
Delayed Branches Versus Dynamic Branch Prediction in a High-
Performance Superscalar Architecture

Colin Egan, Heur Steven and Gordon Steven
University of Hertfordshire, Hatfield, Hertfordshire A L l O 9AB

Telephone: 01707 2843 19 Fax: 01707 284 303 email: comqgbs@herts.ac.uk

Abstract

While delayed branch mechanisms were popular with the designers of RISC processors, most superscalar
processors deploy dynamic branch prediction to minimise run-time branch penalties. We propose a
generalised branch delay mechanism that is more suited to superscalar processors. We then quantitatively
compare the performance of our delayed branch mechanism with run-time branch prediction, in the context
of a high-performance superscalar architecture that uses aggressive compile-time instruction scheduling.

keywords

superscalar, delayed branch, branch prediction, instruction scheduling

1. Introduction

Today's superscalar processors rely on aggressive pipelining and multiple instruction issue to achieve
high performance. Inevitably, however, branch instructions interrupt the flow of instructions in the pipeline
and degrade processor performance. RISC architectures traditionally use a delayed branch mechanism to
reduce the penalty of taken branches. In contrast recent superscalar implementations have tended to abandon
the RISC mechanism in favour of run-time branch prediction.

At the University of Hertfordshire, we have developed the Hatfield Superscalar Architecture (HSA), a
high-performance superscalar processor model, to allow us to investigate the performance limits of compile-
time instruction scheduling. Our long term objective is to achieve an order of magnitude performance
improvement over traditional RISC implementations that issue only one instruction in each processor cycle.
A second objective is to investigate whether aggressive compile-time scheduling can be used to simplify the
hardware requirements of superscalar implementations. We were therefore attracted to the traditional RISC
delayed branch mechanism by its inherent simplicity and low hardware implementation cost.

This paper describes the generalised delayed branch mechanism that we have developed for the HSA
architecture, including a recent simplification of our mechanism. We then use one of our instruction
schedulers to quantify the performance of delayed branches and to compare delayed branches with a more
conventional dynamic branch prediction mechanism.

2. The Hatfield Superscalar Architecture

The Hatfield Superscalar Architecture (HSA) was developed as a vehicle for instruction scheduling
research. It has been described as a minimal superscalar architecture [l] since it embodies a hybrid
technology that combines the best features of VLIW (Very Long Instruction Word) and superscalar
architectures. HSA is a load and store architecture with a RISC instruction set derived from its predecessor
HARP [2] . Separate integer and Boolean register files are provided. The one bit Boolean registers are used
to store branch conditions and to implement guarded instruction execution. A simple four-stage pipeline is
used

266 0-8186-8215-9/97 $10.00 0 1997 IEEE

mailto:comqgbs@herts.ac.uk

IF Instruction Fetch
m Instruction Decode
Ex Execute
WB Write Back

During the IF stage, multiple instructions are fetched into an Instruction Buffer from the instruction
cache. In the ID stage, instructions are then issued in program order from the Instruction Buffer to
functional units. Conditional branches are also resolved in the ID stage.

While more details of the architecture can be found elsewhere [3], two further features are directly relevant
to this paper. First, all HSA instructions, including branches, may be guarded by one or more Boolean
conditions. The following divide instruction, for example, will only be executed if the value in Boolean
register seven evaluates to false (zero) at run time:

FB7 D N R1, R6, R13
Second, the processor attempts to avoid issuing instructions from the Instruction Buffer if the associated

guard condition has already failed. Instructions are therefore marked as "squashed" in the Instruction Buffer if
they have remained in the buffer for a full cycle without being issued and if the associated Boolean condition
evaluates to false. To avoid increased pressure on the processor cycle time, the ID stage evaluates squashing
conditions in parallel with its primary function of decoding and issuing instructions.

To achieve high performance, an instruction scheduler reorders the HSA assembly language code to form
groups of instructions that can be issued to functional units in parallel at run time. These instruction
groups are then presented to the processor as traditional sequential code. The ID stage has the task of
reconstructing the original instruction groups and of issuing them to functional units for parallel execution.
This involves checking that each instruction being issued does not require the result of another instruction
that is being issued at the same time. Since each instruction pair must be checked for dependencies, the
complexity of the dependency checking increases in proportion to the square of the issue rate and places
increasing pressure on the ID stage cycle time.

