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Abstract 

Pancreatic cancer is relatively uncommon. Despite its relative scarcity, it is 

the fourth-ranked cancer killer in the Western world with less than a 5% 5-year 

survival rate. The high mortality rate is due to the asymptomatic nature of the disease 

and the advanced stage at which it is usually diagnosed. S100P is a calcium-binding 

protein that has been shown to be highly expressed in the early stages of pancreatic 

cancer and has been proposed as a potential therapeutic target via the blocking of its 

interaction with its receptor RAGE, the receptor for advanced glycation end-

products.  

In this thesis, computational techniques were employed on the NMR 

ensemble of S100P (PDB Accession code 1OZO) to identify potential inhibitors of 

the S100P-RAGE interaction in the hope of identifying a series of novel leads that 

could be developed into clinical candidates for the treatment of pancreatic cancer. In 

silico studies identified putative binding sites at the S100P dimeric interface capable 

of accommodating cromolyn, an anti-allergy drug shown to bind to the protein both 

in vitro and in vivo. Virtual screening of >1 million lead-like compounds using 3D 

pharmacophore models derived from the predicted binding interactions between 

S100P and cromolyn, identified 9,408 “hits”. These were hierarchically clustered 

according to similarities between chemical structures into 299 clusters and 77 

singletons.  

Biological screening of 17 of the “hits” identified from virtual screening 

stuidies, 4 of which were synthesised in-house, against pancreatic cancer cell lines 

identified five compounds that demonstrated an equal or greater capacity to reduce 

BxPC-3 S100P-expressing pancreatic cells’ metastatic potential in vitro relative to 

cromolyn. Compound 24 in particular, showed significant (p<0.05) inhibition of 

invasion of these cells at a concentration of 100 μM that was comparable to 

cromolyn at the same concentration. This compound, structurally distinct from 

cromolyn, was successfully synthesised, purified and characterised in-house 

alongside 39 of its analogues. Biological screening of compound 24 and four of its 

analogues for anti-proliferative activity against BxPC-3 and Panc-1 pancreatic 
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cancer cell lines showed all five compounds significantly (p<0.0001) inhibiting 

proliferation in both cell lines at a concentration of 1 μM relative to the non-treated 

control. Hence, structurally distinct compounds that show promising inhibitory 

activity on the metastasis and proliferation of pancreatic cancer cells have been 

identified using a structure-based drug design methodology. These compounds, with 

further optimisation, could provide good starting points as therapeutic lead 

candidates for the treatment of pancreatic cancer.  
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1. INTRODUCTION 

Cancer is a collective term used to describe a group of diseases characterised 

by uncontrolled cell growth and division, with the potential to migrate to and invade 

distant tissues [1]. The World Health Organisation’s (WHO) International Agency 

for Research on Cancer (IARC) estimated about 14 million new cancer cases and 8.2 

million cancer-related deaths worldwide in 2012 [2]. In Europe, 3.45 million new 

cancer cases (excluding non-melanoma skin cancer) were estimated in 2012 with 

1.75 million deaths occurring from the disease in the same year [3]. In the US the 

estimate for new cancer cases in 2014 was 1,665,540 with 585,720 deaths in the 

same period [4]. Data relating to cancer survival and mortality rates tend be 2-3 

years behind the current year due to the time involved in data collection, analysis, 

compilation and dissemination [4]. 

The cost involved in cancer care – the term cancer used henceforth refers 

collectively to all diseases as described in [1] – and treatment is a huge financial 

burden for healthcare systems globally [5-8]. In the US, cancer care is projected to 

cost $173 billion in 2020, an increase of 39% from the estimated cost of $124.54 

billion in 2010 [9] and according to the UK’s Department of Health, cancer care 

costs the National Health Service (NHS) £5 billion annually [10]. Loss in 

productivity due to premature cancer-related deaths, or from family members taking 

time off work to care for sick relatives, also has an indirect but significant economic 

impact [11-13].  

Many cancers have an unknown aetiology. However mutations in genes that 

play key roles in tumour suppression such as p53 [14-17], BRCA1 and BRCA2 [18-
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20], and/or over-expression of proto-oncogenes – normal genes that have the 

potential to differentiate into cancer-promoting genes i.e. oncogenes – have been 

linked with the disease [21-24]. These mutations can be hereditary or result from 

exposure to external factors such as smoking in lung cancer [25-28].  

The search for a cure for almost all types of cancer has been ongoing for 

more than five decades with billions spent on research [29, 30]. Yet, despite the 

advances in scientific and medical knowledge, technology, and a deep and better 

understanding of the human body, a cure is yet to be found. Whilst there has been 

progress in chemotherapy since the use of nitrogen mustard compounds as 

chemotherapeutic agents in the 1940s [31], reducing toxicity of many anti-cancer 

drugs still remains a huge challenge [32-34]. Since cancer drugs are designed to 

target rapidly dividing cancer cells, healthy cells with similar characteristics are 

often susceptible to these drugs. Temporary alopecia (hair loss) is a common side 

effect of chemotherapy because many anti-cancer drugs impair the mitotic process of 

actively dividing hair follicles [35].   

Despite the lack of a cure, early screening [36, 37], better screening methods 

such as computed tomography (CT, [38]), mammography [39], positron emission 

tomography (PET) scanning [40], medical resonance imaging (MRI, [41]), 

chemotherapy, radiotherapy, and changes in lifestyle behaviours have resulted in an 

improvement in incidence rates for some cancers. For example, a decline in smoking 

among men has seen a fall in lung cancer incidence for this group in Europe since 

the sixties [42, 43]. Lung cancer accounts for the top cause of cancer deaths in the 

developed world, followed by colon, breast, prostate and pancreatic cancers [4, 44-
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46]. However, prognoses for lung, breast, prostate and colon cancers have improved 

considerably over time when compared to prognoses for pancreatic cancer [4, 47, 

48]. Pancreatic cancer, as will be discussed later, remains one of the most lethal 

cancers [49-51].   

In this thesis, work will be presented relating to studies on one of the 

proposed clinical markers for pancreatic cancer, S100P, as a therapeutic target. This 

protein has been reported to be useful in the early detection of the disease but little 

has been done to target it as a point of therapy. Using computational, synthetic and 

biological methods, this thesis will show a medicinal chemistry approach to 

identifying a lead compound against S100P using a rational structure-based drug 

discovery. It is hoped that the results of this project will contribute significantly 

towards the search for a cure for pancreatic cancer and explore S100P as a 

therapeutic target.  
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1.1 The pancreas 

The pancreas (Figure 1.1A) is a digestive organ and an endocrine gland 

situated in the peritoneal cavity [52]. It is covered by the first part of the small 

intestine and surrounded in front by the stomach, liver, left kidney, spleen and aorta 

(Figure 1.1B). Its location in the body makes it a rather inaccessible organ [53, 54]. 

The pancreas is divided into four parts: the head, neck, body and tail. Histologically, 

almost 80% of the pancreas is made up of exocrine acinar cells and their associated 

ducts, while the Islet of Langerhans, characterised by their distinctive clusters within 

the exocrine cells, make up the rest of the this dual-functioning organ [55].  

As a digestive organ, the pancreas produces enzymes and fluids through its 

acinar cells and ducts [52]. These are then secreted into the duodenum via the ducts 

where they mix with the chyme from the stomach to help with digestion. The 

endocrine function of the pancreas is carried out by cells in the Islets of Langerhans. 

These synthesise and secrete the hormones insulin, glucagon, and somatostatin, 

which are involved in glucose metabolism [55]. 
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Figure 1.1: The pancreas. A) The pancreas is divided into four main parts: the head, neck, 

body and tail. B) Location of the pancreas in the duodenal cavity relative to organs nearby. 

(Images taken from http://goo.gl/ktQ6rW. Last accessed 10th October, 2015).  

  

A

B
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1.1.1 Diseases 

Both the endocrine and the exocrine components of the pancreas can be 

affected by disease or tumours [52, 55]. Either component can be affected by disease 

independent of the other. For example, diseases that affect exocrine cells of the 

pancreas may not generally affect the endocrine cells producing hormones. The main 

diseases that can afflict the pancreas are pancreatitis (acute or chronic), pancreatic 

endocrine tumours (PETs) and pancreatic ductal adenocarcinomas (PDACs) [54, 56].  

1.1.1.1 Pancreatitis 

The term pancreatitis means inflammation of the pancreas [52, 54]. This can 

occur when digestive enzymes produced by the acinar cells are released in the 

pancreas instead of their intended destination (duodenum) and they, in turn, digest 

the pancreas [52]. In a 1983 meeting under the auspices of the Pancreatic Society of 

Great Britain and Ireland, a group of international doctors specialising in pancreatitis 

offered the following definition to aid in the classification of pancreatitis:- 

 ‘‘a continuing inflammatory disease of the pancreas, characterised by 

irreversible morphological change, and typically causing pain and/or permanent 

loss of function’’ [57].  

In acute pancreatitis, the pancreas becomes inflamed over a short period of 

time resulting in severe abdominal pain and distention, nausea and vomiting [58]. 

Gallstones and alcohol consumption have been reported to be the main cause of 

acute pancreatitis although in some cases the cause seems to be idiopathic [59]. 

While this condition affects many people and has been reported to be on the rise, 



Chapter 1: General Introduction 

 

8 

 

many of those affected only require brief hospital admission and few suffer fatality 

[60].  

Chronic pancreatitis has a more dismal prognosis with a higher mortality rate 

compared to acute pancreatitis [61]. Although alcohol consumption has been 

reported to be the major contributing factor to chronic pancreatitis (in Western 

countries), some cases have been attributed to genetic mutations, whilst, others have 

an idiopathic aetiology [62]. Diminished pancreatic function has been reported to be 

a major sign of chronic pancreatitis [63] although other diagnostic tools such as 

endoscopic ultrasonography and invasive techniques are needed to confirm the 

presence of the disease. Acute pancreatitis acquired from severe alcohol abuse has 

also been linked to the subsequent development of chronic pancreatitis [64]. Like 

acute pancreatitis, pain is a major feature of chronic pancreatitis and takes centre 

stage in the management of the disease in addition to other measures such as use of 

painkillers e.g. opiates [65] and abstinence from alcohol (if the latter is factor) [62]. 

1.1.1.2 Pancreatic cancer 

More than 95% of pancreatic cancers are of exocrine origin [52, 56]. 

However, despite the exocrine pancreas being mainly composed of acinar cells, these 

are believed to make up less than 1% of the total pancreatic cancers with the vast 

majority arising from the pancreatic ducts (also known as adenocarcinomas) [66]. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common form, accounting for 

more than 85% of all pancreatic cancer cases [67]. Other types of cancers affecting 

the exocrine pancreas include acinar cell carcinoma, adenosquamous carcinoma, 

giant cell tumour, intraductal papillary-mucinous neoplasm (IPMN), mucinous 
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cystadenocarcinoma, pancreatoblastoma, serous cystadenocarcinoma and solid and 

pseudopapillary tumours [68].  

Advances in molecular biology techniques have led to a better understanding 

of the cellular changes that occur leading to the development of pancreatic cancer 

[69]. It is believed that invasive pancreatic ductal adenocarcinoma (PDAC) – any 

reference to pancreatic cancer henceforth refers to PDAC – begins from non-

invasive precursor lesions such as mucinous cystic neoplasms (MCNs), intraductal 

papillary neoplasms (IPMNs) and pancreatic intraepithelial neoplasia (PanIN) [70, 

71]. The first two lesions, MCNs and IPMNs, are non-inflammatory cystic lesions 

and can be distinguished from each other by the presence of an ovarian-type stroma 

in the former which is absent in the latter [72]. PanIN, which is subdivided into four 

groups: PanIN-1A, PanIN-1B, PainIN-2, and PanIN-3, is <5 mm in diameter and is 

the most common neoplastic lesions present in invasive adenocarcinoma [73, 74]. 

IPMNs in comparison to PanIN, are larger, >5 mm in diameter, and less common in 

invasive cancer [74, 75]. The distinct cellular and molecular changes that occur in 

PanINs (Figure 1.2) have been suggested as a model to follow the progression of 

pancreatic cancer from precursor lesions to infiltrating neoplasm [69].  
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Figure 1.2: Progression model for pancreatic cancer. The different stages of cellular changes that take place during the development of PanIN into 

infiltrating cancer. (Image reproduced from Chang et al. [76] with permission from John Wiley and Sons, 2015). 
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Unlike exocrine pancreatic adenocarcinomas, cancers of the endocrine 

pancreas are less common, occurring more frequently in the young and have a much 

better prognosis [66]. Pancreatic endocrine tumours arise from cells of the Islet of 

Langerhans and are usually associated with a lack of, or excessive, secretion of 

hormone from cancer cells [77]. Although the molecular origins of pancreatic 

endocrine tumours are poorly understood, it is believed that genes that are mainly 

associated with exocrine pancreatic cancer are not involved in pancreatic endocrine 

tumours [78]. 

1.1.1.2.1 Pancreatic ductal adenocarcinoma (PDAC) incidence and mortality rates 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause 

of cancer deaths in the United States and Europe behind lung, colon and breast 

cancers [3, 4, 66, 79, 80]. Unlike lung, colon, breast and prostate cancers which have 

high incidence rates, PDAC has a modest incidence rate and does not feature in the 

top five common cancers [3, 4]. However, the mortality rate from this cancer is as 

high as its incidence rate, highlighting its lethality [4]. In the USA, 46,420 new cases 

were estimated in 2014, with 39,590 deaths in the same year [4]. This was an 

increase from the number estimated in 2012 when more than 43,000 new cases of 

pancreatic cancer were predicted with an estimated 37,000 deaths in the same year 

[81]. In Europe, the estimated incidence for 2012 was 103,770, with 104,460 deaths 

(Table 1.1, [3]). According to the Office for National Statistics (ONS) for the UK, 

approximately 7,300 people were newly diagnosed with pancreatic cancer in 

England in 2011, with around 7,000 dying from the disease in the same period [82].  
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  Incidence   Mortality 

  Both sexes   Male   Female   Both sexes   Male   Female 

  Cases ASR (E)   Cases ASR (E)   Cases ASR (E)   Deaths ASR (E)   Deaths ASR (E)   Deaths ASR (E) 

Oral cavity and pharynx 99.6 11  73.9 18.2  25.8 4.9  43.7 4.7  34.2 8.4  9.4 1.6 

Oesophagus 45.9 4.7  35.1 8.4  10.8 1.8  39.5 3.9  30.3 7.1  902 1.4 

Stomach 139.6 13.7  84.2 19.5  55.4 9.3  107.3 10.3  63.6 14.6  43.7 7 

Colon and rectum 446.8 43.5  241.6 55.7  205.2 34.7  214.7 19.5  113.2 25.2  101.5 15.4 

Liver 63.4 6.2  42.8 10  20.6 3.3  62.1 5.9  39.9 9.1  22.2 3.4 

Gallbladder 29.7 2.7  11.9 2.7  17.9 2.8  20.9 1.9  7.9 1.8  13 2 

Pancreas 103.8 10.1  51.9 12.1  51.8 8.3  104.5 9.9  52.6 12.2  51.9 8.1 

Larynx 39.9 4.4  36 8.8  3.9 0.8  19.8 2.1  18.1 4.3  1.7 0.3 

Lung 409.9 41.9  290.7 68.3  119.2 21.6  353.5 35.2  254.4 59.1  99 17.2 

Melanoma of skin 100.3 11.1  47.2 11.4  53.1 11  22.2 2.3  12.1 2.8  10.1 1.8 

Breast       463.8 94.2        131.2 23.1 

Cervix uteri       58.3 13.4        24.4 4.9 

Corpus uteri       98.9 19.3        23.7 3.9 

Ovary       65.5 13.1        42.7 7.6 

Prostate    416.7 96        92.2 19.3    

Testis    21.5 5.8        1.6 0.4    

Kidney 115.2 12.1  71.7 17.2  43.4 8.1  49 4.7  31.3 7.2  17.7 2.8 

Bladder 151.2 14.4  118.3 26.9  32.9 5.3  52.4 4.5  39.5 8.5  12.9 1.8 

Brain, nervous system 57.1 6.6  30.7 7.8  26.4 5.6  45 4.9  24.6 6  20.4 4 

Thyroid 52.9 6.3  12.3 3.1  40.7 9.3  6.3 0.6  2.1 0.5  4.3 0.7 

Hodgkin lymphoma 17.6 2.3  9.3 2.5  8.3 2.1  4.6 0.5  2.6 0.6  2 0.4 

Non-Hodgkin lymphoma 93.4 9.8  49.5 11.9  43.9 8  37.9 3.5  20.3 4.6  17.5 2.7 

Multiple myeloma 38.9 3.8  20.5 4.7  18.4 3.1  24.3 2.2  12.2 2.7  12.1 1.8 

Leukaemia 82.3 8.8  46.4 11.3  35.9 6.9  53.8 5.1  29.5 6.7  24.3 3.9 

All sites but non-melanoma skin cancers 3439.6 355.7  1829.1 429.9  1610.5 306.3  1754.6 168  975.9 222.6  778.6 128.8 

Table 1.1: Estimated numbers of new cancer cases and deaths from cancer (thousands), age-standardised rates (ASRs) (per 100,000) by sex and cancer site in 

Europe in 2012.  (Table reprinted from Ferlay et al. [3] with permission from Elsevier Ltd, 2015). 
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Of the top five common causes of cancer death, pancreatic cancer has the 

worst head-to-head prognosis, with a less than 3% 5-year survival rate ([4], Figure 

1.3). This is mainly due to the asymptomatic nature of the disease and the late stage 

at the time of diagnosis [83]. Risk factors for developing the disease include age, 

smoking, alcohol consumption, chronic pancreatitis [84, 85] and genetic 

predisposition/defects [68].  

1.1.1.2.2 Diagnosis and staging 

Some of the tools used to currently diagnose PDAC in the UK include 

ultrasound scanning, computerised tomography (CT) scanning, magnetic resonance 

imaging (MRI) scanning, endoluminal ultrasonography (EUS), laparoscopy, 

endoscopic retrograde cholangiopancreatography (ERCP), and biopsy [86]. 

Endoscopic ultrasonography-guided fine-needle aspirational biopsy (FNAB) is also 

used to aid in diagnosis and staging of PDAC [87-89]. These methods are used in 

combination to help increase the accuracy of the diagnosis. However, due to the 

asymptomatic nature of the disease and a lack of adequate indicative biomarkers, 

these techniques are not normally sensitive enough to detect the disease in its early 

stages [86]. Diagnosis often only occurs once the cancer has metastasised to nearby 

structures such as the bile duct, mesenteric and coeliac nerves, and duodenum [90]. 

Cancer of the head of the pancreas may sometimes lead to the obstruction of the bile 

duct leading to painless jaundice as one of the symptoms [91]. The similarities 

between PDAC and chronic pancreatitis [92] can make diagnosing pancreatic cancer 

a challenging task, with the latter being a high risk for the development of the cancer 

[85, 93, 94]. This can sometimes lead to initial misdiagnosis of the cancer as chronic 

pancreatitis and cause a delay to timely intervention and treatment.  
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Once the cancer is detected, it is “staged” based on the size or the tumour (T), 

the involvement of lymph nodes (N), and metastasis (M) of the cancer to nearby 

tissues or organs ([95], Figure 1.4, Table 1.2). In addition to the TNM classification, 

there is also a stage grouping that can include a combination of the TNM stages at 

different levels (Table 1.3). The accurate staging of the cancer is crucial in order to 

offer the best possible outcome for treatment, hence the ability and sensitivity of the 

diagnostic tool(s) used to detect the disease for accurate staging is vital. 
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Figure 1.3: Five-year survival rates for selected cancers by race and stage at diagnosis, US, 

2003-2009. Pancreatic cancer (enclosed) has the worst survival rate of all cancers shown. 

(Image reproduced from Siegel et al. [4] with permission from John Wiley and Sons, 2015).   
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Figure 1.4: TNM staging of pancreatic cancer. The staging is used to describe the size of the 

primary tumour (T), presence of lymph nodes with cancer (N), and metastasis of the cancer 

to other tissues (M). (Images taken from http://goo.gl/CPkI6f. Last accessed 11th October, 

2015).  

T1 T2

T3T4

N1 M1
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Table 1.2: Breakdown of the TNM (Tumour, lymph Nodes, Metastasis) staging of 

pancreatic cancer. (Table adapted from Evans et al. [95]). 

 

Table 1.3: Stage grouping of pancreatic cancer in combination with the TNM staging. 

(Table adapted from Evans et al. [95]).  

  

  

Primary 

tumour (T) 

Lymph 

nodes (N) 

Distant 

metastasis (M) 

Stage 0 Tis N0 M0 

Stage IA T1 N0 M0 

Stage IB T2 N0 M0 

Stage IIA T3 N0 M0 

Stage IIB T1                      N1             M0                  

  T2 N1             M0 

  T3 N1             M0 

Stage III T4 Any N M0 

Stage IV Any T Any N M1 

  

  Primary tumour (T) Lymph nodes (N) Distant metastasis (M) 

Tis Carcinoma in situ (includes 

PanINs) 
    

X Primary tumour cannot be 

assessed 

Regional lymph nodes 

cannot be assessed 

Distant metastasis cannot 

be assessed  

0 No evidence of primary 

tumour 

No regional lymph node 

metastasis  

No distant metastasis 

1 Tumour limited in pancreas, 

2 cm or less in diameter 

Regional lymph node 

metastasis 

Distant metastasis 

2 Tumour limited to pancreas, 

more than 2 cm in diameter 

    

3 Tumour extends beyond the 

pancreas but without 

involvement of celiac axis or 

superior mesenteric artery 

    

4 Tumour involves the celiac 

artery (unresctable primary 

tumour) 
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1.1.1.2.3 Treatment 

The type of treatment offered to combat PDAC usually depends on the stage 

at which the cancer is detected. Once the cancer has been conclusively confirmed, 

initial treatment is then based on whether the cancer is localised within the pancreas 

(0, IA and IB), locally invasive (IIA, IIB and III) or has metastasised to distant 

organs (IV) [91]. Surgery is offered as the first line of treatment to patients where the 

cancer has not metastasised [91, 96]. However because pancreatic cancer is usually 

quite advanced at the time of diagnosis only 5-25% of patients presenting with 

tumours are amenable to resection [79]. The three main types of operations offered 

to patients are the pylorus preserving pancreaticoduodenectomy (PPPD) where the 

head of the pancreas, duodenum, part of the bile duct and gall bladder are removed 

[97, 98]; the Whipple procedure – which is similar to PPPD but also involves 

removal of the lower part of the stomach [99]; and total pancreatectomy – a 

procedure where the whole pancreas is removed in addition to the duodenum, part of 

the stomach, part of the bile duct, gall bladder, the spleen, and surrounding lymph 

nodes [100]. Radiation therapy (radiotherapy) is often offered concomitantly with 

surgery for better efficacy [101].  

For patients in whom the cancer is at an advanced stage, surgery is often too 

late and not the route of therapy offered [102]. For these people, their only hope lies 

with chemotherapy and radiotherapy. In the UK, current chemotherapeutic 

interventions for pancreatic cancer include treatment with gemcitabine [96, 102, 

103], an anticancer agent which is sometimes used alongside 5-fluorouracil (5-FU, 

[104], Figure 1.5). Nab-paclitaxel, the protein-bound form of paclitaxel (Figure 1.5) 

given in combination with gemcitabine [105], is the only drug on the Cancer Drugs 
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Fund (CDF) list in the UK for untreated metastatic pancreatic cancer [106]. This 

fund was established as an additional resource of funding to provide access to cancer 

drugs otherwise not routinely available on the National Health Service (NHS, [106]). 

However, this drug is being withdrawn from the CDF list because it is deemed to be 

economically unviable due to the perceived diminished benefits it offers to patients 

in comparison to its high cost [106], underlining the urgent need for drugs with 

better efficacy. Other treatments currently under clinical trial phases include the use 

of gemcitabine in combination with cytotoxic compounds other than 5-FU [107-

109].  

Chemotherapeutic intervention with these medicines only delays the return of 

the cancer and offers patients a modest extension of lifespan [110], with gemcitabine 

and 5-FU reportedly conferring only an 18% and 2% increased survival rate 

respectively at 12 months in patients with advanced pancreatic cancer [104]. The 

survival rate for nab-paclitaxel in combination with gemcitabine was found to be 

35% after 12 months compared to 22% for the gemcitabine-only treatment group in 

Phase III clinical trials [111]. PDAC has a high recurrence rate that contributes to the 

high mortality rate. Survival rates after resection are low [112], and less than 5% of 

people diagnosed with the cancer survive beyond five years [67, 113].  
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Figure 1.5: Chemotherapeutic agents used to treat pancreatic cancer. 
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1.1.1.2.4 Current research  

Recently a lot of research has been carried out to develop a molecular [114-

116] and genetic profile of pancreatic adenocarcinoma [117, 118]. Implicated genes 

include KRAS, TP53, INK4A, as well as abnormal or genetic mutations of the 

epidermal growth factor (EGF) and transforming growth factor (TGF)-β signalling 

pathways [69, 70, 119]. Carbohydrate antigen 19-9 (CA19-9) is a tumour marker 

present in pancreatic and biliary tract cancers [120] and has been used as a marker 

for pancreatic cancer in the advanced stages of the disease [121]. Its use as a clinical 

marker is however not encouraged, as it can give unreliable results given that it is 

also highly expressed in pancreatitis, cirrhosis [120] and other diseases involving 

bile ducts [120, 122]. It is for these reasons that, in 2006, the American Society of 

Clinical Oncology (ASCO) advised against its use for this purpose [123]. Their 

recommendation is to use the marker to monitor levels in people receiving 

chemotherapy.  

Consequently, the need arises to find a marker(s) that can identify pancreatic 

cancer in its early stage to enable adequate intervention for better prognosis. A lot of 

research into PDAC is geared towards such an outcome and recently, three proteins, 

LYVE1, REG1A and TFF1, present in urine were reported to be able to differentiate 

between patients with, and without pancreatic cancer with better accuracy compared 

to CA19-9 [124]. The findings of this study offers an inexpensive, non-invasive 

method for early diagnosis of the disease, which is very promising. However, it 

remains to be seen how successful the results translate clinically. S100P is another 

small protein that has been shown to be highly expressed in early development of 
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pancreatic cancer, and has the potential to be used as a clinical marker for the disease 

[114, 121, 125, 126].  

1.2 S100 proteins 

S100 proteins are so named due to their 100% solubility in ammonium 

sulphate and were first identified in bovine brain cells approximately 50 years ago 

[127]. Since then 24 human isoforms have been identified [128-130].   

S100 proteins are EF-hand type Ca2+-binding proteins involved in signal 

transduction, regulation of protein phosphorylation, enzyme activities, transcription 

factors, Ca2+ homeostasis, cell cycle progression and cell motility [128, 131]. They 

form the largest subgroup of the EF-hand Ca2+-binding superfamily of proteins but 

unlike other Ca2+ binding proteins such as calmodulin, troponin C, myosin light 

chains and parvalbumin, S100 proteins only act as modulators and are not involved 

in altering key cellular functions [132].   

The term EF was first coined by Kretsinger and Nokolds [133] when they 

were describing the carp muscle calcium-binding protein parvalbumin. EF was used 

to describe two of the six α-helices of the main chain of the parvalbumin protein: 

helices E and F and their relationship to the bound calcium ion (Figure 1.6). In EF-

hand Ca2+-binding proteins, the EF region can be visualised as a clenched right hand 

with the forefinger and thumb extended at an approximate right angle to each other 

(Figure 1.6B). The extended thumb represents the direction of the COOH-terminus 

of helix F while the pointed forefinger is directed towards the NH2-terminus of helix 

E. The clenched fingers represent the EF loop where the calcium ion is bound [133]. 
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The EF-hand has a helix-loop-helix conformation and each hand is able to bind two 

calcium ions per protein [128].  

Besides the canonical EF-hand on the C-terminus (with 12 amino acids) 

which is common to all EF-hand proteins, S100 proteins also exhibit another 

“pseudo” EF-hand present on the N-terminus (with 14 amino acids, Figure 1.6C) 

[134]. In S100 proteins, the N-terminal domain is made up of helices I and II (HI and 

HII) joined by loop 1 (L1) while the C-terminal domain is formed by helices III and 

IV linked by loop 3 (HIII-L3-HIV) (Figure 1.6A). This means that each S100 protein 

with the exception of S100A10 [135] can bind two Ca2+ ions. However, since S100 

proteins mainly exist as homodimers or in some cases heterodimers with other 

family members [136], each dimer is able to bind four calcium ions. Calcium 

binding in the different loops is not identical (Figure 1.6C); the C-terminus has a 

higher affinity for binding calcium ions than the N-terminus [137-140]. However, 

interaction with target proteins is not always calcium dependent and studies have 

shown that some S100 proteins are able to bind to their target with or without bound 

calcium ions [141, 142]. Binding of calcium ions is believed to induce a 

conformational change in the protein which results in exposure of a hydrophobic 

binding domain that helps with target recognition and binding [140]. In addition to 

binding calcium ions, some S100 proteins also bind other metal ions such as Mg2+, 

Zn2+ or Cu2+ [143, 144] and sometimes binding of these metals increase the affinity 

for calcium binding [138]. 

Most S100 proteins are believed to exert their function by interacting with 

RAGE, the receptor for advanced glycation end-products [145, 146]. RAGE is an 
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immunoglobulin protein present in large quantities during inflammation and damage 

to epithelial cells [147]. Interaction of RAGE with its ligands which include S100 

proteins has been implicated in Alzheimer’s disease [148], diabetes [149], 

inflammation, colon [150], pancreatic [151], lung [152] and breast cancers [153]. 

Many S100 proteins have been isolated and their 3D holo structure [154-159] 

and/or apo form resolved experimentally [158, 160-164]. In addition, the three-

dimensional structures of some family members bound to their target proteins have 

also been elucidated [165-168]. S100 proteins are found only in vertebrates and 

function both intracellularly and extracellularly [169]. Expression of S100 proteins is 

tissue specific [170] and they can be present in both normal and diseased cells [171]. 

It is their elevated presence in diseased cells that has been the focal point of intense 

research in recent years [118, 172-177].  
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Figure 1.6: Calcium-binding S100 protein. A) Cartoon model showing the helix-loop-helix 

domains with bound Ca2+ (image taken from http://goo.gl/aepDse. Last accessed 11th 

October, 2015). B) Illustration of Ca2+ at the EF-hand using the thumb and index fingers 

(image taken from Zhou et al. [178] with permission from Elsevier Limited, 2015). C) 

Calcium-binding affinity of S100P (highlighted in blue and red), a member of the S100 

family of proteins.   
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1.2.1 S100P and pancreatic cancer 

S100P (Figure 1.7) is a 95 amino acids member of the S100 protein family 

first identified and isolated from human placenta in 1992 [179, 180]. Like other 

members of the S100 family of proteins, S100P consists of two EF-hands linked 

together by a flexible linker [159]. Studies have shown that the protein exists as a 

homodimer, with the monomers held together at the dimeric interface by non-

covalent interactions [141]. The two EF-hands (EF-hand 1 and 2) lie in positions 12–

47 and 49–84 respectively. The loop (position 62–73) linking the canonical EF-hand 

2 on the C-terminus has a much higher affinity for binding calcium ions than loop 1 

(position 19–32) linking the “pseudo” EF-hand 1 on the N-terminus [139, 141].  

S100P has been reported to be present in both normal and malignant tissues 

[171] and it is its expression in the latter which is the subject of much research as it 

is overexpressed in many cancers [121, 172, 181, 182]. Its role in normal tissues is 

not clear, but a study by Sato and Hitomi [183] showed that it is present during the 

differentiation of human oesophageal epithelial cells implying that it may play a role 

in this process. In tumour cells, over-expression is believed to lead to tumour 

malignancy and proliferation [170, 177], increased resistance to therapy [181], 

decreased survival rates in cancer patients [184], immortalisation of breast cancer 

cells [174] and decreased sensitivity to treatment with chemotherapeutic agents [185, 

186]. These actions are believed to be mediated through the protein’s interaction 

with its receptor RAGE, the receptor for advanced glycation end-products [150, 151, 

187, 188]. 
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Figure 1.7: S100P protein homodimer. A) Ball and stick and ribbon depiction of the protein. 

B) Ribbon model of the protein showing the dimeric interface (enclosed in red). C) 

Molecular surface. (Images generated in MOE [189]). 
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There has been considerable evidence implicating S100P over-expression in 

pancreatic cancer [118, 151] and it has been proposed as a novel marker in 

identifying this cancer [121, 125, 126, 190-193]. A study of the salivary 

transcriptome for early markers of pancreatic cancer identified S100P as one of the 

over-expressed proteins in patients with pancreatic cancer [194]. This is promising as 

it will provide an easy and non-invasive procedure for early detection of the cancer 

in the clinic. The protein has also been shown to be highly sensitive and specific in 

discriminating between chronic pancreatitis and pancreatic cancer [121, 194].   

1.3 S100P as a therapeutic target and project aims 

Although much has been reported on S100P and its expression in many 

tumours, there is little research published targeting the protein as a possible route of 

therapy for pancreatic cancer at the start of this project in 2011. In 2006 a study by 

Arumugam et al. [195] showed that S100P interacts with cromolyn (Figure 1.8), an 

anti-allergy drug that is used in the treatment of asthma [196], and that this 

interaction inhibits cell proliferation and tumour growth by blocking the formation of 

the S100P-RAGE adduct in pancreatic cancer cells. They showed that cromolyn’s 

inhibitory effect was more significant in combination with gemcitabine than on its 

own [195]. An analogue of cromolyn, C5OH (Figure 1.8) has been reported to be 

more potent than cromolyn in inhibiting S100P-RAGE interaction both in vitro and 

in vivo [197]. However, cromolyn is a very water-soluble compound and is poorly 

absorbed by the gastrointestinal (GI) tract with less than 1% oral bioavailability 

[198, 199]. This renders it highly unsuitable as a drug candidate for cancer therapy. 

Consequently, there is a gap in the market to exploit this area in order to combat 

pancreatic cancer.  



Chapter 1: General Introduction 

  

29 

 

This project seeks to identify potential novel chemotherapeutic agents that 

will act as inhibitors of S100P-RAGE adduct formation. This will be achieved using 

computational and synthetic chemistry techniques to rationally design novel 

inhibitors based on an understanding of cromolyn-S100P interaction. Identified 

compounds will be subsequently screened for activity against pancreatic cancer cell 

lines. This project will use a medicinal chemistry approach incorporating computer-

aided drug design (CADD) techniques (Chapter 2), synthetic chemistry (Chapters 3 

and 4), and biological screening (Chapters 3 and 4) techniques – these form the early 

stages of a drug discovery process (Figure 1.9) – to identify the potential lead 

candidates.  
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Figure 1.8: Cromolyn and its analogue C5OH. 
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Figure 1.9: Drug discovery stages. Academia is mainly involved in (but not limited to) basic research involving target identification and validation, 

hit finding and lead optimisation. (Image adapted from Bevan [200]).  

 

 

Target 

identification 

& validation

Hit 

finding

Lead 

optimisation 

Early pre-

clinical safety 

& efficacy 

PoC/Phase I 

trials

Phase 

II 

trials

Phase 

III trials
Registration 

Post-

launch 

activities

Drug Discovery Early Development Full Development

Academia Pharmaceutical/Biotech Companies

Basic 

research

Clinical 

development

Product 

registration & 

launch

Applied 

research



Chapter 1: General Introduction 

  

32 

 

1.4 Overview of drug-target/receptor interaction  

A drug can be viewed of as a compound that interacts with a biological 

system to elicit a physiological response [201]. Drugs are thus a diverse group of 

compounds and can vary broadly from caffeine in a cup of coffee to keep the mind 

alert, morphine to numb pain and snake venom that has the potential to kill [201]. In 

order for a drug to exert its effect, toxic or otherwise, it has to interact with a target 

or receptor. A biological target is an entity within a living system whose activity is 

modified by a drug or external stimulus [202]. This interaction between drug and 

target occurs via complementarity between the two and is held together by weak 

forces such as hydrogen bonding and hydrophobic interactions [201].  

Medically, drugs are developed to fill a therapeutic void e.g. where there is 

no known cure for a disease, or to improve the efficacy of existing drugs [203]. In 

order to do so, a target is first identified and validated. A drug target could be a 

protein, receptor, an enzyme, ion channel, nuclear hormone receptor, membrane 

transport protein or nucleic acid [202]. One or more of these targets can be 

implicated in disease states, thus it is not unusual to have different drugs designed 

for different targets in the same disease. For instance, in cancer therapy, alkylating 

agents such as cisplatin target DNA [204] while topoisomerase inhibitors like 

Topotecan (Hycamtin, GSK) are designed to target the topoisomerase enzymes that 

separate DNA strands [205].  

Target validation – defining the target’s role or involvement in disease [206], 

is part of the first stages in a drug discovery process after the target’s discovery 

(Figure 1.9). Many approaches, in vitro, in vivo, and in silico, are employed to 
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validate a target’s role in disease. In sense reversal, an in vitro technique, the target 

gene’s expression is reduced and the corresponding physiological response and 

effect on disease is studied [207]. Examples of such an approach include antisense 

technology, gene knockouts, use of ribozymes and RNA interference (RNAi) [208-

211]. In contrast, proteomic validation techniques which include the use of 

antibodies [212], aptamers [213], peptides [214], and microarrays, can be used to 

modify a target protein’s activity without affecting its expression [206, 215].  

In vivo target validation techniques include the use of animal models e.g. 

mice and zebrafish to study the effect of gene silencing in disease states [216-218] 

whereas with in silico methods, computers are used to predict potential drug targets, 

e.g. from the human genome [219], or to predict interactions between a potential 

drug molecule and a model of a target macromolecule via computer simulation 

[206]. This simulation is carried out with or without prior knowledge of the structure 

of the biological target [220]. Examples of in silico drug validation techniques 

include in silico gene expression analysis [221], and homology modelling which 

involves building a 3D model of a target protein using information from known, 

homologous proteins as templates [222, 223].   

Once a target is validated, it then becomes druggable. A druggable target is 

one that has the potential to interact with drug-like chemical compounds to produce a 

pharmacological effect [224]. S100P has been validated and identified as a druggable 

target [125, 150, 175, 177, 181, 185, 195, 225-228]. It has thus passed the first stages 

required of a drug discovery project i.e. target identification and validation. This 

project is mainly involved in the next stage of drug discovery i.e. “hit” finding, and 
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will achieve this by using in silico software to first identify putative pockets on the 

protein, then predict the interaction of cromolyn with these pockets via molecular 

simulations and docking. The predicted interactions will be used to design 

pharmacophore constraints as filters to identify “hits” from virtual libraries. All these 

steps are part of what is known as computer-aided drug design (CADD), and will be 

achieved using the Molecular Operating Environment (MOE) drug discovery 

software suite [189]. 

1.5 Computer-Aided Drug Design (CADD) 

The use of computing power to solve chemical problems – computational 

chemistry, or to study biological systems – computational biology, or to organise and 

analyse biological and genomic data – bioinformatics, demonstrates the important 

role that computers play in modern-day drug discovery and development.  

Computer-aided drug design (CADD) involves the use of computer power to 

expedite the time and resources spent at the discovery stage by identifying 

compounds with favourable properties and potential to be successful drug candidates 

[229]. To facilitate this, specialised software and algorithms have been developed 

with the ability to carry out calculations to identify molecular targets, predict binding 

interactions between target(s) and small molecules, and estimate binding affinity 

[230]. Structural databases such as the Protein Data Bank (PDB) containing 3D 

experimental data of macromolecules [231], the ZINC database holding millions of 

compounds for virtual screening [232], and the Cambridge Crystallography Data 

centre which contains crystal structure data of small molecules [233], and private in-

house databases provide useful sources for starting points in most CADD projects. 
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The Swiss Institute of Bioinformatics (SIB) Click2Drug website 

(www.click2drug.org) has detailed listings of software, databases and web servers 

used in CADD. 

The role of CADD following target identification and validation is dependent 

on two main factors: the availability of 3D experimental structure of the target, 

and/or known drugs that are active on the target. If there are no experimentally 

determined 3D structures of the target, a ligand-based or pharmacophore search of 

known compounds is adopted ([234], Figure 1.10). If the experimental 3D structure 

of the target macromolecule is available, a structure-based drug design (SBDD) 

approach is often taken to identify lead compounds [234].  

In ligand-based drug design studies, structure/activity data from compounds 

that bind to a target with a known affinity is used to build 3D quantitative structure 

activity relationship (QSAR) pharmacophore models to search databases for 

structurally related compounds on the premise that compounds with similar 

structures/pharmacophores will share similar properties [235-238]. A pharmacophore 

is an abstract 3D representation of the geometric, steric and electronic properties of a 

compound that are necessary for target recognition and binding [239].  

