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Abstract. This paper aims to show and investigate bursting oscilla-
tor and bifurcation phenomena in a piecewise-smooth memristor-based
Shimizu–Morioka (SM) system. To make the circuit low power con-
sumption and portable in practice, it is fully integrated. In the pa-
per, a periodic excitation and different piecewise functions are intro-
duced into the system which leads to two types of piecewise-smooth
systems with a single slow variable. As the slow variable changes period-
ically in different scopes, we discover intricate bursting oscillation phe-
nomena, namely, asymmetric Fold/Fold bursting, damped oscillation-
sliding, asymmetric Fold/Fold-delayed supHopf/supHopf bursting, com-
pressed oscillation phenomenon within the limit cycle, random burst-
ing, double loop oscillations and so on. In the course of the study, it is
found that the properties of the nominal equilibrium orbits, limit cy-
cles, and the non-smooth boundary contribute to the bursting. Finally,
a fully integrated circuit is designed and the accuracy of the study is
verified by some circuit simulation results.
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1 Introduction

Piecewise-smooth systems have attracted wide attention due to many special behav-
iors such as non-conventional bifurcations. For example, Zhang et al. based on the
chaotic geomagnetic field model, introduced a non-smooth factor to explore complex
dynamical behaviors [1]. Similarly, reports based on the typical Chua’s system [2,3]
and a piecewise mechanical system [4] also exhibit different forms of bursting os-
cillations. Lately, some new research advances have been found in this area which
contribute to the theoretical and practical basis [5-8]. Such dynamical systems in-
cluding the piecewise-smooth Shimizu–Morioka system in this paper involve different
timescales especially two timescales [9-11]. Generally, when all state variables are
almost at rest, the system is in a quiescent state (QS) stage. Conversely, the two
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timescales may give rise to spiking state (SP) when all state variables show them-
selves as large-amplitude oscillations [12-14]. If the state variables transform between
QS and SP, bursting phenomena can be observed [15,16]. Using the slow-fast analysis,
the vector fields can be divided into a slow subsystem and a fast subsystem which is
easy to analyze the bursting mechanism [17-19].

The memristor is a natural nonlinear element firstly hypothesized by Chua [20].
The memristor-based circuits and systems have been widely researched recently be-
cause of the initial sensitivity and high randomicity [21-28]. In the field of burst-
ing oscillations, several new phenomena are found in the memristor-based systems.
Typically, N. Henry Alombah’s Multiscroll memristive chaotic circuit displays burst-
ing oscillations called fold-Hopf type [29]. What is more, Wang’s simple memristor-
capacitor-based chaotic circuit [30], Wen’s memristor-based Shimizu-Morioka system
[31], Bao’s third-order autonomous memristor-based system [32] and Wu’s memris-
tive Wien-bridge oscillator [33] also manifest complex bursting oscillations. However,
to the best of our knowledge, research on the bursting oscillations and bifurcation
mechanism in a piecewise-smooth memristor-based SM system has not been studied.

It is easy to see that the development direction of modern electronic devices is
miniaturization and integration such as integrated operational amplifiers, power am-
plifiers, etc. Recently, some of the existing chaos generators are designed with in-
tegration technology [34,35]. Its advantages are lower supply voltage, lower power
dissipation, and smaller chip area. We can also introduce this technology to our chaos
generator.

Summing up the above, a piecewise-smooth memristor-based SM system is cre-
ated to explore the new bursting phenomena. In Section 2, we explain the system
mathematically. Bifurcation and stability analysis is given in Section 3. Section 4
shows intricate bursting oscillation phenomena and the bifurcation mechanism. We
build a fully integrated circuit and relevant circuit simulation results are obtained in
Section 5. The final section concludes the paper.

2 Mathematical model

A memristor, an AC excitation w, and piecewise functions are introduced into the
SM system to establish the following piecewise-smooth memristor-based SM system
model. According to the number of segmentations, two systems are given below.

