages. In: Rising L, editor. The Patterns Handbook: Techniques,

Strategies, and Applications, (SIGS Reference Library series, 13. Cambridge University Press; 1998. p. 333–

344.

[41] Bradner S. The Internet Engineering Task Force. In: DiBona C, Ockman S, M S, editors. Open Sources:

Voices from the Open Source Revolution. O’Reilly; 1999. p. 47–52.

[42] Dyson P, Longshaw A. Patterns for Internet Architecture. In: Proceedings of EuroPLoP 2002. Illinois, USA;

2002. .

36

	1 Introduction
	2 The FRS Case Study
	3 Primary Concepts
	3.1 Software Evolution
	3.2 Information System
	3.3 Information System Evolvability
	3.3.1 Adaptability
	3.3.2 Responsiveness to feedback
	3.3.3 Compliance with constraints

	4 Towards an Improvement Process for Evolvability
	4.1 Forces Affecting Evolvability
	4.2 Feedback Models and the Software Maintenance Process
	4.2.1 Schematic model
	4.2.2 Intermediate model

	4.3 Kinds of feedback
	4.4 Implications of Incomplete Feedback Models

	5 Using Patterns to Improve Feedback
	5.1 Feedback requires a shared language
	5.2 Example of Languages for Viewpoints
	5.2.1 Box-and-line diagram
	5.2.2 Architecture Description Language
	5.2.3 Use cases

	5.3 Software as a service
	5.4 Patterns and pattern languages
	5.4.1 Pattern language morphology
	5.4.2 Morphology of information system patterns
	5.4.3 Examples of information system patterns
	5.4.4 Pattern repair processes
	5.4.5 Participatory planning for information systems

	5.5 Feedback and Rates of Change in Information Systems

	6 Conclusions and Future Directions
	7 Acknowledgements