Receptor- or structure-based drug design (SBDD), which includes docking 

and de novo design, is employed where the 3D structure of a therapeutic target is 

known or available. It involves docking of a ligand(s) into the binding site of the 

target and predicting the quality of fit between ligand and target which is then scored 

and ranked according to the best fit [240-242]. A SBDD approach is used in this 

thesis as there is 3D experimental data available on S100P in the PDB database.  
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Figure 1.10: Simplified pathways of computer-aided drug design. (Image adapted from 

Veselovsky and Ivanov [234]). 
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1.5.1 Docking  

Docking is used in SBDD for two main purposes: to predict the best pose of a 

ligand at the binding site of a target macromolecule and to estimate the tightness of 

fit between ligand and target [243, 244]. Docking plays a key role in SBDD where 

the information from the macromolecule–ligand complex could form the basis of 

whether a ligand is progressed through to the lead-optimisation stage or discarded. 

The strength of any docking algorithm lies in its ability to predict the binding affinity 

between the macromolecule and ligand complex [245]. This ability, known 

computationally as the scoring function, is a set of computed mathematical 

constraints designed to predict the experimental free energy of binding (∆G) between 

the ligand and macromolecule after docking [246]. Whereas docking will try and 

mimic as closely as possible the native conformation of the protein–ligand complex 

in the experimental structure, it is the scoring function that decides the quality of this 

fit [247].  

For many docking algorithms, there is a high success rate in reproducing the 

conformational pose of the X-ray crystal structure but predicting the binding affinity 

is not usually as successful [248, 249]. Most scoring functions are designed based on 

experimental data and the accuracy of their results reflect that of the observed 

experimental data [250]. Any errors contained in the experimental data could 

therefore influence the results of the scoring function. Despite this limitation, 

docking algorithms, in most cases, are still capable of discriminating between 

potential actives and non-binding compounds [251]. 
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Several docking algorithms are available, either free of charge or 

commercially via drug discovery software suites. The most commonly used docking 

programs, according to the number of citations in published articles between 1990-

2013 [230], are AutoDock [252], GOLD [253], and Glide [254]. Others include 

FlexX [255], Surflex-Dock [256], Fitted, AutoDock Vina [257], and MOE [258].  

1.5.2 Structure-based Drug Design (SBDD) on S100P 

In this thesis, SBDD techniques were employed on the publically available 

3D experimental structures of S100P to identify lead candidates with potential to 

bind to the protein (Chapter 2). This was achieved using pocket-detection 

algorithms, free and commercial, to identify putative binding pockets on the protein. 

The Molecular Operating Environment (MOE) drug discovery software suite [189] 

was used for docking, pharmacophore design and virtual screening studies once 

putative sites have been identified. ChemAxon’s JChem software package 

(www.chemaxon.com) was used to cluster identified “hits” from virtual screening 

studies.     

1.5.2.1 Algorithms used to identify putative binding pockets on S100P 

Knowledge of cavities on a target macromolecule is essential before 

embarking on structure-based drug design studies. These are the sites at which the 

designed small molecules will interact with the target. Most of the 3D experimental 

structures of macromolecules available in the PDB database are resolved in complex 

with ligands, showing the binding pocket(s). However, for those macromolecules 

that are not resolved in complex with ligands, as is the case in S100P, it becomes 

imperative to predict these sites prior to carrying out any SBDD studies.   
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The four pocket-detection algorithms used in this work, Fpocket [259], Site 

Finder [260], Pocket-Finder and Q-SiteFinder [261], to identify putative binding 

pockets on S100P use either geometry- (Fpocket, Site Finder, Pocket-Finder) or 

energy-based (Q-SiteFinder) approaches. Geometry-based methods use the shape of 

the protein to predict potential binding sites [262] while energy-based methods 

employ small chemical probes to study energetically favourable interactions with the 

protein surface [263]. 

Fpocket’s search method uses alpha spheres and Voronoi tessellation to 

identify clefts and cavities on a protein surface [259]. An alpha sphere is one in 

contact with four other atoms on its boundary and contains no internal atom [259]. 

Voronoi tessellation involves the division of space into regions called Voronoi cells 

around a given set of centroid points [264]. In Fpocket, a cluster of alpha spheres is 

subjected to Voronoi tessellation, pruned to remove clusters with unfavourable 

characteristics such as polar groups, and then ranked according to their ability to 

bind to small molecules [259].  

MOE’s Site Finder uses the same alpha sphere method as Fpocket to detect 

potential binding pockets. Site Finder works by identifying regions of tight atomic 

packing and filtering out inaccessible regions and exposed hydrophilic spheres [260]. 

Spheres are then classified as hydrophobic or hydrophilic based on their hydrogen 

bonding character. Hydrophobic spheres with the most hydrophobic contacts with 

the receptor are ranked as the top predicted site [265].  

Q-SiteFinder, an energy-based pocket-detection algorithm, identifies 

potential binding pockets by calculating the van der Waals interaction between a 
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methyl probe and the protein [266]. These probes are then clustered and ranked 

according to their probe energy [261]. Pocket-finder, a geometry-based algorithm 

developed by Laurie et al. [266] to compare against Q-SiteFinder, implements the 

POCKET algorithm [267] when searching for binding pockets. Potential sites are 

identified when a probe of radius 3 Å passes through a three-dimensional grid and 

undergoes a protein–site–protein (PSP) event, this occurs when there is an 

interaction between the probe sphere and an atom followed by an alternate period of 

no interaction then interaction [261]. Identified pockets are ranked by the number of 

probes in the sites instead of probe energy used in Q-SiteFinder. 

1.5.2.2 Virtual screening of lead-like databases 

Virtual screening plays a crucial role in the rational approach to drug design 

and discovery by speeding up part of the lead identification process, where, with 

appropriate computing power, millions of compounds within virtual libraries can be 

screened for novel bioactive hits within hours [268]. Virtual screening does not 

replace the long established high-throughput screening (HTS) used in lead 

identification in the pharmaceutical industry; it is seen as a complementary tool to 

help streamline the process of lead identification [269-271]. This means that 

thousands of compounds are filtered out via virtual screening with those that have 

been predicted to be active carried through to HTS thus eliminating/decreasing cost 

and waste.  

HTS is a highly automated process that uses robotics and sophisticated data 

analysis methods to screen a huge collection of molecules for biological actives in 

assays [272, 273]. The cost involved in putting together compound libraries and 
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equipment for HTS, which analyses millions of individual compounds in a 

biochemical assay, can be prohibitive [274]. Its routine application is therefore 

limited to the pharmaceutical industry and very few in academia who can afford the 

financial resources and human expertise to run it.  

Virtual libraries for virtual screening could either be accessed from in-house 

databases [275, 276], commercial vendors, or from ZINC [232], a free database of 

commercially-available compounds for virtual screening. These databases contain 

compounds that are known as leads or lead-like compounds, a term that is used to 

differentiate them from drugs. Lead-like compounds have properties that make them 

amenable to optimisation before they could become drugs [277]. Some leads are 

marketed drugs whose structure have been modified to yield novel drugs whilst 

others, “pure leads”, have no prior therapeutic value [277]. Leads also fulfil 

Lipinski’s rule of five, which states that for a drug to be orally active it should have a 

molecular weight of less than 500, a lipophilicity (logP) value below 5, less than five 

hydrogen bond donors and less than 10 hydrogen bond acceptors [278]. Unlike 

drugs, leads tend to exhibit weak affinities in the high micromolar to millimolar 

range to their target [279]. 

The MOE software that was used in this study comes with lead-like 

databases that contain commercially available leads from specialist vendors. This 

database, and the ZINC lead-like database, were the virtual libraries screened for 

“hits” in this study.  
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1.5.2.3 Compound clustering  

Given a group of heterogeneous compounds, clustering is an analysis 

technique that finds similarity between individual compounds in order to put them 

together in a cluster [280]. The premise is that compounds in a given cluster will 

have more in common with each other than with others in a different cluster.  

Clustering was applied in this study following virtual screening studies in 

order to identify a diverse collection of compounds that will be selected for 

validation studies. ChemAxon’s Library Maximum Common Substructure 

(LibMCS) application (Version 5.8.2, 2013, ChemAxon, www.chemaxon.com), 

which uses maximum common substructure subgraph [281, 282] to identify common 

fragments in compounds in a hierarchical manner, was employed. Compounds 

sharing a user-defined maximum common substructure are hierarchically grouped 

together until there are no more shared fragments (Figure 1.11). Singletons are 

outlier compounds that do not share common subgraphs with any of the clusters.  

The above SBDD techniques will form the basis for the next Chapter which 

presents a detailed methodology and results on computational studies on S100P. 
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Figure 1.11: Substructure hierarchy system used by ChemAxon’s Library MCS for clustering compounds. Initial structures are shown at the bottom of the 

hierarchy, the next level contains maximum common substructure of initial structures, and above that on the first level is the fragment common to all 

compounds. (Image drawn by Author, 2015). 
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2. PREFACE 

Despite published data on the S100P’s interaction with cromolyn [195], metal 

ions [141] and small peptides [138] at the outset of this project, there was limited 

published information regarding the mechanism by which these molecules might 

interact with the protein. The majority of the published work used biochemical methods 

such as column affinity chromatography [195, 283, 284], standard assays [172, 177, 

181, 227] and microarray techniques [285-287] to ascertain the existence of affinity, 

rather than to probe mechanisms that gave rise to it.  

As such, the following chapter details the computational tools used to identify 

and investigate potential binding sites on S100P and cromolyn, a ligand shown to bind 

to the protein [195]. The resulting binding interactions between the protein and ligand 

formed the basis for pharmacophore models used to screen lead-like databases, to 

identify novel “hit” molecules with potential to bind to S100P and inhibit the S100P 

RAGE interaction. 
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2.1 INTRODUCTION 

Since the discovery of S100P in 1992 [179, 180], there is growing evidence of 

the crucial role it plays in many cancers. In breast cancer, S100P has been reported to 

immortalise human epithelial cells in vitro [174], make the cancer cells more 

proliferative [288], as well as confer poor survival rates to patients [289]. In prostate 

cancer, S100P over-expression is shown to positively correlate with tumour growth, 

metastasis and protection of host cells against camptothecin-induced apoptosis [181]. In 

lung cancer, increased expression of the protein was found to induce metastasis in non-

small cell lung cancer patients, leading to increased angiogenesis [290]. A decrease in 

survival rate in lung cancer patients was also observed to correlate with increased S100P 

expression [184]. In colorectal cancer, S100P is reported to induce cancer cell growth, 

proliferation and metastasis via its binding to RAGE – the receptor for advanced 

glycation end-products [150]. In pancreatic cancer, it has been shown to be highly 

present in the early stages of the disease [291], and promotes growth, metastasis and 

invasion of cancer cells via its interaction with RAGE [151, 177]. Of all these cancers, 

pancreatic cancer has the worst prognosis with no specific early markers to identify the 

disease in its early stage. It is this urgency to find specific markers for the disease that 

S100P has been proposed as a potential clinical marker for the cancer [121, 125] which 

makes it an ideal therapeutic target against the cancer [191, 192, 287].  

It is not known what causes the over-expression of S100P in pancreatic cancer 

[192] but hypomethylation of the gene has been found in many pancreatic cancer cell 

lines as well as in primary tumours [287]. Whilst the protein has been associated with 
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many targets, including ezrin [283, 292] and S100P binding protein [118, 293], it is its 

interaction with RAGE that is believed to be instrumental in promoting cancer cell 

growth, migration and invasion [150, 151, 187, 225]. Since interaction with RAGE 

occurs via the dimeric protein [294], any attempts at designing potential inhibitors 

against this interaction must therefore be carried out on the protein dimer, particularly 

on the dimeric interface. Dimer interfaces in proteins have been targeted in drug 

discovery studies to prevent dimerization [295, 296] or interaction with target [297]. 
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2.2 METHODS 

2.2.1 Identification, manipulation and analysis of experimental (3D) S100P 

structures 

A search of the RCSB Protein Data Bank (PDB) website ([231], www.rsb.org, 

accessed in October 2011) using the keyword “S100P” generated results that contained 

information on two structures of the protein deposited in the database: an X-ray crystal 

structure (PDB ID: 1J55, [159]) and an NMR ensemble (PDB ID: 1OZO; [298]).   

The X-ray crystal structure of S100P was extracted in its monomeric form 

(Figure 2.1A) and saved as a PDB file. The biologically functional homodimer was 

created using the UCSF Chimera package [299]. In the program, the protein was 

downloaded from the Protein Data Bank using its PDB Accession Code 1J55. Under 

Favourites, Model Panel, Biological Unit was selected for the program to display the 

biological oligomer using the REMARK 350 BIOMT matrices in the PDB file header. 

The generated dimer was saved as a PDB file.      

Conversely, the NMR ensemble was extracted from the PDB website as one 

huge PDB file containing 16 models (Figure 2.1B). Individual models were separated by 

copying the header and the 95 amino acid (aa) sequences of both chains A and B for 

each model onto a WordPad document that were then saved as a Rich Text File using 

the file extension .pdb.   
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Figure 2.1: 3D experimental structures of S100P. A) X-ray crystal structure of S100P (PDB ID: 

1J55; [159]). Calcium ions are shown as green spheres and missing residues 45-51 are depicted 

by a broken line. B) NMR ensemble of S100P (PDB ID 1OZO; [298]). The sixteen conformers 

of the ensemble are overlaid in different colours. (Images generated in MOE).   
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2.2.2 Identification of putative binding pockets at the dimeric interface of S100P 

Four different pocket-detecting algorithms – Fpocket (http://bioserv.rpbs.univ-

paris-diderot.fr/cgi-bin/fpocket [259]), Pocket-Finder 

(http://www.modelling.leeds.ac.uk/pocketfinder/ [261]), Q-SiteFinder 

(http://www.modelling.leeds.ac.uk/qsitefinder/ [261]), and Site Finder [260] – were 

employed to identify potential binding sites on the dimeric interface of the S100P 

protein. Where the algorithm was used online, individual S100P PDB files were 

uploaded to the respective servers and once potential pockets were identified, the 

resulting PDB files with cavity information were saved. 

With the exception of Site Finder, an application within the Molecular Operating 

Environment (MOE2010.09) drug discovery software suite, all pocket-detection 

algorithms were available to use online for free (all were accessed in October, 2011). 

When Site Finder was used, the protein was prepared using the Protonation 3D wizard, 

which assigned ionisation states to the macromolecule, added protons where necessary 

and checked for tautomers and rotamers [300]. Default settings for the calculation of 

binding pockets were retained as follows: probe radius of 1.4 Å for a hypothetical 

hydrophilic hydrogen bonding atom (such as N or O), probe radius of 1.8 Å for a 

hypothetical hydrophobic atom (such as C), rejection of a hydrophilic sphere that has no 

hydrophobic alpha sphere within 3 Å. Once prepared, potential pockets identified by 

Site Finder on the protein were rendered with dummy atoms for subsequent docking 

studies.      
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2.2.3 Docking  

Docking studies were carried out using the Dock application within 

MOE2009.10 to investigate potential interactions between cromolyn and S100P. Prior to 

docking, the ligand was built using the Builder feature in MOE and energetically 

minimised using the default Merck Molecular Force Field 94 (MMFF94x) force field 

settings to optimise its 3D coordinates. Both ligand and protein were prepared for 

docking using the Protonate 3D tool. The binding site(s) to dock the ligand into were 

restricted to those identified at the dimeric interface of the protein by the pocket-

detecting algorithms previously described.  

With the exception of sites identified by Site Finder, the dimeric binding cavities 

were recreated during docking by selecting the amino acid residues identified as 

belonging to the site by the cavity detection algorithm and restricting docking to a cut-

off radius of 4.5 Å from these selected residues. The dimeric interfaces for Site Finder 

were rendered in MOE with dummy atoms using an identical distance restraint.  

Once both protein and ligand were prepared and the binding site defined, the 

ligand was docked into the binding site using the default Triangle Matcher docking 

placement method. The resulting poses were ranked with the London scoring function. 

Fifty poses were retained for energy minimisation in the pocket before they were 

rescored using the Generalized-Born Volume Integral/Weighted Surface area 

(GBVI/WSA) scoring function [301]. Output poses are ranked according to the 

GBVI/WSA binding free energy (S score).  
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2.2.4 Pharmacophore design  

The Pharmacophore Query Editor in MOE2009.10 was used to build 

pharmacophore models with a set of constraints on the location and type of ligand 

annotations using the default Unified scheme. Using appropriate protein-ligand 

complexes from docking studies as templates, points of interactions between the ligand 

and S100P dimeric binding site were selected to create two three-point 3D 

pharmacophore queries. Both queries are the same except in the descriptors used to 

define them. In the first “stringent” query, the two hydrogen bond acceptors (HBAs) 

were defined as anionic, whilst in the second “relaxed” query, the same acceptors were 

defined as hydrogen bond acceptors. All query distances and angles remained the same.  

2.2.5 Virtual screening and clustering 

Two databases were screened using the pharmacophore queries described in 

section 2.2.4. The MOE Conformation Database within the MOE software package 

which contains 3D conformations for approximately 650,000 lead-like compounds, and 

lead-like compounds from the ZINC database [232] which had more than three million 

compounds at the time of access (November, 2011).  

Since the MOE database came ready-to-use, no further processing was applied to 

the compounds prior to virtually screening them. The database was screened using both 

pharmacophore queries. The same Dock settings were applied during the virtual 

screening. Additionally, the pharmacophores generated in section 2.2.4 were used as 

constraints to guide molecule selection.  
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Lead-like compounds from the ZINC database were downloaded in their 

SMILES (Simplified Molecular-Input Line-Entry System) format [302] before 

converting them into 3D molecules using the conformational import tool in 

MOE2011.10. During the conformational import, molecules were “washed and filtered” 

to deprotonate/protonate acids/bases; filter out reactive groups; omit compounds with a 

molecular weight >600, sum of acceptor and donor atoms exceeding 12, rotatable bonds 

of more than 7, chiral centres greater than 4, more than 8 rings, and d-hybrids. The 

molecules satisfying the inclusion criteria were minimised to their lowest energy 

conformations using the default molecular mechanics settings within the conformational 

import tool. Minimised compounds were saved in the MOE molecular database (MBD). 

A similarity search using a Tanimoto Coefficient threshold of 0.7 was carried out 

between the MOE and ZINC databases to filter out the MOE compounds that had 

already been screened from the ZINC database. This was carried out using ChemAxon’s 

Instant JChem application (ChemAxon JChem Software Suite, Version 5.8.2). The final 

ZINC compound database, with a total of 765,278 molecules, was screened using the 

same Dock settings outlined in section 2.2.3.    

Compounds that match the pharmacophore restraints from the virtual screenings 

of both databases – “hits” – were clustered in ChemAxon’s Library Maximum Common 

Substructure (MCS) application (Version 5.8.2) [303]. Library MCS clustered the “hits” 

by matching all atom types, bond types, charge, and whole rings, using the default 

minimum MCS size of 9.  
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2.2.6 Rescoring “hits” generated from virtually screening studies in “native” 

S100P 

The three mutated amino acid residues in the NMR ensemble of S100P: A6, S85, 

and T92 were mutated back to their original amino acids T6, C85, and A92 respectively 

using the Protein Builder tool in MOE. “Hits” identified from virtual screening were 

rescored in the “native” protein to compare any differences or otherwise between the S 

scores obtained from the virtual screenings.  

The Rescore protocol in the Dock panel of MOE2014.08 was used to rescore 

“hits” in the native protein. The binding sites were restricted to the sites used in the 

original virtual screening. “Hits” were rescored using the GBVI/WSA scoring function 

while the placement method was set to None.    
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2.3 RESULTS AND DISCUSSION 

2.3.1 Identification, manipulation and analysis of experimental (3D) S100P 

structures  

Selecting the most appropriate experimental 3D structure on which to carry out 

structure-based drug design (SBDD) studies is a crucial step in any drug discovery 

project. In the case of S100P, there were two entries deposited in the PDB database 

using two different methods, a high resolution X-ray crystal structure, (PDB Accession 

Code 1J55) and an NMR ensemble containing sixteen conformers (PDB Accession 

Code 1OZO). Both methods can generate high quality structures although it has been 

claimed that X-Ray crystallography, being the older and more established method of the 

two, produces structures of better quality [304]. For proteins that crystallise readily, this 

method provides an excellent choice for structure determination.  

Alternatively, NMR solution spectroscopy is ideal for studying protein folding 

and dynamics [305, 306]. An advantage of this technique over X-ray crystallography is 

its ability to study proteins in solution, which gives an indication of protein dynamics. 

However, unlike X-ray crystallography, structure determination using NMR 

spectroscopy is limited to small proteins as large proteins can present overlapping peaks 

in the NMR spectra that are difficult to assign [307].  
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2.3.1.1 S100P X-ray structure  

The X-ray crystal structure of S100P (PBD ID 1J55) was resolved at 2 Å with an 

R-value and free R-value (Rfree) of 0.214 and 0.267 respectively [159]. The R-values 

give an indication of the quality of the model. The smaller this value, the better the fit of 

the model to experimental data [306]. However, because calculation of the R-value 

could be biased following refinement of the model to better fit experimental data, the 

free R-value was introduced [308]. The free R-value is similar to the R-value in 

definition except it is calculated on a small subset of experimental observations that was 

not used in the refinement of the model [309]. In an ideal model, the difference between 

the two values is <0.05 [308]. For 1J55, the difference between R- and free R- values is 

0.053. This falls within the accepted range for a model to be considered an “accurate 

model” of the protein [310], thus making 1J55 an acceptable model to be used as a 

SBDD studies.  

The X-Ray crystal structure of S100P 1J55 has two calcium ions bound to the 

EF-hands with a classical pentagonal bipyramid geometry [159]. There are four helices 

present: helix 1 (E3-Y18), helix 2 (L30-E40), helix 3 (A53-61), and helix 4 (F71-A92) 

(Figure 2.2). Since no electron density was observed for loop residues 46-51, and C-

terminus residue 95, these are absent from the final model of the protein deposited in the 

PDB. The absence of these residues could impact on SBDD studies using this model, as 

any efforts to remodel the missing residues could introduce error into the system that 

could compound errors in subsequent drug design studies.  



Chapter 2: In Silico Design of Potential S100P Inhibitors 

 

57 

 

S100P 1J55 was deposited in the PDB in its monomeric form. However, the 

authors provided information in the accompanying PDB Header for in silico generation 

of the biologically relevant dimeric form of the protein. The S100P dimer is formed by 

hydrophobic interactions related by a crystallographic 2-fold axis and hydrogen bonding 

between hydrophilic residues [159]. Three hydrophobic contacts are present at the 

dimeric interface all involving the 1/1’ and 4/4’ helices. The first contact is provided by 

residues L4, A7, M10, I11, and V14 in helices 1 and 1’, with hydrogen bonding from E3 

and D13 stabilising the contact; the second contact comes from residues F71, I75, A79 

and H86 in the 4/4’ helices, with hydrogen bonding between S72 and S83 reinforcing 

contact. This second hydrophobic contact also extends into the hydrophobic core of the 

protein which is formed by residues F74, F77, V78 and I81. The third and final contact 

involves interactions between L4, M10, I12, and F15 of helices 1/4’, with V78, T82 and 

H86 of helices 4/1’ (Figure 2.3). These residues involved in these hydrophobic contacts 

on the S100P dimeric interface will be crucial in putative binding pockets identified on 

the protein for subsequent SBDD studies.  
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Figure 2.2: Monomeric X-ray crystal structure of S100P (1J55) showing helices 1-4 and the 

calcium ions (blue spheres). (Reprinted from Zhang et al. [159] with permission from Elsevier 

Limited, 2015). 
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Figure 2.3: Hydrophobic contacts at the dimeric interface of two subunits of 1J55. A) The first 

contact between helices 1/1’. B) The second contact between helices 4/4’. C) Third contact 

between helices 1 and 4’. The residues forming the hydrophobic contacts are shown in ball and 

stick representation. Segments from each subunit of the protein are depicted in pink and green 

respectively. (Reprinted from Zhang et al. [159] with permission from Elsevier Limited, 2015).  
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2.3.1.2 S100P NMR ensemble  

Unlike the crystal structure, structures of the NMR ensemble of S100P (PDB ID 

1OZO) were determined in the absence of Ca2+ by triple resonance NMR spectroscopy 

[298]. Triple resonance NMR spectroscopy uses three types of atomic nuclei – 1H, 15N 

and 13C – to assign resonances to atoms forming the backbone of proteins especially 

those proteins enriched with 13C and 15N [311]. Instead of defining a single set of atomic 

coordinates, NMR spectroscopy uses restraints that cover a range of allowed distances 

and angles, to thoroughly explore all regions of conformational space that a protein 

could adopt [306, 312]. Hence an ensemble of viable structures, as opposed to a single 

definitive model, are generated via this method. A huge advantage of using NMR 

spectroscopy to determine protein structure is its ability to provide information on the 

average structure of the protein as well as its dynamics in solution [313]. In addition, the 

NMR model revealed the intrinsically disordered regions in S100P i.e. residues 46-51 

[314] that were not resolved in the X-ray model of the protein.  

In comparison to X-ray crystallography, quality assessment of NMR structures is 

more complicated as there is no associated R or free-R value by which to gauge the 

accuracy of the generated models. Instead, from the initially generated conformers, a 

sub-group with the least residual error values, the ensemble, is selected to represent the 

NMR structure of the protein [305]. Calculation of the pairwise root mean square 

deviation (RMSD) of the C-α atoms or heavy backbone atoms of the ensemble members 

gives an indication of the precision, and quality, of the NMR data [305, 307]. Lower 

RMSD values signify a better overall fit to the experimental data [306]. A mean RMSD 
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value of 1.0 Å for C-α atoms is comparable to a precision of approximately 2.0 Å for an 

X-ray crystal structure [307]. Precision is defined as the reproducibility of the 

experiment.   

Fifty conformers were initially calculated for 1OZO and from these, 16 members 

with the lowest energy and least restraint violations were selected to form the final 

ensemble [298]. The structure deemed most representative of the ensemble was 

conformer 15. Mean RMSD values for this member were 1.35 Å and 0.89 Å for 

backbone atoms of residues of 3-90 and 3-86 respectively, and 2.01 Å and 1.39 Å for 

heavy atoms of 3-90 and 3-86 respectively [298]. These values indicate that models in 

1OZO are suitable templates to use for SBDD studies.   

A second way of assessing the quality of NMR structures is to look at the 

geometric quality of the models. Since the quality of NMR structures is dependent on 

the force fields and refinement procedures used during optimisation of the models, it is 

critical that the resulting models contain minimal errors with respect to their geometry 

[306]. Ramachandran plots provide valuable information on the stereochemical quality 

of a protein by mapping the distribution of backbone dihedral angles ψ and φ onto the 

four regions of the plot: favoured, additionally allowed, generously allowed and 

disallowed [306, 315]. In MOE, three different colours are used to represent the 

distribution of torsion angles of different residues in the four quadrant of the 

Ramachandran plot (Figure 2.4). Small green squares represent residues with sterically 
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hindered sidechain atoms that are clustered in the core region. Yellow squares represent 

residues in the allowed region and outliers are marked as red crosses.   

Ramachandran assessment of each of the conformers in the1OZO ensemble 

show a number of residues that lie outside of the allowed regions of the Phi-Psi plot 

(Appendix). For conformer 15, the most representative model in the ensemble, most of 

the amino acids fall within the favoured regions. There are however 13 outliers (Figure 

2.4, Table 2.1). Eight of the 13 residues that demonstrate unusual stereochemistry are 

located in the Ca2+-binding region [141]. However, it is not known if the absence of 

Ca2+ in the NMR-derived structure of S100P is responsible for the unusual conformation 

of these residues in the Ramachandran plot. These residues were found in the favoured 

regions in the Ramachandran plot of 1J55 (Figure 2.4B). 

 

  



Chapter 2: In Silico Design of Potential S100P Inhibitors 

 

63 

 

Table 2.1: Ramachandran data for conformer 15 of 1OZO showing the outliers and their φ/ψ 

angles. Residues involve in Ca2+-binding are highlighted in blue. Residues absent in the X-ray 

crystal structure 1J55 are shown in red. (Data obtained from MOE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Chain Residue Psi Phi 

15 A S21 -68.5 122.3 

A T25 127.2 96.5 

A Q26 86.2 -56.5 

A K49 -44.1 -159.4 

A D50 -72.3 19.2 

A A53 -71.3 41.4 

A H86 9.9 -54.0 

B T25 156.7 81.6 

B K49 101.1 146.3 

B K51 5.6 46.6 

B D62 -34.7 -31.1 

B D66 -41.4 -161.7 

B A67 -39.0 169.3 
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Figure 2.4: Ramachandran plot for S100P showing residues in allowed (orange contours) and core (green contours) regions. A) Conformer 

15 of 1OZO. Outlier residues involved in Ca2+-binding are highlighted in blue. Outlier residues absent in the X-ray crystal structure 1J55 are 

shown in red. B) Ramachandran plot for 1J55. (Plots generated in MOE).  
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The S100P structures in the NMR ensemble were resolved as dimers in contrast 

to the crystal structure. There were three mutations in the ensemble members: residue 6 

(TA), residue 85 (CS) and residue 92 (AT). It is not known why these mutations 

are present but the initial templates the authors used in their calculation of the NMR 

ensemble have similar mutations in the same positions [141, 161].  

Despite these mutations, the geometric data and RSMD values for the NMR 

ensemble point to it being a good template for SBDD work. It is however important to 

note that the end-product of both X-ray diffraction studies and NMR spectroscopy is a 

model that is based on observed experimental data. This model could be a good or bad 

model depending on the accuracy of the experimental data on which it was determined 

from, as well as other factors during the modelling and refining of the data [313]. If 

there are uncertainties and/or errors present in the data or in the model, which is then 

used as a template for subsequent SBDD studies, this could lead to amplification of 

original errors resulting in inaccurate results. Given that independent X-Ray 

crystallographic- and NMR spectroscopy-derived models of S100P yielded similar 

models of the protein, gives confidence that both are accurate representations of the true 

nature of the protein, and that the models are good ones. However, since the protein was 

not fully represented in the crystal structure due to missing flexible regions, and since 

the model was monomeric, 1J55 was deemed undesirable as a template for SBDD 

studies. The NMR ensemble of S100P was therefore advanced for further in silico drug 

design studies. Nevertheless, information from the X-ray crystal structure was used as a 

guide in SBDD studies carried out using the NMR structures.  
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2.3.2 Identification of putative dimeric bindings sites on S100P 

2.3.2.1 Potential binding sites on 1OZO 

With the exception of the calcium ion-binding regions observed when calcium 

ions were co-crystallised in the X-ray crystal structure of S100P (1J55), there is no direct 

experimental evidence for small-molecule binding sites on the S100P protein. 

Identifying putative binding pockets where small molecules can bind and hence disrupt 

the interaction between S100P and RAGE was therefore a critical step in the progression 

of the project. Understanding the nature of these potential binding cavities will play a 

central role in the rational design of a therapeutic agent targeting S100P.  

The use of a number of independent geometry- and energy-based cavity 

detection algorithms to identify potential binding pockets on S100P was done in order to 

increase confidence in the results generated and to ensure that the final binding site(s) 

selected were determined by consensus, thus eliminating the potential for bias present in 

any single algorithm. This is additionally important given that the pocket-detecting 

programs used were not developed using NMR structures. This is largely due to the 

lower numbers of NMR structures, when compared to X-Ray crystal structures, 

available in the PDB. As of May 18th 2015, of the 101,060 protein structures in the PDB 

archive, 90,662 (~90%) were determined by X-ray crystallography, 9,597 (9.5%) by 

NMR and the rest by other methods such as electron microscopy, and small angle X-ray 

scattering. This does not detract from the use of NMR structures in drug discovery as 

high quality NMR structures, where available, have been shown to be good templates 

for drug design studies [304, 316].  
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Given that an NMR structure was used in this research, and to counteract 

criticism that the tools used to identify putative binding cavities were not suitable for 

such structures it was imperative that all conformers in the NMR ensemble were 

subjected to both energy- and geometry-based pocket-searching programs in order to 

demonstrate that similar pockets were identified by both methods, and that an objective 

consensus could be reached with respect to the most appropriate pocket at the S100P 

dimeric interface for further study.  

Four cavity-detection algorithms were investigated as part of this research: 

Pocket-Finder, Q-SiteFinder, Fpocket and Site Finder. These four tools use either 

energy-based (Q-SiteFinder) or geometry-based (Pocket-Finder, Fpocket and Site 

Finder) methods to determine potential binding sites on macromolecules. In a large-

scale validation study Fpocket and Site Finder were found to successfully predict the 

expected binding site for a group of diverse high quality X-ray crystal structure protein-

ligand complexes in their top five predicted pockets with a success rate of more than 

80% [262]. When Q-SiteFinder was used to predict binding sites in protein structures 

without a co-complexed ligand, the expected pocket was predicted in the top three sites 

for 86% of the proteins studied [261]. In contrast, Pocket-Finder, a geometry-based 

pocket-detecting algorithm developed to compare the performance of the energy-based 

algorithm, was found to be less successful than Q-SiteFinder in predicting putative 

binding sites, but performed better than LIGSITE [317], the pocket-detecting algorithm 

it was based on [261]. All four algorithms demonstrate a high success rate in predicting 
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the correct site in their top 5 predictions, and as such were credible tools with which to 

identify putative binding sites on S100P.  

Both Q-SiteFinder and Pocket-Finder programmes returned the ten largest 

pockets detected for each S100P conformer in the NMR ensemble (Table 2.2 and 2.3). 

Although the same number of pockets were returned by both programmes, they were 

ranked differently and thus, pocket 1 for conformer 1 in Q-SiteFinder does not 

correspond to pocket 1 for the same conformer in Pocket-Finder. That said, some of the 

pockets identified by Pocket-Finder were subsets of those identified by Q-SiteFinder 

(discussed below).  

The volumes observed for putative binding pockets is not constant. Individual 

pocket volumes differed between the programmes used because each algorithm uses a 

different method to calculate pocket volumes. In addition, the volumes between similar 

pockets on different conformers of the ensemble will also differ. This is due to the 

variation in protein conformation that is representative of the dynamic nature of the 

protein in solution. Developers of Q-SiteFinder and Pocket-Finder used different 

parameters to calculate site volume [261]. In general, volumes estimated by Q-

SiteFinder on all conformers of 1OZO were 3-12 times bigger than those estimated by 

Pocket-Finder. Q-SiteFinder however was reported to have a higher accuracy and 

precision rate than Pocket-Finder in predicting binding sites, with predicted sites 

mapping accurately onto ligand coordinates [261].  
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Table 2.2: Potential binding pockets and their estimated volumes identified by Q-SiteFinder for each of the S100P conformers in the 

1OZO ensemble. Pockets on the dimeric interface are highlighted in yellow. 

 

    Predicted site volumes (Å³) 

S100P 

NMR 

ensemble 

Conformer 
Protein 

volume (Å³) 1 2 3 4 5 6 7 8 9 10 

1 18546 346 331 297 236 228 129 167 163 129 124 

2 18536 366 238 252 252 190 214 170 153 172 129 

3 18591 469 358 326 270 179 179 174 163 136 103 

4 18610 341 259 271 207 211 216 165 119 130 116 

5 18456 327 252 220 279 206 180 153 147 135 110 

6 18495 456 324 235 300 258 206 217 141 128 114 

7 18608 313 204 203 181 194 170 171 154 146 127 

8 18619 321 296 251 255 178 198 144 149 157 163 

9 18559 487 459 340 269 152 156 107 135 115 110 

10 18618 783 275 254 195 180 184 141 114 130 116 

11 18503 388 217 220 149 148 134 131 125 116 129 

12 18500 371 356 297 240 237 200 185 136 148 102 

13 18556 381 253 353 324 207 155 199 164 108 109 

14 18641 255 308 177 189 166 185 161 124 115 145 

15 18566 349 321 285 190 176 202 182 198 167 110 

16 18474 509 386 289 254 224 133 122 106 106 126 
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Table 2.3: Potential binding pockets and their estimated volumes identified by Pocket-Finder for each of the S100P conformers in the 

1OZO ensemble. Pockets on the dimeric interface are highlighted in yellow.   

 

    Predicted site volumes (Å³) 

S100P NMR 

ensemble  conformer 

Protein 

volume (Å³) 1 2 3 4 5 6 7 8 9 10 

1 18546 67 51 44 28 22 21 24 20 20 16 

2 18536 101 67 56 52 54 44 38 29 30 25 

3 18591 58 54 51 36 27 24 23 20 15 14 

4 18610 77 66 47 51 44 40 35 37 28 20 

5 18456 88 59 54 49 47 37 31 25 23 24 

6 18495 148 79 70 55 44 38 35 20 17 15 

7 18608 86 63 70 41 38 35 19 19 17 17 

8 18619 75 44 42 38 24 20 22 18 17 16 

9 18559 71 62 58 39 35 31 28 25 23 17 

10 18618 65 62 34 32 21 20 20 14 17 13 

11 18503 90 72 61 51 46 41 39 40 35 26 

12 18500 65 58 58 55 49 45 36 34 32 29 

13 18556 105 82 56 52 54 48 33 33 26 24 

14 18641 86 76 67 40 26 19 18 16 14 15 

15 18566 70 68 47 47 48 50 39 30 28 25 

16 18474 65 65 59 55 50 34 34 23 17 14 
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Similar to Pocket-Finder, both Fpocket and Site Finder employ geometric 

approaches to search for putative binding pockets. Geometric pocket-detecting programs 

use the geometry of the protein surface to compute potential binding sites [259, 265, 

318, 319].  

In contrast to Q-SiteFinder and Pocket-Finder, where 10 pockets were identified 

for each conformer of 1OZO, Fpocket identified between seven and 12 pockets in total 

(Table 2.4). Despite this disparity in the number of pockets identified in each conformer, 

some pockets identified by Fpocket were similar to those previously identified by both 

Q-SiteFinder and Pocket-Finder (as discussed below). 

The output for putative sites identified by Site-Finder was different to the three 

pocket-detecting algorithms discussed above. In addition to the residues involved in the 

identified sites, the program also returned the number of alpha spheres in the site which 

is indicated as Size in Table 2.5. The number of hydrophobic and sidechain contact 

atoms in the receptor are indicated under Hyd and Side respectively. In upgrades of 

MOE, sites were ranked according to their propensity for ligand binding (PLB) i.e. 

druggability (Table 2.5B, [320]). 
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Table 2.4: Potential binding pockets identified by Fpocket for each of the S100P conformers in the 1OZO NMR ensemble. Pockets on the dimeric 

interface are highlighted in yellow. 

 

 

 

 

 

 

 

 

 

 

   Real volume approximation (Å³)  

S100P 

Protein 
No. of pockets 

detected 
Pocket 

0 
Pocket 

1 
Pocket 

2 
Pocket 

3 
Pocket 

4 
Pocket 

5 
Pocket 

6 
Pocket 

7 
Pocket 

8 
Pocket 

9 
Pocket 

10 
Pocket 

11 

1 9 603 592 573 462 226 131 163 249 550       

2 8 272 256 179 405 541 427 135 101         

3 8 877 740 659 663 384 413 149 548         

4 10 727 665 751 672 209 483 140 712 613 433     

5 9 919 271 213 115 228 467 159 427 90       

6 7 875 876 160 161 547 151 633           

7 11 1196 504 317 556 497 286 179 323 131 310 571   

8 8 994 508 477 483 587 156 607 84         

9 8 489 575 288 401 168 410 92 431         

10 7 941 958 561 416 300 166 149           

11 8 884 247 613 305 218 267 146 78         

12 10 808 240 217 608 319 619 134 639 128 313     

13 10 309 199 490 378 550 258 473 165 96 112     

14 6 714 954 160 314 147 139             

15 7 958 447 302 198 653 341 880           

16 12 232 310 473 373 461 458 330 630 273 203 120 312 
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Table 2.5: Pockets identified by two different versions of MOE’s Site Finder on conformer 15 of 1OZO.  A) MOE2010.09. B) 

MOE2011.10.Pockets on the dimeric interface are highlighted in yellow. 