2.1 Type-I

ẋ = y

ẏ = [x+ g(x)]− ay − [x+ g(x)]z + kM(x)y + w

ż = −bz + [x+ g(x)]2
(1)

Thereinto, w = Asin(ωt), indicates that the slow variable is a sinusoidal signal
with amplitude A and frequency ω. State variables are defined as x, y, z, and a, b, k
are system parameters. As for the memristor, its equation is

M(x) = −n+ [x+ g(x)]2

As mentioned above, the piecewise function is g(x) = [sgn(x− 1)− 1]/2. On the
basis of system (1), the non-smooth boundary Σ : {(x, y)|x = 1} divides the system
into two smooth sub-regions, denoted as D+ : {(x, y)|x > 1} and D− : {(x, y)|x < 1},
while D+, D− correspond to different subsystems.
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2.2 Type-II

ẋ = y

ẏ = [x− f(x)]− ay − [x− f(x)]z + kM(x)y + w

ż = −bz + [x− f(x)]2

M(x) = −n+ [x− f(x)]2

(2)

Compared with system (1), the piecewise function is changed. In system (2), the
piecewise function is f(x) = [sgn(x − 2) + sgn(x + 2)]/2. The whole state phase
plane is divided into three smooth sub-regions, indicated as Dα : {(x, y)|x > 2},
Dβ : {(x, y)| − 2 < x < 2}, and Dγ : {(x, y)|x < −2} due to the non-smooth
boundary Σ1 : {(x, y)|x = 2} and Σ2 : {(x, y)|x = −2}. Likewise, Dα, Dβ , and Dγ

correspond to respective subsystems.
Above all, on the one hand, setting 0 < ω � 1, thus the external excitation w

changes very slowly. At the same time, the natural frequency of the system Ω � ω, so
the system exhibits the coupling effect between different scales in the frequency do-
main. Between two subsystems, the fast subsystem will determine the manifestation
of QS and SP, while the slow subsystem will regulate the motion trajectory of the
system, resulting in bursting oscillations and other special dynamic behaviors. On the
other hand, due to the effect of the piecewise function, the system can produce com-
plex non-smooth phenomena. Therefore, under the contribution of these two factors,
many new bursting phenomena may occur.

3 Bifurcation and stability analysis

3.1 Type-I piecewise-smooth memristor-based SM system

Comparing system (1) with the traditional SM system based on memristor [31], we can
find the only difference is that there is a segmentation control g(x) = [sgn(x−1)−1]/2
together with the x state variable. As a result, the number of the equilibrium curve
changes from one to two, which means two subsystems should be considered.

According to equations (1), g(x) changes with the value of x. When taking x < 1
into account, we get g(x) = −1, and equations (1) become as follows

ẋ = y

ẏ = (x− 1)− ay − (x− 1)z + k[(x− 1)2 − n]y + w

ż = −bz + (x− 1)2
(3)

In this region, the equilibrium point of the subsystem D− can be expressed

as E0(x, y, z) = (x0, 0,
(x0 − 1)2

b
), while x0 always satisfies the following equation,

namely

(x0 − 1)3 − b(x0 − 1)− bw = 0 (4)

and the stability matrix of this equation is

J =

 0, 1, 0

1− (x0 − 1)2

b
, −a+ k[(x0 − 1)2 − n], −(x0 − 1)

2(x0 − 1), 0, −b

 (5)
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According to the matrix, the characteristic equation is written as

λ3 + λ2{a+ b− k[(x0 − 1)2 − n]}+ λ{ab− bk[(x0 − 1)2 − n]− 1 +
(x0 − 1)2

b
}

+ 3(x0 − 1)2 − b = 0 (6)

Based on the Routh-Hurwitz criterion, the equilibrium point E0 is stable when

3(x0 − 1)2 − b > 0

a+ b− k[(x0 − 1)2 − n] > 0 (7)

{a+ b− k[(x0 − 1)2 − n]} · {ab− bk[(x0 − 1)2 − n]− 1 +
(x0 − 1)2

b
}

− [3(x0 − 1)2 − b] > 0

The stability of the equilibrium will be influenced when w alters, leading to two
different types of bifurcation. However, due to the limitation of x, some bifurcations
are not real.

When 3(x0 − 1)2 − b = 0, the corresponding characteristic roots pass through the
zero value, and the equilibrium point becomes unstable. It can be seen from equation
(4) that the equilibrium curve shows a typical S-shape, so the system may manifest
Fold bifurcation.

As we consider, Hopf bifurcation will also exist when x0 meets with the equation

{a+ b− k[(x0 − 1)2 − n]} · {ab− bk[(x0 − 1)2 − n]− 1 +
(x0 − 1)2

b
}

− [3(x0 − 1)2 − b] = 0 (8)

At this point, it is known from the calculation that the solutions are a pair of pure
imaginary roots, so periodic oscillations may occur.

Based on the analyses, if we take a = 0.8, b = 0.4, n = 2, and k = 0.6, the
bifurcation set is plotted in Fig. 1(a) which shows the bifurcation situation of Ehe
subsystem D−. As we can see, there is a Fold bifurcation point FB−

2 and a Hopf
bifurcation point supH2− in the equilibrium curve.

