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Abstract. Let Z be a Banach lattice endowed with positive cone C and an order-
continuous norm || - {|. Let G be a semigroup of positive linear endomorphisms of Z.
We show that if G is left-reversible (a weaker condition than left-amenability) then
the positive fixed points Cp of Z under G form a lattice cone, and their linear span
Zy is a Banach lattice under an order-continuous norm || - ||o which agrees with || - ||
on Cp. Simple counterexamples show that Zp need not contain all the fixed points of
Z under G, and need not be a sublattice of (Z,C). Our proof is a simple embedding
construction which allows other such results (with different conditions on G) to be
read off directly from appropriate fixed point theorems. Results of this kind find
application in statistical physics and elsewhere.

Definition 1. A semigroup G is called left-reversible iff for all T1,7T> € G there
exist Ty, Ty € G such that T1TpT3 = ToT1T;.

A right ideal of a semigroup G is a set of the form T'G where T' € G. Left-
reversibility of G is equivalent to demanding that every pair of right ideals of G
intersect non-trivially. Left-reversibility is a weaker condition than left-amenability
for discrete semigroups since the support of any left-invariant mean must be con-
tained in every right ideal. It is strictly weaker since (for example) the free group on
two generators is left-reversible (because it is a group) but is not left-amenable (be-
cause it is not solvable.) For a survey of the relationships between left-reversibility
and other properties of semigroups, see [6, §8].

Proposition 2. Let Z be an order-complete vector lattice with positive cone C,

and let G be a semigroup of positive order-continuous linear operators from Z into

Z. Let Co={zeC:Te=aforadlTeG},Zo=Ch—Co={z—y:z,y€Cp}.
If G is left reversible then (Zy,Cy) is a vector lattice.

Proof. Choose z,y € Cy. Write z V y for the least upper bound of z and y in C,
and let A={T(zVvy):T e G}. Clearly

z+y=T(@+y)>T(xVy >TaeVvIiy=aVy

so A is order-bounded above by z + y, and hence has a least upper bound z. For
11, T, € G we have by left-reversibility of G that

Tl(:L’ \ y) < T1T2T3(x vV y) = T2T1T4(.’C \Y y) > TQ(ZL‘ vV y)

which shows that A is directed as a subset of C, and hence A {considered as a net)
is order-convergent to z. The same argument shows that for each T' € G, T'A is a
subnet of A, whence Tz = 2z and so z € Cy. Clearly z = x Vg y, the least upper
bound in Cy of & and y. It follows that Cqy is a lattice cone and hence that Z; is a
lattice. |
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Under the conditions of Proposition 2, Zy need not contain all the fixed points
of Z under G, and need not be a sublattice of (Z, (), as the following examples
show.

Example 3. [1, Example 2] Zy need not equal the set of all fixed points of Z
under G, and this latter set need not be a lattice. Consider R? and let G be the
semigroup {T"} where T(x,y) = (22 + y,z + 2y). The fixed points are the line
z+y=0Dbut Cp = {0}.

Example 4. [1, Example 3] Zy need not be a sublattice of (Z,C). Consider R®
and let G be the semigroup {T"} where T'(z,y,2) = (z,y,2 + y). The points
a=(1,0,1),b=(0,1,1) € Cp have a Vb= (1,1,1),a Vo b = (1,1,2).

The conclusion of Proposition 2 may fail if G is not left-reversible, as the following
example shows.

Example 5. [1, Example 1] Zy need not be a lattice for an arbitrary semigroup
G. Consider R® and define two projections P, by

P(,U’ w? :E, y? z) = (fU,/u)’ x? y?v + ,I‘U)’ Q(/U7 lU’ J"’ y’ Z) = (,0711‘)7 :U7 y?‘,‘v + y)’

Let G be the semigroup {P,Q}, then Cj is the cone with square base
{(s,1 —'s,t,1 = ,1) : s,t € [0,1]} so (Zo,Cp) is not a lattice. For example
(1,1,2,0,2) and (1,1,1,1,2) are minimal upper bounds in Zp for (1,0,1,0,1) and
(0,1,1,0,1).

Proposition 6. Let (Zy, Cy) be a vector lattice. Let Z be a Banach lattice endowed
with positive cone C and order-continuous norm || - ||, and suppose that Zg can be
embedded in Z in such a way that Cy 1s a norm closed subset of C.

Then Zy is a Banach lattice with positive cone Cy and order-continuous norm
I llo defined on Zo by ||lzllo = || |z]o]| where |- |o is the lattice modulus on (Zo, Co).

