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Abstract 

While delayed branch mechanisms were popular with the designers of RISC processors, most superscalar 
processors deploy dynamic branch prediction to minimise run-time branch penalties. We propose a 
generalised branch delay mechanism that is more suited to superscalar processors. We then quantitatively 
compare the performance of our delayed branch mechanism with run-time branch prediction, in the context 
of a high-performance superscalar architecture that uses aggressive compile-time instruction scheduling. 
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1. Introduction 

Today's superscalar processors rely on aggressive pipelining and multiple instruction issue to achieve 
high performance. Inevitably, however, branch instructions interrupt the flow of instructions in the pipeline 
and degrade processor performance. RISC architectures traditionally use a delayed branch mechanism to 
reduce the penalty of taken branches. In contrast recent superscalar implementations have tended to abandon 
the RISC mechanism in favour of run-time branch prediction. 

At the University of Hertfordshire, we have developed the Hatfield Superscalar Architecture (HSA), a 
high-performance superscalar processor model, to allow us to investigate the performance limits of compile- 
time instruction scheduling. Our long term objective is to achieve an order of magnitude performance 
improvement over traditional RISC implementations that issue only one instruction in each processor cycle. 
A second objective is to investigate whether aggressive compile-time scheduling can be used to simplify the 
hardware requirements of superscalar implementations. We were therefore attracted to the traditional RISC 
delayed branch mechanism by its inherent simplicity and low hardware implementation cost. 

This paper describes the generalised delayed branch mechanism that we have developed for the HSA 
architecture, including a recent simplification of our mechanism. We then use one of our instruction 
schedulers to quantify the performance of delayed branches and to compare delayed branches with a more 
conventional dynamic branch prediction mechanism. 

2. The Hatfield Superscalar Architecture 

The Hatfield Superscalar Architecture (HSA) was developed as a vehicle for instruction scheduling 
research. It has been described as a minimal superscalar architecture [l] since it embodies a hybrid 
technology that combines the best features of VLIW (Very Long Instruction Word) and superscalar 
architectures. HSA is a load and store architecture with a RISC instruction set derived from its predecessor 
HARP [2 ] .  Separate integer and Boolean register files are provided. The one bit Boolean registers are used 
to store branch conditions and to implement guarded instruction execution. A simple four-stage pipeline is 
used 
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IF Instruction Fetch 
m Instruction Decode 
Ex Execute 
WB Write Back 

During the IF stage, multiple instructions are fetched into an Instruction Buffer from the instruction 
cache. In the ID stage, instructions are then issued in program order from the Instruction Buffer to 
functional units. Conditional branches are also resolved in the ID stage. 

While more details of the architecture can be found elsewhere [3], two further features are directly relevant 
to this paper. First, all HSA instructions, including branches, may be guarded by one or more Boolean 
conditions. The following divide instruction, for example, will only be executed if the value in Boolean 
register seven evaluates to false (zero) at run time: 

FB7 D N  R1, R6, R13 
Second, the processor attempts to avoid issuing instructions from the Instruction Buffer if the associated 

guard condition has already failed. Instructions are therefore marked as "squashed" in the Instruction Buffer if 
they have remained in the buffer for a full cycle without being issued and if the associated Boolean condition 
evaluates to false. To avoid increased pressure on the processor cycle time, the ID stage evaluates squashing 
conditions in parallel with its primary function of decoding and issuing instructions. 

To achieve high performance, an instruction scheduler reorders the HSA assembly language code to form 
groups of instructions that can be issued to functional units in parallel at run time. These instruction 
groups are then presented to the processor as traditional sequential code. The ID stage has the task of 
reconstructing the original instruction groups and of issuing them to functional units for parallel execution. 
This involves checking that each instruction being issued does not require the result of another instruction 
that is being issued at the same time. Since each instruction pair must be checked for dependencies, the 
complexity of the dependency checking increases in proportion to the square of the issue rate and places 
increasing pressure on the ID stage cycle time. 