Similarly, if we consider x > 1, the value of g(x) is 0, leading equations (1) to a
different form

ẋ = y

ẏ = x− ay − xz + k(x2 − n)y + w (9)

ż = −bz + x2

Following the analyses of the subsystem D−, we can get the bifurcation set of the
subsystem D+ in Fig. 1(b). Since the value of x is over 1, one can find there is only
a Hopf bifurcation point supH1+ in this subsystem.

3.2 Type-II piecewise-smooth memristor-based SM system

Since the only difference between system (2) and system (1) is the piecewise function,
the equilibrium stability analysis method of the type-II system is almost identical
with the type-I system. The number of the equilibrium curve is three, manifested by
x0α, x0β , and x0γ . The Fold bifurcation and the Hopf bifurcation may also appear.
The detailed analysis will not be repeated and the bifurcation sets of these three
subsystems are plotted in Fig. 2.
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Fig. 1. The equilibrium distribution and bifurcation diagrams of the type-I system. (a)
subsystem D−, (b) subsystem D+.
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Fig. 2. The equilibrium distribution and bifurcation diagrams of the type-II system. (a)
subsystem Dα, (b) subsystem Dβ , (c) subsystem Dγ .

4 Bursting oscillations mechanisms

4.1 Type-I piecewise-smooth memristor-based SM system

For the convenience of discussion, based on the analyses of 3.1, we merge the subsys-
tem D+ and D− (see Fig. 1) into one. The bifurcation sets of w are plotted in Fig. 3.
In these two pictures, the solid lines denote stable solutions and the dotted lines de-
note unstable solutions. Although the red curves indicate that the solutions exist, due
to the non-smooth boundary, such solutions cannot be achieved. On the contrary, the
curves shown in blue are real because the solutions and the corresponding subsystem
are in the same domain. One can find that the blue curves in Fig. 3(b) correspond to
the curves in Fig. 1.

As can be seen from Fig. 3, the two subsystems contain four Fold bifurcation
points and four Hopf bifurcation points. For the subsystem D−, there is an intersec-
tion point M1(0,1) between the equilibrium curve and the non-smooth boundary. The
Fold bifurcation points are FB−

2 (0.24,0.63) and FB−
1 (-0.24,1.37), Hopf bifurcation

points are supH1−(4.90,2.36) and supH2−(-4.90,-0.36) respectively. The equilibrium
curve and the limit cycles are divided into 8 parts with different properties, namely,
EB−

1 , EB−
2 , EB−

3 , EB−
4 , EB−

5 , EB−
6 , LC1−, and LC2−. Among them, EB−

1 and
LC2− are stable, EB−

2 and EB−
6 are unstable, and they are all realizable; EB−

4

and LC1− are stable, EB−
3 and EB−

5 are unstable. However, due to the influence
of the non-smooth boundary, they are not realizable. For the subsystem D+, there
are two intersection points with the non-smooth boundary, namely M2(1.51,1) and
M3(5.04,1).The Fold bifurcation points are FB+

2 (0.24,-0.37) and FB+
1 (-0.24,0.37),

the Hopf bifurcation points are supH1+(4.90,1.36) and supH2+(-4.90,-1.36), respec-
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tively. The equilibrium curve and the limit cycles are divided into nine parts with
different properties including EB+

1 , EB+
2 , EB+

3 , EB+
4 , EB+

5 , EB+
6 , LC1+, LC2+

and LC3+. Thereinto, EB+
4 , LC1+ are stable, EB+

5 is unstable. Because the so-
lutions and the corresponding subsystem are in the same domain, these curves are
real. Oppositely, due to the non-smooth boundary, stable curves EB+

1 , EB+
3 , LC2+,

LC3+ and unstable curves EB+
2 , EB+

6 are not realizable.

When the amplitude A of w is changed, the equilibrium bifurcation diagram is
different (see Fig.3). Moreover, the degree of oscillation is also affected. Thus, new
bursting phenomena may appear in these two cases: case A: A = 3, case B: A = 7.
The mechanism will be discussed with the corresponding graphs below. In system (1),
we set a = 0.8, b = 0.4, n = 2, and k = 0.6.
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Fig. 3. The equilibrium distribution and bifurcation diagrams of the type-I system. (a)
w = [−3, 3], (b) w = [−7, 7].