Proof. Straightforward, for details see the last part of the proof in [1, p. 257]. R

Again, Zy may be a lattice in the order inherited from C but fail to be a sublattice
of Z. Conditions under which Z, is a sublattice of (Z,() in Proposition 6 are
investigated in [2]. Although we always have || - || < || - |lo on Zo, the two norms
may differ on non-positive elements of Zg such as the element ¢ — b in Example 4,
or the more drastic example following. '

Example 7. [1, Example 4] Z; need not be norm closed in (Z, || - ||), consequently
|- || and || - []o need not be equivalent on Zy. Let Z = I* and define T by

(Tw)ap = wap—z +wap—1+ (1= 27N wge  (Tw)ars1r = wspr1  (TW)ak42 = Wakt2
for w = (wy) € Z. Let G ={T™} and define v € Z by

k
var = 0;  Usjg1 = —Usp2 = 1/27

Define Zq as in Proposition 2. Then v is in the closure of Zy under || - || but is not
in Zy. This example also satisfies the assertions of Examples 3 and 4.




POSTIVE FIXED POINTS OF LATTICES 25

Propositions 2 and 6 combine to give us

Proposition 8. Let Z be a Banach lattice endowed with positive cone C and an
order-continuous norm ||-||. Let G be a semigroup of positive linear endomorphisms

of Z.

If G is left-reversible then the positive fized points Cy of Z under G form a lattice
cone, and their linear span Zy is a Banach lattice under an order-continuous norm
NI |lo which agrees with -1l on Cp.

Example 5 shows that some condition on ( is required. However, we can often
use a standard fixed point theorem to recover the conclusion of Proposition 8 for

semigroups which are not left-reversible. As an illustration of this, we prove the
following: ~

Definition 9. In the set-up of Proposition 8 call G norm-distal if Gu is norm
bounded away from zero for all © € Z — {0}.

Proposition 10. Proposition 8 remains true if G is assumed norm-distal in place
of left-reversible.

Proof. Adopting the notation of Proposition 3, pick z,y in Cy and let 4 be the
smallest subset of C containing 2 and y and closed under join and orbit, so that
for u,v € A and T € G we have u v v,Tu € A. Now A is directed as a subset of
C, and hence convergent to z = sup A <z +y. Setting K to be the order interval
[V y, 2], we have (using order continuity of the norm on Z) that the elements of &
act as continuous affine maps from the weakly compact set K into itself 18, §2.4].
Since ¢ is distal, K must have a fixed point under G by the Ryall-Nardzewski fixed
point theorem [11] [10]. This fixed point must be %, which is therefore the least
upper bound of z and y in Cy. This is true for each choice of x and y in Cy, so Cy
is a lattice cone and the conclusion of Proposition 8 is recovered. B

Different variations of Proposition 8 can be obtained by applying other fixed
point theorems to the compact convex set K defined in the proof of Proposition
10. See [5] for a selection of suitable fixed point, properties and [4] for a range
of recent related work. As well as yielding the new results presented here, our
approach also gives simple transparent proofs for a wide range of known results.
Properties of this kind find application in statistical mechanics [9] [12], quantum
physics [3], statistical decision theory (7, Chapter 1] and elsewhere. We conclude
this paper with a brief outline of the route to these applications.

Call a convex set S a simpler if S can be embedded in a vector lattice Z as a
base of the positive cone C'. Classical Choquet theory says that if S is a compact
metrizable simplex then each point z € $ is the barycentre of exactly one proba-
bility measure p, supported on e, the set of extreme points of S. A great deal of
work has been devoted to proving similar unique representation results for classes
of non-compact or non-metrizable simplices. Lifting the measure norm to Z then
makes Z a Banach lattice with § = {rel:|z|=1}.
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If the cone C represents the set of states of some process or system (with the
convex base S corresponding to the normalized states) then it is frequently desirable
to know that S is a simplex (equivalently, that C' is a lattice cone) of a type for
which a unique representation result is known. For example if the elements of S
are the (normalized) Gibbs states of some physical or statistical process, and it is
known that S is a simplex of an appropriate kind, then each Gibbs state is uniquely
expressible as an average over the set 9.5 whose elements now correspond to the
observables at infinity.

Often we have some simplex S of states or measures, but are interested only in
the elements Sy of S which are fixed under some semigroup G of linear endomor-
phisms of C, invariance conditions which correspond to physical or observational -
constraints. The elements of G may be non-conservative or non-stochastic, so need
not map S into S even if they have unit spectral radius.

Our results give a simple geometric (rather than measure-theoretic) approach
to proving Sp to be a simplex, for various sets of conditions on G. Provided
that the appropriate conditions on Sy are inherited from S, the fact that Sy is a
simplex then suffices to recover a unique representation theorem for elements of
Sy in terms of extreme points of Sy, i.e. observables of the right kind. Dynkin’s
entrance boundary can be constructed along similar lines.

The case where Z; is not a sublattice of Z perhaps merits more attention than it
has received. Here conditional expectations with respect to the tail-field correspond
to non-contractive projections.
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