 

*Number of contributing spheres 

ᵟNumber of hydrophobic points 
†Number of sidechain contact atoms 

 

 

 

ᶿPropensity for ligand binding score 

 

 

Site Size* Hydᵟ Side† Residues 

1 101 22 82 1: (H86 K91 T92 K95) 2: (I12 F15 S16 S19 G20 S21 E22 Q26 D70 F71) 

2 77 19 64 1: (I12 F15 S16 S19 S21 Q26 F71) 2: (H86 K87 Y88 F89) 

3 106 11 81 1: (M1 E5 A6 M8 G9 M10 I12 D13 S16) 2: (I81 T82 S85 H86 F89 T92) 

4 47 8 32 2: (K30 K49 D50 K51 D52 A53 V54 D55) 

5 55 6 40 1: (L41 P42 G43 F44 A84 S85 E90 K91) 2: (M1 T2 E5) 

Site Size PLBᶿ Hyd Side Residues 

1 85 1.20 10 66 1: (M1 E5 A6 M8 G9 I12) 2: (I81 T82 S85 H86 F89 T92) 

2 90 0.81 21 74 1: (H86 K91 T92 K95) 2: (I12 F15 S16 S19 G20 S21 E22 Q26 F71) 

3 74 0.23 19 62 1: (I12 F15 S16 S19 S21 Q26 F71) 2: (H86 F89) 

4 34 -0.72 3 27 1: (M1 A6 G9 M10 I12 D13 S16) 2: (H86 F89) 

5 55 -1.52 6 40 1: (L41 P42 G43 F44 A84 S85 E90 K91) 2: (M1 T2 E5) 

B 

A 
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Pockets at the dimeric interface identified by each of the algorithms on all 

conformers of 1OZO were comparable, e.g. pocket 3 from Pocket-Finder on conformer 

15 is a subset of pocket 1 on the same conformer from Q-SiteFinder (Figure 2.5). The 

same is true for two pockets identified by Site Finder on the same conformer. In MOE 

2010.09, Site Finder predicted two sites that were subsets of pockets 1 and 8 identified 

by Q-SiteFinder (Figure 2.5). These sites were ranked first and third respectively 

according to their ability to bind small drug-like molecules or PLB score [320]. 
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Figure 2.5: Overlap between pockets identified by Q-SiteFinder, Site Finder, Pocket-Finder and Fpocket on the dimeric interface of conformer 15 

of the NMR ensemble of S100P. All pockets shown here identified by Fpocket, Site Finder and Pocket-Finder are subsets of pockets 1 and 8 

identified by Q-SiteFinder on conformer 15 of 1OZO.  
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2.3.2.2 Binding sites on the dimeric interface of 1OZO 

It has been shown that the biological function of S100P is dependent upon 

dimerization [284, 292, 321, 322]. Hence, it was hypothesised that cromolyn exerted its 

effect on S100P-RAGE interaction by binding at or near to the homodimeric interface, 

thus preventing the protein interacting effectively with its receptor. The significance of 

the dimeric interface was highlighted in a recent report that showed residues that form 

part of the dimer interface of S100P – residues 83-94, and residues 2-14 – as important 

in binding to RAGE [294]. Consequently, only putative sites identified at the dimeric 

interface of the S100P 1OZO NMR ensemble were examined in detail in subsequent 

docking and virtual screening studies.  

The pocket-detection algorithms identified two cavities at the dimeric interface 

for each conformer in the NMR ensemble, one on each side of the protein. However, 

whilst there were similarities between these pockets identified for a given conformer, 

none were identical e.g., pockets identified by Site Finder at the dimeric interface of 

conformer 15 were not identical with respect to either size or amino acid composition 

(Table 2.5). This lack of symmetry at the dimeric interface of members of the NMR 

ensemble of S100P is in contrast to a recent publication by Penumutchu et al. [323] who 

identified two symmetrical pockets on an NMR ensemble of S100P that they resolved 

using the coordinates of 1J55, the crystal structure of S100P. Manipulation of the 

monomeric form of the protein will result in symmetrical dimeric interfaces given that 

this manipulation is a simple superposition of the monomer. S100P is a dynamic protein, 

and modelling a dynamic structure on a static structure has the potential to introduce 
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flaws into the system. The NMR ensemble 1OZO is direct experimental evidence 

against the symmetric nature of the S100P dimeric binding site.   

However, a second report published by the same group [294] identified residues 

E5, D13, F44, Y88 and F89 as playing a vital role in S100P-RAGE binding. These 

residues were also identified in the dimeric interface of some of the pockets identified in 

this study. In addition, residues that form the hydrophobic core that is exposed upon 

Ca2+ binding to S100P [141] were also present in sites identified at the dimer interface 

in this study. This hydrophobic core, formed mainly by residues F15, F71, and F74 

[159], has been reported to be important in target interaction in S100P [138, 284]. All 

this evidence points to the S100P NMR ensemble as a valid template in drug design 

studies.  

2.3.2.3 Potential binding sites on the X-ray crystal structure of S100P (1J55) 

The functional dimer form of 1J55 was generated by the UCSF Chimera package 

[299] using the atomic coordinates included in the PDB file of the protein. A 

symmetrical dimer resulted with four bound calcium ions (Figure 2.6). The generated 

dimer formed was an exact and opposite mirror image of the original monomer. Given 

that this symmetry was not observed in any of the structures of the NMR ensemble, 

there is a possibility that the dimeric interface created using the coordinates of 1J55 

could have some limitations and have introduced some errors into the system. Moreover, 

when the resolved dimer was investigated for potential binding sites using Q-SiteFinder, 

identified pockets had smaller volumes compared to those of the NMR conformers 
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(Figure 2.7). These pockets were too small to accommodate cromolyn, a known 

inhibitor of the S100P-RAGE interaction, and the ligand to be used for molecular 

docking [195]. The volume of cromolyn is 375 Å3 (calculated from 

http://www.molinspiration.com/cgi-bin/properties).  

Sequence-only superposition of the C-α atoms of the 1J55 monomer with Chain 

A of conformer 15 of 1OZO, the most representative of the NMR ensemble, using the 

Protein Superpose tool in MOE gave a RMSD of 3.75 Å (Figure 2.8). Structural 

superposition of the two models using the Flexible structure Alignment by Changing 

AFPs (Aligned Fragment Pairs) with Twists (FATCAT) [324] however resulted in a 

RMSD of 2.73 Å. Although these values may seem high for models of the same protein 

(and suggest significantly different structures), this apparent discrepancy could be due to 

several factors. Regions of variability (traffic-light colour coded in Figure 2.8) are those 

in the flexible loop regions. These regions have high B-values in the X-ray model, 

demonstrating the uncertainty in the location of these atoms in the crystal lattice. In 

addition, the superposition was only carried out over 88 residues as 1J55 has part of its 

linker region missing as well as the last terminal residue in its model. Also of note is the 

position of helix 2 and length of helix 4 in the apo and Ca2+-bound states of the protein. 

Molecular dynamics (MD) simulations have been used to show a change in the relative 

position of this helix in apo-S100P and Ca2+-bound S100P [325]. The length of helix 4 

is believed to be extended by six residues upon Ca2+ binding compared to the apo state 

[298]. All these factors could contribute to the high RMSD value.   
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Figure 2.6: The dimerised structure of 1J55 (Chain A cyan, Chain B red) generated by the 

USCF Chimera software [299] showing four bound calcium ions (green spheres). Red and cyan 

spheres represent water molecules from the crystal structure.  
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Figure 2.7: Putative binding pockets (magenta spheres) on the dimerised structure of 1J55 

predicted by Q-SiteFinder. The largest predicted pocket (arrow) has a volume of 123 Å3 which 

is far too small to accommodate cromolyn (375 Å3).  
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Figure 2.8: Superposition of C-α atoms of 1J55 with Chain A of conformer 15 of the 1OZO ensemble in MOE. A) Cartoon model of 

monomeric 1J55 (cyan) with bound Ca2+ (green spheres) superposed with Chain A of conformer 15 (red). B) RMSD bar graphs of the 

superposed atoms. Green colours indicate high conformation similarity while red indicate low similarity in backbone conformation.  

A 

B 
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2.3.3 Molecular docking of cromolyn to the S100P dimeric interface 

Initial dockings studies were focused on sites located at the dimer interface that 

had a volume close to or larger than the calculated ligand volume e.g. pocket 1 of 

conformers 9 and 15 (Table 2.6). However, in spite of their volume, docking cromolyn 

to these pockets showed that only part of the ligand was found to fit into the cavity, with 

the remainder protruding into solvent (Figure 2.9). Closer examination of the S100P 

conformers showed that for some of them there was more than one potential binding site 

at the dimer interface, and sites that had been identified as separate sites by the pocket-

detection algorithms were actually close enough to be thought of as two lobes of a larger 

binding pocket (Figure 2.10). The pocket-detection algorithms work by identifying 

regions of tight atomic packing (Fpocket, Site Finder), or by using a probe of a certain 

radius (Pocket-Finder), or clusters with favourable binding energy (Q-SiteFinder). It is 

thus feasible that two pockets that are close to each other but are separated by a few 

atoms that do not fall within the algorithms’ criteria for inclusion within a putative site 

will be identified as two separate sites instead of one. Where these pockets exist, they 

were combined to form the larger cavity and the dockings experiments repeated.  

Analysis of all conformers in the 1OZO NMR ensemble showed that only one 

member, conformer 15, was able to yield a combined cavity at the dimeric interface that 

was of sufficiently large volume to accommodate cromolyn, and that this occurred for 

only one of the two cavities at the dimeric interface in the structure. These two sites, 

Pockets 1 and 8 in Table 2.6, were also identified by the other pocket-detection 
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algorithms on the same conformer (Table 2.7). As such, only this conformer was carried 

forwards for docking studies. 
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Table 2.6: Volumes of potential binding pockets identified at the dimer interface of conformers 1OZO (highlighted in yellow) by Q-

SiteFinder.  

 

1OZO 

conformer 

Predicted site volumes (Å³) 

1 2 3 4 5 6 7 8 9 10 

1 346 331 297 236 228 129 167 163 129 124 

2 366 238 252 252 190 214 170 153 172 129 

3 469 358 326 270 179 179 174 163 136 103 

4 341 259 271 207 211 216 165 119 130 116 

5 327 252 220 279 206 180 153 147 135 110 

6 456 324 235 300 258 206 217 141 128 114 

7 313 204 203 181 194 170 171 154 146 127 

8 321 296 251 255 178 198 144 149 157 163 

9 487 459 340 269 152 156 107 135 115 110 

10 783 275 254 195 180 184 141 114 130 116 

11 388 217 220 149 148 134 131 125 116 129 

12 371 356 297 240 237 200 185 136 148 102 

13 381 253 353 324 207 155 199 164 108 109 

14 255 308 177 189 166 185 161 124 115 145 

15 349 321 285 190 176 202 182 198 167 110 

16 509 386 289 254 224 133 122 106 106 126 
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Figure 2.9: Docked cromolyn in the first predicted pocket of conformer 9 of the S100P 1OZO 

NMR ensemble. Only part of the ligand is docked to the protein with the rest protruding into the 

solvent.  
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Figure 2.10: Two pockets (cyan and brown) at the dimeric interface of conformer 15 of 1OZO. 

These were initially identified by Q-SiteFinder as distinct individual pockets which, upon closer 

inspection were observed to overlap with one another. As a result, they were combined as one 

large pocket that was used to dock cromolyn.  
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Table 2.7: Pockets identified by Site Finder, Pocket-Finder and Fpocket on the dimeric interface of conformer 15 of the NMR ensemble 

of S100P were also identified by Q-SiteFinder.  

 

*Number of contributing spheres 

 

 

 

      Amino acid residues at the dimeric interface of conformer 15 

Algorithm Pocket 

Pocket 

size (Å
3)
 Chain A Chain B 

Q-SiteFinder 
1 349 M1 T2 E5 A6 M8 G9 I12 F71 S72 I75  F44 V78 A79 A80 I81 T82 S83 A84 S85 H86 K87 Y88 F89 K91 T92 G93 L94 K95  
8 198 G9 I11 I12 D13 F15 S16 S19 S21 Q26 F71 S72 F74 I75  V78 T82 H86 

Site Finder 

(MOE 

2010.09) 

2 77* M1 E5 A6 M8 G9 M10 I12 D13 S16 I81 T82 S85  H86 F89 T92 
3 106* I12 F15 S16 S19 S21 Q26 F71  H86 L87 Y88 F89 

Pocket-

Finder 

2 76 T82 S83 H86 T92   I12 F15 F71 I75   
3 67 M1 E5 G9 I12   T82 S85 H86 T92   
5 26 T2 L4 E5 M8   I11 V14 E40 L41 F74 V78 I81   

Fpocket 
2 302 M1 E5 G9 I12 S85 H86 F89 T92 
4 653 I12 F15 S16 S19 S21 Q26 F71 H86 F89 
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Docking studies of cromolyn into conformer 15 of 1OZO revealed possible 

binding interactions between the protein and ligand at the dimeric interface. Visual 

analyses of the ligand poses showed that in most cases, the first ranked ligand pose did 

not have the optimal binding interactions with the protein. Indeed, the ligand pose which 

was subsequently used to design pharmacophore queries was ranked 18th out of the 36 

poses returned. The observed interactions between the ligand and protein involved three 

residues of Chain B: F89, T82 and T92. There was hydrophobic contact between F89 

with the chromone moiety of the ligand while both threonine residues were involved in 

hydrogen bonding interaction with both carboxylate oxygens at one end of the ligand 

(Figure 2.11).  

The predicted involvement of F89 in binding interactions with the ligand is 

significant as this residue has been reported to provide important hydrophobic contact 

that is crucial in target recognition in S100A1 and S100B [326, 327]. S100P shares a 

sequence identity of approximately 50% and 44% with S100A1 [136] and S100B [159] 

respectively. Thus, evidence of the involvement of this residue in a π-π interaction with 

cromolyn is a credible starting point when designing potential inhibitors against S100P 

as blocking this hydrophobic contact with small molecules could have the potential to 

inhibit S100P binding to its target, RAGE.    
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Figure 2.11: Predicted binding interactions between S100P and the ligand cromolyn. A) Docked 

cromolyn (ball and stick in green) in the overlapped sites at the dimeric interface of conformer 

15 of S100P 1OZO NMR ensemble (shown here with the molecular surface and residues 

forming the binding sites). B) Predicted binding interactions between cromolyn and S100P.   

A

B
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2.3.4 Pharmacophore generation, virtual screening and hit clustering 

From the observed binding interaction between cromolyn and S100P (Figure 

2.11), a three-point pharmacophore model was derived comprising of an aromatic centre 

(Aro), and two anionic acceptors (Ani&Acc) (Figure 2.12). These features represent the 

hydrophobic contact between F89 and the chromone moiety of cromolyn, and the 

hydrogen bonding between one carboxylate group of the ligand and T82 and T92. This 

was deemed a “stringent” pharmacophore query due to the anionic requirement applied 

to both hydrogen bond acceptor features. This means that “hits” fulfilling the 

pharmacophoric constraints cannot only be hydrogen bond acceptors, but must also be 

anionic. This stringency was evidenced from the number of “hits” obtained when the 

MOE database of lead-like compounds was screened with this query.  

Out of the 653,214 compounds in the database, only 52 came up as ‘“hits”’, 

0.008% of total compounds (Table 2.8). As expected, most of these “hits” were acids, a 

fundamental requirement for fulfilling the anionic constraint of the pharmacophore 

query (Figure 2.13). The average molecular weight of hit compounds was 389 compared 

to 468 for cromolyn. All “hits” possess rings within them, ranging from two to six, 

demonstrating the diversity in their structures.   



Chapter 2: In Silico Design of Potential S100P Inhibitors  

 

91 

 

 

Figure 2.12: Pharmacophore model derived from the predicted binding interactions between S100P and cromolyn. A) The three 

pharmacophore features represented by spheres in S100P (with molecular surface). B) Angles between the pharmacophore points. C) 

Distances (in Å) between pharmacophore features. 

A B
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Table 2.8: “Hits” obtained when the MOE database was screened with a “stringent” 

pharmacophore query. “Hits” sorted according to their commercial vendor ID. Molecular 

descriptors – weight, number of rings, LogP, total polar surface area (TPSA), H-Donors and H-

Acceptors – were calculated using the Descriptor feature in MOE.  

  

Molecule ID Rings 
Molecular 

weight 
LogP TSPA 

H-

Donors 

H-

Acceptors 

Akos LT-1098  X 2900 (6) 2 340.21 4.48 65.97 0 1 

Akos LT-1098  X 4644 (7) 2 271.32 3.23 65.97 0 1 

Art-Chem UZI/6188182 (8) 4 332.31 2.56 119.19 2 3 

Asinex ASN 03791583 (9)  4 405.43 5.08 83.73 0 3 

Asinex BAS 02011727 (10) 4 441.85 3.86 139.76 1 3 

Asinex BAS 02380039 (11) 3 408.46 4.36 103.71 1 4 

Biofocus 144_5936_7270_6684 (12) 4 376.44 3.03 78.26 0 2 

Biofocus 144_5940_7270_6684 (13) 4 406.46 3.02 87.49 0 3 

Chem T&I BOBM0003527 (14) 4 377.33 1.49 127.17 1 5 

Chem T&I UZI/4036985 (15) 2 342.44 3.56 69.23 1 1 

Chembridge 5241336 (16) 3 433.45 2.57 166.33 1 4 

Chembridge 5311676 (17) 3 403.42 2.62 157.10 2 4 

Chembridge 5862836 (18) 3 440.27 5.38 90.82 1 3 

Chembridge 6640941 (19) 3 368.39 4.48 103.18 1 3 

Chembridge 6688677 (20) 3 430.85 5.02 120.25 1 4 

Chembridge 6897450 (21) 4 414.37 4.15 126.07 0 2 

Chembridge 7230553 (22) 3 434.21 3.75 115.84 1 4 

Chembridge 7266811 (23) 3 413.79 3.41 115.84 1 4 

Chembridge 7356270 (24) 6 439.40 3.73 123.33 0 2 

Chembridge 7778804 (25) 3 389.36 4.20 118.59 1 2 

Chembridge 7926943 (26) 3 359.37 2.13 110.84 1 3 

Chemdiv 1805-1431 (27) 4 398.40 4.21 112.33 1 4 

Chemdiv 6049-3009 (28) 5 439.49 6.00 90.17 2 2 

Chemstar CHS 2401453 (29) 3 404.36 7.21 136.64 1 2 

Comgenex CGX-3084890 (30) 2 358.42 2.80 96.28 1 3 

Enamine T0508-3103 (31) 2 335.34 4.51 117.41 2 3 

Enamine T0509-5138 (32) 3 412.24 2.20 113.94 2 3 

Enamine T0514-7139 (33) 3 431.84 1.65 141.18 2 5 

FCHC 29368 (34) 4 383.39 6.79 97.19 1 3 
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Table 2.8 cont.: “Hits” obtained when the MOE database was screened with a stringent 

pharmacophore query. “Hits” sorted according to their commercial vendor ID. Cromolyn is 

included at the bottom for comparison. Molecular descriptors – weight, number of rings, LogP, 

total polar surface area (TPSA), H-Donors and H-Acceptors – were calculated using the 

Descriptor feature in MOE. Cromolyn is included at the bottom for comparison. 

 

 

 

 

 

 

Molecule ID Rings 
Molecular 

weight 
LogP TSPA 

H-

Donors 

H-

Acceptors 

InterBioScreen  STOCK5S-92825 (35) 3 432.45 3.42 151.45 2 6 

InterBioScreen STOCK3S-82963 (36) 4 386.39 2.10 112.30 1 4 

InterBioScreen STOCK5S-29098 (37) 4 419.46 2.37 114.26 1 4 

InterBioScreen STOCK5S-52328 (38) 3 372.40 2.58 104.76 1 3 

InterBioScreen STOCK5S-64425 (39) 3 365.37 2.67 122.72 3 3 

InterBioScreen STOCK5S-65135 (40) 3 424.52 1.88 110.18 0 4 

InterBioScreen STOCK5S-78564 (41) 4 396.38 1.92 109.11 0 3 

InterBioScreen STOCK5S-87979 (42) 3 386.41 2.19 145.55 0 3 

InterBioScreen STOCK5S-88540 (43) 3 373.43 2.65 114.65 0 4 

Labotest LT00103793 (44) 3 347.35 3.87 92.70 2 2 

Labotest LT00786495 (45) 2 372.38 3.98 127.41 1 2 

Life Chemicals F3074-0048 (46) 3 387.44 2.97 102.26 1 4 

Lithuania 1008485 (47) 3 439.51 5.25 91.26 0 4 

Maybridge HTS 05485 (48) 3 327.32 1.97 99.72 2 3 

Maybridge S 11067 (49) 3 346.41 3.84 93.95 1 3 

Otava 7018770072 (50) 3 409.42 2.54 120.28 2 4 

Peakdale 3002075 (51) 4 314.32 3.49 70.84 0 2 

Pharmeks PHAR103163 (52) 5 395.40 3.79 102.01 2 4 

Princeton Biomolecular OSSK_552866 

(53) 
2 383.41 0.96 150.82 2 3 

Princeton Biomolecular OSSK_562305 

(54) 
4 409.42 4.87 98.33 2 2 

Scientific Exchange R-093770 (55) 2 326.36 2.17 105.91 1 3 

Specs AE-641/01104012 (56) 3 428.30 3.71 119.17 0 3 

Specs AH-487/15148047 (57) 5 401.42 4.83 88.16 0 2 

AVERAGE 3 389 3 111 1 3 

Cromolyn (4) 4 466 -1.08 171.55 1 9 
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Figure 2.13: Some of the “hits” identified from the MOE database. Most of these “hits” were acidic because the HBA groups on the 

pharmacophore query that was used to identify them was also labelled as anionic.   
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The second “relaxed” pharmacophore query derived from the binding 

interactions between conformer 15 and cromolyn has the same geometric constraints as 

the “stringent” pharmacophore query but different pharmacophoric features. These 

features were defined as HBA and an aromatic centre. Screening the MOE database with 

this “relaxed” pharmacophore query resulted in a total of 4,619 “hits” (0.7%), again 

demonstrating the rigidity the anionic feature conferred on the first pharmacophore. 

There were 4,789 “hits” from the ZINC lead-like database giving a total of 9,408 “hits” 

from both databases. Clustering of these “hits” based on their chemical similarities 

defined as a 9-atom maximum common substructure [303] produced 299 clusters 

altogether with 77 singletons (Table 2.9).  

2.3.4.1 Hit selection for biological screening 

Due to budgetary constraints and compound availability, only a small number of 

“hits” were purchased for biological testing. The first set of 13 compounds purchased 

(Figure 2.14) came from the 52 “hits” obtained from the virtual screening of the MOE 

database using the “stringent” pharmacophore query and were pragmatically selected 

with respect to their price and availability. Key_Organcis_12T_0223 (58) identified in a 

previous screen by Kirton (unpublished) alongside two of its analogues (58a and 58b), 

and compound 7, one of the “hits” identified from the MOE database (Table 2.8) were 

synthesised in-house (discussed in Chapter 3). Hence, a total of 17 hit compounds were 

subsequently tested against S100P-expressing and non-S100P expressing pancreatic 

cancer cells (Chapter 3). 
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The second set of compounds purchased for testing came from members of 

individual clusters from the less stringent screening of the MOE database. To ensure 

diversity, 52 compounds with the best S score from each cluster were procured (Table 

2.10, Figure 2.15).   
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Table 2.9: Total number of “hits” and clusters obtained from screening the MOE and ZINC 

databases of lead-like compounds with a 3-point less “stringent” pharmacophore query.  

 

 

 

 

Figure 2.14: The first set of compounds from the MOE “stringent” virtual screening that were 

subjected to biological screening against pancreatic cancer cells. Compound 58 and two of its 

analogues, 58a and 58b, and compound 7, were synthesised in-house making a total of 17 

compounds that were subsequently subjected to biological screening.     

Database 

Total # of 

compounds  

Total # of 

“hits” 
Clusters Singletons 

MOE  653,214 4,619 129 24 

ZINC  765,278 4,789 170 53 

Total 1,418,492 9,408 299 77 
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Table 2.10: “Hits” purchased from the virtual screening of the MOE database using the less 

“stringent” pharmacophore query and objective selection criteria. Molecular descriptors – 

weight, number of rings, LogP, total polar surface area (TPSA), H-Donors and H-Acceptors – 

were calculated using the Descriptor feature in MOE.  

  

Molecule ID Rings 

Molecular 

weight LogP TPSA 

H-

donors 

H-

acceptors 

LT-1074 X 2785 90 (59) 3 251.3 3.02 66.49 2 1 

LT-1167 X 603 (60) 3 309.2 2.58 55.88 5 0 

LT-1167 X 815 (61) 3 356.3 1.36 108.48 4 1 

Chembridge 6376403 (62) 4 375.4 4.19 66.46 3 1 

Chembridge 6656937 (63) 3 416.9 5.20 103.18 3 1 

Chembridge 7948674 (64) 3 284.3 2.14 59.81 3 2 

Chembridge 7967237 (65) 3 292.3 2.57 59.81 4 1 

Chembridge 7971920 (66) 5 407.4 4.10 110.67 6 3 

Chembridge 7988575 (67) 2 381.4 1.00 131.93 3 1 

Chembridge 7993610 (68) 4 362.4 3.02 96.45 3 1 

ASN 06346992 (69) 2 264.3 1.29 91.94 3 0 

ASN 06747799 (70) 4 387.4 1.68 105.37 6 1 

BAS 00243347 (71) 2 294.3 3.51 107.09 3 1 

BAS 02943034 (72) 4 432.6 5.77 58.33 0 0 

BAS 03609804 (73) 3 398.4 0.95 98.73 5 1 

Bionet 10G-910 (74) 2 323.7 4.08 53.02 4 3 

Bionet 8M-521S (75) 4 313.4 2.37 107.56 2 1 

PHAR058776 (76) 2 313.1 3.49 90.37 4 1 

PHAR087402 (77) 4 346.4 3.64 91.08 4 1 

STOCK1S-56176 (78) 3 398.9 5.45 61.53 5 1 

STOCK1S-87136 (79) 2 278.3 1.54 67.98 4 0 

STOCK2S-82643 (80) 2 251.3 -0.35 111.08 5 0 

STOCK3S-05798 (81) 2 238.3 -2.47 96.43 1 0 

STOCK3S-50234 (82) 2 365.4 3.07 109.28 5 2 

STOCK3S-56652 (83) 3 326.4 2.59 100.29 7 0 

STOCK3S-76708 (84) 2 307.3 1.21 80.10 2 0 

STOCK3S-82963 (85) 4 386.4 2.10 112.30 2 1 

STOCK5S-26863 (86) 2 304.3 -0.01 118.64 2 0 
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Table 2.10 cont.: “Hits” purchased from the virtual screening of the MOE database using the 

less stringent pharmacophore query and objective selection criteria. Molecular descriptors – 

weight, number of rings, LogP, total polar surface area (TPSA), H-Donors and H-Acceptors – 

were calculated using the Descriptor feature in MOE.  

 

Molecule ID Rings 

Molecular 

weight LogP TPSA 

H-

donors 

H-

acceptors 

STOCK5S-43994 (87) 2 275.2 -1.10 114.26 4 1 

STOCK5S-58409 (88) 2 261.3 1.69 88.28 3 2 

STOCK5S-74616 (89) 3 425.5 1.95 116.17 3 0 

STOCK5S-79215 (90) 3 413.5 1.75 106.94 4 1 

STOCK5S-88609 (91) 3 359.4 2.35 114.65 3 0 

STOCK5S-92145 (92) 3 343.4 2.48 105.42 6 2 

STOCK5S-59895 (93) 4 389.5 0.18 101.63 5 0 

STOCK5S-33478 (94) 5 395.5 3.05 74.04 4 0 

F2009-0120 (95) 3 371.4 1.25 104.27 4 0 

F0532-0705 (96) 4 388.5 4.49 61.20 3 0 

F2510-0310 (97) 3 346.4 1.40 78.38 5 1 

AE-848/11422545 (98) 4 372.4 3.13 106.37 5 1 

AO-623/14653070 (99) 2 299.3 1.25 118.08 5 0 

AK-968/15610255 (100) 2 345.4 3.80 82.12 7 1 

AO-080/43378361 (101) 2 370.4 3.96 87.69 2 1 

AQ-405/42300151 (102) 6 379.4 6.42 62.05 6 1 

Peakdale 1001920 (103) 4 418.5 3.86 69.16 1 0 

Peakdale 1002562 (104) 2 290.3 -0.10 78.27 2 0 

Peakdale 1003002770 

(105) 2 
235.2 -0.89 114.06 

5 2 

HTS 01757 (106) 3 383.45 3.72 82.44 6 0 

HTS 08111 (107) 2 292.32 1.10 93.21 5 4 

KM 07099 (108) 4 359.39 2.84 95.18 2 1 

SEW 00462 (109) 3 324.82 2.91 64.70 4 0 

SPB 03404 (110) 3 362.80 3.84 90.47 5 0 

AVERAGE 3 341.74 2.39 90.95 1 4 
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Figure 2.15: Structure of “hits” purchased from the virtual screening of the MOE database using 

the less “stringent” pharmacophore query and objective selection criteria.  

85

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84



Chapter 2: In Silico Design of Potential S100P Inhibitors  

 

101 

 

 

Figure 2.15 cont.: Structure of “hits” purchased from the virtual screening of the MOE database 

using the less stringent pharmacophore query and objective selection criteria.  
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2.3.4.2 Rescoring “hits” generated from virtual screening studies in “native” 

S100P 

The NMR ensemble of S100P which was used in this project as a template for 

structure-based drug design studies has three mutations: T6A, C85S and A92T. To 

assess the impact of these mutations on the “hits” obtained from the virtual screening 

studies, the 52 purchased “hits” were rescored in the “native” conformer 15 of 1OZO 

and their S score compared to their original S score. Except for three “hits”, compounds 

96, 99 and 104, all the other “hits” returned negative S scores similar to those obtained 

in the original 1OZO conformer 15 (Figure 2.16). The positive S score for these three 

“hits” could be indicative of unfavourable interaction with the native protein. It is 

possible that there may be some penalties – i.e. high binding energy – for potential 

clashes with the protein surface, although there is no evidence of such clashes from 

observation of the compounds’ interaction with the protein (Figure 2.17). In comparison, 

“hits” like compounds 74 and 80 seemed to show favourable interaction with the native 

protein than the mutated conformer 15 of the NMR ensemble. While the pharmacophore 

was a useful constraint in the virtual screening, the interaction of the protein and these 

“hits” goes beyond the three pharmacophoric points. A correlation between the 

predicted binding affinity and the actual activity from biological screening can only be 

made once all the compounds are screened and these two factors are compared. 
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Figure 2.16: Comparison of S score of the 52 purchased “hits” obtained from using the original S100P NMR conformer 15 (old) 

and the S score obtained from using the “native” S100P (new). 
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Figure 2.16 cont.: Comparison of S score of the 52 purchased “hits” obtained from using the original S100P NMR conformer 15 

(old) and the S score obtained from using the “native” S100P (new). 
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Figure 2.17: Predicted binding interaction between compounds 96, 99 and 104 with “native” 

S100P. All three “hits” had positive S score when rescored in the “native” protein.  
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2.4 CONCLUSION 

Publically available 3D experimental structures of S100P, 1J55 and 1OZO 

were analysed for suitability for use in structure-based drug design (SBDD) studies. 

The NMR ensemble 1OZO was selected over the X-ray crystal structure because it 

represented the biologically active dimeric form of S100P compared to the X-ray 

crystal structure. In addition, all the residues were resolved albeit with three 

mutations.  

Using computational methods, it was found that only one conformer 

(conformer 15) of the NMR ensemble of S100P was suitable for use as template for 

SBDD studies. Both geometric- and energy-based pocket-detection algorithms 

identified potential cavities at the dimeric interface of this conformer adequate to 

accommodate cromolyn during docking studies. Using observed interactions 

between ligand and protein as a template, a pharmacophore query was designed and 

used as a constraint for subsequent virtual screening studies. Seventeen compounds 

from the generated “hits” form a diverse collection of chemical compounds that will 

be screened against pancreatic cancer cells (Chapter 3) in the hope of identifying a 

potential lead therapeutic candidate against this lethal cancer.  

Despite the mutations present in the NMR structures, there was little 

difference between the predicted binding affinities of “hits” with the “mutated” 

S100P NMR conformer and the “native” protein, again confirming the usefulness of 

the NMR ensemble as a template for in silico drug design studies.  



 

 

107 

 

 

 

 

 

 

 

 

 

CHAPTER 3: Synthesis and Biological Evaluation of “Hits” 

from Virtual Screening Studies 

 

 

 



Chapter 3: Synthesis and Biological Evaluation of “Hits” From Virtual Screening 

Studies  

 

108 

 

3. PREFACE 

Having identified virtual screening “hits” that have the potential to interact with 

the S100P dimeric interface (Chapter 2, Section 2.3.4), two compounds – 7 and 58 

(Figure 3.1) – were synthesised, characterised and subjected to biological screening 

against the pancreatic cancer cell lines BxPC-3 and Panc-1. This chapter details the 

syntheses and biological evaluation of these two hit compounds. In addition to the two 

synthesised compounds, the biological evaluation of 13 commercially available 

compounds identified during the virtual screen (Figure 2.14) is also reported in this 

chapter.   

Biological screening of the “hits” was carried out in collaboration with Dr 

Tatjana Crnogorac-Jurcevic at Barts Cancer Centre, Queen Mary, University of London. 

The biological screening, and the initial evaluation of the data, was carried out by Nasir 

Mahmoud [328]; interpretation of the results was carried out by the author.  

The results from the syntheses and biological screening are discussed in Sections 

3.2 and 3.3 respectively. The experimental details of the syntheses are given at the end 

of this chapter in Section 3.5. 
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3.1 INTRODUCTION 

The synthesis of two compounds identified by the virtual screening studies in 

Chapter 2, that were prohibitively expensive (7) and unavailable for purchase (58) are 

described below. Compound 7 is a dibenzyl derivative while 58 is a substituted benzoic 

acid (benzoxazin-2-yl)ethyl ester. In addition, two analogues of 58 (58a and 58b, Figure 

3.1) were also synthesised. 

In total, the syntheses of the above four compounds are discussed in this chapter. 

Viable synthetic routes and identification of readily available starting materials 

(RASMs) were identified using retrosynthetic disconnection approaches [329, 330]. 

Once readily available starting materials were determined, published synthetic routes 

were identified using Reaxys®, (version 1.7.8; www.elsevier.com/reaxys), which were 

followed and adapted where applicable. Where there were no published records for 

synthetic routes, logical synthetic routes were designed and implemented.  

The four synthesised compounds were combined with the 13 “hits” purchased 

from the virtual screening studies (Chapter 2), to give 17 compounds in total. These 

compounds are structurally and/or chemically dissimilar to cromolyn, the compound 

with limited bioavailability previously reported to inhibit S100P binding to RAGE 

[195]. Hence, if any of the compounds demonstrate inhibition of cell proliferation and/or 

cell invasion in the biological assays they will provide novel starting points for drug 

discovery investigations.  
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The 17 compounds were assessed for biological activity in separate screening 

studies that examined cell proliferation and cell invasion in two pancreatic cancer cells – 

S100P-expressing BxPC-3 and Panc-1 which does not produce S100P.  
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Figure 3.1: Structure of cromolyn (4) and the two “hits” from the virtual screening studies (7 

and 58) together with the analogues (58a and 58b) of compound 58. The known inhibitor of the 

S100P-RAGE interaction, cromolyn, is shown for comparison purposes.   

58

58a 58b

7Cromolyn (4)
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3.2 RESULTS AND DISCUSSION 

3.2.1 Synthesis of 4-({[(2-methoxyphenyl)methyl]amino}methyl)benzoic acid: 

compound 7 

Retrosynthetic analysis was applied to identify potential precursors to compound 

7. Following functional group conversions (FGI) of the amino linker to the imine, and 

the carboxylic acid group to the ester, the C=N or the N-C bond could be disconnected 

in the direction of either a or b (Scheme 3.1).   

 

Scheme 3.1. Possible disconnections on compound 7 to identify starting materials. 

 

The respective synthetic equivalents for synthons (i) and (iii), and (ii) and (iv) are an 

amine and an aldehyde respectively. The first attempt at synthesising the target molecule 

7 was carried out via route a. The corresponding synthetic equivalents for this 

disconnection were 4-(aminomethyl)benzoate for (i), after functional group 

interconversion and 2-methoxybenzaldehyde for (ii) (Scheme 3.2).   
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Scheme 3.2: Retrosynthetic analysis on compound 7 to identify simple precursor molecules via 

route a. (TM: target molecule, FGI: functional group interconversion, RASMs: readily available 

starting materials).  
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2-Methoxybenzaldehyde was condensed with 4-(aminomethyl)benzoate, the 

corresponding methyl ester of 4-(aminomethyl)benzoic acid via a nucleophilic addition 

reaction at the carbonyl centre, with the subsequent elimination of a water molecule. 

The nucleophilic nitrogen of the amine group of 4-(aminomethyl)benzoate attacks the 

electrophilic carbon of the aldehyde to form a carbinolamine intermediate (Scheme 3.3) 

[331]. Dehydration of this intermediate generates the imine 111 as a pale yellow oil in 

95% yield. As this was a slow and reversible reaction, anhydrous MgSO4 was added to 

“mop up” the water by-product formed thus driving the synthesis in the direction of the 

required product. The structure of the imine was confirmed by the presence of the imine 

proton as a singlet downfield at δ 8.8 ppm in the 1H-NMR (Section 3.5.2).  
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Scheme 3.3: Mechanism for the formation of the imine 111 via a carbinolamine intermediate. 
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The isolated imine 111 was reduced using sodium borohydride to give the 

corresponding amine 112 as pale yellowish oil in 70% crude yield (Scheme 3.4). The 

amine was confirmed on proton NMR by the absence of the imine proton at δ 8.8 ppm 

and the presence of both pairs of methylene protons on either side of the amine group as 

singlets at δ 3.74 and 3.61 ppm (Section 3.5.2.1). Compound 112 could be synthesised 

from 6 in a one-pot reductive amination reaction where the aldehyde is condensed with 

the amine to form the imine, which is subsequently reduced using a reducing agent. 

However, the use of sodium borohydride, the reducing agent used here, is unsuitable in 

this case as it would have also reduced the aldehyde to its corresponding alcohol.  

The final step in the synthesis of the target compound 7 involved functional 

group interconversion; the ester group of 112 was hydrolysed under basic conditions to 

give the desired acid 7 as a pale yellow solid with a yield of 71% from the final reaction 

step (Scheme 3.5 and 3.6). The absence of the carbon peak and the three methyl proton 

peaks of the ester from both 13C and 1H-NMR spectra respectively, and the presence of a 

broad OH peak at 3368 cm-1 confirmed the formation of the acid product (Section 

3.5.2.2).  

The second route b (Scheme 3.1) was not employed as route a succeeded in 

generating the target compound 7.  
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Scheme 3.4: Reduction of the imine 111 to the corresponding amine 112.  

 

 

 

 

 

 

Scheme 3.5: Base hydrolysis of compound 112 to give the required acid 7. 
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Scheme 3.6: Summary of steps involved in the synthesis of compound 7. 
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3.2.2 Synthesis of 2-(6-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)ethyl 4-

iodobenzoate: compound 58 and analogues 

Retrosynthetic analysis of 2-(6-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-

yl)ethyl 4-iodobenzoate (58) identified two main synthons (v) and (vi) from the 

disconnection of the ester bond (Scheme 3.7). The synthetic equivalents for (v) and (vi) 

were an acyl chloride and an alcohol respectively, which react in an addition elimination 

resulting in a substitution reaction to form the ester compound 58. Further retrosynthetic 

analysis on the alcohol 113 identified two additional bonds that can be logically 

disconnected; the amide bond between the carbonyl group and the amine, and the bond 

between C8 and the ether oxygen. A suitable synthetic equivalent for synthon (vii) is 

found in 2-amino-4-nitrophenol. The synthetic equivalent for the remaining synthon 

(viii) with the two electropositive carbon centres is α-bromo-γ-butyrolactone (Scheme 

3.8). The presence of a carbonyl group and a bromine atom in this compound ensures 

that the carbons directly attached to them are electron deficient, thus providing an 

appropriate synthetic equivalent.  

Having identified these starting materials, it was simple to put together a 

synthetic route to get to the target molecule i.e. synthesis of the alcohol (113) before 

reacting this with the acyl chloride to obtain the target molecule 58. The use of the acyl 

chloride instead of the corresponding carboxylic acid, in the second step proceeds via an 

irreversible reaction. This is advantageous in driving the synthesis to completion [332].   
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Scheme 3.7: Retrosynthetic analysis on compound 58 to identify readily available starting 

materials. Compound 113 was synthesised first prior to synthesising the target molecule.  
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Scheme 3.8: Retrosynthetic analysis on compound 113 to identify readily available starting materials (RASMs). 
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The alcohol 113 (Scheme 3.8) was synthesised by adapting the method of 

Frechette and Beach [333]. α-Bromo-γ-butyrolactone was reacted with 2-amino-4-

nitrophenol in anhydrous tetrahydrofuran to afford 113 in 72% crude yield as a brick-red 

solid after workup. The reaction was carried out under reflux conditions, and is believed 

to proceed via attack of the nucleophilic oxygen of the 2-amino-4-nitrophenol on the 

electron deficient α-carbon centre of the carbonyl compound, formed by the departing 

bromine [333]. Close proximity of the carbonyl and aromatic amine groups leads to 

formation of the intermediate 113a (Scheme 3.9) with subsequent ring-opening of the 

tetrahydrofuran ring giving the benzoxazine crude product as a brick-red solid in 72% 

yield. Recrystallisation from ethyl acetate gave 113 as yellow fluffy crystals with a 

melting point of 169-170 °C and a final yield of 56%. The structure of the product was 

confirmed by 1H-NMR by the presence of the chiral C-H proton of the morpholinone 

ring at δ 4.85 which is absent in either of the starting materials  (Section 3.5.3). 
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Scheme 3.9: Synthesis of compound 113. (Adapted from Frechette and Beach [333]). 
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To obtain the required compound 58, the intermediate 113 was reacted with 

4-iodobenzoyl chloride in an acylation reaction to form the ester. This reaction was 

initially attempted in dichloromethane (DCM) but solubility issues with the alcohol 

resulted in incomplete reactions with no product isolated. When tetrahydrofuran 

(THF) was substituted for DCM, the reaction proceeded to completion but the crude 

product contained a mixture of the acid chloride, the required ester product and 

impurities. The ester product was recovered via column purification, in a final yield 

of 8%. The chloro and tert-butyl analogues (58a and 58b respectively) were obtained 

in a similar manner, with yields of 5 and 36% respectively after column purification 

(Table 3.1). The crude products of both 58 and 58a were dark sticky brown and 

cream solids respectively, whereas 58b was a brown oil. Column chromatography 

using diethyl ether as eluent afforded 58, 58a and 58b as a pale yellow, a greenish-

yellow and a cream solid respectively with narrow melting points ranges (Table 3.1). 