In the ID stage, the processor rebuilds instruction groups that have already been assembled at compile
time. We are therefore now investigating the idea of marking the end of each instruction group within the
instruction stream. Only a single bit is required in each instruction to flag the end of each parallel group.
Issuing instructions then simply involves scanning through the Instruction Buffer looking for the first end
of group flag. No dependence checks are now required between instructions within the same group.
Instruction issue is subject only to functional unit and operand availability. The instruction group flags
effectively encapsulate information about compile-time instruction groups, yet do not sacrifice compatibility
over a range of processor designs.

3. Delayed branch mechanism

Delayed branches first became fashionable with the introduction of RISC ideas in the early 80s. In many
RISC processors, a fixed number of instructions after each branch instruction is always executed,
irrespective of whether the branch is taken or not. The compiler is then given the task of placing useful
instructions in the branch delay slots. Since only one branch delay slot is usually provided, straightforward
instruction scheduling techniques can be used to fill the branch delay slots a very high percentage of the
time. Despite this, the performance improvements achieved tended to be only marginal [4]. The main
reason for this poor performance is that a branch in a simple pipeline that is not taken incurs no penalty.
Introducing an unfilled delay slot or an instruction from a branch target after a not-taken branch therefore
increases the execution time. Improvements through filling branch delay slots must more than compensate
for such cases if a net benefit is to be realised.

Slightly better performance can be acheved if branches are able to discard instructions in their delay slots
when the outcome of the branch indicates that the instructions should not be executed [4]. This additional
freedom makes it easier to move instructions into delay slots. We would regard this as a specialised
implementation of guarded execution, where the execution condition is moved from the instruction to the
preceding branch.

In spite of disappointing benefits achieved in RISC implementations, we feel that the delayed branch
mechanism is worth revisiting in the superscalar context for three reasons. First, we are attracted by the
simple hardware implementation. Second, with multiple instruction issue it is possible to execute
instructions from multiple successor paths until a branch is resolved. Finally, instruction buffer squashing
can be deployed to reduce the resultant pressure on functional unit utilisation, although not, of course, the
increased pressure on instruction cache bandwidth.

A branch delay mechanism with a fixed number of delay slots is clearly unsuitable for a superscal-r

267

architecture. If, for example, an issue rate of eight is envisaged, sixteen delay slots would be required to
cater for two delay cycles. However, in most cases such a large figure would simply require the compiler to
add a significant number of NOPs after each branch.

The HSA mechanism avoids this difficulty by encoding the number of instructions placed in the branch
utiay slots directly in each branch instruction. The implementation of this mechanism can be considerably
simplified if instruction group flags are also provided. The delay slots count then becomes a count of the
number of instruction groups whose issue must be completed before the branch is taken. A two bit field
can specify up to three branch delay groups and is therefore likely to be adequate.

4. Branch prediction

In contrast, most current superscalar processor implementations employ run-time branch prediction.
Traditionally branch prediction involves the use of a Branch Target Cache (BTC) that predicts the outcome
of branches on the basis of their past behaviour. More recently Yale Patt’s group [5] and others have
significantly improved the accuracy of run-time branch prediction by recording additional information about
the context of each branch.

Since HSA issues instructions to functional units in program order, a BTC can be added without requiring
the additional complexity of a reorder buffer (or an equivalent mechanism) to recover from mispredicted
branches. All branches are resolved in the ID stage, giving adequate time for subsequent instructions to be
aborted without altering the machine state.

The disadvantage of a BTC is that the time penalty increases, as a percentage, in proportion to the
effective instruction issue rate. This relationship is emphasised by the method used in this paper to
calculate the performance of processor models with a BTC:

Total Execution Time = Execution time with perfect branch prediction +
Branch mispredictions * msprediction penalty

As instruction scheduling reduces the f i s t component, the danger is that the second figure will remain
largely unchanged.

For the experiments described in this paper, a separate trace-driven BTC simulator was used. The traces
for both unscheduled and scheduled code were generated directly by the HSA instruction-level simulator. A
fully associative BTC with 32 entries was used throughout. It was also assumed that a Return Address
Stack [6] would be used to provide the appropriate retum addresses for subroutine returns.

5. Instruction scheduling

Trace Scheduling 171, whch is perhaps the best known instruction scheduling technique, was developed
by Fisher at Yale for his VLIW architecture. However, we feel that code compatibility and code expansion
problems render VLIW processors unsuitable for general-purpose computation. Fortunately, instruction
scheduling techniques can be equally well applied to superscalar processors. Only slight changes are required
to preserve the instruction-level semantics and to ensure that the resultant code can also be executed in the
traditional sequential style.

Current scheduling developments tend to build on either Modulo Scheduling Techniques [8] or on the
Enhanced Percolation Scheduling algorithm [9] developed by Kemal Ebcioglu’s group at IBM. With
Modulo Scheduling the main challenge is to extend the technique to loop structures of arbitrary complexity.
In the case of Enhanced Percolation Scheduling, the challenge is to avoid excessive code expansion.