In the ID stage, the processor rebuilds instruction groups that have already been assembled at compile 
time. We are therefore now investigating the idea of marking the end of each instruction group within the 
instruction stream. Only a single bit is required in each instruction to flag the end of each parallel group. 
Issuing instructions then simply involves scanning through the Instruction Buffer looking for the first end 
of group flag. No dependence checks are now required between instructions within the same group. 
Instruction issue is subject only to functional unit and operand availability. The instruction group flags 
effectively encapsulate information about compile-time instruction groups, yet do not sacrifice compatibility 
over a range of processor designs. 

3. Delayed branch mechanism 

Delayed branches first became fashionable with the introduction of RISC ideas in the early 80s. In many 
RISC processors, a fixed number of instructions after each branch instruction is always executed, 
irrespective of whether the branch is taken or not. The compiler is then given the task of placing useful 
instructions in the branch delay slots. Since only one branch delay slot is usually provided, straightforward 
instruction scheduling techniques can be used to fill the branch delay slots a very high percentage of the 
time. Despite this, the performance improvements achieved tended to be only marginal [4]. The main 
reason for this poor performance is that a branch in a simple pipeline that is not taken incurs no penalty. 
Introducing an unfilled delay slot or an instruction from a branch target after a not-taken branch therefore 
increases the execution time. Improvements through filling branch delay slots must more than compensate 
for such cases if a net benefit is to be realised. 

Slightly better performance can be acheved if branches are able to discard instructions in their delay slots 
when the outcome of the branch indicates that the instructions should not be executed [4]. This additional 
freedom makes it easier to move instructions into delay slots. We would regard this as a specialised 
implementation of guarded execution, where the execution condition is moved from the instruction to the 
preceding branch. 

In spite of disappointing benefits achieved in RISC implementations, we feel that the delayed branch 
mechanism is worth revisiting in the superscalar context for three reasons. First, we are attracted by the 
simple hardware implementation. Second, with multiple instruction issue it is possible to execute 
instructions from multiple successor paths until a branch is resolved. Finally, instruction buffer squashing 
can be deployed to reduce the resultant pressure on functional unit utilisation, although not, of course, the 
increased pressure on instruction cache bandwidth. 

A branch delay mechanism with a fixed number of delay slots is clearly unsuitable for a superscal-r 
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architecture. If, for example, an issue rate of eight is envisaged, sixteen delay slots would be required to 
cater for two delay cycles. However, in most cases such a large figure would simply require the compiler to 
add a significant number of NOPs after each branch. 

The HSA mechanism avoids this difficulty by encoding the number of instructions placed in the branch 
utiay slots directly in each branch instruction. The implementation of this mechanism can be considerably 
simplified if instruction group flags are also provided. The delay slots count then becomes a count of the 
number of instruction groups whose issue must be completed before the branch is taken. A two bit field 
can specify up to three branch delay groups and is therefore likely to be adequate. 

4. Branch prediction 

In contrast, most current superscalar processor implementations employ run-time branch prediction. 
Traditionally branch prediction involves the use of a Branch Target Cache (BTC) that predicts the outcome 
of branches on the basis of their past behaviour. More recently Yale Patt’s group [5 ]  and others have 
significantly improved the accuracy of run-time branch prediction by recording additional information about 
the context of each branch. 

Since HSA issues instructions to functional units in program order, a BTC can be added without requiring 
the additional complexity of a reorder buffer (or an equivalent mechanism) to recover from mispredicted 
branches. All branches are resolved in the ID stage, giving adequate time for subsequent instructions to be 
aborted without altering the machine state. 

The disadvantage of a BTC is that the time penalty increases, as a percentage, in proportion to the 
effective instruction issue rate. This relationship is emphasised by the method used in this paper to 
calculate the performance of processor models with a BTC: 

Total Execution Time = Execution time with perfect branch prediction + 
Branch mispredictions * msprediction penalty 

As instruction scheduling reduces the f i s t  component, the danger is that the second figure will remain 
largely unchanged. 