All products were characterised by 1H- and 13C-NMR, IR and LC-MS (Sections 

3.5.4, 3.5.4.1 and 3.5.4.2). All three compounds exhibited the characteristic C=O 

stretch of the ester functional group at around 1700 cm-1 in addition to the C=O 

stretch of the amide around 1680 cm-1 in infra-red spectra (Sections 3.5.4, 3.5.4.1, 

and 3.5.4.2). 
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Table 3.1: Yields and melting points of compound 58 and analogues (58a and 58b). 

 

 

 

 

 

Compound R Yield (%) Melting point (°C) 

58 I 8  188-190 

58a Cl 5 218-220 

58b t-Bu  36  88-90  
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3.3 BIOLOGICAL EVALUATION OF “HITS” 

Purchased compounds and those synthesised in-house were screened for 

activity against BxPC-3 (ATCC® CRL-1687™) and Panc-1 (ATCC® CRL-1469™) 

human pancreatic cancer cells (American Type Culture Collection, Teddington, 

Middlesex, UK). BxPC-3 cells have been reported to express endogenous S100P 

[121, 177, 334], the therapeutic target protein for which this research aims to design 

inhibitors against its interaction with RAGE. Alternatively, Panc-1 cells are non-

S100P expressing cells [177, 334], making them an ideal S100P-negative control. 

The use of an S100P-negative control should help explain if any observed activity 

against these cells is S100P-related or not. The presence or absence of endogenous 

S100P in both cell types has been previously reported [121, 177, 192, 290]. 

Proliferation studies were carried out using the MTS (3-(4,5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) colorimetric 

assay. MTS is based on the presence of mitochondrial dehydrogenase enzymes in 

metabolically active viable cells that reduce the salt to a soluble coloured formazan 

dye product which is then read spectrophotometrically [335]. Although specifically 

designed to measure metabolic activity, results from an MTS assay are sometimes 

correctly or incorrectly used to indirectly infer the proliferative activity of cells, as 

less active cells are more likely to be less proliferative. The assay is also used loosely 

to describe cell viability, although it has been argued that a multiplex of different 

assays that also measure other properties such as cytotoxicity from the same 

experimental well give an overall picture of cell viability than a single assay [336, 

337]. 
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3.3.1 Effect of cromolyn (4), siS100P on proliferation and invasion of 

pancreatic cancer cells 

Prior to testing the anti-proliferative effect of the screening compounds on 

pancreatic cancer cells, it was found that silencing the S100P gene in BxPC-3 cells 

has little to no effect on their proliferation (Figure 3.2, [328]). 

This result is however in contrast to findings published by Arumugam et al. 

[177] who reported that S100P stimulates pancreatic cancer cell proliferation and 

survival. Their work showed a correlation between high levels of S100P and 

pancreatic cancer cell proliferation, survival, migration, and invasion in both in vitro 

and in vivo models. The effect of knock-down S100P on the proliferation of BxPC-3 

is marginal (Figure 3.2) after 72 h compared to control, and non-existent at 24 and 

48 h [328], implying that proliferation of these cells may be independent of S100P.  
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Figure 3.2: Effect of knock-down S100P in BxPC-3 cell proliferation. BxPC-3 cells were 

stably transfected with non-target control siRNA or siS100P. Cells were plated at an equal 

density and cultured from 24-74 h before cell numbers were determined using the MTS 

assay. Results are expressed as mean + SEM. Cell viability was expressed as a percentage 

for each treatment group relative to the negative control (1% v/v DMSO in culture media) 

according to the following equation: Growth (%) = OD490(sample)/OD490(control) x 100. P-

value was determined relative to control using un-paired t-test. None of the differences were 

significant.  
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Interestingly, cromolyn (4), the small anti-allergy molecule that has been 

reported to bind to S100P and inhibit its interaction with RAGE [195, 334], was also 

found to have little effect on the proliferation of BxPC-3 cells at concentrations up to 

1 mM [328]. An effect is only observed at higher concentrations of 2 mM, although 

this was not statistically significant (Figure 3.3). On its own, cromolyn (4) does not 

exert a significant effect on the proliferation of these cells. An increase in anti-

proliferative activity is only observed in combination with gemcitabine [195], the 

current therapeutic agent used in the treatment of pancreatic cancer.  

Knocked-down S100P was found to significantly reduce invasion of BxPC-3 

cells compared to control (Figure 3.4). This effect is in agreement with published 

data that indicate that pancreatic, breast, colon and prostate cancer metastasis is 

mediated via an S100P-related mechanism [177, 181, 182, 226, 289, 338].  

No anti-proliferative or anti-invasive effects were observed in Panc-1 cells 

following treatment with cromolyn (data not shown). 
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Figure 3.3: Anti-proliferative effect of cromolyn (4) on BxPC-3 cells. Cells (1.0 x 103 

cells/well) were cultured in the presence or absence of cromolyn and cell proliferation was 

analysed using the MTS assay after 24, 48 and 72 h. Results are expressed as mean + SEM. 

Cell viability was expressed as a percentage for each treatment group relative to the negative 

control (1% v/v DMSO in culture media) according to the following equation: Growth (%) = 

OD490(sample)/OD490(control) x 100. None of the differences were significant [328].   
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Figure 3.4: Effect of S100P on BxPC-3 invasion. A) BxPC-3 cells stably transfected with 

control siRNA or S100P siRNA were placed in serum-free culture media and added into the 

upper compartment of an invasion chamber. After 48 h, cells in the upper chamber were 

removed and cells that had invaded onto the lower surface of the membrane were stained 

using Giemsa stain. Cells in three different areas were counted for invasion studies. Results 

are expressed as mean + SEM (***p<0.001). B) Non-target control siRNA. C) siS100P. 

Photographs of representative membranes for cells after Giemsa staining viewed at x10 

objective lens [328].   
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3.3.2 Effect of screening compounds on proliferation and invasion of 

pancreatic cancer cells 

Of the 17 compounds examined, seven compounds (Table 3.2) were 

investigated for effect on both anti-proliferative (BxPC-3 and Panc-1) and anti-

invasive (BxPC-3) properties. As no invasion was observed for Panc-1 cells, the 

compounds were not screened for anti-invasive effects on these cells. A summary of 

the data for the compounds investigated on BxPC-3 cell line for anti-invasive effects, 

and on both Panc-1 and BxPC-3 cell lines for anti-proliferative effects is presented in 

Table 3.2.  

All compounds were tested for anti-invasion activity against BxPC-3. 

However, four compounds (7, 58, 58a and 58b), were not tested for anti-proliferative 

activity on the same cell lines, while seven (compounds 7, 16, 22, 26, 38, 39, 40) 

were not tested on Panc-1 cells for the same activity (Table 3.2). Of the seven 

compounds screened for both anti-invasive and anti-proliferative properties, five 

compounds, 17, 18, 20, 24, 43, showed activity against invasion of BxPC-3 cells 

(Figure 3.5). At 100 μM, both 15 and 24 had a significant effect relative to their 

respective controls (p<0.05, Figure 3.5). Interestingly, compound 24 had an effect at 

100 μM that is comparable to cromolyn (4) at the same concentration (Figure 3.5D). 

At 500 μM all five compounds showed a considerable anti-invasive effect (p<0.001) 

compared to controls. This effect however may be attributed to the high 

concentration of these compounds which could be detrimental to the survival of the 

cells.   
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Table 3.2: Screening compounds tested against the proliferation and invasion of pancreatic 

cancer.  

 

 

  Invasion Proliferation 

Compound BxPC-3 BxPC-3 Panc-1 

7 Tested ND1 ND1 

16 Tested Tested ND1 

17 Tested Tested Tested 

18 Tested Tested Tested 

20 Tested Tested Tested 

22 Tested Tested ND1 

23 Tested Tested Tested 

24 Tested Tested Tested 

26 Tested Tested ND1 

36 Tested Tested Tested 

38 Tested Tested ND1 

39 Tested Tested ND1 

40 Tested Tested ND1 

43 Tested Tested Tested 

58 Tested ND1 Tested 

58a Tested ND1 Tested 

58b Tested ND1 Tested 
1ND: Not determined. Due to time constraints, some compounds were not tested on either or both cells for 

anti-proliferative activity. 
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Figure 3.5: Effect of compounds screened on invasion of BxPC-3 pancreatic cancer cells. 

A) Compound 17. B) Compound 18. C) Compound 20. D) Compound 24. E) Compound 43. 

Compounds were added to serum-free medium in the upper compartment of an invasion 

chamber along with the BxPC-3 cells (2.5 x 104 cells/well), media with FBS (10% v/v) was 

added to lower chamber. After 48 hours, cells in the upper chamber were removed and cells 

that had invaded onto the lower surface of the membrane were stained Giemsa stain and 

cells in 5 different fields were counted for invasion studies. Results are expressed as the 

mean + SEM. P value of <0.05 (*), <0.01(**) and <0.001(***) was determined relative to 

control using 2-Way ANOVA.   
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Similar to cromolyn, many of the compounds examined did not show an 

effect on the proliferation of BxPC-3 cells. Compounds 18, 20 and 26 had an effect 

at 500 μM, although the cells’ response appear to be similar at all three time points 

for both compounds 20 and 26 (Figure 3.6). Again, similar to the response of the 

cells for the invasion assay at this concentration (Figure 3.5), it is not known if the 

effect observed here is due to the cells dying from being too stressed after being 

exposed to an environment of such high compound concentration.  

Of the compounds examined for activity on the proliferation of Panc-1 cells, 

five compounds showed an effect at 500 μM (Figure 3.7). Compound 18 exerted a 

similar effect on the proliferation of both cells at 500 μM. Compound 58b, the tert-

butyl analogue of compound 58, showed a significant concentration dependent effect 

on proliferation of Panc-1 cells at 100 and 500 μM (p<0.05 and 0.001 respectively) 

compared to control, although the cells seem to be recovering over time (Figure 

3.7E).  

The lack of anti-proliferative effect from these compounds on Panc-1 cells is 

not surprising as they are designed to interact with S100P. However, the lack of 

difference between their anti-proliferative effects on both cell lines is further 

evidence that S100P may not play a role in pancreatic cancer cell proliferation, 

contrary to published reports [151, 177].   
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Figure 3.6: Effect of compounds screened on proliferation of BxPC-3 cells. A) Compound 

18. B) Compound 20. C) Compound 26. Cells (1.0 × 10 3 cells/well) were cultured in the 

presence or absence of screening compounds and cell proliferation analysed using the MTS 

assay after 24, 48, and 72 h. Results are expressed as the mean + SEM. P value of <0.05 (*), 

<0.001(**) and <0.001(***) relative to control using 2-Way ANOVA. Cell viability was 

expressed as a percentage for each treatment group relative to the negative control (1% v/v 

DMSO in culture media) according to the following equation: Growth (%) = OD490(sample)/ 

OD490(control) x 100.  
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Figure 3.7: Effect of compounds screened on proliferation of Panc-1 cells. A) Compound 

18. B) Compound 20. C) Compound 36. D) Compound 58. E) Compound 58b. Cells (1.0 × 

10 3 cells/well) were cultured in the presence or absence of screening compounds and cell 

proliferation analysed using the MTS assay after 24, 48, and 72 h. Results are expressed as 

the mean + SEM. P value of <0.05 (*), <0.001(**) and <0.001(***) relative to control using 

2-Way ANOVA. Cell viability was expressed as a percentage for each treatment group 

relative to the negative control (1% DMSO v/v in culture media) according to the following 

equation: Growth (%) = OD490(sample)/OD490(control) x 100.   
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The effect of the screened compounds on proliferation of both cell lines 

indicates that the mechanism by which these compounds are exerting their effect on 

the cells is not mediated by S100P. If the mechanism were S100P-dependent, it is 

expected that compounds that demonstrated an inhibition to the invasive ability of 

BxC-3 cells would also demonstrate a similar inhibitive effect on the proliferative 

capability of these cells. In contrast, no effect on both migration and proliferation 

would be observed with the S100P-negative cell line, Panc-1. This effect was not 

observed for any of the compounds examined. Since most of the compounds showed 

a comparable effect on proliferation of BxPC-3 cells to that of cromolyn (4), it could 

be that proliferation of these cells is independent of S100P, but more work needs to 

be performed to conclusively confirm this observation as it is contrary to current 

published data.  

However, five compounds were identified that show activity against the 

invasion of BxPC-3 cells consistent with the experimental findings that S100P is 

involved in metastatic disease progression [177, 181, 226]. These five compounds, 

17, 18, 20, 24, and 43, will serve as good templates on which to design anti-

metastatic compounds against pancreatic cancer.  
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3.4 CONCLUSION 

Four compounds, 7, 58 (its analogues 58a and 58b), were synthesised, isolated 

and characterised. They formed part of the 17 compounds from the virtual screening 

studies that were screened for activity against the invasion and proliferation of 

pancreatic cancer cells.  

Biological evaluation of the 17 hit compounds has identified five compounds 

that show promise with respect to inhibiting the invasion potential of BxPC-3 cells. 

Since these cells secrete endogenous S100P, this inhibitory effect is promising as 

there is scope to further exploit these compounds to increase potency against this 

novel therapeutic target. One such compound of interest is compound 24. At 100 

μM, it demonstrated an inhibitory effect comparable to that of cromolyn (4) at the 

same concentration. As this was one of the compounds originally purchased, the aim 

will be to synthesise, purify, characterised and retest it against these cells for 

reproducibility (Chapter 4).  

The results from the proliferation assay studies are inconclusive as to the 

involvement of S100P in pancreatic cancer cell proliferation. Since compounds that 

show inhibitory activity against invasion of BxPC-3 cells did not reproduce similar 

effects on proliferation of the same cells, or the opposite results on Panc-1 cells, it is 

difficult to conclude that proliferation in pancreatic cancer is S100P-mediated based 

on these results, despite literature evidence to the contrary [151, 177].   
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3.5 EXPERIMENTAL  

3.5.1 General methodology: Synthesis and Instrumentation 

Reagents for the chemical synthesis unless specified were purchased from 

Sigma-Aldrich (Gillingham, Dorset, UK) and were used without further purification. 

All solvents were purchased from Fisher Scientific (Loughborough, UK). Where 

necessary, solvents were dried using activated 3 Å (methanol, ethanol, 

dichloromethane) and 4 Å (diethyl ether) molecular sieves.  

1H-NMR and 13C-NMR spectra were recorded on a JEOL ECA/54/SSS (400 

or 600 MHz) spectrometer using (TMS) as internal standard. Deuterated solvents 

used for compound analysis are indicated with individual compound data. Raw 

NMR data were processed with ACD/NMR Processor Academic Edition Version 

12.01 (Advanced Chemistry Development, Inc., Toronto, Canada, 

www.acdlabs.com, 2014). Chemical shifts are given in ppm relative to 

tetramethylsilane and J values (where given) are in Hz. Spectral splitting patterns are 

given as singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quadruplet (q), 

quartet of quartets (qq), multiplet overlapped (m), broad (br).  

Infrared spectra were recorded in Scimitar 800 FT-IR spectrometer (Varian 

Inc.), Nicolet 6700 FT-IR Smart iTR (Thermo Scientific) spectrometer using a 

Golden GateTM Diamond ATR adapter, or using a Perkin Elmer FT-IR/FIR 

Spectrometer Frontier (Version 10.03.07), with samples prepared as thin films on the 

universal ATR sampling accessory.  



Chapter 3: Synthesis and Biological Evaluation of “Hits” From Virtual Screening 

Studies 

 

141 

 

Liquid chromatography–mass spectrometry (LC-MS)  was determined using 

a Varian 1200L Quadrupole LC/MS/MS system equipped with Electrospray 

Ionisation (ESI) (Agilent Technologies, USA) and using a Varian Pursuit 50 mm x 

4.6 mm 5 micron pore size C18 reverse phase column. Samples were run at a flow 

rate of 0.25 mL/min for 20 minutes using water/formic acid (0.1% v/v): 

acetonitrile/formic acid (0.1% v/v) mobile phases. The gradient at which the samples 

were ran is as follows: 

0:00 minutes: 80% formic acid and water/formic acid and acetonitrile 

10:00 minutes: 10% formic acid and water/formic acid acetonitrile 

16:00 minutes: 10% formic acid and water/formic acid acetonitrile 

16:30 minutes: 80% formic acid and water/formic acid acetonitrile 

20:00 minutes: 80% formic acid and water/formic acid acetonitrile 

The Mass Spectrometer acquires both positive and negative ions from masses 50 Da 

to 1000 Da. 

Thin-layer chromatography (TLC) was carried out using Macherey-Nagel 60 

Å (250 μm thick) flexible polyester sheet silica gel plates pre-coated with fluorescent 

indicator UV254 (TLC-sheets POLYGRAM® SIL G/UV254, Fisher, Loughborough, 

UK). Dichloromethane (DCM) was used as the mobile phase unless otherwise stated. 

Column chromatography for compounds 55, 55a and 55b was carried out using 

silica gel (high-purity grade, pore size 60 Å, 230-400 mesh particle size, 40-63 μm 

particle size, for flash chromatography, Sigma-Aldrich, Gillingham, Dorset, UK) in a 

30 cm long column using diethyl ether (Et2O) as eluent. Samples were dry-loaded by 

dissolving in either dichloromethane (DCM; 58 and 58b)) or chloroform (58a) 

before adsorbing unto silica gel.   
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Melting points (M.p.) were measured in open capillaries using a Griffin 

melting point apparatus and are uncorrected. Where known, melting points from 

published literature are shown next to that determined for each compound in this 

study. 

All structures, unless otherwise specified, were generated and named using 

ChemDraw Ultra 14. (PerkinElmer, Massachusetts, US). 
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3.5.2 Synthesis of Methyl 4-{[(E)-[(2-

methoxyphenyl)methylidene]amino]methyl}benzoate (111). (Adapted 

from Mohamed et al. [339]) 

 

 

 

 

Methyl (4-aminomethyl)benzoate was obtained from its hydrochloride salt by 

stirring the salt with sodium carbonate in water and extracting the ester in diethyl 

ether. The extracted benzoate (0.21 g, 1.3 mmol, 1 eq) was reacted with 2-

methoxybenzaldehyde (0.17 g, 1.3 mmol, 1 eq) in dry DCM (3 mL) in the presence 

of a drying agent (anhydrous MgSO4). The reaction mixture was stirred overnight for 

a total reaction time of 22 h. The flask contents were filtered through K2CO3 and the 

solvent removed under vacuum to afford 111 as a yellow oil which was used in the 

next step without further purification. Yield 0.34 g, 95%; 1H-NMR (600 MHz, 

DMSO-d6)  (ppm) 8.80 (1 H, s, 1 HC=N), 7.89 - 7.92 (2 H, m, para-Ar-H), 7.85 (1 

H, dd, J = 7.7, 1.7 Hz, Ar-H), 7.41 - 7.45 (3 H, m, 2 para-Ar-H, Ar-H), 7.08 (1 H, d, 

J = 8.5 Hz, Ar-H), 6.94 - 6.98 (1 H, m, Ar-H), 4.82 (2 H, s, CH2), 3.83 (3 H, s, CH3 

ester), 3.81 (3 H, s, CH3 ether). 13C-NMR (150 MHz, DMSO-d6)  (ppm) 166.69 

(C=O ester), 159.08 (C=N), 158.19 (CO ether), 146.09 (Ar-C), 132.96 (Ar-CH), 

129.83 (para-Ar-CH), 128.60 (Ar-C), 128.54 (para-Ar-CH), 127.19 (Ar-CH), 
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124.29 (Ar-C), 121.10 (Ar-CH), 112.41 (Ar-CH), 64.32 (CH2), 56.20 (CH3 ether), 

52.58 (CH3 ester).  

3.5.2.1 Reduction of 111 to Methyl 4-({[(2-

methoxyphenyl)methyl]amino}methyl) benzoate (112). 

(Adapted from Blackburn and Taylor [340]) 

 

 

 

The imine 111 (0.3 g, 1.1 mmol, 1 eq) was reduced to the amine under a 

nitrogen atmosphere using sodium borohydride (0.05 g, 1.3 mmol, 1.1 eq). Briefly, 

the imine was added to methanol (5 mL) and stirred at room temperature before 

cooling to 0 °C in an ice bath. Sodium borohydride (NaBH4) was added in aliquots 

and the mixture stirred for another 0.5 h. After this time methanol was removed 

under vacuum and the residue diluted with Et2O (30 mL) and saturated NaHCO3 (30 

mL). The organic layer was extracted with Et2O (2 x 20 mL). The combined organic 

layers were dried over MgSO4, the mixture was filtered and the solvent removed in 

vacuo to give the amine 112 as a pale yellowish oil, yield 0.23 g, 70%. 1H-NMR 

(600 MHz, DMSO-d6)  (ppm) 7.86 - 7.89 (2 H, d, J = 8.0 Hz, para-Ar-H), 7.46 (2 

H, d, J = 8.0 Hz, para-Ar-H), 7.30 (1 H, d, J = 7.3 Hz, Ar-H), 7.18 (1 H, m, Ar-H), 
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6.91 (1 H, d, J = 8.3 Hz, Ar-H), 6.88 (1 H, m, Ar-H), 3.81 (3 H, s, CH3 ester), 3.74 

(2 H, s, CH2), 3.72 (3 H, s, CH3 ether), 3.61 (2 H, CH2). 13C-NMR (150 MHz, 

DMSO-d6)  (ppm)  166.76 (C=O ester), 157.51 (CO ether), 147.45 (Ar-C), 129.58 

(para-Ar-CH), 129.17 (Ar-CH), 128.80 (Ar-C), 128.53 (para-Ar-CH), 128.41 (Ar-

CH), 128.27 (Ar-C), 120.61 (Ar-CH), 110.94 (Ar-CH), 61.07 (CH2), 55.71 (CH3), 

52.50 (CH2), 47.29 (CH3 ester).  

3.5.2.2 Hydrolysis of 112 to 4-({[(2-

Methoxyphenyl)methyl]amino}methyl)benzoic acid (7)  

 

 

The amine 112 (0.22 g, 0.78 mmol) was stirred under reflux in MeOH/THF 

mixture (1:1 v/v) and NaOH (1 M, 1.5 mL) for 1.5 h, then left overnight at room 

temperature whilst stirring. After a total reaction time of 20.5 h, the reaction was 

quenched with de-ionised water (2 mL) and the organic solvents removed under 

vacuum. HCl (1 M) was added to the concentrated residue to adjust the pH. A 

precipitate was formed at pH 7 which was filtered off, using a Hirsch funnel, to 

afford 7 as a pale yellow solid, yield 0.15 g, 71%. M.p. 190-192 °C. 1H-NMR (600 

MHz, MeOH-d3)  (ppm) 7.95 - 7.99 (2 H, m, para-Ar-H), 7.43 (2 H, d, J = 8.3 Hz, 

para-Ar-H), 7.40 (1 H, dd, J = 7.6, 1.7 Hz, Ar-H), 7.31 (1 H, dd, J = 7.6, 1.7 Hz, Ar-
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H), 7.05 (1 H, d, J = 8.3 Hz, Ar-H), 6.98 (1 H, td, J = 7.4, 1.0 Hz, Ar-H), 4.18 (2 H, 

s, CH2), 4.13 (2 H, s, CH2), 3.86 (3 H, s, CH3). 13C-NMR (150 MHz, MeOH-d3)  

(ppm) 172.57 (C=O acid), 158.05 (CO ether), 138.37 (Ar-C), 133.70 (Ar-C), 131.23 

(Ar-CH), 131.15 (Ar-CH), 129.67 (para-Ar-CH), 129.00 (para-Ar-CH), 120.63 (Ar-

CH), 119.67 (Ar-C), 110.69 (Ar-CH), 54.72 (CH3), 50.42 (CH2), 46.20 (CH2). IR 

vmax/cm-1: 3368.08 (OH stretch), 2920.39 (CH stretch), 2850.51 (CH stretch), 

2188.30, 1716.84 (C=O stretch), 1604.93 (NH bend). LC-MS (ESI) found m/z [M + 

H]+: 272, C16H17NO3 requires 271. 
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3.5.3 Synthesis of 2-(2-Hydroxyethyl)-6-nitro-3,4-dihydro-2H-1,4-benzoxazin-

3-one (113). (Adapted from Frechette and Beach [333]) 

 

 

 

 

 

 

 

 

 

2-Amino-4-nitrophenol (3.00 g, 19.48 mmol, 1 eq) and potassium carbonate 

(4.03 g, 29.22 mmol, 1.5 eq) were stirred in anhydrous tetrahydrofuran (THF, 40 

mL) at room temperature (r.t.) for 50 minutes under a nitrogen gas atmosphere. α-

Bromo-γ-butyrolactone (3.86 g, 23.38 mmol, 1.2 eq) was added dropwise and the 

resulting mixture heated under reflux for 5.5 h. The reaction was quenched with 80 

mL ice-cold deionised water and the solvent removed under vacuum. The aqueous 

portion was cooled on ice before filtering off the solid to afford 113 as a brick-red 

solid. Recrystallisation from ethyl acetate gave fluffy yellow crystals, yield 2.61 g 

(56%). M.p. 169-170 °C (lit. 173 °C [333]); Rf 0.81 (ethyl acetate: cyclohexane: 

ethanoic acid, 5:4:1 v/v/v). 1H-NMR (600 MHz, DMSO-d6)  (ppm) 11.01 (1 H, br. 

s., NH), 7.81 (1 H, dd, J = 8.3, 2.3 Hz, Ar-H), 7.70 (1 H, d, J = 2.3 Hz, Ar-H), 7.14 

(1 H, d, J = 8.3 Hz, Ar-H), 4.85 (1 H, dd, J = 9.2, 4.6 Hz, CH), 4.65 (1 H, t, J = 5.5 

Hz, OH), 3.45 - 3.62 (2 H, m, CH2), 1.79 - 2.03 (2 H, m, CH2). 13C-NMR (150 

MHz, MeOH-d3)  (ppm) 166.97 (C=O amide), 148.29 (Ar-CO), 142.81 (Ar-

CNO2), 127.55 (Ar-CNH), 119.36 (Ar-CH), 116.83 (Ar-CH), 110.78 (Ar-CH), 74.33 
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(aliphatic-CHO), 56.75 (aliphatic-CH2), 33.46 (aliphatic-CH2). IR vmax/cm-1: 3596 

(OH stretch), 3187 (CH stretch), 3118 (CH stretch), 3047 (CH stretch), 2955 (CH 

stretch), 2882 (CH stretch), 1696 (C=O amide), 1605 (C=C aromatic stretch), 1516 

(NO2 asymmetrical stretch), 1491 (CH2 bend), 1394 (NO2 symmetrical stretch), 1331 

(C-O stretch). LC-MS (ESI) found m/z [M – H]+: 237, C10H10N2O5 requires 238. 

3.5.4 Synthesis of 2-(6-Nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)ethyl 

4-iodobenzoate (58). (Adapted from Berry et al. [341]) 

 

 

 

 

Compound 113 (1.0 g, 4.2 mmol, 1 eq), triethylamine (1.4 mL, 0.4 g/mL, 5.0 

mmol, 1.2 eq) and 4-dimethylaminopyridine (DMAP, 0.30 g, 2.1 mmol, 0.5 eq) were 

stirred under a nitrogen atmosphere in anhydrous tetrahydrofuran (THF, 120 mL) at 

room temperature for at least 30 minutes. The mixture was then cooled in an ice bath 

to 0 °C and 4-iodobenzoyl chloride (1.12 g, 4.20 mmol, 1 eq) was added, in portions, 

with stirring, to the mixture. The mixture was then heated under reflux for a total 

reaction time of 5 h. After completion of the reaction as judged by TLC, the reaction 

mixture was poured into a flask containing 100 mL deionised ice-cold H2O. The 
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aqueous phase was extracted with DCM three times (2x 30 mL, 1x 20 mL). The 

combined organic phases were washed with 10% HCl (2.74 M, 40 mL) to remove 

the triethylamine base, followed by saturated sodium hydrogen carbonate (NaHCO3, 

40 mL). The extracted organic layer was dried over anhydrous magnesium sulphate 

(MgSO4), filtered, and the solvent removed under vacuum to afford 58 as a sticky 

brown solid. Column chromatography (diethyl ether) afforded the pure ester as a 

pale yellow solid, yield 0.15 g, 8%. M.p. 188-190 °C; Rf 0.43 (diethyl ether). 1H-

NMR (600 MHz, DMSO-d6)  (ppm) 11.10 (1 H, s, NH), 7.86 - 7.89 (2 H, m, para-

Ar-H), 7.79 (1 H, dd, J = 8.7, 2.8 Hz, Ar-H), 7.67 (1 H, d, J = 2.3 Hz, Ar-H), 7.63 - 

7.68 (2 H, m, para-Ar-H), 7.10 (1 H, d, J = 8.9 Hz, Ar-H), 5.03 (1 H, dd, J = 7.6, 

4.6 Hz, CH), 4.42 (2 H, t, J = 6.3 Hz, CH2 aliphatic), 2.24 - 2.39 (2 H, m, CH2). 13C-

NMR (150 MHz, DMSO-d6)  (ppm) 174.53 (C=O amide), 165.72 (C=O ester), 

154.57 (Ar-CO), 145.67 (CNO2), 138.26 (para-Ar-CH), 131.41 (para-Ar-CH), 

129.01 (Ar-C), 127.81 (Ar-C), 119.67 (Ar-CH), 117.34 (Ar-CH), 111.17 (Ar-CH), 

101.12 (Ar-I), 74.56 (CH), 61.19 (CH2 aliphatic), 30.07 (CH2 aliphatic). IR vmax/cm-

1: 3607 (NH stretch), 3257 (CH stretch), 3088 (CH stretch), 1704 (C=O ester), 1673 

(C=O amide), 1633, 1606 (C=C aromatic stretch), 1588, 1517 (NO2 asymmetrical 

stretch), 1495 (CH2 bend), 1473, 1393 (NO2 symmetrical stretch). LC-MS (ESI) 

found m/z [M – H]-: 467 C17H13IN2O6 requires 468. 
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3.5.4.1 Synthesis of 2-(6-Nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)ethyl 

4-chlorobenzoate (58a)  

 

 

Compound 113 (0.52 g, 2.2 mmol, 1 eq), Et3N (0.4 mL, 0.7 g/mL, 2.6 mmol, 

1.2 eq), DMAP (0.1 g, 1.1 mmol, 0.5 eq), 4-chlorobenzoyl chloride (0.38 g, 0.28 

mL, 2.2 mmol, 1 eq). Procedure identical to the synthesis of compound 58. Column 

chromatography (diethyl ether) afforded 58a as a greenish-yellow solid, yield 0.042 

g, 5%. M.p. 218-220 °C; Rf 0.82 (diethyl ether). 1H-NMR (600 MHz, DMSO-d6)  

(ppm) 11.09 (1 H, s, NH), 7.88 - 7.93 (2 H, m, para-Ar-H), 7.80 (1 H, dd, J = 8.9, 

2.75 Hz, Ar-H), 7.67 (1 H, d, J = 2.8 Hz, Ar-H), 7.53 - 7.58 (2 H, m, para-Ar-H), 

7.11 (1 H, d, J = 8.9 Hz, Ar-H), 5.04 (1 H, dd, J = 7.6, 4.47 Hz, CH), 4.43 (2 H, t, J 

= 6.2 Hz, CH2 aliphatic), 2.25 - 2.40 (2 H, m, CH2 aliphatic). 13C-NMR (150 MHz, 

DMSO-d6)  (ppm) 165.69 (C=O amide), 165.31 (C=O ester), 148.66 (Ar-CO), 

142.52 (CNO2), 138.85 (para-Ar-CH), 131.59 (para-Ar-CH), 129.44 (Ar-C), 128.92 

(Ar-C), 128.24 (Ar-C), 119.74 (Ar-CH), 117.37 (Ar-CH), 111.15 (Ar-CH), 74.57 

(CH), 61.23 (CH2 aliphatic), 30.07 (CH2 aliphatic). IR vmax/cm-1: 3275 (NH stretch), 

1716 (C=O ester), 1687 (C=O amide), 1524 (NO2 asymmetrical stretch), 1488 (CH2 
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bend), 1378 (NO2 symmetrical stretch). LC-MS (ESI) found m/z [M – H]-: 375, 

C17H13ClN2O6 requires 376. 

3.5.4.2 Synthesis of 2-(6-Nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)ethyl 

4-tert-butylbenzoate (58b)  

 

 

 

Compound 113 (0.5 g, 2.1 mmol, 1 eq), Et3N (0.35 mL, 0.73 g/mL, 2.5 

mmol, 1.2 eq), DMAP (0.13 g, 1.1 mmol, 0.5 eq), 4-tert-butylbenzoyl chloride (0.41 

g, 0.41 mL, 2.1 mmol, 1 eq). Procedure identical to the synthesis of compound 58. 

Column chromatography (diethyl ether) afforded 58b as a pale brown solid, yield 

0.31 g, 37%. M.p. 88-90 °C; Rf 0.82 (diethyl ether) 0.84. 1H-NMR (600 MHz, 

DMSO-d6)  (ppm) 11.11 (1 H, s, NH), 7.81 - 7.84 (2 H, m, para-Ar-H), 7.78 (1 H, 

dd, J = 8.9, 2.8 Hz, Ar-H), 7.66 (1 H, d, J = 2.8 Hz, Ar-H), 7.47 - 7.50 (2 H, m. 

para-Ar-H), 7.11 (1 H, d, J = 8.9 Hz, Ar-H), 5.03 (1 H, dd, J = 7.6, 4.47 Hz, CH), 

4.41 (2 H, t, J = 6.2 Hz, CH2 aliphatic), 2.25 - 2.38 (2 H, m, CH2 aliphatic), 1.29 (9 

H, s, CH3). 13C-NMR (150 MHz, DMSO-d6)  (ppm) 166.06 (C=O ester), 165.68 

(C=O amide), 156.91 (Ar-C), 148.65 (Ar-CO), 142.49 (CNO2), 129.63 (para-Ar-

CH), 128.21 (Ar-C), 127.35 (Ar-C), 126.03 (para-Ar-CH), 119.70 (Ar-CH), 117.34 
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(Ar-CH), 111.13 (Ar-CH), 74.59 (CH), 60.70 (CH2 aliphatic), 35.37 (C-tBu), 31.33 

(CH3), 30.20 (CH2 aliphatic). IR vmax/cm-1: 3251 (NH stretch), 1700 (C=O ester), 

1685 (C=O amide), 1502 (NO2 asymmetrical stretch), 1365 (NO2 symmetrical 

stretch). LC-MS (ESI) found m/z [M – H]-: 396, C21H22N2O6 requires 398.  
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4. PREFACE 

ChemBridge 7356270 (24) was one compound from the initial screening studies 

that showed promising inhibitory activity against the invasion of the S100P-expressing 

pancreatic cancer cells BxPC-3. At 100 μM, the compound exerted an effect on BxPC-3 

cells that is comparable to the proposed S100P-RAGE interaction inhibitor cromolyn at 

the same concentration (Figure 3.5D, pg. 135).  

 

 

 

Figure 3.5D: Effect of compound 24 on the invasion of BxPC-3 cells. At 100 μM, compound 24 

showed a significant effect on the invasion of these cells relative to the non-treated control. This 

effect is comparable to that of cromolyn at the same concentration. *P<0.05; ***P<0.001. 

(Mahmoud [328]). 
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Compound 24 showed a weak but significant effect (p<0.001) on proliferation of 

BxPC-3 cells at the highest concentration of 500 μM after exposure to the compound for 

24 h (Chapter 3). This anti-proliferation effect was not observed on Panc-1 cells on 

exposure for 24 h. The effect of cromolyn on proliferation of BxPC-3 were not 

reproducible by Mahmoud [328] and in earlier work carried out in Dr Crnogorac-

Jurcevic’s laboratory (unpublished results) at Queen Mary University of London 

(QMUL). Work by the same laboratory also found that siS100P had little effect on the 

proliferation of BxPC-3 (Chapter 3) casting doubt on the role of S100P in the 

proliferation of pancreatic cancer cells [328]. It could therefore be possible that 

inhibition of S100P could affect pancreatic cancer cell migration/invasion and survival 

without significantly affecting proliferation.   

In this chapter, the design, synthesis and characterisation of ChemBridge 

7356270 (24) and its analogues will be discussed. Two synthetic routes to the target 

compound are presented, followed by biological screening studies of five analogues, 

including compound 24, against pancreatic cancer cells. Preliminary findings from chick 

chorioallantioc membrane (CAM) assay studies, used to assess the effect of the 

compounds on angiogenesis, are also presented.  

The experimental work detailing the syntheses and biological screening, and 

analytical data pertaining to the analogues synthesised form the final section of the 

chapter. 
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4.1 INTRODUCTION 

The discovery of compound 24 as a potential lead candidate for a therapeutic 

agent against pancreatic cancer is promising. Given the lethality of this cancer, any 

compound that shows even marginal potency against the disease opens up many 

possibilities for further optimisation on the chemical structure in order to improve its 

therapeutic effect.  

Structurally, compound 24 is quite distinct from cromolyn (4) and its analogue 

C5-OH (5) (Figure 4.1), sharing a maximum common substructure Tanimoto similarity 

coefficient of 0.17 and 0.16 with both compounds respectively [282, 342]. Compounds 4 

and 5 have been reported to inhibit the growth and invasion of pancreatic cancer cells 

via disruption of the S100P-RAGE interaction [195, 197]. This structural diversity 

between 24 and 4 and 5 bodes well in the search for novel inhibitors of S100P as it 

ensures exploitation of the chemical space that could be targeted in pancreatic cancer 

therapy. 

Although compound 24 is commercially available, this will be first time, to the 

best knowledge of this author, that its synthesis, purification and characterisation are 

discussed. The approach used to design synthetic routes for the compound will be 

shown. The compound’s in vitro activity, as well as four of its analogues, against target-

specific and non-specific pancreatic cancer cells will also be discussed.  
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Figure 4.1: Compound 24 is structurally different from cromolyn (4) and its analogue C5OH 

(5), the two compounds shown to bind to S100P [195, 197]. 
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4.2 RESULTS AND DISCUSSION 

4.2.1 Strategy for the synthesis of compound 24  

Retrosynthetic analysis on 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoic acid (24) identified four synthons (ix), (x), (xi) 

and (xii) (Scheme 4.1). Disconnection of the two O=C-N bonds on the pyrrolidine-2,5-

dione moiety led to 3-aminobenzoic acid being identified as the appropriate synthetic 

equivalent for synthon (ix), and 9-nitroanthracene-maleic anhydride cycloadduct as the 

synthetic equivalent for (x). Further disconnection of the cycloadduct resulted in maleic 

anhydride and 9-nitroanthracene as the corresponding synthetic equivalents for the 

generated synthons (xi) and (xii) respectively (Scheme 4.1). Having determined the 

simplest readily available starting materials (RASMs) to the target molecule 24, two 

synthetic routes a and b were identified using Reaxys® (version 1.7.8; Elsevier; 2012, 

www.elsevier.com/reaxys, Scheme 4.2). Both routes involve the reaction of maleic 

anhydride either with ethyl aminobenzoate initially, followed by 9-nitroanthracene 

(route a) or alternatively with 9-nitrotoanthracene initially, followed by the 

aminobenzoic acid (route b). The first step of route a involves an addition/elimination 

reaction to yield the intermediate 115, which will subsequently react with 9-

nitroanthracene in a Diels–Alder cycloaddition to give 24. Alternatively, route b starts 

with the Diels–Alder cycloaddition reaction between maleic anhydride and 9-

nitroanthracene to form the cycloadduct 119 (Scheme 4.2). The final step in this route 

involves a simultaneous addition/elimination reaction with the amine to form the target 

compound 24 (Section 4.2.3).   
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Scheme 4.1: Retrosynthetic analysis on target molecule (TM) 24 to identify readily available 

starting materials (RASMs). 

  



Chapter 4: Synthesis and Screening of Chembridge 7356270 (24) and Analogues 

 

160 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2: Overview of the synthetic routes identified for 24. (FGI: functional group interconversion). 
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4.2.2 Route a  

In the first approach (Scheme 4.3), the ethyl ester of 3-aminobenzoic acid was 

reacted with maleic anhydride to obtain 114. The acid 114 was then dehydrated to give 

the maleimide 115. Using the ester instead of the acid in the first step circumvented 

solubility problems encountered in subsequent steps when 3-aminobenzoic acid was 

used as the initial reagent. The first synthetic step was carried out at room temperature to 

yield the intermediate product 114 and the second under simple reflux conditions to give 

intermediate 115. Yields for intermediates 114 and 115 were reproducible, and the 

intermediates were not purified prior to the next synthetic step being carried out 

(Scheme 4.3). The next stage of the synthesis involved heating the maleimide 115 under 

reflux with 9-nitroanthracene in a Diels–Alder cycloaddition, to give the ester 

cycloadduct 116 of the target compound.  