Our latest scheduler builds on the IBM approach and can therefore schedule loops of any complexity.
However, our scheduler differs in two important respects. First, each instruction is scheduled in turn and
percolated up through the code structure as far as possible. In contrast, the IBM algorithm assembles each
parallel instruction group in turn, by repeatedly searching forward through the code for candidate
instructions. We see the resultant repeated attempts to move each instruction forward as a disadvantage
which our scheduling algorithm avoids. Second, code motion across loop back edges is restricted to avoid
excessive code expansion. As in the IBM algorithm, code is systematically moved across loop back edges
to overlap successive loop iterations and achieve software pipelining. However, code is only moved across a
loop back edge if it can be demonstrated that the instruction being moved heads a chain of instruction
dependencies that limits the iteration time of at least one path through the loop.

6. Results

Our instruction scheduler is used in this paper to evaluate the relative merits of delayed branches and
dynamic branch prediction. The well-known set of Stanford benchmarks is used throughout.

268

Our first results compare delayed branches and a BTC in systems with an instruction issue rate of one.
As a Baseline Model we execute the code produced directly by our GCC compiler on a processor with a fetch
and issue rate of one. All instructions are assigned unit latencies apart from divide instructions that have a
latency of sixteen and multiply instructions that have a latency of three. With a cache access time of one
cycle, delayed branches incur a one cycle penalty for each taken branch, but suffer no penalty if branches are
not taken. With a BTC, all mispredicted branches suffer a penalty of one.

Two sets of figures are compared with the execution times achieved by our Baseline Model. In the first
case, a simple standalone instruction scheduler is used to fill branch delay slots. Traditionally, code is
moved into branch delay slots from three locations, from before the branch, from the branch target and from
after the branch. Our branch delay scheduler always attempts to move code from before a branch into a
branch delay slot. However, to avoid degrading performance when a branch falls through, code is only
moved from a branch target, if the branch is unconditional, or if the branch target is also the head of a loop.
Finally, there is no point in moving instructions from after a branch into a branch delay slot, since not-
taken branches incur zero time penalty. On average, filling branch delay slots improves on the performance
of our Baseline Model by 8% (Fig.1).

The delayed branch mechanism is then replaced with a fully associative BTC with 32 entries and two
history bits. A correctly predicted branch now suffers no performance penalty but mispredicted branches
incur a penalty of one cycle. Branch prediction improves performance over the Baseline Model by 12%
(Fig.l), 4% better than the delayed branch mechanism.

These experiments were repeated with the cache access times increased to two cycles. The delayed branch
mechanism now allows two instruction groups to be placed in deIay dots after each branch, while the
mispredicted branch penalty rises to two cycles. The latency of load instructions is also increased from one
to two. Filling branch delay slots yields an identical 8% improvement over the Baseline Model, while the
improvement obtained using the BTC falls slightly to 11 % (Fig. 1).

Our second set of experiments concerns code scheduled for two multiple-instruction-issue processor
models, a Standard Model and a Maximal Model. Both models have an instruction fetch rate of sixteen and
can issue up to sixteen instructions from the Instruction Buffer in each cycle. The primary difference is that
the Standard Model can only issue two load and two store instructions in each cycle. Since, at this stage,
we are primarily interested in developing the capabilities of our scheduler, no other significant resource
restrictions are placed on the two models. Again we contrast code scheduled for a delayed branch mechanism
with code scheduled for use with a BTC.

Initially, cache access times were set to one cycle. First, our scheduler attempts to fill single branch
delay slot with an instruction group that can be issued in parallel. In these circumstances the Standard
Model achieves an average speedup of 3.1 1 over the Baseline Model (Fig.2). The scheduler then assumes
that there are no delay slots, in effect assuming perfect branch prediction. The execution times obtained
were then adjusted for BTC misses which were simulated separately. With a BTC the speedup over the
Baseline Model rises to 3.63 (Fig.2).

Similarly, the Maximal Model achieves a speedup of 3.22 with delayed branches, rising to 3.90 with a
BTC (Fig.2). With a cache access time of one cycle, a BTC therefore shows an overall performance
advantage of around 20% over a delayed branch mechanism.

Increasing the cache access time to two cycles reduces the speedup in all cases. Average speedups of 2.66
and 2.72 are achieved using delayed branches, rising to 3.62 and 3.85 with a BTC (Fig.3). At the same time
the overall performance advantage of the BTC rises from around 20% to about 40%.