For the experiments described in this paper, a separate trace-driven BTC simulator was used. The traces 
for both unscheduled and scheduled code were generated directly by the HSA instruction-level simulator. A 
fully associative BTC with 32 entries was used throughout. It was also assumed that a Return Address 
Stack [6 ]  would be used to provide the appropriate retum addresses for subroutine returns. 

5. Instruction scheduling 

Trace Scheduling 171, whch is perhaps the best known instruction scheduling technique, was developed 
by Fisher at Yale for his VLIW architecture. However, we feel that code compatibility and code expansion 
problems render VLIW processors unsuitable for general-purpose computation. Fortunately, instruction 
scheduling techniques can be equally well applied to superscalar processors. Only slight changes are required 
to preserve the instruction-level semantics and to ensure that the resultant code can also be executed in the 
traditional sequential style. 

Current scheduling developments tend to build on either Modulo Scheduling Techniques [8] or on the 
Enhanced Percolation Scheduling algorithm [9] developed by Kemal Ebcioglu’s group at IBM. With 
Modulo Scheduling the main challenge is to extend the technique to loop structures of arbitrary complexity. 
In the case of Enhanced Percolation Scheduling, the challenge is to avoid excessive code expansion. 

Our latest scheduler builds on the IBM approach and can therefore schedule loops of any complexity. 
However, our scheduler differs in two important respects. First, each instruction is scheduled in turn and 
percolated up through the code structure as far as possible. In contrast, the IBM algorithm assembles each 
parallel instruction group in turn, by repeatedly searching forward through the code for candidate 
instructions. We see the resultant repeated attempts to move each instruction forward as a disadvantage 
which our scheduling algorithm avoids. Second, code motion across loop back edges is restricted to avoid 
excessive code expansion. As in the IBM algorithm, code is systematically moved across loop back edges 
to overlap successive loop iterations and achieve software pipelining. However, code is only moved across a 
loop back edge if it can be demonstrated that the instruction being moved heads a chain of instruction 
dependencies that limits the iteration time of at least one path through the loop. 

6. Results 

Our instruction scheduler is used in this paper to evaluate the relative merits of delayed branches and 
dynamic branch prediction. The well-known set of Stanford benchmarks is used throughout. 
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Our first results compare delayed branches and a BTC in systems with an instruction issue rate of one. 
As a Baseline Model we execute the code produced directly by our GCC compiler on a processor with a fetch 
and issue rate of one. All instructions are assigned unit latencies apart from divide instructions that have a 
latency of sixteen and multiply instructions that have a latency of three. With a cache access time of one 
cycle, delayed branches incur a one cycle penalty for each taken branch, but suffer no penalty if branches are 
not taken. With a BTC, all mispredicted branches suffer a penalty of one. 

Two sets of figures are compared with the execution times achieved by our Baseline Model. In the first 
case, a simple standalone instruction scheduler is used to fill branch delay slots. Traditionally, code is 
moved into branch delay slots from three locations, from before the branch, from the branch target and from 
after the branch. Our branch delay scheduler always attempts to move code from before a branch into a 
branch delay slot. However, to avoid degrading performance when a branch falls through, code is only 
moved from a branch target, if the branch is unconditional, or if the branch target is also the head of a loop. 
Finally, there is no point in moving instructions from after a branch into a branch delay slot, since not- 
taken branches incur zero time penalty. On average, filling branch delay slots improves on the performance 
of our Baseline Model by 8% (Fig.1). 

The delayed branch mechanism is then replaced with a fully associative BTC with 32 entries and two 
history bits. A correctly predicted branch now suffers no performance penalty but mispredicted branches 
incur a penalty of one cycle. Branch prediction improves performance over the Baseline Model by 12% 
(Fig.l), 4% better than the delayed branch mechanism. 

These experiments were repeated with the cache access times increased to two cycles. The delayed branch 
mechanism now allows two instruction groups to be placed in deIay dots after each branch, while the 
mispredicted branch penalty rises to two cycles. The latency of load instructions is also increased from one 
to two. Filling branch delay slots yields an identical 8% improvement over the Baseline Model, while the 
improvement obtained using the BTC falls slightly to 11 % (Fig. 1). 