Diels–Alder synthesis is an important [4+2] cycloaddition reaction that is 

commonly employed to generate new cycloadducts by reacting a diene, a compound 

with two conjugated carbon double bonds, in its cis conformation, with a dienophile 

[343-346]. The reaction was initially described by Otto Diels and Kurt Alder in 1928 

[347], for which they were awarded a Nobel Prize in 1950. The Diels–Alder reaction has 

been widely applied in synthesis to give highly regioselective and stereogenic 

compounds [348-350]. Its simplicity has made it an ideal and important route for 

forming new unsaturated six-membered rings and the use of catalysts has seen the 

production of highly enantioselective products [351-353].  
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The first attempt at synthesising the target compound 24 via the Diels–Alder 

reaction was carried out by adapting the method of Bova et al. [354] but was not 

successful. In this method, the maleimide 115 was reacted with 9-nitroanthracene under 

reflux in xylene but no product was isolated. Microwave-assisted synthesis with and 

without solvent proved ineffective. Both toluene and xylene, the two non-polar solvents 

used, are poor microwave energy absorbers [355] and could not therefore attain a high 

enough temperature required to facilitate the reaction. It was hoped that the use of 

microwave-assisted synthesis using such solvents would allow the direct transfer of 

microwave energy to the reactants thus allowing the reaction to occur. The use of silica 

gel in Diels–Alder reactions using microwave energy has been previously reported with 

moderate yields [356, 357]. However, when the Diels–Alder reaction between 115 and 

9-nitroanthracene was carried out with silica gel using the microwave, no product was 

isolated, the starting diene was recovered suggesting no reaction had occurred.  
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Scheme 4.3: First synthetic route (route a) for compound 24. 
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While 9-nitroanthracene has been cited in literature for many Diels–Alder 

reactions [358-360], the poor reactivity between this diene and the maleimide 115 could 

be attributed to the former’s poor electron density due to the electron withdrawing effect 

of the nitro group on the π system. Electron-withdrawing groups on position C9 of 

anthracene have been reported to slow the rate of the Diels-Alder reaction [361]. It is 

also possible that the bulky N-aryl group of 115 was sterically interfering with the π 

system of the diene. Similar interactions between ortho-substituents of the N-aryl group 

and the π system have been previously reported to have a stabilising or destabilising 

effect on the π system [362]. Absence of the electron withdrawing effect of the nitro 

group was evident when anthracene was used as the diene. Anthracene reacted well with 

115 under reflux conditions to give the anthracene-maleimide cycloadduct ester 117 

(Scheme 4.4). Hydrolysis of the ester to the acid did not go to completion, but gave a 

mixture of both the acid and ester. No attempts were made to separate the two as a 

simpler route to forming the target compound (route b) had been identified. 

 

Scheme 4.4: Reaction of anthracene with 115 to give the anthracene-maleimide cycloadduct 

ester 117. 
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4.2.3 Route b 

A second approach to generate the target compound was employed after the first 

attempt (Scheme 4.3) failed to generate the required product 24. In the second route, 

maleic anhydride was first reacted with 9-nitroanthracene under reflux as described by 

Wade [363] to give the Diels–Alder cycloadduct 119 (Scheme 4.5). The successful 

reaction between maleic anhydride and 9-nitroanthracene demonstrates the possibility 

that failure of the latter to react with the dienophile 115 (route a, Scheme 4.3) could be 

due to the steric inference of the N-aryl group of the dienophile with the π system of the 

diene in addition to the possible electron withdrawing effect of the nitro group of the 

diene on the π system.   

The cycloadduct product 119 was confirmed as the desired intermediate by the 

appearance of three distinct signals for the three chemically different protons in the 1H-

NMR as a result of the formation of a new 6-membered ring (Section 4.5.2.1). Since 

these signals were different from the singlet observed for the olefinic protons of maleic 

anhydride, their appearance in the 1H-NMR spectrum served as a benchmark in 

confirming the success or otherwise of the Diels–Alder cycloaddition reaction.   

In the final step of this route, the cycloadduct 119 was reacted directly with 3-

aminobenzoic acid in glacial acetic acid [364] to give the desired product 24 as a white 

solid in 80% yield (Scheme 4.5). 1H- and 13C-NMR, IR and LC-MS analyses all 

confirmed the product as compound 24 (Section 4.5.2.1.1).   
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Scheme 4.5: Synthesis of compound 24 via route b. 

 

4.2.4 Analogues of compound 24 

Once the target compound was confirmed as compound 24, route b was 

employed to synthesise analogues by varying three main groups R, Rʹ and X on the 

target compound (Figure 4.2). 

 

 

 

 

Figure 4.2: General structure of analogues of compound 24 that were synthesised by varying the 

X, R and Rʹ groups. 
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In the first instance, analogues were synthesised using 9-nitroanthracene (X = NO2) as 

the diene in the Diels–Alder reaction. The substituents on the amine (Scheme 4.2) were 

varied between positions 3 and 4 of the phenyl ring. Ortho-substituted amines were not 

considered for synthesis because of the potential interaction between the ortho-

substituent on the N-aryl phenyl ring and the π system of one of the benzene rings of the 

dihydroanthracene group if the latter adopts a conformation perpendicular to the 

succinimide group [362]. In addition, docking studies showed that an ortho substituent 

on the N-phenyl ring could prevent that part of the compound from interacting with the 

“smaller putative site” of S100P (Figure 4.3). A total of 19 analogues were synthesised 

with X = NO2 (24a-24s), and meta- and para-substituted amines in addition to 

compound 24 (Table 4.1, Section 4.5.2.1.1). 

The next set of analogues were synthesised using anthracene (X = H) as the 

diene replacing 9-nitroanthracene. Each analogue synthesised with the nitro group had a 

corresponding analogue without the group (Table 4.2, Section 4.5.2.2.1). Twenty 

compounds were synthesised from the anthracene-maleic anhydride cycloadduct (121-

121s) bringing to 40 the total number of analogues synthesised including compound 24. 

It was not surprising to find some of the synthesised anthracene-maleic anhydride 

derived analogues, 121, 121d, 121e, 121j, 121n, 121n, 121p, 121q, and 121r in the 

literature [365-368] as this cycloadduct is commonly encountered in many Diels–Alder 

reactions [369-371]. These analogues were previously synthesised to study their 

photoactivatability ([365], 121e, 121n, 121p, 121q, 121r) or their inclusion behaviour 

([366], 121, 121d, 121e, 121n) but not for their biological activity. 



Chapter 4: Synthesis and Screening of ChemBridge 7356270 (24) and Analogues 

 

168 

 

 

Figure 4.3: Ortho-substituted analogue of compound 24. A) Modelling of the interaction of the ortho-substituted analogue of compound 24 

(in green) shows the effect of ortho- substitution preventing interaction with the putative binding pockets of S100P (arrows). B) Predicted 

interaction of compound 24, the carboxylic acid group in the meta position, with putative binding pockets of S100P (arrows). 
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Table 4.1: Analogues of compound 24 where X = NO2. Yields (from the Diels–Alder step), 

melting point (M.p.) and compound appearance are shown.  

 

 

Compound  R R' Yield* (%) M.p. (°C) Appearance 

24 CO2H H 80 271-272 white crystals 

24a CO2Et H 84 202-203 white flakes 

24b F H 81 241-243 cream flakes 

24c Cl H 82 230-232 cream solid 

24d NO2 H 93 240-242 pale yellow powder 

24e H H 72 110-112 cream flakes, static 

24f† CH3 H 91 209-211 cream powder 

24g† MeO H 72 262-265 brown solid 

24h† Me2N H 97 213-215 cream powder 

24i† CN H 97 310-311 cream powder 

24j H CO2H 80 344-345 cream flakes 

24k H CO2Et 78 255-256 white flakes 

24l H F 88 223-225 cream solid 

24m H Cl 91 270-273 cream flakes, static 

24n H NO2 78 316-318 fluffy cream powder 

24o† H CH3 75 258-262 white solid 

24p† H MeO 85 249-250 grey-purple solid 

24q† H Me2N 74 265-266 light grey powder 

24r H I 84 305-308 white crystalline powder 

24s H t-Bu 82 238-240 cream solid 

†Compounds synthesised by Kulikowska [372] and Grewal [373] as part of their final year project for the 

degree of Master of Pharmacy, University of Hertfordshire. *Yields shown are from the reaction of 

maleic-anthracene adduct and the amine.  
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Table 4.2: Analogues of compound 24 where X = H. Yields (from the Diels–Alder step), 

melting point and compound appearance are shown. 

 

Compound  R R' Yield* (%) Mp (°C) Appearance 

121 CO2H H 95 285-288 white solid 

121a CO2Et H 96 205-207 pale pink powder 

121b F H 87 228-230 white flakes 

121c Cl H 92 238-240 cream flakes 

121d NO2 H 95 282-285 white powder 

121e H H 83 211-215 white solid 

121f† CH3 H 61 199-200 cream solid 

121g† MeO H 91 200-201 sand-coloured solid 

121h† Me2N H 93 228-230 cream solid 

121i† CN H 99 262-264 white solid 

121j H CO2H 86 354-355 white powder 

121k H CO2Et 92 220-222 white powder 

121l H F 96 250-253 pinkish solid 

121m H Cl 94 275-278 fluffy white powder 

121n H NO2 83 294-295 cream crystals 

121o† H CH3 94 220-222 white powder 

121p† H MeO 87 240-243 light purple solid 

121q† H Me2N 96 243-245 light purple powder 

121r H I 89 303-307 white solid 

121s H t-Bu 93 268-271 white solid 

†Compounds synthesised by Kulikowska [372] and Grewal [373] as part of their final year project for the 

degree of Master of Pharmacy, University of Hertfordshire. *Yields shown are from the reaction of 

maleic-anthracene adduct and the amine.   
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Similar to compound 24, analogues with the X = NO2 substituent (Table 4.1) 

exhibited three distinct signals upfield in their 1H-NMR spectra due to asymmetry from 

the nitro group, which coupled to one another. Where defined, the first signal appeared 

as a doublet of doublets (dd) in the region δ = 3.53-3.76 ppm with coupling constants of 

~ 9.0 and 3.0 Hz. This signal comes from proton Hb of the succinimide moiety (Figure 

4.4) and is split into a doublet of doublets by protons Ha and Hc respectively (Section 

4.5.2.1.1). The large J coupling constant (J ~ 9.0 Hz) comes from the adjacent vicinal 

proton Ha of the succinimide moiety whose signal, a doublet, lies downfield between δ = 

4.4-4.6 ppm. Proton Hc of 9,10-dihydroanthrancene appears as a doublet when the peak 

is defined, at around δ 5.0-5.1 ppm with a coupling constant of J~3.0 Hz from proton 

Hb. These coupling constant values are comparable to those reported for similar 9-

substituted Diels–Alder anthracene-cycloadducts [360]. 

Anthracene-derived analogues (121-121s), where X = H, in comparison to the 

corresponding nitro derivatives, only had two proton peaks from protons Ha and Hb 

(Figure 4.4) on their 1H-NMR spectra from the newly formed six-membered ring of the 

Diels–Alder cycloadduct (Section 4.5.2.2) due to symmetry. These signals are in 

agreement with similar anthracene-maleic anhydride-derivatives published in the 

literature [365, 366, 369, 370, 374]. Both peaks appear as multiplets, with the first peak 

occurring between δ = 3.34-3.51 ppm. This signal originates from protons Ha on the 

succinimide moiety. The second signal lies upfield between δ = 4.85-4.89 and comes 

from protons Hb of the newly formed 5,10-dihydroanthracene cycloadduct. No coupling 
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constants were available for these signals as they appeared as multiplets (Section 

4.5.2.2.1). 

In the 13C-NMR spectra of the 9-nitroanthracene analogues (24-24s), the two 

succinimide carbonyl carbon atoms appear as two signals between δ = 175 and 172 

ppm, whereas in the anthracene-derived analogues (121-121s), they are appear as a 

single signal in the same region due to symmetry (Section 4.5.2.2.1). In compounds 24-

24s, there are 18 aromatic carbon signals (6 carbon signals per aromatic ring) on the 13C-

NMR spectra. In comparison, compounds 121-121s exhibited 12 carbon signals (6 from 

the N-substituted phenyl ring and 6 from the aromatic anthracene rings) in their 13C-

NMR spectra due to symmetry.  

 

Figure 4.4: Signals from Ha, Hb and Hc. Three distinct signals were observed for protons Ha, Hb 

and Hc in the 1H-NMR spectra of all analogues with X = NO2 (compounds 24-24s), while only 

two distinct signals were observed for the corresponding analogues where X = H (compounds 

121-121s).   
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Infrared (IR) analysis of all the nitro analogues (X = NO2, 24-24s) show distinct 

sharp NO2 peaks at around 1550 cm-1 (asymmetric stretch) and 1340 (±50) cm-1 

(symmetric stretch). Melting points for the analogues varied, with 24j (X = NO2, R = H, 

Rʹ = CO2H) and its corresponding analogue 121j (X = H, R = H, Rʹ = CO2H) recording 

the highest melting points between 354-355 °C (Table 4.1 and 4.2 respectively). Both 

compounds are para- substituted and exhibited a considerable difference, greater than 

50 °C, in their melting points compared to the meta- substituted isomers. This difference 

is not surprising as the presence of symmetry in organic compounds has been reported to 

correlate with high melting points [375, 376]. The high melting point in symmetrical 

molecules is believed to be due to the more compact arrangement of the molecules in 

the crystal lattice which in turn requires higher energy to disrupt [376, 377]. Indeed, of 

the 32 analogues synthesised that have both para- and meta-isomers, all but three of the 

para-isomers, 24b, 24g, and 121d, have higher melting points than their corresponding 

meta- substituted counterparts. It is not known what is responsible for this disparity in 

the melting points of the three isomers, but cases where meta- or ortho- substituted 

isomers have a higher melting point than their para-substituted have been reported 

[378].  

Although most of the analogues are not easily ionisable, except for those with 

acidic groups such as compounds 24, 24j, 121 and 121j, liquid chromatography-mass 

spectrometry (LC-MS) analysis was still able to pick up the molecular ion, either in 

negative or positive mode. In the LC-MS spectra of intermediates 119 and 120, an m/z 
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of + 31 was observed for both (Sections 4.5.2.1 and 4.5.2.2). These compounds were 

dissolved in methanol and the m/z indicates formation of a methanol-adduct. 

4.2.5 Analogue synthesis for high-throughput biological screening 

The rationale behind the synthesis of the above analogues was to create a library 

of compounds similar to compound 24 that could be used in high-throughput biological 

screening. By varying the R and Rʹ groups on the phenyl ring, the effect of substituents 

in position 3 or 4 on biological activity could be compared and contrasted for further 

studies such as during structure-activity relationship (SAR) studies. By replacing the 

carboxylic acid group in 24 with groups such as H, CO2Et, Cl, F, MeO, CN, NO2, I, t-

Bu, and Me2N, a variety of groups with different physicochemical properties to the acid 

are sampled. For example, replacing the CO2H group with a CH3 group removes the 

potential for hydrogen bonding and potential ionic interactions between the compound 

and the target protein. However, the presence of the hydrophobic CH3 group could 

enhance hydrophobic interactions with a lipophilic region of the protein that would 

otherwise not have been possible with the acid group. Substitution at the para- position 

provides a series of compounds that could be compared with their meta- substituent 

counterparts, to assess whether substituent position on the phenyl ring impacts on 

biological activity. For SAR purposes, the para-substituted substituents synthesised lie 

in different quadrants of the Craig plot (Figure 4.5) compared to the carboxylic acid 

group. The Craig plot [379] is a two-dimensional map that correlates two 

physicochemical properties, the Hammett substituent constant (σ) and the substituent 

hydrophobicity constant (π), for para-substituted groups on a phenyl ring. The Hammett 
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substituent constant provides a measure of a substituent’s electronic properties while the 

substituent’s π-value provides its hydrophobicity relative to hydrogen [201]. This 

information is useful as a guide to synthesising more compounds based on biological 

activity and calculation of which properties may need improving. Sixteen of the 

analogues synthesised (24l-24s, 121l-121s) have substituents which are included in the 

Craig plot (highlighted in Figure 4.5) which should aid in future SAR calculations.  

By synthesising analogues with different substituents and physicochemical 

properties, it is hoped that high-throughput biological screening will facilitate the 

process of identifying which groups of compounds could be progressed for further 

optimisation studies in the search for a therapeutic agent against pancreatic cancer.  
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Figure 4.5: Craig plot showing σ and π values for para-substituted phenyl substituents. Sixteen 

of the synthesised analogues (24l-24s, 121l-121s) have substituents which are included in the 

Craig plot. These substituents (highlighted in yellow) have σ and π properties that vary from the 

carboxylic acid group (circled in red). (Graph adapted from Patrick [201]).  
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4.2.6 Selecting analogues for biological screening 

Five compounds including the “hit” compound 24 were selected, from the 40 

synthesised, for biological screening against pancreatic cancer cells (Figure 4.6, Table 

4.3). Compound 24a is the ester analogue of 24, and has a similar molecular weight to 

cromolyn; compound 24e on the other hand lacks a substituent on the phenyl ring, and 

was selected to examine the absence of the carboxylic acid group on biological activity. 

Compound 24j, the para-substituted analogue of 24, is selected to examine the effect of 

substituent position on biological activity, and compound 121, which lacks a NO2 group, 

was selected to assess whether this group is necessary for activity.  
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Table 4.3: Physicochemical properties of cromolyn and compounds selected for biological 

screening. MW: Molecular Weight, tPSA: total Polar Surface Area, Log S: aqueous solubility, 

clog P: octanol-water partition coefficient, pKa: acid dissociation constant. Properties calculated 

in MOE 

 

Compound MW tPSA Log S clog P pKa 

Cromolyn 468.37 165.89 -4.24 1.48 2.58 

24 440.41 126.49 -5.21 2.80 3.84 

24a 468.13 115.49 -5.93 3.74 - 

24e 396.40 89.19 -5.26 2.74 - 

24j 440.41 126.49 -5.34 2.80 3.71 

121 395.41 74.68 -4.66 3.10 3.87 

 

 

 

Figure 4.6: Compounds selected for biological screening. Highlighted in red are the differences 

between analogues and “hit” compound 24.  

24

– 3-CO2H – 3-CO2H
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4.3 BIOLOGICAL SCREENING  

4.3.1 Growth of pancreatic cancer cells 

The response of pancreatic cancer cells BxPC-3 and Panc-1 (Figure 4.7) in 

growth culture medium was assessed prior to screening the effect of compound 24 and 

analogues against them. A study of the growth of both cell lines for optimal cell 

proliferation studies was carried out using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)-based assay 

(Promega, Southampton, UK). This assay exploits the presence of a mitochondrial 

dehydrogenase enzyme in metabolically active viable cells that reduces the salt to a 

coloured soluble formazan dye product which is then determined spectrophotometrically 

[335]. In short, a high absorbance reading corresponds to a higher metabolic activity, 

which can also be interpreted as an increase in cell numbers. This will be discussed 

further in the sections below. 

It was found that both cell lines grow optimally when seeded at a density of 1 x 

104 cells/well in 96-well plates (Figure 4.8). At this density, the cells grew exponentially 

for a period of 120 hours (5 days) before reaching a plateau and entering the death phase 

around day 7 (Figure 4.8). Furthermore, at a density of 1 x 104 cells/well, most of the 

cells were attached overnight (~23 hours, Figure 4.9). These cells are adherent cell lines 

and as such need to attach to grow. For screening purposes, seeding at 1 x 104 cells/well 

seemed to provide the best seeding density for attachment during the exponential growth 

phase. The growth characteristics of the cells when seeded at 1 x 103 cells/well are 
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similar to that at 1 x 104 cells/well. However, due to the lower cell number per surface 

area per well, the cells at the former density took longer to attach and divide compared 

to the latter (Figure 4.9), which is most likely due to the limited cell-to-cell interaction 

and signalling at the lower concentration. At a density of 1 x 105 cells/well, both BxP-3 

and Panc-1 cells showed a rapid decline in cell number (i.e. metabolic activity) possibly 

due to cell death caused by the cells competing for limited nutrients in 100 μL of growth 

medium, lack of growing area that they require for adherence as well as exposure to a 

cocktail of by-products/metabolites/intracellular enzymes excreted by the other growing 

or dead cells (Figure 4.8 and 5).  

In conjunction with the MTS assay, the CytoTox-ONE™ Homogeneous 

Membrane Integrity Assay (Promega, Southampton, UK) was used to determine 

viability of both cell lines during their growth. However, the results obtained were found 

to be, inconclusive. This assay relies on the release of the enzyme lactate dehydrogenase 

(LDH) from compromised cell membranes of dead cells into the culture medium which 

is then measured fluorometrically [380]. The presence of foetal bovine serum (FBS, 

10% v/v) in the growth medium has been reported to interfere with this particular assay 

due to endogenous LDH in FBS [381, 382] yielding a high signal-to-noise ratio. In this 

study, the signal-to-noise ratio was still high even after accounting for background noise 

from media-only controls. As the assay was carried out in multiplex with the MTS 

assay, which performed satisfactorily in the presence of FBS, lowering the serum 

concentration to optimise it for LDH release studies would require assessing the 
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response of the cells to such conditions which would be counter to the serum 

concentration for optimal cell growth as recommended by the vendor.    

In addition to possible serum interference, phenol red present in culture media 

has also been reported to interfere with the LDH assay [383]. Indeed, many papers have 

reported carrying out LDH studies using serum-free/reduced serum and phenol red-free 

culture medium [384-386]. This is an avenue that could be pursued in future if using this 

assay to determine the cytotoxicity of the compounds screened.    
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Figure 4.7: Pancreatic cancer cells BxPC-3 and Panc-1 adhered at the bottom of T-75 cm2 

flasks. Cells were cultured in complete growth medium supplemented with FBS (10% v/v), 

Penicillin/Streptomycin (200 U) solution, and L-glutamine (2 mM). Images taken with a 

GXCAM-9 digital microscope C-mount camera (GT Vision, Suffolk, UK) mounted on an 

Olympus CKX41 microscope at different magnifications.    
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x20
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Figure 4.8: Batch growth curve for pancreatic cancer cells over a period of two weeks. A) 

BxPC-3 cells. B) Panc-1 cells. Cells were plated in 96-well plates at a density of 1000, 10,000 

and 100,000 cells/well (100 μM) in complete cell culture growth medium. Samples were 

assessed using the MTS reagent (Promega) according to the manufacturer’s instructions before 

reading absorbance at 492 nm using a Multiskan Ascent 96/384 plate reader (Thermo 

Scientific).   
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Figure 4.9: Representative images of attachment of pancreatic cancer cells 48 h after seeding in 

96-well plates for batch growth curve studies. After reading MTS absorbance for proliferation 

studies, cells were washed with Phosphate Buffered Saline (PBS), fixed with paraformaldehyde 

(3.7% w/v) at room temperature for 15 minutes followed by another wash with PBS. After 

fixation they were permeabilised with Triton X-100 (0.01% v/v) for 15 minutes, washed with 

PBS before staining the cytoplasm and nuclei with May-Grünwald (0.25% v/v) and Giemsa 

(0.4% v/v) stains respectively. Images taken with a GXCAM-9 digital microscope C-mount 

camera (GT Vision, Suffolk, UK) mounted on an Olympus CKX41 microscope at x20 

magnification (objective lens).    
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4.3.2 Effect of cromolyn (4), compounds 24, 24a, 24e, 24j and 121 on pancreatic 

cancer cells 

4.3.2.1 Proliferation studies 

Cromolyn (4) has been reported to inhibit proliferation of pancreatic cancer cells 

by binding to S100P cells in both in vitro and in vivo models [195, 334, 387]. To 

determine this effect, pancreatic cancer cells BxPC-3 and Panc-1 were incubated with 4 

at different concentrations and the effect on proliferation assessed using the MTS assay. 

Compound 4 was found to have no meaningful statistical effect on the proliferation of 

both these cell lines at low concentrations (1, 10 and 100 μM) compared to the no-

treatment control (p>0.05, Figure 4.10). At the high concentration of 1000 μM, there 

was a significant effect on proliferation of both cell lines (p<0.05) although, on closer 

observation, this effect seems to be constant over the 72 h period. This effect could be a 

result of general toxicity of the compound to the cells from such a high concentration 

rather than a specific anti-proliferative effect. These findings are similar to results by 

Mahmoud [328] but contrary to those of Arumugam et al. [195]. The latter group 

observed no effect on the proliferation of Panc-1 cells from 4, but Panc-1 cells 

transfected with S100P were found to be inhibited by the compound at 100 μM after 48 

h. In the same work, they also reported that 4 inhibited proliferation of BxPC-3 cells at 

10 and 100 μM (p = 0.002 and p<0.001 respectively). Since the current studies were not 

carried out in exactly the same way as Arumugam et al.’s work, it is not known if the 

discrepancies observed herein are due to disparate methodologies.   
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Figure 4.10: Effect of cromolyn (4) on proliferation of pancreatic cancer cells BxPC-3 (A) and 

Panc-1 (B). Cells were seeded overnight (1 x 104 cells/well in 100 μL) in 96-well plates in 

complete medium supplemented with FBS (10% v/v), L-glutamine (2 mM) and 

Penicillin/Streptomycin (200 U) solution. Cromolyn was added to the wells and cell 

proliferation assessed using the MTS assay after 24, 48, and 72 h. Results are expressed as mean 

+ SEM of three independent experiments with n = 12. P value of <0.05(*) was determined 

relative to control using 2-Way ANOVA. Post-test comparisons were made using Bonferroni 

test at 95% confidence interval.  
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In Arumugam et al.’s proliferation studies, they plated 96-well plates at a density 

of 1 x 103 cells/well, compared to 1 x 104 cells/well used in the present study, and they 

measured the effect of 4 on the cells’ proliferation after 48 h [195]. Other than the 

differences in seeding density, the discrepancies in the effect of 4 on these cells between 

this work and Arumugam et al.’s is something that warrants further investigation.  

When compound 24 was screened for anti-proliferation properties on BxPC-3 

cells, there was a significant inhibition of growth relative to control at all three 

concentrations (1, 10 and 100 μM) after 72 h (p<0.0001, Figure 4.11). However, a 

similar effect was also observed on the Panc-1 cells, casting doubt upon a solely S100P-

mediated effect. Compound 24a, which has an ester group in place of the carboxyl 

group, had a more pronounced anti-proliferative effect on BxPC-3 cells after 24 h 

compared to compound 24 (Figure 4.12A). This initial decrease in cell metabolic 

activity may be due to exposure of the cells to a foreign stimulus resulting in a lower 

proliferative ability. After 48 h, the cells appear to be recovering albeit only slightly 

compared to the control. A dose-dependent decrease in proliferation was observed for 

all three concentrations (1, 10 and 100 μM) after 72 h with the highest effect seen at 100 

μM. This concentration-dependent effect of 24a was absent on Panc-1 cells, although 

the compound still interestingly exerted an effect on proliferation at all three 

concentrations (1, 10 and 100 μM) relative to control (Figure 4.13A).  
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Figure 4.11: Effect of compound 24 on proliferation of pancreatic cancer cells BxPC-3 (A) and 

Panc-1 (B). Cells were seeded overnight (1 x 104 cells/well in 100 μL) in 96-well plates in 

complete medium supplemented with FBS (10% v/v), L-glutamine (2 mM) and 

Penicillin/Streptomycin (200 U) solution. Compound 24 was added to the wells and cell 

proliferation assessed using the MTS assay after 24, 48, and 72 h. Results are expressed as mean 

+ SEM of three independent experiments with n = 12. P value of <0.0001 (****) was 

determined relative to control using 2-Way ANOVA. Post-test comparisons were made using 

Bonferroni test at 95% confidence interval.  
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A similar dose-dependent effect on proliferation of BxPC-3 was seen with 24e 

after 72 h (Figure 4.12B). This analogue lacks a substituent on the phenyl ring when 

compared to 24 and 24a. Interestingly, the effect on proliferation of Panc-1 cells closely 

resembled that exerted by 24a, the ester analogue. At 24 h, the anti-proliferative effect 

on Panc-1 cells was striking but the cells seem to be recovering after 72 h albeit 

marginally relative to control (Figure 4.13B).  

The regioisomer of compound 24, compound 24j, with the carboxyl group in the 

para position produced a more pronounced anti-proliferative effect on BxPC-3 cells at 1 

and 10 μM compared to 24 where the acid group is in the meta position (Figure 4.12C). 

Although still viable, as assessed by trypan blue counting, no metabolic activity was 

observed for the BxPC-3 cells at 1 μM after 72 h, making 24j the most potent inhibitor 

at this concentration in comparison to 24, 24a and 24e. Similar effects were observed on 

the proliferation of Panc-1 cells calling into question whether the mechanism by which 

this compound is acting is S100P-mediated (Figure 4.13C).   

Compound 121, which lacks the NO2 group, inhibited proliferation of BxPC-3 

cells at low concentrations, 1 and 10 μM, relative to control (Figure 4.12D). Again, 

similar to compounds 24, 24a, 24e and 24j, inhibition was also observed against Panc-1 

cells (Figure 4.13D). 
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Figure 4.12: Effect of hit compounds on proliferation of BxPC-3 cells. A) Compound 24a. B) Compound 24e. C) Compound 24j. D) 

Compound 121. Cells were seeded overnight (1 x 104 cells/well in 100 μL) in 96-well plates in complete medium supplemented with 

FBS (10% v/v), L-glutamine (2 mM) and Penicillin/Streptomycin (200 U) solution. Compounds were added to the wells and cell 

proliferation assessed using the MTS assay after 24, 48, and 72 h. Results are expressed as mean + SEM of three independent 

experiments with n = 12. P value of <0.0001 (****) was determined relative to control using 2-Way ANOVA. Post-test comparisons 

were made using Bonferroni test at 95% confidence interval   
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Figure 4.13: Effect of hit compounds on proliferation of Panc-1 cells. A) Compound 24a. B) Compound 24e. C) Compound 24j. D) 

Compound 121. Cells were seeded overnight (1 x 104 cells/well in 100 μL) in 96-well plates in complete medium supplemented with 

FBS (10% v/v), L-glutamine (2 mM) and Penicillin/Streptomycin (200 U) solution. Compounds were added to the wells and cell 

proliferation assessed using the MTS assay after 24, 48, and 72 h. Results are expressed as mean + SEM of three independent 

experiments with n = 12. P value of <0.0001 (****) was determined relative to control using 2-Way ANOVA. Post-test comparisons 

were made using Bonferroni test at 95% confidence interval.  
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Despite the effect of these compounds on the proliferation of Panc-1 cells, which 

casts doubt on an S100P-mediated effect on BxPC-3 cells, it is encouraging that the 

compounds are exerting some anti-proliferative effects at low concentrations of 1 and 10 

μM relative to control. What will be interesting to see is how the cells respond to the 

compounds at nanomolar concentrations, a task that was not carried out in this study due 

to time limitations, as this would provide an opportunity to further optimise them to 

improve their potency. Ideally, high potency is desired for a drug candidate at low 

concentrations in order to avoid unwanted and potentially adverse side effects. Low-

concentration dosing could also be beneficial to solubility and stability of the 

compounds, important properties that are useful further down the drug development and 

formulation stages [388].  

There were some solubility issues in the aqueous-based culture media for 

compounds 24a, 24e and 24j at 100 and 1000 μM (Figure 4.14). Although soluble in 

dimethyl sulfoxide (DMSO), a precipitate was observed for all three compounds at 100 

and 1000 μM once they were added to wells containing the cells in culture media. These 

precipitates sometimes resulted in erroneously high MTS absorbance readings, for e.g. 

compound 24a at 100 μM for Panc-1 cells (Figure 4.13B). To identify the source of the 

abnormally high MTS readings at these concentrations, the compounds were added to 

culture media (both RPMI and DMEM) in the absence of cells in 96-well plates before 

adding the MTS reagent and reading the absorbance. As suspected, there were high 

absorbance readings after addition of the MTS reagent to these three compounds in 

culture medium (Figure 4.15). Visual analysis of images of 24j taken before and after 
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addition of the MTS reagent showed what appeared to be salt deposits on the crystals of 

the compound, suggesting formation of a complex between the reagent and the 

compound (Figure 4.15B and C). Since these solubility issues were only encountered at 

high concentrations (100 and 1000 μM), these concentration values will be omitted in 

future studies.  
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Figure 4.14: Precipitation of compounds (red arrows) when added to BxPC-3 cells (white 

arrows) in RPMI-1640 culture medium in 96-well plates. A) 24a. B) 24e. C) 24j. Images taken 

with a GXCAM-9 digital microscope C-mount camera (GT Vision, Suffolk, UK) mounted on an 

Olympus CKX41 microscope at x4 magnification (objective lens).    
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Figure 4.15: Solubility issues encountered with compounds 24a, 24e and 24j. A) Absorbance 

reading for the compounds in RPMI-1640 culture medium (in the absence of cells) following the 

addition of the MTS reagent. B) Compound 24j in RPMI-1640 medium before addition of the 

MTS reagent (x40). C) Compound 24j in RPMI-1640 after addition of MTS reagent showing 

24j crystals in complex with reagent (arrows) (x40).  
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4.3.2.2 Membrane integrity studies 

Cell membrane integrity studies carried out using CytoTox-ONE™ 

Homogeneous Membrane Integrity Assay (Promega, Southampton, UK), were 

inconclusive for all the compounds (24, 24a, 24e, 24j and 121) examined. There was a 

high signal-to-noise ratio at all concentrations even after subtracting values obtained 

with media-only controls for background absorbance. As discussed previously (Section 

4.3.1), the high interference observed here could be due to many factors including the 

presence of foetal bovine serum and the phenol red dye in the culture medium, both of 

which have been reported to interfere with the lactate dehydrogenase (LDH) enzyme in 

the assay. 

Results from the membrane integrity studies, together with those from the MTS 

assay studies, would have provided an insight into how the compounds were exerting 

their effect on the cells. If the compounds were cytotoxic, cell membranes of both cell 

lines would be compromised and a high fluorescence reading would be expected from 

the LDH assay studies, the cells were viable at the start of the experiment as confirmed 

by the Trypan blue exclusion assay and therefore had intact cell membranes at the start 

of the experiment. The inconclusive results from the LDH assay investigations indicate 

that no conclusions can be drawn on the cytotoxicity or otherwise of these compounds. 

Further work to optimise this assay, or use of a different assay is necessary in the future 

in order to clarify the situation. Despite this setback with the cytotoxicity studies, the 

MTS results suggest that the compounds may be cytostatic, i.e. inhibition of cell growth 

by inhibiting the cells’ metabolic ability. This cytostatic property is promising at this 
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stage of the drug discovery process as it indicates possible alternative strategies for 

compound efficacy optimisation against pancreatic cancer cells. Indeed, in the absence 

of a cure, cytostatic anti-cancer drugs used to stabilise the disease may be the way 

forward with lethal, incurable cancers such as pancreatic cancer [389].  

4.3.2.3 Chick Chorioallantoic Membrane (CAM) Assay  

Angiogenesis plays a crucial role in cancer growth and progression by providing 

a rich network of blood vessels that supply oxygen and nutrients to the proliferating 

cells [390-392]. Inhibition of tumour angiogenesis therefore offers another therapeutic 

avenue of targeting cancer cell proliferation, migration and metastasis. Indeed, many 

anti-cancer drugs that are developed to inhibit tumour growth, migration and invasion 

do so by indirectly inhibiting proangiogenic factors [393, 394].  

The chick chorioallantioc membrane (CAM) assay was employed to assess the 

effect of screening compounds on blood vessel formation. Traditionally, this assay has 

served as a useful model to study angiogenesis [395, 396], tumour growth and migration 

[397-400]. Compounds 24, 24a, 24e, 24j and 121 were tested for anti-angiogenic 

properties adapting the method described in [401]. The compounds were added to the 

chorioallantioc membranes of 4-day old developing embryos via a cut window through 

the shell and incubated until day 10 when representative images are taken to assess 

angiogenesis. Of the five compounds tested, preliminary observations show only 

compound 24 appeared to affect angiogenesis (Figure 4.16). However, this effect was 

not reproducible as it was difficult to retain viable embryos by day 10 of the 



Chapter 4: Synthesis and Screening of ChemBridge 7356270 (24) and Analogues 

 

198 

 

investigation despite efforts to minimise injury to the embryo during the study. As a 

result of the high attrition rate associated with this assay, insufficient data was generated 

for statistical analysis, even for compound 24. Approximately 95% of embryos treated 

with the compounds on day 4 after first incubation did not make it to day 10, when they 

were assessed for anti-angiogenic effects. Due to time limitations, the experiment was 

only repeated twice, and on both occasions, most of the embryos had died by day 10. 

Despite this setback, the initial results obtained with compound 24 demonstrate the 

feasibility of this assay to study angiogenesis, a crucial process in tumour development. 

Once optimised in future studies, this assay, together with the proliferation and 

cytotoxicity assays, should provide a comprehensive understanding of how the screened 

compounds are affecting pancreatic cancer cell lines.  
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Figure 4.16: Chick chorioallantioc membrane (CAM) assay for compound 24. A) Developing 

embryo on day 4 following incubation showing the developing blood vessels. B) Compound 24 

(10 μM 20 μL pre-absorbed on filter paper) on the CAM membrane of a 10-day old embryo.   

A

B
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4.4 CONCLUSIONS 

Compound 24 and 39 analogues were successfully synthesised, isolated and 

characterised following a two-step synthetic route involving a Diels–Alder 

cycloaddition and an addition/elimination reaction. Compounds structures and purity 

were confirmed by characterisation via 1H- and 13C-NMR, melting point analysis, and 

LC-MS spectrometry. By varying the substituents in positions 3 and 4 of the phenyl ring 

of compound 24, as well as removing the nitro group, it is hoped that the diverse 

collection of analogues synthesised will provide a library of compounds that could be 

used in high throughput biological screening studies against pancreatic cancer cells. The 

results from these screens will be valuable in the development of a structure-activity 

relationship (SAR) model for these compounds in their optimisation for increased 

potency. 

Five compounds, including compound 24, were advanced for biological 

screening against the proliferation of pancreatic cancer cells. Compound 24 was found 

to inhibit proliferation of both BxPC-3 and Panc-1 cells at all concentrations of 1, 10 

and 100 μM (p<0.0001). Its ester analogue, 24a, also inhibited proliferation of both cell 

lines at all three concentrations. The same pattern of inhibition was observed for 24e (no 

substitution on the phenyl ring system), 24j (4-CO2H) and 121 (no NO2 group). 

Interestingly, all four analogues seemed to have a greater effect on proliferation of both 

cell lines compared to 24. Since all five compounds showed inhibitory activity at 1 μM 

relative to control (p<0.0001), it will be interesting to see their effect at sub-micromolar 

concentrations. Testing the compounds at sub-micromolar concentrations will also allow 
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the assessment of their IC50 values, an important property that will be useful when 

optimising them for potency.  

Early indications from the biological screening, although not definitively 

conclusive, suggest that these compounds have the potential to contribute to pancreatic 

cancer therapy. Preliminary results demonstrate that the five compounds examined 

affect the proliferative capability of pancreatic cancer cells to an extent. Given that there 

are 35 more analogues yet to be examined, the prospect of finding more hits with even 

better activity than the five compounds investigated remains high. The five compounds 

examined all have the potential for further optimisation to improve potency in the next 

stage of the drug discovery process, in the hope that one or more candidates will emerge 

as a lead therapeutic candidate for the treatment of pancreatic cancer.  
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4.5 EXPERIMENTAL 

4.5.1 General Methodology: Synthesis and Instrumentation 

Similar procedure as described in Section 3.5.1.  

4.5.1.1 Synthesis of compound 24: Route a 

4.5.1.1.1 Synthesis of (Z)-4-((3-(ethoxycarbonyl)phenyl)amino)-4-oxobut-2-enoic 

acid (114). (Adapted from Sortino et al. [402]) 

 

 

  

 

 

A pale brown solution of maleic anhydride (0.61 g, 6.20 mmol) and ethyl-3-

aminobenzoate (1.01 g, 6.11 mmol) in acetone (30 mL) was stirred at room temperature 

for 4.5 h until a precipitate formed. The precipitate was filtered off to give 114 as a 

fluffy cream powder, yield 1.49 g, 93%, which was used in the next step without further 

purification. M.p. 154-155 °C. 1H-NMR (400 MHz, acetone-d6)  (ppm) 10.64 (br. s, 

1H, OH), 8.27 - 8.41 (1 H, m, Ar-H), 7.99 (1 H, m, Ar-H ), 7.77 - 7.92 (1 H, m, Ar-H), 

7.53 (1 H, t, J = 8.0 Hz, Ar-H), 6.69 (1 H, d, J = 12.6 Hz, alkenyl-H), 6.39 (1 H, d, J = 
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12.6 Hz, alkenyl-H), 4.36 (1 H, q, J = 7.1 Hz, CH2), 1.36 (3 H, t, J = 7.1 Hz, CH3).  13C-

NMR (100 MHz, acetone-d6)  (ppm) 178.34 (C=O acid), 174.11 (C=O ester), 173.49 

(C=O amide), 134.60 (alkenyl-CH), 132.49 (alkenyl-CH), 131.52 (Ar-C), 129.35(Ar-C), 

126.56, 125.99 (Ar-C), 124.82 (Ar-C), 121.28 (Ar-C), 60.91 (CH2), 13.75 (CH3). IR 

vmax/cm-1: 3303 (N-H stretch), 3223 (OH stretch), 3158, 3124, 3093 (C-H stretch), 1720 

(C=O stretch, acid), 1678 (C=O stretch, ester), 1627 (C=O amide), 1106 (C-O stretch), 

1018 (C-N stretch). LC-MS (ESI) found m/z [M – H]-: 262, C13H13NO5 requires 263. 