7. Conclusion and discussion

In the above experiments, a BTC gives significantly higher performance than the HSA generalised branch
delay mechanism. Our scheduler, in its present form, therefore fails to overcome the negative impact of
branch delay slots and consequently is unable to realise the theoretical benefits of the delayed branch
mechanism.

Two factors account for the marked superiority of the BTC. First, the branch prediction is remarkably
successful, with an average success rate of over 99%. Second, our scheduler amplifies this already high
success rate by removing a significant number of branches during scheduling (Fig.4). On average the
number of branch instructions executed is reduced by over 22%. even though branch removal is entirely a
side effect rather than an aim of the scheduling process. This average figure conceals very high variations
between individual programs, with one program loosing just over half its branches while another looses
only 2.8%.

Although the speedup currently achieved is
encouraging, our scheduler is far from complete. In particular, the scheduler makes no attempt to move

Nonetheless, some words of caution are in order.

269

branches in parallel with branches or to move branches into branch delay slots. The impact of this
restriction is particularly severe when two delay slots are provided. In this case the execution time of
scheduled code is almost completely dictated by the branch execution time. The next stage in the
development of our scheduler will be to add this additional branch code motion. In contrast, since the
burcess rate of the BTC already compares very favourably with two-level branch prediction techniques
investigated elsewhere, the number of successful branch predictions is very unlikely to increase. We feel
that the high success rate observed is almost certainly a feature of these particular benchmarks.

In summary, the preliminary speedups achieved using our latest instruction scheduler, in particular those
achieved in conjunction with a BTC are highly encouraging. However, the lower speedups achieved with
the HSA branch delay mechanism emphasise that significant extra development is required. In particular, to
achieve higher speedups, multiple branches must be executed in parallel and branch instructions must be
executed in branch delay slots.

References

1 Steven G B and Collins R A Superscalar Architecture to Exploit Instruction-Level Parallelism, Euromicro96, 2-
5 September, Prague, 1996.

2 Steven F L, Steven G B and Wang L Using a Resource Limited Instruction Scheduler to Evaluate the iHARP
Processor, IEE Proceedings - Computers and Digital Techniques, V01.142. No.1, January 1995, pp 23-31.

3 Steven G B, Christianson D B, Collins R, Potter R and Steven F L A Superscalar Architecture to Exploit
Instruction Level Parallelism, Microprocessors and Microsystems, V01.20, No.7, March 1997, pp 391-400.

4 Hennessy J L and Patterson D A Computer Architecture A Quantitative Approach, Morgan Kaufman, San
Francisco, 2nd edition 1996.

5 Yeh T and Patt Y N Alternative Implementations of Two-Level Adaptive Branch Prediction, 19th Annual
International Symposium on Computer Architecture, Gold Coast, Australia, May 1992, pp 124-134.

6 Kaeli D and Emma P Branch History Table Prediction of Moving Target Branches due to Subroutine Returns,
18th Annual International Symposium on Computer Architecture, May 199 1, pp34-42.

7 Fisher J A Trace Scheduling: A Technique for Global Microcode Compaction, IEEE Transactions on
Computers, C-30, (7), July 1981, pp 478-490.

8 Rau B R and Fisher J A Instruction-Level Parallel Processing: History, Overview and Perspective, The Journal
of Supercomputing, Vo1.7, No. 1/2, 1993, pp9-50.

9 Ebcioglu K, Groves R D, Kim K, Silberman G M. and Ziv I VLIW Compilation Techniques in a Superscalar
Environment, SigPlan94, Orlando, Florida, 1994, pp 36-48.

Fig.1 Delayed Branch versus BTC with Issue Rate of One
(Cache access times one cycle (1) and two cycles (2))

-- I ,-.
5
E' .* -
v1 a
m Delayed Branch(1)
t
0 Delayed Branch(2)
I
E

k
10

I

c
k

I E"

.
Perm Bubble IntmmTower Tree Gib% Quick Puul Average

Benchmark

270

Fig.2 Delayed Branch versus BTC with Scheduled Code
(Cache access time of one cycle)

I Standard: L? IayedBranch
ShdndardBTC

Pein Bubble lntmm To& Tree & Quck P u i i Average

Benchmark

Fig.3 Delayed Branch versus BTC with Scheduled Code

I Standad Delayed Branch
I StandardIBTC

Maxima! Delayed Branch
0 M a x W B T C

Perm Bubblelnlmm Tower Tree Qusen Quick PurrlAverage

Benchmark

Fig.4 Percentage of Branches Removed in Scheduled Code

Benchmark

271