Our second set of experiments concerns code scheduled for two multiple-instruction-issue processor 
models, a Standard Model and a Maximal Model. Both models have an instruction fetch rate of sixteen and 
can issue up to sixteen instructions from the Instruction Buffer in each cycle. The primary difference is that 
the Standard Model can only issue two load and two store instructions in each cycle. Since, at this stage, 
we are primarily interested in developing the capabilities of our scheduler, no other significant resource 
restrictions are placed on the two models. Again we contrast code scheduled for a delayed branch mechanism 
with code scheduled for use with a BTC. 

Initially, cache access times were set to one cycle. First, our scheduler attempts to fill single branch 
delay slot with an instruction group that can be issued in parallel. In these circumstances the Standard 
Model achieves an average speedup of 3.1 1 over the Baseline Model (Fig.2). The scheduler then assumes 
that there are no delay slots, in effect assuming perfect branch prediction. The execution times obtained 
were then adjusted for BTC misses which were simulated separately. With a BTC the speedup over the 
Baseline Model rises to 3.63 (Fig.2). 

Similarly, the Maximal Model achieves a speedup of 3.22 with delayed branches, rising to 3.90 with a 
BTC (Fig.2). With a cache access time of one cycle, a BTC therefore shows an overall performance 
advantage of around 20% over a delayed branch mechanism. 

Increasing the cache access time to two cycles reduces the speedup in all cases. Average speedups of 2.66 
and 2.72 are achieved using delayed branches, rising to 3.62 and 3.85 with a BTC (Fig.3). At the same time 
the overall performance advantage of the BTC rises from around 20% to about 40%. 

7. Conclusion and discussion 

In the above experiments, a BTC gives significantly higher performance than the HSA generalised branch 
delay mechanism. Our scheduler, in its present form, therefore fails to overcome the negative impact of 
branch delay slots and consequently is unable to realise the theoretical benefits of the delayed branch 
mechanism. 

Two factors account for the marked superiority of the BTC. First, the branch prediction is remarkably 
successful, with an average success rate of over 99%. Second, our scheduler amplifies this already high 
success rate by removing a significant number of branches during scheduling (Fig.4). On average the 
number of branch instructions executed is reduced by over 22%. even though branch removal is entirely a 
side effect rather than an aim of the scheduling process. This average figure conceals very high variations 
between individual programs, with one program loosing just over half its branches while another looses 
only 2.8%. 

Although the speedup currently achieved is 
encouraging, our scheduler is far from complete. In particular, the scheduler makes no attempt to move 

Nonetheless, some words of caution are in order. 
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branches in parallel with branches or to move branches into branch delay slots. The impact of this 
restriction is particularly severe when two delay slots are provided. In this case the execution time of 
scheduled code is almost completely dictated by the branch execution time. The next stage in the 
development of our scheduler will be to add this additional branch code motion. In contrast, since the 
burcess rate of the BTC already compares very favourably with two-level branch prediction techniques 
investigated elsewhere, the number of successful branch predictions is very unlikely to increase. We feel 
that the high success rate observed is almost certainly a feature of these particular benchmarks. 

In summary, the preliminary speedups achieved using our latest instruction scheduler, in particular those 
achieved in conjunction with a BTC are highly encouraging. However, the lower speedups achieved with 
the HSA branch delay mechanism emphasise that significant extra development is required. In particular, to 
achieve higher speedups, multiple branches must be executed in parallel and branch instructions must be 
executed in branch delay slots. 
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Fig.1 Delayed Branch versus BTC with Issue Rate of One 
(Cache access times one cycle (1) and two cycles (2 ) )  
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Fig.2 Delayed Branch versus BTC with Scheduled Code 
(Cache access time of one cycle) 
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Fig.3 Delayed Branch versus BTC with Scheduled Code 
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Fig.4 Percentage of Branches Removed in Scheduled Code 
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