4.5.1.1.2 Synthesis of ethyl 3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoate 

(115). (Adapted from Sortino et al. [402]) 

 

 

 

 

 

Sodium acetate (0.03 g, 0.31 mmol) was added to a stirred solution of 4-((3-

(ethoxycarbonyl)phenyl)amino)-4-oxobut-2-enoic acid (114) (0.35 g, 1.33 mmol) in 

acetic anhydride (20 mL) and the contents heated under reflux at 140 °C for 0.5 h. The 

pale yellow solution was cooled to room temperature while stirring for another 2 h. The 

mixture was poured into ice-cold sodium hydrogen carbonate (10% w/v, 40 mL) in an 
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ice-bath while stirring vigorously until a precipitate formed. The precipitate was 

extracted with Et2O (1x 75 mL, 1x 50 mL, 1x 25 mL). The combined ethereal extracts 

were dried over anhydrous MgSO4, filtered, Et2O removed under vacuum and the 

product was precipitated from the remaining acetic anhydride solution by the addition of 

ice-cold distilled water. The precipitate was filtered under suction and dried to give 115 

as pale orange flakes. The product was used in the next step without further purification. 

Yield 0.23 g, 66%. M.p. 109-110 °C. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.91 - 

8.02 (2 H, m, Ar-H), 7.59 - 7.72 (2 H, m, Ar-H), 7.21 (2 H, s, alkenyl-H), 4.34 (2 H, q, J 

= 7.14 Hz, CH2), 1.33 (3 H, t, J = 7.14 Hz, CH3). 13C-NMR (100 MHz, DMSO-d6)  

(ppm) 170.32 (2 C=O amide), 165. 61 (C=O ester), 135.34 (2 C, olefinic), 132.60 (Ar-

C), 131.94 (Ar-C), 131.20 (Ar-C), 129.99 (Ar-C), 128.77 (Ar-C), 127.74 (Ar-C), 61.65 

(CH2), 14.71 (CH3). IR vmax/cm-1: 3091, 2993 (C-H stretch), 1716, 1707 (C=O stretch), 

1020 (C-O stretch). LC-MS (ESI) found m/z [M – H]-: 244, C13H11NO4 requires 245. 

4.5.1.1.3 Attempted synthesis of ethyl 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoate (116). (Adapted from Bova et al. [354]) 
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9-Nitroanthracene (0.22 g, 1.00 mmol) was added to a stirred solution of 115 

(0.25 g, 1.00 mmol) in xylene (15 mL). The contents were heated under reflux for 3 

days after which the reaction was cooled to room temperature with stirring. The mixture 

was then placed in an ice-bath while stirring for 45 minutes. After this time the solvent 

was removed under vacuum to yield 116 as a sticky orange solid, which proton NMR 

analysis indicated the material to be mainly unreacted diene. No further analysis was 

carried out on the product.  

4.5.1.2 Attempted microwave-assisted synthesis of ethyl 3-(9-nitro-12,14-dioxo-

9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-yl)benzoate (116) 

 

 

 

 

 

 

Ethyl 3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoate (0.10 g, 0.50 mmol), 9-

nitroanthrocene (0.18 g, 0.80 mmol) and xylene (4 mL) were placed in a 5 mL round 

bottom vial fitted with a magnetic stirrer. The contents were subjected to microwave 

(MW) irradiation in a Biotage Microwave Synthesizer (Biotage Limited, Hengoed, 
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Wales, UK) for 3 h at low absorption, at a temperature of 220 °C and 400 W. When the 

reaction was complete (monitored by TLC using hexane:t-butyl methyl ether, 4:1, v/v), 

the mixture was cooled to room temperature then placed in an ice-bath with stirring, 

which resulted in the formation of a precipitate. The precipitate was filtered analysis of 

which by proton NMR indicated the presence of unreacted 9-nitroanthracene.   

4.5.1.3 Replacing substituted diene (9-NO2) with unsubstituted diene (9-H) 

4.5.1.4 Synthesis of ethyl 3-(12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoate (117) 

 

 

 

 

 

 

The diene anthracene (0.25 g, 1.39 mmol) was added to a stirred solution of 115 

(0.17 g, 0.70 mmol) in xylene (15 mL). The contents were heated under reflux at 140 °C 

for ~4 h. After this time, the reaction mixture was cooled to room temperature then 

placed in an ice-bath to precipitate out 117 as cream flakes. Yield 0.13 g, 44%. M.p. 

203-205 °C. 1H-NMR (400 MHz, acetone-d6)  (ppm) 8.06 - 8.09 (1 H, m, Ar-H), 7.92 
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- 7.94 (1 H, m, Ar-H), 7.43 - 7.53 (4 H, m, Ar-H), 7.20 - 7.24 (4 H, m, Ar-H), 7.17 - 

7.18 (1 H, m, Ar-H), 6.77 - 6.80 (1 H, m, Ar-H), 4.89 - 4.90 (2 H, m, CH 

dihydroanthracene), 4.34 (2 H, q, J = 7.3 Hz, CH2), 3.47 (2 H, m, CH succinimide), 

1.36 (3 H, t, J = 7.0 Hz, CH3). 13C-NMR (100 MHz, acetone-d6)  (ppm) 175.62 (2 

C=O amide), 164.91 (C=O ester), 141.97 (Ar-C), 139.68 (Ar-C), 131.40 (Ar-C), 131.30 

(Ar-C), 129.12 (Ar-C), 129.02 (Ar-C), 128.17 (Ar-C), 127.85 (Ar-C), 126.85 (Ar-C), 

126.61 (Ar-C), 125.51 (Ar-C), 124.38 (Ar-C), 60.95 (CH2 aliphatic), 47.25 (2 CH 

dihydroanthracene), 45.83 (2 CH succinimide), 13.75 (CH3). IR vmax/cm-1: 3052, 2988, 

2961 (C-H stretch), 1775, 1718, 1706 (C=O stretch, amide and ester). LC-MS (ESI) 

found m/z [M + H]+: 424, C27H21NO4 requires 423. 

4.5.1.5 Attempted synthesis of 3-(12,14-dioxo-9,10-dihydro-9,10-

3,4]epipyrroloanthracen-13-yl)benzoic acid (118) 
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Compound 117 (0.05 g, 0.13 mmol) was dissolved in dichloromethane/ethanol 

(9:1 v/v) and stirred for 5 minutes at room temperature to give a pale yellow solution. 

Sodium hydroxide (2 mL, 1 M) was added while stirring resulting in a cloudy yellow 

solution. After 75 minutes of stirring at room temperature, the mixture was heated under 

reflux at 45 °C for 4 h after which a white precipitate was formed. The reaction was 

cooled to room temperature, the precipitate was filtered off and the residue taken up in 

deionised water (10 mL). The aqueous solution was extracted with diethyl ether (2x 20 

mL) which was discarded. The aqueous phase was retained, acidified with HCl (1 M) to 

pH 2-3, and extracted with ethyl acetate (2x 20 mL, 1x 10 mL). The combined organic 

phases were dried over anhydrous magnesium sulphate, filtered, and the solvent 

removed to afford 118 as a white powder, yield 0.04 g, 77%. The product contained 

both the starting ester as well as some of the acid. No purification was carried out as the 

second route (route b) gave the desired product.   
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4.5.2 Route b 

4.5.2.1 Synthesis of 9-nitro-9,10-dihydro-9,10-[3,4]furanoanthracene-12,14-dione 

(119). (Adapted from Wade [363]). 

 

 

 

 

 

 

 

 

 

Maleic anhydride (0.46 g, 4.71 mmol) was added to a stirred solution of 9-

nitroanthracene (1.03 g, 4.61 mmol) in xylene (25 mL) and the mixture heated under 

reflux at 140-143 °C until all the diene disappeared as indicated by TLC (DCM). The 

reaction mixture was cooled to room temperature before placing on ice with stirring. A 

precipitate separated out upon cooling, which was filtered, washed with ice-cold xylene 

to give the desired Diels-Alder cycloadduct 119 as a pale yellow powder which was 

used in the next step without further purification. Rf 0.78 (Et2O). Yield 0.97 g, 65%. 

M.p. 239-240 °C (lit. 244-245 °C, [370]). 1H-NMR (400 MHz, DMSO-d6) δ (ppm) 

7.65 - 7.69 (1 H, m, Ar-H), 7.50 - 7.58 (2 H, m, Ar-H), 7.37 - 7.44 (3 H, m, Ar-H), 7.32 

- 7.37 (1 H, m, Ar-H), 7.05 (1 H, dd, J = 7.5, 0.5 Hz, Ar-H), 5.11 (1 H, d, J = 3.0 Hz, 

CH dihydroanthracene), 4.66 (1 H, d, J = 9.3 Hz, CH succinimide), 3.94 (1 H, dd, J = 

9.3, 3.2 Hz, CH succinimide). 13C-NMR (100 MHz, DMSO-d6) δ (ppm) 170.32 (C=O 
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carboxyl), 168.99 (C=O carboxyl), 139.47 (Ar-C), 137.17 (Ar-C), 136.93 (Ar-C), 

134.15 (Ar-C), 129.49 (Ar-C), 129.44 (Ar-C), 128.40 (Ar-C), 128.17 (Ar-C), 126.11 

(Ar-C), 125.60 (Ar-C), 123.37 (Ar-C), 120.81 (Ar-C), 93.24 (CNO2), 51.14 (CH 

dihydroanthracene), 49.25 (CH succinimide), 44.79 (CH succinimide). IR vmax/cm-1: 

2988, 2969 (C-H stretch), 1781 (C=O stretch), 1556 (NO2 asymmetric), 1361 (NO2 

symmetric). LC-MS (ESI) found m/z [M – H + MeOH]-: 352, C18H11NO5 requires 321. 

4.5.2.1.1 Synthesis of 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoic acid, [R = CO2H, Rʹ=H] (24) and analogues. 

(Adapted from Lima et al. [364] and Perry and Parveen [403]). 

 

 

 

 

Compound R R' Compound R R' 

24 CO2H H 24j H CO2H 

24a CO2Et H 24k H CO2Et 

24b F H 24l H F 

24c Cl H 24m H Cl 

24d NO2 H 24n H NO2 

24e H H 24o† H CH3 

24f† CH3 H 24p† H MeO 

24g† MeO H 24q† H Me2N 

24h† Me2N H 24r H I 

24i† CN H 24s H t-Bu 

†Compounds synthesised by Kulikowska [372] and Grewal [373] as part of their final year project for the 

degree of Master of Pharmacy, University of Hertfordshire. 
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General procedure for the synthesis of 24-24s 

The corresponding 3- or 4-substituted aniline (1.2-1.7 eq) was added to a stirred 

solution of the maleic anhydride-9-nitroanthracene cycloadduct (119, 1eq) in glacial 

acetic acid (10 mL). The reaction mixture was heated under reflux at 120 °C for 2-3 h 

then cooled to room temperature. In some reactions, a precipitate formed upon cooling 

to room temperature (24, 24b, 24d, 24f, 24j, 24m, 24n, 24r) while none was present for 

others (24a, 24c, 24e, 24g, 24h, 24i, 24k, 24l, 24o, 24p, 24q, 24s). De-ionised water 

was added to quench all the reactions resulting in the formation of a precipitate in all 

cases. The precipitates were washed with ice-cold de-ionised water and dried under 

suction to yield the desired products. Yields shown are from the final Diels-Alder step, 

not from overall synthesis. Where known, reference melting points are shown next to 

that determined for the respective compound.  

Synthesis of 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoic acid (24) [R = CO2H, Rʹ = H].  

Compound 119 (0.07 g, 0.22 mmol, 1 eq) was combined with the 3-

aminobenzoic acid (0.20 g, 1.5 mmol, 6.7 eq) in 10 mL glacial acetic acid according to 

the procedure above. Recrystallisation in glacial acetic acid afforded 24 as white 

crystals, yield 1.07g, 96%. M.p. 272-273 °C. 1H NMR (600 MHz, acetone-d6)  (ppm) 

7.92 - 7.99 (1 H, m, Ar-H), 7.67 - 7.76 (2 H, m, Ar-H), 7.32 - 7.51 (6 H, m, Ar-H), 7.25 

(1 H, m, Ar-H), 7.08 (1 H, m, Ar-H), 6.68 - 6.85 (1 H, m, Ar-H), 5.05 (1 H, d, J = 2.7 
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Hz, CH dihydroanthracene), 4.60 (1 H, d, J = 8.9 Hz, CH succinimide), 3.74 (1 H, dd, J 

= 8.9, 3.4 Hz, CH succinimide). 13C-NMR (150 MHz, acetone-d6)  (ppm) 174.05 

(C=O), 172.93 (C=O), 166.63 (C=O acid), 139.79 (Ar-C), 137.60 (Ar-C), 137.45 (Ar-

C), 134.37 (Ar-C), 132.20 (Ar-C), 131.61 (Ar-C), 130.99 (Ar-C), 129.68 (Ar-C), 129.13 

(Ar-C), 128.78 (Ar-C), 128.48 (Ar-C), 127.97 (Ar-C), 127.52 (Ar-C), 127.47 (Ar-C), 

125.47 (Ar-C), 124.71 (Ar-C), 123.79 (Ar-C), 120.55 (Ar-C), 93.69 (CNO2), 49.41 (CH 

dihydroanthracene), 47.91 (CH succinimide), 45.78 (CH succinimide). IR vmax/cm-1: 

3535 (OH stretch), 1783, 1706 (C=O stretch), 1552 (NO2 asymmetric), 1398 (NO2 

symmetric), 1202 (CO stretch). LC-MS (ESI) found m/z [M – H]-: 439, C25H16NO6 

requires 440.  

Synthesis of ethyl 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoate (24a) [R = CO2Et, Rʹ = H].  

Compound 119 (0.05 g, 0.22 mmol, 1 eq), ethyl 3-aminobenzoate (0.03 g, 0.18 

mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure described above. 

Recrystallisation in glacial acetic acid afforded 24a as white flakes, yield 0.06 g, 85%. 

M.p. 202-203 °C.1H-NMR (400 MHz, acetone-d6) δ (ppm) 7.94 - 7.96 (1 H, m, Ar-H), 

7.68 - 7.75 (2 H, m , Ar-H), 7.35 - 7.52 (6 H, m, Ar-H), 7.16 - 7.17 (1 H, m, Ar-H), 7.08 

- 7.11 (1 H, m, Ar-H), 6.79 - 6.81 (1 H, m, Ar-H), 5.07 (1 H, d, J = 3.4 Hz, CH 

dihydroanthracene), 4.62 (1 H, d, J = 8.8 Hz, CH succinimide), 4.33 (2 H, q, J = 7.1 Hz, 

CH2 aliphatic), 3.75 - 3.77 (1 H, dd, J = 8.8, 3.1 Hz, CH succinimide), 1.40 (3 H, t, J = 

7.1 Hz, CH3). 13C-NMR (150 MHz, acetone-d6) δ (ppm) 174.06 (C=O), 172.93 (C=O), 
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164.76 (C=O ester), 139.76 (Ar-C), 137.58 (Ar-C), 137.48 (Ar-C), 134.39 (Ar-C), 

132.23 (Ar-C), 131.52 (Ar-C), 131.16 (Ar-C), 129.46 (Ar-C), 129.22 (Ar-C), 128.79 

(Ar-C), 128.49 (Ar-C), 127.70 (Ar-C), 127.53 (Ar-C), 127.47 (Ar-C), 125.48 (Ar-C), 

124.72 (Ar-C), 123.81 (Ar-C), 120.55 (Ar-C), 93.69 (CNO2), 61.02 (CH2 aliphatic), 

49.44 (CH dihydroanthracene), 47.94 (CH succinimide), 45.78 (CH succinimide), 13.72 

(CH3). IR vmax/cm-1: 2984, 2903 (CH stretch), 1782 (C=O stretch), 1710 (C=O stretch), 

1551 (NO2 asymmetric), 1363 (NO2 symmetric), 1209 (CO stretch). LC-MS (ESI) found 

m/z [M + H]+: 469, C27H20NO6 requires 468.  

Synthesis of 13-(3-fluorophenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24b) [R = F, Rʹ = H].  

Compound 119 (0.07 g, 0.23 mmol, 1 eq), 3-fluoroaniline (0.03 g, 0.27 mmol, 

1.2 eq) in 10 mL glacial acetic acid according to the procedure described above. 

Recrystallisation in glacial acetic acid afforded 24b as a cream solid, yield 0.08 g, 81%. 

M.p. 241-243 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.74 (1 H, d, J = 6.8 Hz, Ar-

H), 7.54 (1 H, d, J = 7.0 Hz, Ar-H), 7.01 - 7.46 (8 H, m, Ar-H), 6.35 (1 H, d, J = 7.7 Hz, 

Ar-H), 6.12 - 6.31 (1 H, m, Ar-H), 4.93 (1 H, d, J = 3.1 Hz, CH dihydroanthracene), 

4.45 (1 H, d, J = 9.0 Hz, CH succinimide), 3.56 (1 H, dd, J = 9.0, 3.1 Hz, CH 

succinimide). 13C-NMR (100 MHz, DCM-d2)  (ppm) 173.73 (C=O), 172.37 (C=O), 

163.65 (Ar-CF), 138.96 (Ar-C),  137.13 (Ar-C), 136.49 (Ar-C), 133.93 (Ar-C), 130.34 

(Ar-C), 128.88 (Ar-C), 128.66 (Ar-C), 127.80 (Ar-C), 127.68 (Ar-C), 125.36 (Ar-C), 

124.36 (Ar-C), 123.90 (Ar-C), 122.24 (Ar-C), 120.91 (Ar-C), 116.18 (Ar-C),  115.97 
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(Ar-C), 113.79 (Ar-C), 93.42 (CNO2), 49.03 (CH dihydroanthracene), 47.77 (CH 

succinimide), 45.99 (CH succinimide). IR vmax/cm-1: 3075, 3040, 3015, 2973, 2890 (CH 

stretch), 1706 (C=O stretch), 1551 (NO2 asymmetric), 1383 (NO2 symmetric). LC-MS 

(ESI) found m/z [M + H]+: 415, C24H15FNO4 requires 414.  

Synthesis of 13-(3-chlorophenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24c) [R = Cl, Rʹ = H].  

Compound 119 (0.08 g, 0.23 mmol, 1 eq) was combined with 3-chloroaniline 

(0.04 g, 0.28 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24c as a cream solid, 

yield 0.08 g, 82%. M.p. 230-232 oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.71 (1 

H, d, J = 7.2 Hz, Ar-H), 7.61 - 7.66 (1 H, m, Ar-H), 7.31 - 7.51 (7 H, m, Ar-H), 7.06 (1 

H, d, J = 7.1 Hz, Ar-H), 6.40 - 6.52 (2 H, m, Ar-H), 5.07 (1 H, d, J = 3.0 Hz, CH 

dihydroanthracene), 4.49 (1 H, d, J = 8.8 Hz, CH succinimide), 3.69 (1 H, dd, J = 8.7, 

3.2 Hz, CH succinimide). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 174.63 (C=O), 

173.44 (C=O), 134.30 (Ar-C), 133.04 (Ar-C), 131.38 (Ar-C), 1245 (Ar-C), 125.51 (Ar-

C), 129.29 (Ar-C), 128.99 (Ar-C), 128.03 (Ar-C), 127.95 (Ar-C), 126.84 (Ar-C), 125.96 

(Ar-C), 125.83 (Ar-C), 125.67 (Ar-C), 125.47 (Ar-C), 123.80 (Ar-C), 122.72 (Ar-C), 

120.75 (Ar-C), 120.65 (Ar-C), 93.74 (CNO2), 49.63 (CH dihydroanthracene), 48.01 (CH 

succinimide), 45.29 (CH succinimide). IR vmax/cm-1: 3115, 2981, 2966 (CH stretch), 

1717 (C=O stretch), 1547 (NO2 asymmetric), 1383 (NO2 symmetric). LC-MS (ESI) 

found m/z [M + H]+: 431, C24H15ClNO4 requires 430.   
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Synthesis of 9-Nitro-13-(3-nitrophenyl)-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24d) [R = NO2, Rʹ = H].  

Compound 119 (0.06 g, 0.20 mmol, 1 eq) was combined with 3-nitroaniline 

(0.04 g, 0.30 mmol, 1.5 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24d as a pale yellow 

powder, yield 0.08 g, 93%. M.p. 240-242 oC.1H-NMR (400 MHz, DCM-d2)  (ppm) 

8.15 (1 H, m, Ar-H), 7.68 - 7.78 (1 H, m, Ar-H), 7.47 - 7.59 (2 H, m, Ar-H), 7.26 - 7.46 

(6 H, m, Ar-H), 7.06 - 7.16 (1 H, m, Ar-H), 6.94 - 6.98 (1 H, m, Ar-H), 4.95 (1 H, d, J = 

3.0 Hz, CH dihydroanthracene), 4.50 (1 H, dd, J = 8.9, 1.3 Hz, CH succinimide), 3.61 - 

3.63 (1 H, m, CH succinimide). 13C-NMR (150 MHz, DCM-d2)  (ppm) 173.55 

(C=O), 172.23 (C=O), 148.41 (Ar-CNO2), 138.77 (Ar-C), 136.96 (Ar-C), 136.39 (Ar-

C), 133.86 (Ar-C), 132.37 (Ar-C), 132.01 (Ar-C), 130.10 (Ar-C), 128.96 (Ar-C), 128.80 

(Ar-C), 127.93 (Ar-C), 127.76 (Ar-C), 125.41 (Ar-C), 124.40 (Ar-C), 123.93 (Ar-C), 

123.72 (Ar-C), 121.67 (Ar-C), 120.95 (Ar-C), 93.42 (CNO2), 49.13 (CH 

dihydroanthracene), 47.88 (CH succinimide), 46.04 (CH succinimide). IR vmax/cm-1: 

3094, 3080, 3049, 2976, 2971, 2959, 2887, (CH stretch), 1775, 1709 (C=O stretch), 

1548, 1529 (NO2 asymmetric), 1386, 1341 (NO2 symmetric).  LC-MS (ESI) found m/z 

[M + H]+: 442, C24H15N3O6 requires 441.   
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Synthesis of 9-nitro-13-phenyl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-

dione (24e) [R = H, Rʹ = H].  

Compound 119 (0.11 g, 0.33 mmol, 1 eq) was combined with aniline (0.04 g, 

0.39 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure described 

above. Recrystallisation in glacial acetic acid afforded 24e as cream-coloured flakes, 

yield 0.09 g, 72%. M.p. 111-112 °C. 1H-NMR (400 MHz, DMSO-d6) δ (ppm) 7.71 (1 

H, d, J = 7.3 Hz, Ar-H), 7.62 - 7.67 (1 H, m, Ar-H), 7.30 - 7.50 (8 H, m, Ar-H), 7.05 (1 

H, d, J = 7.6 Hz, Ar-H), 6.42 - 6.47 (2 H, m, Ar-H), 5.07 (1 H, d, J = 2.6 Hz, CH 

dihydroanthracene), 4.50 (1 H, dd, J = 8.8, 1.5 Hz, CH succinimide), 3.66 - 3.68 (1 H, 

m, CH succinimide). 13C-NMR (100 MHz, DMSO-d6) δ (ppm) 174.96 (C=O), 173.75 

(C=O), 139.98 (Ar-C), 137.67 (Ar-C), 137.67 (Ar-C), 134.27 (Ar-C), 131.84 (Ar-C), 

129.58 (2 para-Ar-C), 129.38 (Ar-C), 129.27 (Ar-C), 128.98 (Ar-C), 127.99 (Ar-C), 

127.92 (Ar-C), 126.99 (2 para-Ar-C), 125.94 (Ar-C), 125.42 (Ar-C), 123.79 (Ar-C), 

120.73 (Ar-C), 93.76 (CNO2), 49.54 (CH dihydroanthracene), 47.95 (CH succinimide), 

45.28 (CH succinimide). IR vmax/cm-1: 3070, 2972, 2903 (CH stretch), 1783, 1713 

(C=O stretch), 1597, 1550 (NO2 asymmetric), 1387 (NO2 symmetric). LC-MS (ESI) 

found m/z [M + H]+: 397, C24H16N2O4 requires 396. 

Synthesis of 9-nitro-13-(m-tolyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (24f) [R = CH3, Rʹ = H].  

Compound 119 (0.50 g, 1.56 mmol, 1 eq), m-toluidine (0.17 g, 1.59 mmol, 1 eq) 

in 20 mL glacial acetic acid according to the procedure described above. 



Chapter 4: Synthesis and Screening of ChemBridge 7356270 (24) and Analogues 

 

217 

 

Recrystallisation in glacial acetic acid afforded 24f as a cream solid, yield 0.58 g 91%. 

M.p. 209-211 °C. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.68 - 7.73 (1 H, m, Ar-H), 

7.62 - 7.67 (1 H, m, Ar-H), 7.46 - 7.50 (1 H, m, Ar-H), 7.39 - 7.45 (3 H, m, Ar-H), 7.33 

- 7.39 (1 H, m, Ar-H), 7.22 (1 H, m, Ar-H), 7.15 (1 H, m, Ar-H), 7.05 (1 H, m, Ar-H), 

6.23 (1 H, m, Ar-H), 6.19 (1 H, s, Ar-H), 5.06 (1 H, d, J = 3.0 Hz, CH 

dihydroanthracene), 4.48 (1 H, d, J = 8.7 Hz, CH succinimide), 3.65 (1 H, dd, J = 8.8, 

3.1 Hz, CH succinimide), 2.21 (3 H, s, CH3). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 

175.00 (C=O), 173.80 (C=O), 139.97 (Ar-C), 139.09 (Ar-C), 137.70 (Ar-C), 137.54 

(Ar-C), 134.29 (Ar-C), 131.82 (Ar-C), 129.99 (Ar-C), 129.37 (Ar-C), 129.26 (Ar-C), 

128.95 (Ar-C), 127.99 (Ar-C), 127.91 (Ar-C), 127.48 (Ar-C), 125.97 (Ar-C), 125.41 

(Ar-C), 124.09 (Ar-C), 123.82 (Ar-C), 120.73 (Ar-C), 93.76 (CNO2), 49.53 (CH 

dihydroanthracene), 47.96 (CH succinimide), 45.28 (CH succinimide), 21.23 (CH3). IR 

vmax/cm-1: 3079, 3039, 2982, 2921 (CH stretch), 1787 (C=O), 1716 (C=O), 1549 (NO2 

asymmetric), 1382 (NO2 symmetric). LC-MS (ESI) found m/z [M – H]-: 409, 

C25H18N2O4 requires 410.   

Synthesis of 13-(3-methoxyphenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24g) [R = MeO, Rʹ = H].  

Compound 119 (0.52 g, 1.62 mmol, 1 eq) was combined with 3-methoxyaniline 

(0.24 g, 1.95 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24g as a brown 

granules, yield 0.50 g, 72%. M.p. 262-265 °C. 1H-NMR (600 MHz, DMSO-d6)  



Chapter 4: Synthesis and Screening of ChemBridge 7356270 (24) and Analogues 

 

218 

 

(ppm) 7.65 - 7.68 (1 H, m, Ar-H), 7.59 - 7.62 (1 H, m, Ar-H), 7.43 - 7.46 (1 H, m, Ar-

H), 7.36 - 7.41 (3 H, m, Ar-H), 7.32 (1 H, m, Ar-H), 7.22 (1 H, t, J = 8.2 Hz, Ar-H), 

7.00 - 7.03 (1 H, m, Ar-H), 6.88 (1 H, dd, J = 8.4, 2.6 Hz, Ar-H), 6.04 (1 H, m, Ar-H), 

5.80 (1 H, t, J = 2.2 Hz, Ar-H), 5.02 (1 H, d, J = 3.1 Hz, CH dihydroanthracene), 4.44 (1 

H, d, J = 8.8 Hz, CH succinimide), 3.61 - 3.63 (3 H, m, CH3), 3.60 - 3.61 (1 H, m, CH 

succinimide). 13C-NMR (150 MHz, DMSO-d6)  (ppm) 174.78 (C=O), 173.59 (C=O), 

159.94 (Ar-CO), 139.91 (Ar-C), 137.68 (Ar-C), 137.49 (Ar-C), 134.28 (Ar-C), 132.87 

(Ar-C), 130.38 (Ar-C), 129.22 (Ar-C), 128.91 (Ar-C), 127.95 (Ar-C), 127.86 (Ar-C), 

125.92 (Ar-C), 125.38 (Ar-C), 123.80 (Ar-C), 120.25 (Ar-C), 119.22 (Ar-C), 115.06 

(Ar-C), 112.66 (Ar-C), 93.74 (CNO2), 55.87 (CH3), 49.51 (CH dihydroanthracene), 

47.93 (CH succinimide), 45.28 (CH succinimide). IR vmax/cm-1: 3070, 2952, 2833 (CH 

stretch), 1783, 1716 (C=O), 1550 (NO2 asymmetric), 1386 (NO2 symmetric).  

Synthesis of 13-(3-(dimethylamino)phenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (21h) [R = Me2N. Rʹ = H].  

Compound 119 (0.50 g, 1.56 mmol, 1 eq) combined with N, N-dimethyl-m-

phenylenediamine (0.39 g, 1.86 mmol, 1.2 eq) in 20 mL glacial acetic acid according to 

the procedure described above. Recrystallisation in glacial acetic acid afforded 24h as a 

cream solid, yield 0.66 g, 97%. M.p. 213-215 °C. 1H-NMR (400 MHz, DMSO-d6)  

(ppm) 7.70 (1 H, m, Ar-H), 7.63 - 7.67 (1 H, m, Ar-H), 7.46 - 7.50 (1 H, m, Ar-H), 7.38 

- 7.44 (3 H, m, Ar-H), 7.32 - 7.38 (1 H, m, Ar-H), 7.11 (1 H, m, Ar-H), 7.03 - 7.07 (1 H, 

m, Ar-H), 6.65 (1 H, m, Ar-H), 5.79 (1 H, m, Ar-H), 5.43 (1 H, t, J = 2.2 Hz, Ar-H), 
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5.05 (1 H, d, J = 3.1 Hz, CH dihydroanthracene), 4.47 (1 H, d, J = 8.8 Hz, CH 

succinimide), 3.62 (1 H, dd, J = 8.8, 3.1 Hz, CH succinimide), 2.78 (6 H, s, 2 CH3). 13C-

NMR (100 MHz, DMSO-d6)  (ppm) 175.02 (C=O), 173.81 (C=O), 151.25 (Ar-CN), 

140.00 (Ar-C), 137.75 (Ar-C), 137.59 (Ar-C), 134.33 (Ar-C), 132.78 (Ar-C), 129.83 

(Ar-C), 129.24 (Ar-C), 128.88 (Ar-C), 127.98 (Ar-C), 127.85 (Ar-C), 125.96 (Ar-C), 

125.39 (Ar-C), 123.85 (Ar-C), 120.71 (Ar-C), 114.45 (Ar-C), 113.07 (Ar-C), 110.63 

(Ar-C), 93.79 (CNO2), 49.49 (CH dihydroanthracene), 47.93 (CH succinimide), 45.31 

(CH succinimide), C in CH3 overlapped with solvent peaks. IR vmax/cm-1: 3075, 2911, 

2822 (CH stretch), 2358 (CN), 1788, 1717 (C=O), 1548 (NO2 asymmetric), 1389, 1354 

(NO2 symmetric). LC-MS (ESI) found m/z [M – H]-: 438, C26H21N3O4 requires 439.   

Synthesis of 3-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzonitrile (24i) [R = CN, Rʹ = H].  

Compound 119 (0.50 g, 1.56 mmol, 1 eq) was combined with 3-

aminobenzonitrile (0.22 g, 1.86 mmol, 1.2 eq) in 20 mL glacial acetic acid according to 

the procedure described above. Recrystallisation in glacial acetic acid afforded 24i as a 

cream solid, yield 0.64 g, 98%. M.p. 310-3.11 °C. 1H-NMR (600 MHz, DMSO-d6)  

(ppm) 7.82 (1 H, m, Ar-H), 7.68 (1 H, dd, J = 7.5, 1.0 Hz, Ar-H), 7.55 - 7.62 (2 H, m, 

Ar-H), 7.44 - 7.48 (1 H, m, Ar-H), 7.36 - 7.41 (3 H, m, Ar-H), 7.33 (1 H, m, Ar-H), 7.02 

(1 H, M, Hz, Ar-H), 6.86 - 6.88 (1 H, m, Ar-H), 6.75 (1 H, m, Ar-H), 5.05 (1 H, d, J = 

3.1 Hz, CH dihydroanthracene), 4.48 (1 H, d, J = 8.768 Hz, CH succinimide), 3.69 (1 H, 

dd, J = 8.8, 3.1 Hz, CH succinimide). 13C-NMR (150 MHz, DMSO-d6)  (ppm) 
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174.50 (C=O), 173.31 (C=O), 139.76 (Ar-C), 137.59 (Ar-C), 137.33 (Ar-C), 134.22 

(Ar-C), 133.28 (Ar-C), 132.44 (Ar-C), 131.82 (Ar-C), 131.26 (Ar-C), 130.15 (Ar-C), 

129.28 (Ar-C), 129.01 (Ar-C), 128.02 (Ar-C), 127.94 (Ar-C), 125.95 (Ar-C), 125.44 

(Ar-C), 123.77 (Ar-C), 120.74 (Ar-C), 118.02 (CN), 112.56 (Ar-C), 93.71 (CNO2), 

49.63 (CH dihydroanthracene), 47.99 (CH succinimide), 45.27 (CH succinimide). IR 

vmax/cm-1: 3101, 3064, 2995, 2924 (CH stretch), 2231 (CN stretch), 1788, 1716 (C=O), 

1547 (NO2 asymmetric), 1387 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 

420, C25H15N3O4 requires 421.   

Synthesis of 4-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoic acid (24j) [R = H, Rʹ = CO2H].  

Compound 119 (0.05 g, 0.16 mmol, 1 eq) was combined with 4-aminobenzoic 

acid (0.03 g, 0.16 mmol, 1 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24j as cream-coloured 

flakes, yield 0.06 g 80%. M.p. 343-345 °C.1H-NMR (400 MHz, acetone-d6) δ (ppm) 

7.97 (2 H, d, J = 8.9 Hz, para-Ar-H), 7.69 - 7.78 (2 H, m, Ar-H), 7.47 - 7.51 (1 H, m, 

Ar-H), 7.35 - 7.45 (4 H, m, Ar-H), 7.08 - 7.12 (1 H, m, Ar-H), 6.73 (2 H, d, J = 8.8 Hz, 

para-Ar-H), 5.05 - 5.08 (1 H, m, CH dihydroanthracene), 4.62 (1 H, d, J = 8.9 Hz, CH 

succinimide), 3.76 (1 H, dd, J = 8.9, 3.1 Hz, CH succinimide). 13C-NMR (150 MHz, 

acetone-d6) δ (ppm) 173.91 (C=O), 172.76 (C=O), 165.94 (C=O ester), 139.77 (Ar-C), 

137.58 (Ar-C), 137.41 (Ar-C), 135.70 (Ar-C), 134.33 (Ar-C), 130.86 (2 para-Ar-C), 

130.08 (Ar-C), 128.80 (Ar-C), 128.52 (Ar-C), 127.53 (Ar-C), 127.49 (Ar-C), 126.57 (2 
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para-Ar-C), 125.47 (Ar-C), 124.71 (Ar-C), 123.77 (Ar-C), 120.54 (Ar-C), 93.69 

(CNO2), 49.39 (CH dihydroanthracene), 47.89 (CH succinimide), 45.77 (CH 

succinimide). IR vmax/cm-1: 3284 (OH stretch), 3076, 2970, 2903 (CH stretch), 1781, 

1702 (C=O stretch), 1550 (NO2 asymmetric), 1389 (NO2 symmetric). LC-MS (ESI) 

found m/z [M – H]-: 439, C25H16N2O6 requires 440.   

Synthesis of ethyl 4-(9-nitro-12,14-dioxo-9,10-dihydro-9,10-

[3,4]epipyrroloanthracen-13-yl)benzoate (24k) [R = H, Rʹ = CO2Et].  

Compound 119 (0.05 g, 0.16 mmol, 1 eq) ethyl-4-aminobenzoate (0.03 g, 0.21 

mmol, 1.3 eq) in 10 mL glacial acetic acid according to the procedure described above. 

Recrystallisation in glacial acetic acid afforded 24k as white flakes, yield 0.06 g, 78%. 

M.p. 255-256 oC. 1H-NMR (400 MHz, acetone-d6)  (ppm) 7.92 - 7.97 (2 H, m, para-

Ar-H), 7.68 - 7.77 (2 H, m, Ar-H), 7.47 - 7.51 (1 H, m, Ar-H), 7.36 - 7.46 (4 H, m, Ar-

H), 7.10 (1 H, d, J = 6.1 Hz, Ar-H), 6.70 - 6.74 (2 H, m, para-Ar-H), 5.07 (1 H, d, J = 

3.1 Hz, CH dihydroanthracene), 4.62 (1 H, d, J = 8.9 Hz, CH succinimide), 4.32 (2 H, q, 

J = 7.1 Hz, CH2 aliphatic), 3.76 (1 H, dd, J = 8.8, 3.0 Hz, CH succinimide), 1.33 (3 H, t, 

J = 7.1 Hz, CH3). 13C-NMR (150 MHz, acetone-d6)  (ppm) 173.85 (C=O), 172.73 

(C=O), 164.98 (C=O ester), 139.76 (Ar-C), 137.57 (Ar-C), 137.41 (Ar-C), 134.34 (Ar-

C), 130.63 (Ar-C), 129.78 (2 para-Ar-C), 128.79 (Ar-C), 128.51 (Ar-C), 127.53 (Ar-C), 

127.48 (Ar-C), 126.61 (2 para-Ar-C), 125.46 (Ar-C), 124.71 (Ar-C), 123.77 (Ar-C), 

120.54 (Ar-C), 113.38 (Ar-C), 93.68 (CNO2), 60.91 (CH2 aliphatic), 49.39 (CH 

dihydroanthracene), 47.89 (CH succinimide), 45.78 (CH succinimide), 13.65 (CH3). IR 
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vmax/cm-1: 2989 (CH stretch), 1785, 1710 (C=O stretch), 1550 (NO2 asymmetric), 1394 

(NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 469, C27H20N2O6 requires 468.   

Synthesis of 13-(4-fluorophenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24l) [R = H, Rʹ = F].  

Compound 119 (0.10 g, 0.31 mmol, 1 eq) was combined with 4-fluoroaniline 

(0.04 g, 0.37 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24l as a cream solid, 

yield 0.11 g, 88%. M.p. 238-240 oC. 1H-NMR (600 MHz, acetone-d6)  (ppm) 7.66 - 

7.75 (2 H, m, para-Ar-H), 7.44 - 7.48 (1 H, m, Ar-H), 7.34 - 7.42 (4 H, m, Ar-H), 7.05 - 

7.10 (3 H, m, Ar-H), 6.54 - 6.59 (2 H, m, para-Ar-H), 5.02 (1 H, d, J = 2.7 Hz, CH 

dihydroanthracene), 4.56 (1 H, d, J = 8.9 Hz, CH succinimide), 3.70 (1 H, dd, J = 8.9, 

2.7 Hz, CH succinimide). 13C-NMR (150 MHz, acetone-d6)  (ppm) 174.10 (C=O), 

172.97 (C=O), 163.03 (Ar-CF), 139.80 (Ar-C), 137.61 (Ar-C), 137.48 (Ar-C), 134.40 

(Ar-C), 128.79 (Ar-C), 128.76 (Ar-C), 128.74 (Ar-C), 128.41 (2 para-Ar-C), 128.04 

(Ar-C), 127.51 (2 para-Ar-C), 127.41 (Ar-C), 125.45 (Ar-C), 124.69 (Ar-C), 123.79 

(Ar-C), 120.53 (Ar-C), 115.77 (Ar-C), 115.62 (Ar-C), 93.66 (CNO2), 49.29 (CH 

dihydroanthracene), 47.77 (CH succinimide), 45.75 (CH succinimide). IR vmax/cm-1: 

2981, 2970, 2893 (CH stretch), 1782, 1710 (C=O stretch), 1551 (NO2 asymmetric), 

1395 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 415, C24H15FN2O4 requires 

441.    
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Synthesis of 13-(4-chlorophenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24m) [R = H, Rʹ = Cl].  

Compound 119 (0.07 g, 0.23 mmol, 1 eq) was combined with 4-chloroaniline 

(0.05 g, 0.37 mmol, 1.6 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24m as a cream solid, 

yield 0.09 g, 90%. M.p. 270-273 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.70 - 

7.75 (1 H, m, Ar-H), 7.52 - 7.56 (1 H, m, Ar-H), 7.26 - 7.42 (7 H, m, Ar-H), 7.08 - 7.13 

(1 H, m, Ar-H), 6.43 - 6.49 (2 H, m, para-Ar-H), 4.92 (1 H, d, J = 3.1 Hz, CH 

dihydroanthracene), 4.44 (1 H, d, J = 8.9 Hz, CH succinimide), 3.55 (1 H, dd, J = 8.9, 

3.1 Hz, CH succinimide). 13C-NMR (150 MHz, DCM-d2)  (ppm) 173.84 (C=O), 

172.47 (C=O), 138.96 (Ar-C), 137.14 (Ar-C), 136.49 (Ar-C), 134.80 (Ar-C), 133.92 

(Ar-C), 129.62 (Ar-C), 129.29 (2-para-Ar-C), 128.86 (Ar-C), 128.60 (Ar-C), 127.76 

(Ar-C), 127.68 (3 Ar-C), 125.34 (Ar-C), 124.34 (Ar-C), 123.89 (Ar-C), 120.90 (Ar-C), 

93.43 (CNO2), 49.02 (CH dihydroanthracene), 47.76 (CH succinimide), 45.99 (CH 

succinimide). IR vmax/cm-1: 2981, 2971, 2887 (CH stretch), 1781, 1709 (C=O stretch), 

1551 (NO2 asymmetric), 1389 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 

431, C24H15ClN2O4 requires 430.    

Synthesis of 9-nitro-13-(4-nitrophenyl)-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24n) [R = H, Rʹ = NO2].  
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Compound 119 (0.07 g, 0.21 mmol, 1 eq) was combined with 4-nitroaniline 

(0.04 g, 0.29 mmol, 1.4 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24n as fluffy cream 

powder, yield 0.07 g, 78%. M.p. 316-318 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 

8.12 - 8.16 (2 H, m, para-Ar-H), 7.72 - 7.76 (1 H, m, Ar-H), 7.53 - 7.56 (1 H, m, Ar-H), 

7.30 - 7.44 (5 H, m, Ar-H), 7.10 - 7.14 (1 H, m, Ar-H), 6.78 - 6.83 (2 H, m, para-Ar-H), 

4.94 (1 H, d, J = 3.1 Hz, CH dihydroanthracene), 4.49 (1 H, d, J = 9.0 Hz, CH 

succinimide), 3.60 (1 H, dd, J = 9.0, 3.1 Hz, CH succinimide). 13C-NMR (100 MHz, 

DCM-d2)  (ppm) 170.62 (C=O), 169.30 (C=O), 144.68 (Ar-C), 136.03 (Ar-C), 134.20 

(Ar-C), 133.66 (Ar-C), 133.60 (Ar-C), 131.07 (Ar-C), 126.19 (Ar-C), 125.97 (Ar-C), 

125.11 (Ar-C), 124.99 (Ar-C), 124.30 (2 para-Ar-C), 122.59 (Ar-C), 121.62 (Ar-C), 

121.54 (2 para-Ar-C), 121.11 (Ar-C), 118.17 (Ar-C), 90.62 (CNO2), 46.33 (CH 

dihydroanthracene), 45.06 (CH succinimide), 43.25 (CH succinimide). IR vmax/cm-1: 

3121, 3087, 2978, 2855 (CH stretch), 1781, 1712 (C=O stretch), 1551, 1521 (NO2 

asymmetric), 1344 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 442, 

C24H15N3O6 requires 441.    

Synthesis of 9-nitro-13-(p-tolyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (24o), [R = H, Rʹ = CH3].  

Compound 119 (0.50 g, 1.56 mmol, 1 eq) was combined with p-toluidine (0.19 

g, 1.77 mmol, 1.1 eq) in 20 mL glacial acetic acid according to the procedure described 

above. Recrystallisation in glacial acetic acid afforded 24o as white powder, yield 0.48 
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g. 75%. M.p. 258-262 oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.70 (1 H, dd, J = 

7.3, 1.1 Hz, Ar-H), 7.60 - 7.66 (1 H, m, Ar-H), 7.45 - 7.49 (1 H, m, Ar-H), 7.38 - 7.44 (3 

H, m, Ar-H), 7.33 - 7.38 (1 H, m, Ar-H), 7.14 (2 H, m, J = 8.1 Hz, para-Ar-H), 7.1 (1 H, 

d, J = 7.4 Hz, Ar-H), 6.32 (2 H, m, J = 8.2 Hz, para-Ar-H), 5.06 (1 H, d, J = 3.0 Hz, CH 

dihydroanthracene), 4.47 (1 H, d, J = 8.7 Hz, CH succinimide), 3.64 (1 H, dd, J = 8.8, 

3.1 Hz, CH succinimide), 2.25 (3 H, s, CH3). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 

175.02 (C=O), 173.81 (C=O), 140.00 (Ar-C), 138.99 (Ar-C), 137.67 (Ar-C), 137.56 

(Ar-C), 134.26 (Ar-C), 129.99 (2 para-Ar-C), 129.25 (Ar-C), 129.22 (Ar-C), 128.94 

(Ar-C), 127.98 (Ar-C), 127.88 (Ar-C), 126.69 (2 para-Ar-C), 125.92 (Ar-C), 125.41 

(Ar-C), 123.78 (Ar-C), 120.72 (Ar-C), 93.76 (CNO2), 49.47 (CH dihydroanthracene), 

47.89 (CH succinimide), 45.27 (CH succinimide), 21.21 (CH3). IR vmax/cm-1: 3486, 

3049, 2966, 2918 (CH stretch), 1784, 1719 (C=O stretch), 1553, 1514 (NO2 

asymmetric), 1391 (NO2 symmetric). LC-MS (ESI) found m/z [M – H]-: 409, 

C25H18N2O4 requires 410.    

Synthesis of 13-(4-methoxyphenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24p) [R = H, Rʹ = MeO].   

Compound 119 (0.50 g, 1.56 mmol, 1 eq) was combined with 4-methoxyaniline 

(0.23 g, 1.87 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24p as a grey-purple 

solid, yield 0.56 g, 84%. M.p. 249-250 oC. 1H-NMR (600 MHz, DMSO-d6)  (ppm) 

7.65 - 7.67 (1 H, m, Ar-H), 7.58 - 7.62 (1 H, m, Ar-H), 7.41 - 7.45 (1 H, m, Ar-H), 7.34 
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- 7.39 (3 H, m, Ar-H), 7.32 (1 H, td, J = 7.7, 1.20 Hz, Ar-H), 7.01 (1 H, d, J = 7.7 Hz, 

Ar-H), 6.81 - 6.89 (2 H, m, para-Ar-H), 6.26 - 6.34 (2 H, m, para-Ar-H), 5.01 (1 H, d, J 

= 3.1 Hz, CH dihydroanthracene), 4.43 (1 H, d, J = 8.8 Hz, CH succinimide c), 3.68 (3 

H, s, CH3), 3.59 (1 H, dd, J = 8.8, 3.1 Hz, CH succinimide). 13C-NMR (150 MHz, 

DMSO-d6)  (ppm) 175.09 (C=O), 173.87 (C=O), 159.73 (Ar-CO), 139.97 (Ar-C), 

137.54 (Ar-C), 134.27 (Ar-C), 129.20 (Ar-C), 128.87 (Ar-C), 128.12 (2 para-Ar-CH), 

127.93 (Ar-C), 127.82 (Ar-C), 127.30 (Ar-C), 125.88 (Ar-C), 125.34 (Ar-C), 124.31 

(Ar-C), 123.75 (Ar-C), 120.68 (Ar-C), 114.76 (2 para-Ar-CH), 93.74 (CNO2), 55.88 

(CH3), 49.40 (CH dihydroanthracene), 47.81 (CH succinimide), 45.28 (CH 

succinimide). IR vmax/cm-1: 3367, 2960, 2909 (CH stretch), 1782, 1702 (C=O stretch), 

1549 (NO2 asymmetric), 1395 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 

427, C25H18N2O5 requires 426.    

Synthesis of 13-(4-(dimethylamino)phenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (21q) [R = H, Rʹ = Me2N].  

Compound 119 (0.50 g, 0.1.56 mmol, 1 eq) was combined with N,N-dimethyl-

1,4-diamine (0.25 g, 1.84 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the 

procedure described above. Recrystallisation in glacial acetic acid afforded 24q as light-

grey solid, yield 0.50 g, 73%. M.p. 265-266 oC. 1H-NMR (600 MHz, DMSO-d6)  

(ppm) 7.66 (1 H, dd, J = 7.4, 1.0 Hz, Ar-H), 7.57 - 7.61 (1 H, m, Ar-H), 7.40 - 7.43 (1 

H, m, Ar-H), 7.3 - 7.39 (3 H, m, Ar-H), 7.31 (1 H, td, J = 7.6, 1.3 Hz, Ar-H), 7.00 (1 H, 

d, J = 7.6 Hz, Ar-H), 6.52 - 6.57 (2 H, m, para-Ar-H), 6.15 - 6.19 (2 H, m, para-Ar-H), 
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4.99 (1 H, d, J = 3.1 Hz, CH dihydroanthracene), 4.40 (1 H, d, J = 8.8 Hz, CH 

succinimide), 3.55 (1 H, dd, J = 8.8, 3.1 Hz, CH succinimide), 2.81 (6 H, s, 2 CH3). 13C-

NMR (150 MHz, DMSO-d6)  (ppm) 175.32 (C=O), 174.10 (C=O), 150.76 (Ar-CO), 

140.04 (Ar-C), 137.68 (Ar-C), 137.60 (Ar-C), 134.28 (Ar-C), 129.17 (Ar-C), 128.82 

(Ar-C), 127.91 (Ar-C), 127.76 (Ar-C), 127.39 (2 para-Ar-CH), 125.86 (Ar-C), 125.30 

(Ar-C), 123.75 (Ar-C), 120.65 (Ar-C), 119.99 (Ar-C), 112.38 (2 para-Ar-CH), 93.76 

(CNO2), 49.28 (CH dihydroanthracene), 47.71 (CH succinimide), 45.28 (CH 

succinimide), 2 CH3 overlapped with solvent peaks. IR vmax/cm-1: 3074, 2980, 2890, 

2816 (CH stretch), 1703 (C=O stretch), 1545 (NO2 asymmetric), 1362 (NO2 symmetric). 

LC-MS (ESI) found m/z [M + H]+: 440, C26H21N3O4 requires 439.    

Synthesis of 13-(4-iodophenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24r) [R = H, Rʹ = I].  

Compound 119 (0.11 g, 0.35 mmol, 1 eq) was combined with 4-iodoaniline 

(0.12 g, 0.54 mmol, 1.6 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24r as white crystalline 

solid, yield 0.15 g, 84%. M.p. 305-308 oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 

7.66 - 7.77 (3 H, m, Ar-CH), 7.59 - 7.65 (1 H, m, Ar-CH), 7.30 - 7.49 (5 H, m, Ar-CH), 

7.05 (1 H, d, J = 7.5 Hz, Ar-CH), 6.23 - 6.32 (2 H, m, para-Ar-CH), 5.06 (1 H, d, J = 

2.6 Hz, CH dihydroanthracene), 4.48 (1 H, d, J = 8.8 Hz, CH succinimide), 3.66 (1 H, 

dd, J = 8.7, 2.6 Hz, CH succinimide). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 

174.65 (C=O), 173.44 (C=O), 139.89 (Ar-C), 138.50 (2 para-Ar-C), 137.60 (Ar-C), 
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137.47 (Ar-C), 134.20 (Ar-C), 131.46 (Ar-C), 128.99 (Ar-C), 129.28 (Ar-C), 128.91 (2 

para-Ar-C), 128.01 (Ar-C), 127.94 (Ar-C), 125.90 (Ar-C), 125.41 (Ar-C), 123.73 (Ar-

C), 120.73 (Ar-C), 95.62 (Ar-CI), 93.74 (CNO2), 49.59 (CH dihydroanthracene), 47.97 

(CH succinimide), 45.28 (CH succinimide). IR vmax/cm-1: 2968, 2901 (CH stretch), 

1778, 1706 (C=O stretch), 1550 (NO2 asymmetric), 1387 (NO2 symmetric). LC-MS 

(ESI) found m/z [M + H]+: 523, C24H15IN2O4 requires 522.   

Synthesis of 13-(4-(tert-butyl)phenyl)-9-nitro-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (24s) [R = H, Rʹ = t-Bu].  

Compound 119 (0.10 g, 0.32 mmol, 1 eq) was combined with t-butylaniline 

(0.06 g, 0.38 mmol, 1.2 eq) in 15 mL glacial acetic acid according to the procedure 

described above. Recrystallisation in glacial acetic acid afforded 24s as a cream solid, 

yield 0.13 g, 89%. M.p. 238-240 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.72 - 

7.75 (1 H, m, Ar-CH), 7.51 - 7.55 (1 H, m, Ar-CH), 7.28 - 7.43 (7 H, m, Ar-CH), 7.08 - 

7.12 (1 H, m, Ar-CH), 6.36 - 6.41 (2 H, m, para-Ar-CH), 4.92 (1 H, d, J = 3.1 Hz, CH 

dihydroanthracene), 4.43 (1 H, d, J = 9.0 Hz, CH succinimide), 3.53 (1 H, dd, J = 8.9, 

3.1 Hz, CH succinimide), 1.26 (9 H, s, 3 CH3). 13C-NMR (150 MHz, DCM-d2)  

(ppm) 174.33 (C=O), 172.92 (C=O), 152.38 (Ar-C-C), 139.09 (Ar-C), 137.23 (Ar-C), 

136.57 (Ar-C), 133.95 (Ar-C), 128.82 (Ar-C), 128.58 (Ar-C), 128.42 (Ar-C), 127.72 

(Ar-C), 127.61 (Ar-C), 126.18 (2 para-Ar-C), 125.90 (2 para-Ar-C), 125.37 (Ar-C), 

124.34 (Ar-C), 123.89 (Ar-C), 120.86 (Ar-C), 93.47 (CNO2), 48.98 (CH 

dihydroanthracene), 47.74 (CH succinimide), 45.97 (CH succinimide), 34.65 (t-Bu-C), 
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30.92 (3 CH3). IR vmax/cm-1: 2981, 2902, 2875 (CH stretch), 1783, 1714 (C=O stretch), 

1547 (NO2 asymmetric), 1392 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 

453, C28H24N2O4 requires 452.  

4.5.2.2 Synthesis of 9,10-dihydro-9,10-[3,4]furanoanthracene-12,14-dione (120) 

 

 

 

 

Maleic anhydride (1.00 g, 10 mmol) was added to a stirring solution to 

anthracene (1.82 g, 10.2 mmol) in xylene (25 mL) and the mixture was heated under 

reflux at 140-143 °C until all the diene disappeared as indicated by TLC. The reaction 

mixture was cooled to room temperature before placing on ice while stirring. The 

precipitate was filtered, washed with ice-cold xylene to give the desired Diels-Alder 

cycloadduct 120 as sand-coloured granules, yield 2.69, 95%.  The cycloadduct was used 

in the next step without further purification. Rf 0.87 (Et2O); M.p. 259-260 °C (lit. 261-

263 °C [404]; 265-266 °C [374], 253-256 °C [405]). 1H-NMR (400 MHz, acetone-d6) δ 

(ppm) 7.47 - 7.51 (2 H, m, Ar-CH), 7.33 - 7.38 (2 H, m, Ar-CH), 7.17 - 7.22 (4 H, m, 

Ar-CH), 4.89 - 4.92 (2 H, m, CH dihydroanthracene), 3.73 - 3.75 (2 H, m, CH 

succinimide). 13C-NMR (100 MHz, acetone-d6) δ (ppm) 171.22 (2 C=O), 141.51 (2 

Ar-C), 139.41 (2 Ar-C), 127.23 (2 Ar-C), 126.79 (2 Ar-C), 125.09 (2 Ar-C), 124.48 (2 
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Ar-C), 48.24 (2 CH dihydroanthracene), 45.29 (2 CH succinimide). IR vmax/cm-1: 3077, 

3026, 2970 (C-H stretch), 1782 (C=O stretch). LC-MS (ESI) found m/z [M – H + 

MeOH]-: 307, C18H12O3 requires 276.  

4.5.2.2.1 Synthesis of 3-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-

13-yl)benzoic acid (121) and analogues 

 

 

 

 

 

 

Compound R R' Compound R R' 

121 CO2H H 121j H CO2H 

121a CO2Et H 121k H CO2Et 

121b F H 121l H F 

121c Cl H 121m H Cl 

121d NO2 H 121n H NO2 

121e H H 121o† H CH3 

121f† CH3 H 121p† H MeO 

121g† MeO H 121q† H Me2N 

121h† Me2N H 121r H I 

121i† CN H 121s H t-Bu 

†Compounds synthesised by Kulikowska [372] and Grewal [373] as part of their final year project for the 

degree of Master of Pharmacy, University of Hertfordshire  
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General procedure for the synthesis of 121-121s 

Maleic anhydride-anthracene cycloadduct (120, 1 eq), and the appropriate 3- or 

4-substituted aniline (1.2-1.5 eq) were stirred under reflux in glacial acetic acid (10 mL) 

between 1-5 h then cooled to room temperature. In some reactions, a precipitate formed 

upon cooling to room temperature (121, 121b, 121c, 121d, 121e, 121j, 121k, 121l, 

121m, 121n, 121r) while none was present for others (121a, 121f, 121g, 121h, 121i, 

121o, 121p, 121q, 121s). De-ionised water (25-40 mL) was added to the reaction 

mixture, which resulted in a precipitate forming. This was filtered, washed with ice-cold 

de-ionised water and dried. Recrystallisation was carried out in glacial acetic acid. 

Yields shown are from the final Diels-Alder step, not from overall synthesis. Although 

analogues 121, 121d, 121e, 121j, 121n, 121r, 121p, and 121q have been previously 

synthesised, their melting points were however not reported by the authors [365-368]. 

Synthesis of 3-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoic acid (121) [R = CO2H, Rʹ = H].  

Compound 120 (0.08 g, 0.29 mmol, 1 eq) was combined with 3-aminobenzoic 

acid (0.06 g, 0.41 mmol, 1.4 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121 was obtained as a white solid, yield 0.11 g, 95%. M.p. 

285-288 oC. 1H-NMR (400 MHz, acetone-d6)  (ppm) 7.93 - 7.97 (1 H, m, Ar-H), 7.52 

(1 H, dd, J = 5.4, 3.3 Hz, Ar-H), 7.41 - 7.48 (1 H, m, Ar-H), 7.28 - 7.35 (4 H, m, Ar-H), 

7.21 (4 H, m, Ar-H), 6.73 - 6.79 (1 H, m, Ar-H), 4.88 - 4.91 (2 H, m, CH 

dihydroanthracene), 3.47 (2 H, m, CH succinimide ), 1.95 (1 H, s, OH). 13C-NMR (100 
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MHz, acetone-d6)  (ppm) 175.60 (2 C=O), 165.77 (C=O acid), 141.99 (2 Ar-C), 

139.65 (2 Ar-C), 132.79 (Ar-C), 131.44 (Ar-C), 131.12 (Ar-C), 129.34 (Ar-C), 128.93 

(Ar-C), 128.10 (Ar-C), 126.84 (2 Ar-C), 126.60 (2 Ar-C), 125.00 (2 Ar-C), 124.37 (2 

Ar-C), 47.23 (2 CH dihydroanthracene), 45.82 (2 CH succinimide). IR vmax/cm-1: 3321 

(OH stretch), 1774, 1704 (C=O stretch). LC-MS (ESI) found m/z [M – H]-: 394, 

C25H17NO4 requires 395.  

Synthesis of ethyl 3-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoate (121a) [R = CO2Et, Rʹ = H].  

Compound 120 (0.11 g, 0.41 mmol, 1 eq) was combined with ethyl-3-

aminobenzoate (0.08 g, 0.51 mmol, 1.3 eq) in 15 mL glacial acetic acid according to the 

procedure described above. Compound 121a was obtained as a pale pink powder, yield 

0.17 g, 96%. M.p. 205-207 oC. 1H-NMR (400 MHz, acetone-d6)  ppm 7.89 - 7.96 (1 

H, m, Ar-H), 7.49 - 7.55 (2 H, m, Ar-H), 7.45 (1 H, t, J = 7.9 Hz, Ar-H), 7.30 - 7.37 (2 

H, m, Ar-H), 7.15 - 7.26 (5 H, m, Ar-H), 6.76 - 6.82 (1 H, m, Ar-H), 4.89 (2 H, m, CH 

dihydroanthracene), 4.33 (2 H, q, J = 7.1 Hz, CH2 aliphatic), 3.47 (2 H, dd, J = 2.1, 1.3 

Hz, CH succinimide), 1.36 (3 H, t, J = 7.1 Hz, CH3). 13C-NMR (150 MHz, acetone-d6) 

 (ppm) 175.63 (2 C=O), 164.90 (C=O ester), 132.81 (Ar-C), 131.39 (Ar-C), 132.81 

(Ar-C), 131.39 (Ar-C), 131.29 (Ar-C), 129.12 (Ar-C), 129.02 (2 Ar-C), 127.83 (2 Ar-

C), 126.84 (2 Ar-C), 126.61 (2 Ar-C), 125.01 (2 Ar-C), 124.37 (2 Ar-C), 60.94 (CH2 

aliphatic), 47.24 (2 CH dihydroanthracene), 45.81 (2 CH succinimide), 13.73 (CH3). IR 
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vmax/cm-1: 3070, 3042, 2992 (CH stretch), 1775, 1718, 1703 (C=O stretch). LC-MS 

(ESI) found m/z [M + H]+: 424, C27H21NO4 requires 423.  

Synthesis of 13-(3-fluorophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121b) [R = F, Rʹ = H].  

Compound 120 (0.10 g, 0.37 mmol, 1 eq) was combined with 3-fluoroaniline 

(0.05 g, 0.44 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121b was obtained as white flakes, yield 0.12 g, 87%. M.p. 

228-230 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.41 - 7.45 (2 H, m, Ar-H), 7.17 - 

7.34 (7 H, m, Ar-H), 6.97 - 7.05 (1 H, m, Ar-H), 6.29 - 6.36 (1 H, m, Ar-H), 6.24 (1 H, 

m, Ar-H), 4.83 - 4.89 (2 H, m, CH dihydroanthracene), 3.35 - 3.41 (2 H, m, CH 

succinimide). 13C-NMR (100 MHz, DCM-d2)  (ppm) 175.60 (2 C=O), 163.67 (Ar-

CF), 141.40 (2 Ar-C), 139.01 (2 Ar-C), 133.8 (Ar-C), 130.19 (Ar-C), 127.18 (2 Ar-C), 

126.83 (2 Ar-C), 125.07 (2 Ar-C), 124.38 (2 Ar-C), 122.42 (Ar-C), 115.60 (Ar-C), 

114.15 (Ar-C), 47.13 (2 CH dihydroanthracene), 45.89 (2 CH succinimide). IR vmax/cm-

1: 3083, 3041, 3020, 2974 (CH stretch), 1774, 1702 (C=O stretch). LC-MS (ESI) found 

m/z [M + H]+: 370, C24H16FNO2 requires 369.  

Synthesis of 13-(3-chlorophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121c)  [R = Cl, Rʹ = H].  
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Compound 120 (0.09 g, 0.31 mmol, 1 eq) was combined with 3-chloroaniline 

(0.05 g, 0.37 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121c was obtained as a cream solid, yield 0.11 g, 92%. 

M.p. 238-240 oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.49 - 7.54 (2 H, m, Ar-H), 

7.36 - 7.45 (2 H, m, Ar-H), 7.30 - 7.34 (2 H, m, Ar-H), 7.17 - 7.25 (4 H, m, Ar-H), 6.42 

- 6.49 (2 H, m, Ar-H), 4.87 (2 H, s, CH dihydroanthracene), 3.42 (2 H, m, CH 

succinimide). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 176.24 (2 C=O), 142.05 (2 Ar-

C), 139.86 (2 Ar-C), 133.63 (Ar-C), 133.46 (Ar-C), 131.21 (Ar-C), 129.15 (Ar-C), 

127.22 (2 Ar-C), 126.98 (3 Ar-C), 125.95 (Ar-C), 125.38 (2 Ar-C), 124.98 (2 Ar-C), 

47.29 (2 CH dihydroanthracene), 45.44 (2 CH succinimide). IR vmax/cm-1: 3077 (CH 

stretch), 2960 (CH stretch), 1774, 1708 (C=O stretch). LC-MS (ESI) found m/z [M + 

H]+: 386, C24H16ClNO2 requires 385.  

Synthesis of 13-(3-nitrophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-

dione (121d) [R = NO2, Rʹ = H].  

Compound 120 (0.10 g, 0.38 mmol, 1 eq) was combined with 3-nitroaniline 

(0.08 g, 0.57 mmol, 1.5 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121d was obtained as a white solid, yield 0.14 g, 95%. Mp 

282-285 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 8.11 - 8.15 (1 H, m, Ar-CH), 7.42 

- 7.52 (3 H, m, Ar-H), 7.31 - 7.38 (3 H, m, Ar-H), 7.19 - 7.27 (4 H, m, Ar-CH), 6.92 - 

7.13 (1 H, m, Ar-H), 4.88 (2 H, s, CH dihydroanthracene), 3.40 - 3.44 (2 H, m, CH 

succinimide). 13C-NMR (150 MHz, DCM-d2)  (ppm) 175.41 (2 C=O), 148.40 (Ar-
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CNO2), 141.19 (2 Ar-C), 138.89 (2 Ar-C), 132.65 (Ar-C), 132.54 (Ar-C), 129.91 (Ar-

C), 127.30 (2 Ar-C), 126.90 (2 Ar-C), 125.09 (2 Ar-C), 124.41 (2 Ar-C), 123.36 (Ar-C), 

121.77 (Ar-C), 47.21 (2 CH dihydroanthracene), 45.93 (2 CH succinimide). IR vmax/cm-

1: 3081, 3048, 3011, 2957 (CH stretch), 1775, 1710 (C=O stretch), 1530 (NO2 

asymmetric), 1387 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 397, 

C24H16N2O4 requires 396.  

Synthesis of 13-phenyl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-dione 

(121e) [R = H, Rʹ = H].  

Compound 120 (0.05 g, 0.18 mmol, 1 eq) was combined with aniline (0.02 g, 

0.21 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure described 

above. Compound 121e was obtained as a white solid, yield 0.05 g, 83%. Mp 212-215 

oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.51 (2 H, dd, J = 5.3, 3.3 Hz, Ar-H), 

7.28 - 7.36 (5 H, m, Ar-H), 7.21 (4 H, m, Ar-H), 6.37 - 6.47 (2 H, m, Ar-H), 4.86 (2 H, 

s, CH dihydroanthracene), 3.41 (2 H, s, CH succinimide). 13C-NMR (150 MHz, DCM-

d2)  (ppm) 175.97 (2 C=O), 141.51 (2 Ar-C), 139.07 (2 Ar-C), 131.79 (Ar-C), 128.97 

(2 para-Ar-C), 128.70 (Ar-C), 127.09 (2 Ar-C), 126.76 (2 para-Ar-C), 126.61 (2 Ar-C), 

125.05 (2 Ar-C), 124.33 (2 Ar-C), 47.13 (2 CH dihydroanthracene), 45.89 (2 CH 

succinimide). IR vmax/cm-1: 3069, 3038, 2969 (CH stretch), 1776, 1710 (C=O stretch). 

LC-MS (ESI) found m/z [M + H]+: 352, C24H17NO2 requires 351.  
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Synthesis of 13-(m-tolyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-dione 

(121f) [R = CH3, Rʹ = H].  

Compound 120 (0.50 g, 0.81 mmol, 1 eq) was combined with m-toluidine (0.19 

g, 1.77 mmol, 1 eq) in 20 mL glacial acetic acid according to the procedure described 

above. Compound 121f was obtained as a cream solid, yield 0.40 g, 60%. Mp 199-200 

°C. 1H-NMR (400 MHz, acetone-d6)  ppm 7.47 - 7.55 (2 H, m, Ar-H), 7.29 - 7.34 (2 

H, m, Ar-H), 7.19 - 7.25 (4 H, m, Ar-H), 7.13 - 7.19 (1 H, m, Ar-H), 7.07 - 7.11 (1 H, 

m, Ar-H), 6.29 - 6.33 (1 H, m, Ar-H), 6.26 - 6.29 (1 H, m, Ar-H), 4.87 (2 H, m, CH 

dihydroanthracene), 3.42 (2 H, m, CH succinimide), 2.22 (3 H, s, CH3). 13C-NMR (150 

MHz, acetone-d6)  (ppm) 175.71 (2 C=O), 142.07 (2 Ar-C), 139.74 (2 Ar-C), 138.49 

(Ar-C), 132.55 (Ar-C), 128.90 (Ar-C), 128.42 (Ar-C), 127.42 (Ar-C), 126.72 (2 Ar-C), 

126.55 (2 Ar-C), 125.02 (2 Ar-C), 124.32 (2 Ar-C), 123.91 (Ar-C), 47.09 (2 CH 

dihydroanthracene), 45.82 (2 CH succinimide), 20.23 (CH3). IR vmax/cm-1: 3049, 3014, 

2961, 2916 (CH stretch), 1773, 1703 (C=O stretch). LC-MS (ESI) found m/z [M – H]-: 

364, C25H19NO2 requires 365.  

Synthesis of 13-(3-methoxyphenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121g) [R = MeO, Rʹ = H].  

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with 3-methoxyaniline 

(0.27 g, 2.19 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the procedure 

described above. Compound 121g was obtained as a sand-coloured solid, yield 0.63 g, 
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91%. Mp 200-201 °C. 1H-NMR (400 MHz, acetone-d6)  (ppm) 7.46 - 7.55 (2 H, m, 

Ar-H), 7.29 - 7.36 (2 H, m, Ar-H), 7.16 - 7.26 (5 H, m, Ar-H), 6.85 - 6.93 (1 H, m, Ar-

H), 6.17 - 6.23 (1 H, m, Ar-H), 5.88 - 5.94 (1 H, m, Ar-H), 4.87 (2 H, m, CH 

dihydroanthracene), 3.68 (3 H, s, CH3), 3.42 (2 H, m, CH succinimide). 13C-NMR (150 

MHz, DMSO-d6)  (ppm) 176.37 (2 C=O), 159.89 (Ar-CO), 142.12 (2 Ar-C), 139.85 

(2 Ar-C), 133.45 (Ar-C), 130.20 (Ar-C), 127.15 (2 Ar-C), 126.90 (2 Ar-C), 125.35 (2 

Ar-C), 124.90 (2 Ar-C), 119.41 (Ar-C), 114.73 (Ar-C), 112.83 (Ar-C), 55.84 (C-MeO), 

47.16 (2 CH dihydroanthracene), 45.43 (2 CH succinimide). IR vmax/cm-1: 3011, 2948, 

2905, 2832 (CH stretch), 1778, 1713 (C=O stretch), 1025 (CO stretch). LC-MS (ESI) 

found m/z [M + H]+: 382, C25H19NO3 requires 381.  

Synthesis of 13-(3-(dimethylamino)phenyl)-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (121h) [R = Me2N, Rʹ = H].  

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with N,N-dimethy-1,3-

diamine (0.45 g, 2.15 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the 

procedure described above. Compound 121h was obtained as cream crystals, yield 0.67 

g, 94%. M.p. 255-256 °C. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.41 - 7.46 (2 H, m, 

Ar-H), 7.31 - 7.36 (2 H, m, Ar-H), 7.17 - 7.24 (4 H, m, Ar-H), 7.11 (1 H, t, J = 8.1 Hz, 

Ar-H), 6.61 (1 H, dd, J = 8.4, 2.6 Hz, Ar-H), 5.85 (1 H, m, Ar-H), 5.40 (1 H, t, J = 2.1 

Hz, Ar-H), 4.83 - 4.88 (2 H, m, CH dihydroanthracene), 3.32 - 3.37 (2 H, m, CH 

succinimide), 2.82 (6 H, s, CH3). 13C-NMR (150 MHz, DCM-d2)  (ppm) 176.14 (2 

C=O), 151.19 (Ar-CN), 141.57 (2 Ar-C), 139.22 (2 Ar-C), 132.71 (Ar-C), 129.34 (Ar-
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C), 126.98 (2 Ar-C), 126.73 (2 Ar-C), 125.11 (2 Ar-C), 124.33 (2 Ar-C), 114.08 (Ar-C), 

112.57 (Ar-C), 110.35 (Ar-C), 47.12 (2 CH dihydroanthracene), 45.93 (2 CH 

succinimide), 40.17 (2 CH3). IR vmax/cm-1: 3474 (NH stretch), 3031 2960 2880 2804 

(CH stretch), 1777, 1713 (C=O stretch). LC-MS (ESI) found m/z [M + H]+: 395, 

C26H22N2O2 requires 394.  

Synthesis of 3-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzonitrile (121i) [R = CN, Rʹ = H]. 

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with 3-

aminobenzonitrile (0.26 g, 2.20 mmol, 1.2 eq) in 20 mL glacial acetic acid according to 

the procedure described above. Compound 121i was obtained as a white solid, yield 

0.67 g, 98%. M.p. 262-264 °C. 1H-NMR (600 MHz, DMSO-d6)  (ppm) 7.75 - 7.83 (1 

H, m, Ar-H), 7.52 - 7.59 (1 H, m, Ar-H), 7.45 - 7.51 (2 H, m, Ar-H), 7.26 - 7.32 (2 H, 

m, Ar-H), 7.14 - 7.21 (4 H, m, Ar-H), 6.81 - 6.86 (1 H, m, Ar-H), 6.72 - 6.74 (1 H, m, 

Ar-H), 4.85 (2 H, m, CH dihydroanthracene), 3.42 (2 H, m, CH succinimide). 13C-NMR 

(150 MHz, DMSO-d6)  (ppm) 176.10 (2 C=O), 141.95 (2 Ar-C), 139.80 (2 Ar-C), 

133.03 (Ar-C), 132.92 (Ar-C), 131.97 (Ar-C), 131.10 (Ar-C), 130.29 (Ar-C), 127.23 (2 

Ar-C), 126.96 (2 Ar-C), 125.36 (2 Ar-C), 124.97 (2 Ar-C), 118.13 (Ar-C), 112.42 (Ar-

C), 47.28 (2 CH dihydroanthracene), 45.41 (2 CH succinimide). IR vmax/cm-1: 3076, 

29750 (CH stretch), 1785, 1713 (C=O stretch). LC-MS (ESI) found m/z [M – H]-: 375, 

C25H16N2O2 requires 376.  
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Synthesis of 4-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoic acid (121j) [R = H, Rʹ = CO2H].  

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with 4-aminobenzoic 

acid (0.30 g, 2.17 mmol, 1.2 eq) in 15 mL glacial acetic acid according to the procedure 

described above. Precipitate formed after 25 minutes of reaction. Compound 121j was 

obtained as a white solid. Yield 0.61 g, 86%. M.p. 354-355 oC. 1H-NMR (400 MHz, 

acetone-d6)  (ppm) 7.95 (2 H, d, J = 8.8 Hz, para-Ar-H), 7.50 - 7.54 (2 H, m, Ar-H), 

7.31 - 7.35 (2 H, m, Ar-H), 7.19 - 7.23 (4 H, m, Ar-H), 6.72 (2 H, d, J = 8.6 Hz, para-

Ar-H), 4.89 (2 H, d, J = 1.6 Hz, CH dihydroanthracene), 3.47 (2 H, m, CH succinimide). 

13C-NMR (100 MHz, acetone-d6)  (ppm) 175.66 (2 C=O), 171.39 (C=O acid), 140.26 

(2 Ar-C), 139.65 (2 Ar-C), 133.07 (Ar-C), 129.97 (2 para-Ar-C), 128.64 (Ar-C), 127.27 

(Ar-C), 126.62 (2 Ar-C), 125.01 (2 Ar-C), 124.75 (Ar-C), 124.37 (2 para-Ar-C), 110.79 

(2 Ar-C), 47.21 (2 CH dihydroanthracene), 45.83 (2 CH succinimide). IR vmax/cm-1: 

3283 (OH stretch), 3020, 2972 (CH stretch), 1771, 1728, 1698 (C=O stretch), 1105 (C-

O stretch). LC-MS (ESI) found m/z [M – H]-: 394, C25H17NO4 requires 395.  

Synthesis of ethyl 4-(12,14-dioxo-9,10-dihydro-9,10-[3,4]epipyrroloanthracen-13-

yl)benzoate (121k) [R = H, Rʹ = CO2Et].  

Compound 120 (0.15 g, 0.56 mmol, 1 eq) was combined with ethyl-4-

aminobenzoate (0.11 g, 0.69 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the 

procedure described above. Compound 121k was obtained as a white solid, yield 0.22 g, 
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92%. M.p. 220-222 oC. 1H-NMR (400 MHz, acetone-d6)  (ppm) 7.89 - 7.98 (2 H, m, 

para-Ar-H), 7.45 - 7.56 (2 H, m, Ar-H), 7.28 - 7.38 (2 H, m, Ar-H), 7.16 - 7.24 (4 H, m, 

Ar-H), 6.67 - 6.76 (2 H, m, para-Ar-H), 4.78 - 4.99 (2 H, m, CH dihydroanthracene), 

4.32 (2 H, q, J = 7.1 Hz, CH2 aliphatic), 3.47 (2 H, m, CH succinimide), 1.33 (3 H, t, J = 

7.1 Hz, CH3). 13C-NMR (100 MHz, acetone-d6)  (ppm) 175.42 (2 C=O), 165.09 

(C=O ester), 141.95 (2 Ar-C), 139.62 (2 Ar-C), 136.42 (Ar-C), 130.27 (Ar-C), 129.65 (2 

para-Ar-C), 126.85 (2 Ar-C), 126.67 (2 para-Ar-C), 126.61 (2 Ar-C), 124.99 (2 Ar-C), 

124.37 (2 Ar-C), 60.86 (CH2 aliphatic), 47.20 (2 CH dihydroanthracene), 45.82 (2 CH 

succinimide), 13.67 (CH3). IR vmax/cm-1: 3132, 3067, 2958 (CH stretch), 1777, 1707, 

1608 (C=O stretch). LC-MS (ESI) found m/z [M + H]+: 424, C27H21NO4 requires 423.  

Synthesis of 13-(4-fluorophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121l) [R = H, Rʹ = F].  

Compound 120 (0.13 g, 0.48 mmol, 1 eq) was combined with 4-fluoroaniline 

(0.06 g, 0.57 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121l was obtained as a pale pink solid, yield 0.17 g, 96%. 

M.p. 250-253 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.40 - 7.46 (2 H, m, Ar-H), 

7.29 - 7.34 (2 H, m, Ar-H), 7.17 - 7.24 (4 H, m, Ar-H), 6.94 - 7.02 (2 H, m, Ar-H), 6.42 

- 6.49 (2 H, m, Ar-H), 4.82 - 4.88 (2 H, m, CH dihydroanthracene), 3.35 - 3.38 (2 H, m, 

CH succinimide). 13C-NMR (100 MHz, DCM-d2)  (ppm) 175.93 (2 C=O), 141.41 (2 

Ar-C), 139.05 (2 Ar-C), 128.52 (Ar-C), 128.43 (2 para-Ar-C), 127.12 (2 Ar-C), 126.80 

(2 Ar-C), 125.05 (2 Ar-C), 124.37 (2 Ar-C), 116.07 (Ar-C), 115.84 (2 para-Ar-C), 
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47.10 (2 CH dihydroanthracene), 45.88 (2 CH succinimide). IR vmax/cm-1: 2975, 2891 

(CH stretch), 1777, 1708 (C=O stretch). LC-MS (ESI) found m/z [M + H]+: 370, 

C24H16FNO2 requires 369.  

Synthesis of 13-(4-chlorophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121m) [R = H, Rʹ = Cl].  

Compound 120 (0.15 g, 0.53 mmol, 1 eq) was combined with 4-chloroaniline 

(0.09 g, 0.67 mmol, 1.3 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121m was obtained as fluffy white powder, yield 0.19 g, 

94%. M.p. 275-278 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.37 - 7.48 (2 H, m, 

para-Ar-H), 7.10 - 7.37 (8 H, m, Ar-H), 6.40 - 6.49 (2 H, m, para-Ar-H), 4.85 (2 H, s, 

CH dihydroanthracene), 3.31 - 3.41 (2 H, m, CH succinimide). 13C-NMR (150 MHz, 

DCM-d2)  (ppm) 175.71 (2 C=O), 141.38 (2 Ar-C), 139.00 (2 Ar-C), 134.41 (Ar-C), 

130.24 (Ar-C), 129.16 (2 para-Ar-C), 127.86 (2 para-Ar-C), 127.13 (2 Ar-C), 126.80 (2 

Ar-C), 125.04 (2 Ar-C), 124.36 (2 Ar-C), 47.10 (2 CH dihydroanthracene), 45.88 (2 CH 

succinimide). IR vmax/cm-1: 2981, 2973, 2885 (CH stretch), 1774, 1702 (C=O stretch). 

LC-MS (ESI) found m/z [M + H]+: 386, C24H16ClNO2 requires 385.  

Synthesis of 13-(4-nitrophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-

dione (121n) [R = H, Rʹ = NO2].  

Compound 120 (0.10 g, 0.37 mmol, 1 eq) was combined with 4-nitroanline (0.06 

g, 0.45 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure described 
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above. Compound 121n was obtained as cream crystals, yield 0.12 g, 83%. M.p. 294-

295 oC. 1H-NMR (400 MHz, acetone-d6)  (ppm) 8.17 - 8.23 (2 H, m, para-Ar-H), 

7.49 - 7.55 (2 H, m, Ar-H), 7.31 - 7.37 (2 H, m, Ar-H), 7.17 - 7.25 (4 H, m, Ar-H), 6.89 

- 6.96 (2 H, m, para-Ar-H), 4.85 - 4.96 (2 H, m, CH dihydroanthracene), 3.51 (2 H, m, 

CH succinimide). 13C-NMR (151 MHz, acetone-d6)  ppm 175.28 (2 C=O), 147.17 

(Ar-CNO2), 141.83 (2 Ar-C), 139.56 (2 Ar-C), 137.85 (Ar-C), 127.45 (2 para-Ar-C), 

126.92 (2 Ar-C), 126.66 (2 Ar-C), 124.98 (2 para-Ar-C), 124.41 (2 Ar-C), 123.97 (2 

Ar-C), 47.24 (2 CH dihydroanthracene), 45.77 (2 CH succinimide).  IR vmax/cm-1: 3480, 

3121, 3082, 3017, 2973, 2860 (CH stretch), 1777, 1708 (C=O stretch), 1522 (NO2 

asymmetric), 1344 (NO2 symmetric). LC-MS (ESI) found m/z [M + H]+: 397, 

C24H16N2O4 requires 396.  

Synthesis of 13-(p-tolyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-dione 

(121o) [R = H, Rʹ = CH3].  

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with p-toluidine (0.19 

g, 1.77 mmol, 1 eq) in 20 mL glacial acetic acid according to the procedure described 

above. Compound 121o was obtained as a white solid, yield 0.62 g, 94%. M.p. 220-222 

°C. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.49 - 7.53 (2 H, m, Ar-H), 7.27 - 7.32 (2 

H, m, Ar-H), 7.20 (4 H, m, Ar-CH), 7.12 (2 H, m, para-Ar-H), 6.21 - 6.39 (2 H, m, 

para-Ar-H), 4.85 (2 H, s, CH dihydroanthracene), 3.38 - 3.40 (2 H, m, CH succinimide), 

2.25 (3 H, CH3). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 176.59 (2 C=O), 142.21 (2 

Ar-C), 139.86 (2 Ar-C), 138.58 (Ar-C), 129.83 (2 para-Ar-C), 129.77 (Ar-C), 127.17 (2 
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para-Ar-C), 126.92 (2 Ar-C), 126.84 (2 Ar-C), 125.35 (2 Ar-C), 124.93 (2 Ar-C), 47.13 

(2 CH dihydroanthracene), 45.41 (2 CH succinimide), 21.20 (CH3). IR vmax/cm-1: 3075, 

3048, 2982, 2928, 2862 (CH stretch), 1768 1704 (C=O stretch). LC-MS (ESI) found m/z 

[M – H]-: 364, C25H19NO2 requires 365.  

Synthesis of 13-(4-methoxyphenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121p) [R = H, Rʹ = MeO].  

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with 4-methoxyanline 

(0.27 g, 2.19 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the procedure 

described above. Compound 121p was obtained as a light purple solid, yield 0.60 g, 

87%. M.p. 240-243 °C. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.38 - 7.48 (2 H, m, 

Ar-H), 7.28 - 7.35 (2 H, m, Ar-H), 7.15 - 7.26 (4 H, m, Ar-H), 6.74 - 6.84 (2 H, m, 

para-Ar-H), 6.31 - 6.40 (2 H, m, para-Ar-H), 4.81 - 4.89 (2 H, m, CH 

dihydroanthracene), 3.74 (3 H, s, MeO), 3.35 (2 H, m, CH succinimide). 13C-NMR (150 

MHz, DMSO-d6)  (ppm) 176.36 (2 C=O), 159.22 (Ar-CO), 141.88 (2 Ar-C), 139.56 

(2 Ar-C), 127.93 (2 para-Ar-CH), 126.81 (2 Ar-C), 126.57 (2 Ar-C), 125.00 (2 Ar-C), 

124.57 (3 Ar-C), 114.33 (2 para-Ar-CH), 55.58 (MeO), 46.76 (2 CH 

dihydroanthracene), 45.11 (2 CH succinimide). IR vmax/cm-1: 3393, 3012, 2949, 2905, 

2832 (CH stretch), 1779, 1710 (C=O stretch). LC-MS (ESI) found m/z [M + H]+: 380, 

C25H19NO3 requires 381.  
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Synthesis of 13-(4-(dimethylamino)phenyl)-9,10-dihydro-9,10-

[3,4]epipyrroloanthracene-12,14-dione (121q) [R = H, Rʹ = Me2N].   

Compound 120 (0.50 g, 1.81 mmol, 1 eq) was combined with N,N-dimethyl-1,4-

diamine (0.30 g, 2.20 mmol, 1.2 eq) in 20 mL glacial acetic acid according to the 

procedure described above. Compound 121q was obtained as a light purple powder, 

yield 0.68 g, 95%. Mp 243-245 °C. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.48 - 

7.53 (2 H, m, Ar-H), 7.26 - 7.31 (2 H, m, Ar-H), 7.16 - 7.23 (4 H, m, Ar-H), 6.53 - 6.63 

(2 H, m, para-Ar-H), 6.15 - 6.24 (2 H, m, para-Ar-H), 4.84 (2 H, m, CH 

dihydroanthracene), 3.35 (2 H, m, CH succinimide), 2.85 (6 H, s, 2 CH3). 13C-NMR 

(150 MHz, DMSO-d6)  (ppm) 176.89 (2 C=O), 150.63 (Ar-CN), 142.25 (2 Ar-C), 

139.86 (2 Ar-C), 127.53 (2 para-Ar-C), 127.06 (2 Ar-C), 126.84 (2 Ar-C), 125.28 (2 

Ar-C), 124.83 (2 Ar-C), 120.68 (Ar-C), 112.38 (2 para-Ar-C), 46.94 (2 CH 

dihydroanthracene), 45.43 (2 CH succinimide), 21.80 (2 CH3). IR vmax/cm-1: 3477 (NH 

stretch), 3075, 3040, 3017, 2974, 2864 (CH stretch), 1773, 1698 (C=O stretch). LC-MS 

(ESI) found m/z [M + H]+: 395, C26H22N2O2 requires 394.  

Synthesis of 13-(4-iodophenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-

dione (121r) [R = H, Rʹ = I].  

Compound 120 (0.11 g, 0.38 mmol, 1 eq) was combined with 4-iodoaniline 

(0.10 g, 0.46 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121r was obtained as a white solid, yield 0.16 g, 90%. 
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M.p. 303-307 oC. 1H-NMR (400 MHz, DMSO-d6)  (ppm) 7.68 - 7.75 (2 H, m, para-

Ar-H), 7.47 - 7.53 (2 H, m, Ar-H), 7.26 - 7.32 (2 H, m, Ar-H), 7.19 (4 H, m, Ar-H), 6.23 

- 6.30 (2 H, m, para-Ar-H), 4.86 (2 H, s, CH dihydroanthracene), 3.40 (2 H, s, CH 

succinimide). 13C-NMR (100 MHz, DMSO-d6)  (ppm) 176.23 (2 C=O), 142.12 (Ar-

C), 139.81 (Ar-C), 138.35 (2 para-Ar-C), 132.01 (Ar-C), 129.03 (2 para-Ar-C), 127.22 

(2 Ar-C), 126.95 (2 Ar-C), 125.31 (2 Ar-C), 124.94 (2 Ar-C), 95.17 (Ar-CI), 47.24 (2 

CH dihydroanthracene), 45.41 (2 CH succinimide). IR vmax/cm-1: 2973 (CH stretch), 

1700 (C=O stretch). LC-MS (ESI) found m/z [M + H]+: 478, C24H16INO2 requires 477.  

Synthesis of 13-(4-(tert-butyl)phenyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-

12,14-dione (121s) [R = H, Rʹ = t-Bu].  

Compound 120 (0.14 g, 0.51 mmol, 1 eq) was combined with t-butyl aniline 

(0.09 g, 0.61 mmol, 1.2 eq) in 10 mL glacial acetic acid according to the procedure 

described above. Compound 121s was obtained as a white solid, yield 0.19 g, 93%. 

M.p. 268-271 oC. 1H-NMR (400 MHz, DCM-d2)  (ppm) 7.43 (2 H, m, Ar-H), 7.29 - 

7.34 (4 H, m, Ar-H), 7.17 - 7.25 (4 H, m, Ar-H), 6.35 - 6.40 (2 H, m, para-Ar-H), 4.84 - 

4.86 (2 H, m, CH dihydroanthracene), 3.36 (2 H, m, CH succinimide), 1.26 (9 H, s, 

CH3). 13C-NMR (150 MHz, DCM-d2)  (ppm) 176.14 (2 C=O), 151.98 (Ar-C), 141.54 

(2 Ar-C), 139.10 (2 Ar-C), 129.06 (Ar-C), 127.06 (2 Ar-C), 126.74 (2 Ar-C), 126.08 (2 

para-Ar-C), 126.03 (2 para-Ar-C), 125.05 (2 Ar-C), 124.32 (2 Ar-C), 47.10 (2 CH 

dihydroanthracene), 45.89 (2 CH succinimide), 34.60 (quaternary C), 30.94 (3 CH3). IR 
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vmax/cm-1: 2963, 2903, 2868 (CH stretch), 1773, 1707 (C=O stretch). LC-MS (ESI) 

found m/z [M + H]+: 408, C28H25NO2 requires 407.  
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4.5.3 General methodology: biological screening 

4.5.3.1 Cell culture  

All reagents for in vitro studies were purchased from Sigma Aldrich (Poole, 

Dorset, UK) unless otherwise specified. Human pancreatic cancer cells, Panc-1 

(ATCC® CRL-1469™) and BxPC-3 (ATCC® CRL-1687™), were purchased from 

LGC Standards (LGC Limited., Middlesex, UK). Both were grown as monolayers in 

their respective culture media – Dulbecco Modified Eagle Medium (DMEM) for Panc-1 

and RPMI-1640 for BxPC-3 – supplemented with Foetal Bovine Serum (FBS, 10% v/v), 

Penicillin/Streptomycin solution (200 U), and L-glutamine (2 mM). Both cells were 

maintained in T75 cm2 flasks at 37 °C in a 5% humidified CO2 atmosphere and 

passaged at least three times a week when they had reached about 70% confluency using 

a standardised trypsinisation protocol.  

4.5.3.2 Growth of pancreatic cancer cells 

To determine the optimal assay conditions for both BxPC-3 and Panc-1 cells, the 

cells were plated in 96-well plates and their growth monitored over a period of two 

weeks to obtain “batch growth curve” characteristics. The cells were seeded at a density 

of 1000, 10,000 and 100,000 cells/well in triplicates overnight. CellTiter 96® AQueous 

Non-Radioactive Cell Proliferation Assay (MTS) reagent (Promega, UK) was added to 

the wells at 24 h and the plates incubated at 37 °C in a 5% humidified CO2 atmosphere. 

Plates were read at an absorbance at 492 nm 90 minutes after addition of the MTS 
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reagent using a Multiskan Ascent 96/384 plate reader (Thermo Scientific, 

Loughborough, UK). This procedure was repeated daily over a period of two weeks.  

4.5.3.3 Preparation of compounds 

Cromolyn was purchased as the disodium salt (Sigma Aldrich, Poole, Dorset, 

UK) with ≥95% purity and the drug solutions were prepared in distilled water (10 Mm). 

Compounds to be screened (24, 24a, 24e, 24j and 121) were prepared by dissolving in 

sterile-filtered DMSO Hybri-Max™ (≥99.7%, Sigma Aldrich, Poole, Dorset, UK). The 

stock solutions of cromolyn and the compounds to be screened were filtered through 

0.22 μm sterile filters and stored at –20 °C prior to use. For the proliferation studies, 

stock solutions (1000 μM) were prepared in the appropriate cell culture medium and 

serially diluted as required.   

4.5.3.4 Proliferation studies 

Pancreatic cancer cells (1 x 104 cells/mL) in 100 μL complete cell culture 

medium were plated in clear 96-well plates (Sigma-Aldrich, Poole, UK) and incubated 

overnight at 37 °C in a 5% CO2 atmosphere. Cell viability was confirmed prior to 

seeding for the MTS assay study using the Trypan blue exclusion assay. Cromolyn 

sodium salt (Sigma Aldrich, Poole, UK), compound 24 and its analogues 24a, 24e, 24j 

and 121 were prepared from 10 mM stock solutions in serum-free medium and serially 

diluted to give concentrations of 1, 10, 100 and 1000 μM. Control samples for these 

investigations included cells incubated in the absence of drugs, cells incubated with the 

addition of the solvent DMSO at the corresponding concentration(s) used for the drug 
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solutions and media-only samples. Cells were incubated with the test compounds for 24, 

48 and 72 h. At each of the three time points, CellTiter 96® AQueous Non-Radioactive 

Cell Proliferation Assay (MTS) (Promega, Southampton, UK) was added to each well 

(1:5 v/v). The plates were incubated for 90 minutes before reading the absorbance at 492 

nm using a Multiskan Ascent 96/384 plate reader (Thermo Scientific, Loughborough, 

UK). Each concentration had four replicates. The experiments were repeated twice. 

For data analysis, the background absorbance from media-only wells was 

subtracted from the absorbance from the test wells. The absorbance from control wells, 

containing DMSO at concentrations of 1, 10, 100 and 1000 μM was subtracted from the 

absorbance values obtained with wells treated with the sample compounds before an 

average of all four replicates was taken. The results are expressed as mean ±SEM of the 

three independent experiments with n = 12. Two-way ANOVA with P values of 

<0.05(*), <0.01 (**), <0.001 (***) and <0.0001 (****) relative to control were 

determined using GraphPad Prism 6.00 trial version for Windows (GraphPad Software, 

San Diego, CA, USA, www.graphpad.com) and post-test comparisons were made using 

Bonferroni test at 95% confidence interval.   

4.5.3.5 CytoTox-ONE™ Homogeneous Membrane Integrity Assay: Lactate 

Dehydrogenase (LDH) studies 

Cell membrane integrity studies were carried out in multiplex with the MTS 

assay studies. Prior to adding the MTS reagent to the wells, 50 μL of supernatant was 

removed from the wells of the clear plate and pipetted into a black 96-well plate. 
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CytoTox-ONE™ Homogeneous Membrane Integrity Assay (Promega, Southampton, 

UK) was added to each well (50 μL, 1:1 v/v) and the plate incubated at room 

temperature (~ 22 °C) in the dark for 10 minutes. To stop enzyme activity, 25 μL of 

Stop Solution (Promega, Southampton, UK) was added to each well and the 

fluorescence read at an excitation wavelength of 560 nm and an emission wavelength of 

590 nm using GloMax®-Multi Detection System plate reader (Promega, Southampton, 

UK).  

For data analysis, background noise (media only wells) was subtracted from all 

wells. The absorbance of wells containing DMSO at concentrations of 1, 10, 100 and 

1000 μM was subtracted from wells containing the sample compounds before an 

average of all four replicates was taken. The results are expressed as mean ±SEM with 

of three independent experiments with n =12. P values of <0.05(*), <0.01 (**), <0.001 

(***) and <0.0001 (****) were determined relative to control using 2-Way ANOVA 

with post-test comparisons made using Bonferroni test at the 95% confidence interval. 

4.5.3.6 Chick Chorioallantoic Membrane (CAM) assay for angiogenesis studies  

Fertilised eggs (Dekalb White) were purchased from Henry Stewart & Co. 

Limited (Fakenham, Norfolk, UK) and left to settle in the laboratory overnight at room 

temperature. The eggs were incubated in a Brinsea Mini Eco Egg incubator (Brinsea 

Products Limited, Weston Super Mare, UK) at 37.5 °C, with a “no turning” setup. 

Following four days of incubation, the eggs were candled to confirm the presence of a 

developing embryo and a small volume of egg (~3 mL) removed from the blunt end of 
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the egg using a sterile needle and syringe under aseptic conditions and discarded. A 

small rectangular window (~2.5 x 2.0 cm) was cut into the shell of the egg using a 

Dremel drill to expose the developing embryo before the compounds (10 μM 20 μL pre-

absorbed on sterile 1 x 1 cm2 Whatman filter paper), were loaded onto the sample. 

Compounds, 24, 24a, 24e, 24j and 121, were prepared as described in Section 4.5.3 and 

diluted in sterile PBS. The window is sealed with low-adhesive Scotch tape and eggs 

incubated at 37.5 °C. On day ten after first incubation, the eggs are removed from the 

incubator and representative images of the embryo and associated blood vessel network 

captured using GXCAM-9 digital microscope C-mount camera (GT Vision, Suffolk, 

UK) mounted on an Olympus CKX41 microscope at x3 magnification (objective lens). 
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5. General Discussion 

Pancreatic cancer remains one of the most difficult cancers to diagnose and treat 

with very poor five-year survival rates [4, 50, 91]. Despite advances made in the 

treatment of many other cancers that have led to improvement in survival rates, 

pancreatic cancer still remains “the silent killer”, with little means of detecting the 

disease in its early stages.  

The main aim of this project was to identify compounds with the potential to 

disrupt the interaction between S100P and its receptor, RAGE, in the hope of finding a 

potential therapeutic candidate against pancreatic cancer. S100P is a Ca2+-binding 

protein that has been validated [125, 150, 175, 177, 181, 185] and shown to be a 

druggable therapeutic target in pancreatic cancer [195, 225, 228].  

The NMR-derived 3D experimental structure of S100P (PDB ID 1OZO) was 

used for structure-based drug design (SBDD) studies (Chapter 2) in the investigation to 

identify potential inhibitors of the S100P-RAGE interaction. The selection of the NMR 

ensemble over the X-ray crystal structure (PDB ID 1J55) was due to the former 

representing a complete experimental structure of the active (i.e. dimeric) form of the 

protein. To the best of this author’s knowledge, there is very limited data available on 

the application of the 3D-NMR ensemble of S100P for SBDD hence the rationale 

behind the present work. In addition, with the exception of the recently published papers 

of Penumutchu et al. [294, 323], there are very limited computational studies on the 
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experimental S100P structures to elucidate the mechanism by which small molecules 

interact with it.  

Using in silico methods, conformer 15 of 1OZO was identified as the most 

suitable member of the NMR ensemble for use as a template for SBDD studies (Chapter 

2). This member was selected after a number of pocket-detection algorithms 

independently identified similar potential pockets at the dimeric interface of the 

conformer that were sufficiently large enough to accommodate cromolyn (4), the ligand 

reported to bind to and inhibit the protein’s interaction with its receptor RAGE 

[195].When this work was carried out there was no experimental information on the 

binding pockets of S100P, although it had been shown that interaction with target 

proteins is dependent on its dimerization [137, 284, 292, 322]. In 2014, the two reports 

by Penumutchu et al. showed the interaction of 4 with S100P as well as the protein’s 

interaction with RAGE [294, 323]. The authors identified residues on the dimeric 

interface of S100P involving helix 4 and helix 1ʹ (E5, D13, F44, Y88 and F89) that play 

a crucial role in S100P binding to RAGE, and residues F44, F89, A84, I81, I12, G9, M8, 

E5 and C85 as those involved in the binding of cromolyn to S100P [294, 323].  

These residues, with the exception of C85 which was mutated to S85 in the 

NMR ensemble, are present in the putative dimeric binding site of conformer 15 

identified by the studies presented in this thesis (Chapter 2). In retrospect, this validates 

conformer 15 of the NMR ensemble as a credible starting point for SBDD studies given 
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that the putative binding site has now been shown to correlate with direct experimental 

evidence [294, 323].  

Docking studies (Chapter 2) showed three main points of interaction between 

compound 4 and S100P: two hydrogen bonding interactions involving residues T82 and 

T92 with the two oxygen atoms of one of the carboxylate groups of compound 4, and a 

hydrophobic contact between F89 and one of the chromone moieties. Two 

pharmacophore models, “stringent” and “relaxed” models, were generated from the 

predicted binding interactions. Both models have the same geometric constraints (angles 

and distances) but different pharmacophoric features (Chapter 2). Both have two 

features defined as hydrogen bond acceptors and an aromatic centre. In the “stringent” 

pharmacophore model, the two acceptor features were further classified as “anionic”. In 

the “relaxed” model, they were defined as hydrogen bond acceptors (Chapter 2).  

Both the “stringent” and “relaxed” pharmacophore models were used to virtually 

screen 653,214 lead-like compounds in the MOE database resulting in 52 and 4,619 

“hits” respectively. The huge difference in the number of “hits” obtained from the two 

virtual screens demonstrates the rigidity that the requirement for an anionic feature in 

the “stringent” pharmacophore model conveys on the results returned. Retention of the 

anionic feature could have served to reduce the variety in the hit compounds returned 

from the virtual screening experiment, which in turn would hamper drug discovery 

efforts, and as such it was important to widen the scope of the virtual screen by defining 

the “relaxed” pharmacophore. Virtual screening of the ZINC database containing 
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765,278 lead-like compounds with the “relaxed” pharmacophore generated 4,789 “hits”. 

A total of 9,408 “hits” were obtained from the virtual screening of both databases using 

the “relaxed” pharmacophore (Chapter 2).  

To obtain a diverse library of compounds for biological screening, the 9,408 

“hits” from the virtual screening studies were clustered based on their maximum 

common substructure similarity [281, 282]. A total of 299 clusters were obtained with 

77 singletons. Sixty-five “hits”, 13 from the “stringent” pharmacophore search and 52 

from the “relaxed” pharmacophore query, were selected from the clusters and 

purchased. Purchased compounds were selected from different clusters to ensure 

maximum diversity. Although commercially available from specialist vendors, these 

compounds are considered “novel” as their synthesis, purification, and characterisation 

is not usually available in the public domain. Four “hit” compounds, 7, 58, 58a and 58b, 

were synthesised and characterised in-house as described in Chapter 3.  

The first round of biological screening involving 17 compounds and carried out 

in collaboration with Dr Crnogorac-Jurcevic’s laboratory at Queen Mary, University of 

London, identified five compounds, 17, 18, 20, 24, and 43, that demonstrated promising 

activity against the invasion of the S100P-expressing pancreatic cancer cell line BxPC-3 

(Chapter 3). Compound 24, in particular, showed a significant inhibition of the invasion 

of these cells at a concentration of 100 μM that was comparable to compound 4 at the 

same concentration (p<0.05). As this was one of the compounds initially purchased, and 

since repurchasing it in sufficient quantity for further explorative studies was 
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prohibitively expensive, it was synthesised in-house via two synthetic routes (Chapter 

4). 

Structurally, compound 24 shares little similarity to compound 4 (Figure 5.1). 

The maximum common substructure Tanimoto similarity between the two compounds is 

0.17 meaning they share a 17% similarity. The former is a 9-NO2 anthracene-maleic 

anhydride-derived N-aryl substituted succinimide compound, whilst the latter is a 

symmetrical acid consisting of two chromone moieties joined together by an alcohol 

chain. Retrosynthetic analysis of compound 24 led to the identification of two potential 

synthetic routes a and b (Chapter 4, Section 4.2.1). 

 

 

Figure 5.1: Compound 24, which showed an inhibitory effect on the invasion of BxPC-3 cells 

comparable to compound 4, is structurally different from the latter. 
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In route a, ethyl-3-aminobenzoate was combined with maleic anhydride in a 

two-step reaction process to give the maleimide intermediate 115. The Diels-Alder 

reaction of the dienophile 115 with 9-nitroanthracene did not however yield the desired 

target compound 24, possibly due to interaction of the N-aryl substituent of the 

dienophile with the π system of the 9-NO2 anthracene diene [362], or, the effect of the 

electron withdrawing nitro group on the π system [361]. In route b, maleic anhydride 

was combined with 9-nitroanthracene in a Diels-Alder reaction to give the cycloadduct 

intermediate 119. Reaction of 119 with 3-aminobenzoic acid led to the successful 

isolation of the target compound 24 in 80% yield from the Diels–Alders step (Chapter 4, 

Section 4.5.2.1.1). Thirty-nine analogues were also synthesised by varying substituents 

in the meta (R) or para (Rʹ) positions on the phenyl ring, and with or without the nitro 

group (X) on the dihydroanthracene ring (Figure 5.2), in excellent reproducible yields 

ranging from 61-97%. All compounds were characterised via 1H- and 13C-NMR, LC-

MS spectrometry, and IR spectroscopy to confirm that they are the desired products.  

 

Figure 5.2: Analogues of compound 24 were synthesised by varying different substituents on R, 

Rʹ and X (Chapter 4).  
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Due to time limitations, five of the 40 synthesised compounds, 24, 24a, 24e, 24j 

and 121, were biologically screened against pancreatic cancer cell lines BxPC-3 and 

Panc-1 (Chapter 4). These compounds were selected to assess the effect of substituting 

the carboxylic acid group with an ester group (24a), a hydrogen (24e), and in the para 

position (24j) on biological activity relative to the main “hit” compound 24. Compound 

121, which lacks the nitro group, was included to assess the effect of this group on 

biological activity relative to 24. The compounds were assessed for cytotoxicity and for 

effect on the proliferative capability of BxPC-3 and Panc-1 cells using the LDH and 

MTS assays respectively.  

All five compounds demonstrated significant inhibitory activity against the 

proliferation of S100P-expressing BxPC-3 cells relative to control (p<0.0001) at a 

concentration of 1, 10 and 100 μM. Interestingly, a similar effect was also observed on 

Panc-1 cells, casting doubt on an S100P-specific effect from these compounds based on 

these results. The effect of compound 4 on the proliferation of both cell lines, despite 

published reports [195, 334], was not reproduced in this study, nor in numerous similar 

studies in Dr Crnogorac-Jurcevic’s laboratory (unpublished results). The inability to 

reproduce the reported effect of compound 4 on the proliferation of these cells points to 

the conclusion that S100P-RAGE may not be involved in cell proliferation, merely 

metastasis.    

Preliminary studies on the effect of the five compounds investigated on 

angiogenesis using chick chorioallantioc membrane (CAM) assay, showed initial 
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promising results for compound 24. However, additional studies are required to validate 

these initial findings.  

  



Chapter 5: General Discussion and Conclusions 

 

261 

 

6. Conclusions  

In this project, computational methods were successfully employed to identify 

putative sites on the NMR ensemble of S100P with potential to bind small molecules. 

This was the first project of its kind to do so on the NMR-derived structure of the 

protein, and has shown the feasibility of using an NMR ensemble for structure-based 

drug design studies provided due care is taken to select the most appropriate of the 

ensemble members for use as a template. Conformer 15 of the NMR ensemble was 

identified as having the most appropriate “druggable” binding site for SBDD studies, a 

hypothesis subsequently confirmed by recent experimental studies by others [294, 323], 

and was used as template to predict S100P’s interaction with compound 4 via in silico 

docking studies. The predicted binding interactions between the ligand and protein were 

used to design 3D pharmacophore models that were used to perform virtual screens on 

1,418,492 lead-like compounds, and returned molecules fulfilling the pharmacophoric 

constraints with a hit rate of 0.7%. All “hits” identified are novel in that their synthesis, 

characterisation and/or potential biological activity against pancreatic cancer cells have 

not been previously reported.  

A number of “hits” were successfully synthesised, isolated and characterised 

with excellent yields. The novelty of these compounds means that this is the first time 

their syntheses have been shown successfully, albeit by following established synthetic 

routes. Compound 24, one of the “hits” that demonstrated promising biological activity, 

was successfully synthesised and characterised having been initially purchased during 
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the first round of biological screening. Thirty-nine analogues of this compound were 

also successfully synthesised to form a library for future SAR and QSAR studies. 

Biological screening to validate 17 of the “hit” compounds identified from the 

virtual screening studies show five compounds with the capability of reducing 

pancreatic cancer cell metastasis in vitro to the same extent as the marker substrate. This 

represents a 29% success rate, which can be higher considering that the 52 purchased 

“hits” and the 35 synthesised analogues of compound 24 are yet to be tested, and shows 

the significant level of enrichment in identifying potential molecules of interest that is 

afforded by the rational approach to drug design employed in this thesis when compared 

with random screening of libraries of compounds [271, 406, 407]. This is both exciting 

and encouraging as it demonstrates the relative success of the project at this stage of the 

drug discovery process, where attrition can be very high [408], and the potential and 

opportunity to develop a number of chemically distinct hit-compounds into lead 

molecules. With lead optimisation, these compounds, could provide a catalyst for 

identifying that elusive therapeutic agent for the treatment of pancreatic cancer which is 

desperately needed.   

In summary, this thesis has successfully demonstrated the close interaction 

between the fields of computational science, synthetic chemistry and biological 

technology to address a growing demand within drug discovery. In particular, this work 

has documented potential avenues of further research and confirmed possible novel 

therapeutic candidates to tackle pancreatic cancer, one of the deadliest cancers in the 

Western world.   
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7. Future work 

The journey of a drug from early discovery to when it enters the market could 

take up to 10 years or more [409]. This project is in the early discovery stage and has 

identified “hits” that show promising in vitro activity against pancreatic cancer cell 

lines. These initial results provide tangible starting points for a number of follow-on 

researchers to develop a clinical candidate. Some of the steps that will be required in 

order to achieve this goal are outlined below. 

First, anti-proliferative activity of the compounds on pancreatic cancer cells 

should be investigated at nanomolar concentrations to establish the minimal effective 

concentration of these compounds. The membrane integrity assay used here to assess the 

cytotoxicity of the compounds could be optimised by investigating the effect that 

reduced foetal bovine serum will have on the assay and cells. Failing this, alternative 

assays, such as Promega’s MultiTox-Glo Multiplex Cytotoxicity Assay (Promega, 

Southampton, UK), which simultaneously measures both viability and cytotoxicity, 

could be explored.   

Once the potency of the compounds against pancreatic cancer cells is 

established, they should be tested for toxicity on normal healthy cells. This is important 

as it will allow the assessment of the structures of the compounds, identify potential 

toxophores and alteration of the molecules so that they retain their activity but reduce 

toxicity if the latter is shown to be a problem. It will also be interesting to assess the 
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effect of the compounds against other cancer cell lines such as lung, breast, colon and 

prostate, in which S100P has been shown to be highly expressed.  

In addition to toxicity studies, mutagenesis studies will provide insight into the 

mechanism by which these compounds are exerting their effect. If, when the compounds 

are tested at nanomolar concentrations and they show an S100P-effect, mutating certain 

genes on the protein could offer an explanation into this mechanism. NMR spectroscopy 

or X-ray crystallography studies of the protein in complex with the compounds could be 

another avenue to provide an understanding of this mechanism in lieu of mutagenesis 

studies. The compounds can also be tested at the genetic level using microarray analysis 

to assess their effect on signalling pathways that are activated via S100 binding to 

RAGE. 

De novo synthesis could be employed to design new leads using existing 

compounds that show potency as templates or, generate novel fragments into the 

identified putative sites on S100P that have the potential to interact with key residues 

within the pocket. De novo design and synthesis are complementary to virtual screening 

studies. Both methods are excellent means of generating lead candidates although with 

de novo design, synthetic feasibility should be considered due to the novelty of the 

designed compound(s).  

Upon completion of the biological screening of the 52 purchased “hits” 

(compounds 59-110) identified from the virtual screening (Chapter 2), analogues of 

compounds showing promising activity should be synthesised to build a library for 
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SAR/QSAR studies. In addition, analogues of four of the “hits” that show anti-

metastatic properties (Chapter 3) could be synthesised, similar to the synthesis of 

analogues of compound 24, to build libraries for SAR studies.  

If the chick chorioallantioc membrane (CAM) assay is going to be employed to 

further investigate the possible mechanism by which these compounds are acting, it 

would be useful to look at adapting the method of Dohle et al. [410]. This group did the 

assay ex ovo, which gave them easy access to the developing embryo and its rich blood 

network. This approach will also limit the rate of dead embryos at day 10 (as 

experienced in this work (Chapter 4).  
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Appendix 

Ramachandran data for conformers of the NMR ensemble 1OZO (data generated in 

MOE) 

Model Chain Residue Psi Phi 

1 A S 21 -66 131.3 

  A S 24 -20.9 179.6 

  A T 25 173 95.2 

  A K 49 -57.7 179.8 

  A D 50 44.7 -7.1 

  A D 62 -33.7 -29.3 

  A D 66 -38.8 -159.6 

  A A 67 -8.5 153.9 

  A T 92 71.5 128.7 

  A G 93 -63.3 -22.8 

  B S 19 20 -63.6 

  B S 21 -57.4 -167.5 

  B S 24 -15.3 -163.8 

  B T 25 -163.4 83.2 

  B K 49 -75 -170.5 

  B K 51 -0.2 42.6 

  B D 62 -14.7 -43.8 

  B D 66 -5.7 52.7 

  B A 67 -4.3 -177.4 

  B H 86 -80.4 -19.5 

  B F 89 -119.6 -153.5 

2 A T 25 -161.2 81.7 

  A K 49 -118.7 172.1 

  A K 51 -6.1 49.5 

  A D 62 -35.5 -28.7 

  A A 67 -50.8 144.5 

  B E 22 -116.7 30.3 

  B T 25 -102.8 118.9 

  B K 49 112.7 110.2 

  B D 66 -50.4 -178.5 

  B A 67 -1.2 163.5 

  B H 86 -52.7 -19.3 

  B F 89 -17.4 53 

3 A S 21 -69.6 115.6 
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  A T 25 -102.9 112.6 

  A K 49 -90.5 -153 

  A A 53 -77 46 

  A K 87 24.6 37.1 

  A T 92 -38.5 -164.2 

  B S 24 -127.6 -176.7 

  B P 42 10 -38.5 

  B K 49 -7.6 -172.2 

  B D 66 -42.2 -165.2 

  B A 67 -3.5 157.2 

  B H 86 -88.8 -49.7 

  B K 87 -85.7 48 

4 A S 21 -71.2 97.4 

  A K 49 -100.3 -170 

  A A 67 -51 145 

  B S 16 -91.2 -72.5 

  B R 17 -82.2 17.3 

  B Y 18 -88.2 -40.4 

  B S 24 -16.1 126.5 

  B T 25 172.2 117.2 

  B K 49 -68.1 -171.6 

  B K 51 -14.3 139.2 

  B G 65 -67.5 -150.4 

  B A 67 -52 137.8 

  B K 91 -94.8 -77.8 

5 A S 21 -66.5 113.1 

  A D 66 -59.6 -162.1 

  A A 67 -51.4 146.2 

  A T 92 65.5 112.3 

  B S 24 -69.3 145.2 

  B T 25 52.4 179.7 

  B K 49 -108.9 173.9 

  B G 65 -72.8 -157.5 

  B D 66 -50.6 -160.2 

  B A 67 3.9 158.3 

  B H 86 11.2 -54.1 

  B T 92 95.1 -45.9 

6 A S 21 -83.1 105.9 

  A S 24 11 -24.5 

  A K 49 -18.7 -163.4 

  A D 62 -36.3 -23.1 
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  A A 67 -50.8 143.4 

  A K 87 -74.8 42.1 

  A F 89 18 41.1 

  B E 22 17 37.8 

  B S 24 30.8 -63.8 

  B K 49 105.2 118.9 

  B K 51 -29.4 134 

  B A 67 -43 173.2 

  B E 90 -24.1 32.3 

  B T 92 60.4 144 

7 A S 21 -74.8 126.1 

  A S 24 21.5 35.8 

  A T 27 153.8 -33.7 

  A P 42 -14.3 -34.2 

  A D 50 65.3 15.1 

  A K 51 -10.9 46.2 

  A D 62 -24.9 -31.4 

  A A 67 -36.5 168.8 

  A K 87 -7.9 47.3 

  A F 89 -131 -155.7 

  B S 24 38.2 -61.2 

  B T 27 140.8 17.9 

  B K 49 92.5 111.1 

  B D 62 -22.6 -37.3 

  B A 67 6.2 167.2 

  B H 86 -13.6 -42.4 

  B F 89 -9.7 48.7 

  B K 91 142.7 166.2 

  B G 93 -22.6 47.2 

8 A S 21 -22.1 130.8 

  A S 24 -118.3 -164.3 

  A T 27 126.8 17.1 

  A K 49 -85 -177.1 

  A D 62 -35.3 -27.6 

  A D 62 -35.3 -27.6 

  A A 67 -30.9 162.5 

  B S 19 17.6 -61.5 

  B E 22 -117.4 101.8 

  B T 25 -12.1 124.9 

  B T 27 132.4 21.9 

  B Q 46 -30.6 -32.8 
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  B K 49 138.3 74.6 

  B D 52 -106.9 -73 

  B D 62 -35.3 -27.3 

  B A 67 -44.7 142.7 

  B K 91 -85.6 17.6 

9 A S 21 -22.7 132.9 

  A T 27 129 29.9 

  A A 53 -69.2 47.6 

  A A 67 -51.9 146.2 

  A K 87 70.8 -58 

  A K 91 -114.4 -51.6 

  A S 19 30.5 -63.4 

  B S 21 -19.1 -165.1 

  B S 24 -139.9 -169.6 

  B T 27 126 33.2 

  B L 28 82.4 -61.2 

  B D 50 -36.8 134.3 

  B D 62 -34.6 -30.4 

  B A 67 -32.4 166.3 

10 A S 21 -21.7 121 

  A T 27 136.4 30.3 

  A D 50 13.4 -51.7 

  A D 66 -91.4 -157.6 

  A Y 88 0.4 141.6 

  A F 89 143.7 67.2 

  A E 90 -74.8 53.7 

  A L 94 -54.5 119.2 

  B E 22 -148.3 100.2 

  B T 25 -41.6 125.9 

  B T 27 132.2 28.9 

  B D 50 45.1 -62.3 

  B D 62 -33.8 -25.4 

  B A 67 -54.2 151 

  B K 87 -19.8 55 

  B Y 88 -2.4 -177.3 

11 A S 21 -16.8 129.9 

  A T 25 -20.7 140.5 

  A T 27 138.9 88.9 

  A D 50 20.5 -56.7 

  A G 65 -70.3 -155.9 

  A A 67 -47.7 160.5 
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  A Y 88 -7.9 -177.8 

  A F 89 3.6 44.3 

  B T 25 -23.3 138.4 

  B T 27 126.7 66.1 

  B F 89 94.1 114.7 

  B K 91 -58.9 -16.4 

  B L 94 -28.1 140.2 

12 A S 21 -16.8 129.9 

  A T 25 -20.7 140.5 

  A T 27 138.9 88.9 

  A D 50 20.5 -56.7 

  A G 65 -70.3 -155.9 

  A A 67 -47.7 160.5 

  A Y 88 -7.9 -177.8 

  A F 89 3.6 44.3 

  B T 25 -23.5 138.4 

  B T 27 126.7 66.1 

  B F 89 94.1 114.7 

  B K 91 -58.9 -16.4 

  B L 94 -28.1 140.2 

13 A S 21 -68.7 113.7 

  A S 24 13.8 -3.1 

  A K 49 93.8 89.8 

  A K 51 -25.8 139.1 

  A D 62 -38.2 -25.9 

  A G 65 -69.6 -152.2 

  A A 67 -51.3 151.3 

  A F 89 -2.8 38.3 

  A L 94 77.8 136.7 

  B E 22 37.1 29.3 

  B S 24 42.9 -32.4 

  B T 27 142.1 15.8 

  B K 49 120.8 123.2 

  B D 62 -12.6 -44 

  B D 66 0.7 50.6 

  B A 67 -11.4 176 

  B L 94 8.8 48 

14 A S 24 5.2 -0.7 

  A T 27 139 -6.8 

  A K 49 98 146.5 

  A K51 -12.9 59.9 
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  A D 62 -43.6 -19.1 

  A A 67 -54.3 142 

  A K 87 -5.6 -48.3 

  B E 22 -170.6 42.2 

  B S 24 1.1 44.3 

  B T 27 142.5 47.7 

  B K 49 -60.5 -169.7 

  B D 50 5.2 41.4 

  B D 62 -37.2 -29 

  B D 66 -60.8 -162.3 

  B A 67 -46.6 149.5 

  B K 87 -15.2 54.1 

16 A S 21 -55.2 125.2 

  A D 50 -76.8 53.9 

  A K 51 -26.7 172.6 

  A D62 -38 -24.3 

  A G 65 -70.7 -153.4 

  A A 67 -51.8 148.2 

  A K 87 4.9 45.4 

  A Y 88 114.3 55.5 

  B S 24 -152.9 134.2 

  B Q 26 31.4 36.3 

  B D 62 -14.1 -42.6 

  B A 67 4.3 -167.7 

  B F 89 17.7 -64.7 

  B T 92 -112.1 -160.4 
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