4.1.1 Asymmetric Fold/Fold bursting

In case A, we consider A = 3, so w changes between -3 and 3, and the system only
includes four Fold bifurcation points.

Fig. 4 shows the time-domain waveforms and corresponding partial enlargement
of this case. One can know that the system state variable x has continuous switching
between relatively sharp oscillations and relatively slight oscillations, respectively
corresponding to the SP stage and the QS stage, which manifests a typical bursting
oscillations behavior. However, compared with the traditional memristor-based SM
system, there is not such a feature of symmetry in the bursting oscillations because
of the following three phenomena: (1) the system trajectory passes through the non-
smooth boundary many times (see Fig. 4(b), Fig. 5(a)), (2) when the system trajectory
arrives at the non-smooth boundary, sliding phenomena will be produced (see Fig.
4(b), Fig. 4(d)), (3) the oscillation period of the SP is different between the region
D+ and D− (see Fig. 4(b), Fig. 4(c)).

Concerning the phenomenon (3), in Fig. 4(c), the system trajectory is always lo-
cated in the region D− which means that the oscillation frequency is only determined
by the subsystem in D−. The value of the T2 is 5.7ms. However, in Fig. 4(b), since the
system trajectory passes through the boundary many times, its oscillation frequency
is alternately controlled by the subsystem D− and the subsystem D+, in other words,
the frequency is determined by both of them. The value of T1 is 1.3ms.
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Fig. 4. Asymmetric Fold-Fold bursting oscillators for A = 3: (a) time-domain waveform of
x, (b), (c), (d) local enlargement figurations of (a), (e) phase portrait on x− y plane.

The transformed phase portrait with the overlapped equilibrium point curves
(see Fig.5(b)) can help us observe the process of bursting oscillations more clearly.
Supposing M4 is the start point which is in the region D−, so the trajectory is
controlled by the subsystem D−. It almost moves along EB−

1 and stays QS. When
the trajectory arrives at FB−

2 , the equilibrium point becomes unstable and the jump
phenomenon occurs. At this point, the system trajectory is still in the region D−,
controlled by the subsystem D−, so the trajectory should theoretically jump from
D− to the equilibrium curve EB−

4 in D+.
However, in the process of jumping, once the system trajectory passes across

the non-smooth boundary into D+, the subsystem which controls the trajectory is
replaced by the subsystem D+. For the stable equilibrium curve of the subsystem
D+ is in D−, the trajectory passes through the boundary back into D− and has
again been controlled by the subsystem D−. Likewise, because of the control of the
subsystem D−, the trajectory will jump to the equilibrium curve EB−

4 in D+ again.
Thus, when the stable equilibrium curve and the corresponding subsystem are located
in different regions, the subsystem which controls the trajectory will change back and
forth, causing the system trajectory crosses the boundary frequently and implying the
transition from QS to SP. In case A, since the amplitude of w is small, the oscillations
will decrease rapidly. The distance between the boundary and the trajectory reduces
to zero when the trajectory has not achieved M2, the system turns to QS. At the
moment, the trajectory is still under the control of the two subsystems, so it can only
move along the boundary, namely, the special damped oscillation-sliding. When the
trajectory slides to M2, if it enters the region D+, since the equilibrium curve EB+

4 of
the subsystem D+ is also in D+, the trajectory will move along EB+

4 until it reaches
M5.

After that, the parameter w decreases gradually, the system remains QS. When
the trajectory reaches the intersection point M2 between the stable equilibrium curve
EB+

4 and the non-smooth boundary, if the trajectory passes M2 from D+ to D−, it
will be controlled by the subsystem D−. However, the stable equilibrium curve EB−

4
of the corresponding subsystem is in D+, so the trajectory will return to D+ and
be controlled by the subsystem D+. Similarly, the stable equilibrium curve EB+

3 of
the subsystem D+ is located in D−, therefore, the trajectory will move back to D−
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again. From the previous analysis, the stable equilibrium curve and the corresponding
subsystem are located in different regions, what is more, the distance between M2

and the boundary is zero, so the trajectory forms a sliding phenomenon.
When the system trajectory slides to the point M1, if the trajectory enters D−,

since the stable equilibrium curve EB−
1 of the subsystem D− is also in D−, the

trajectory will jump to EB−
1 and it will gradually approach EB−

1 during the jump.
The system converts back to SP. With the further decrease of w, the trajectory finally
stabilizes at EB−

1 , forming the stage of QS. When the trajectory moves to the start
point M4, a full period of the oscillatory motion ends.

In this case, on the one hand, the bursting oscillations are related to Fold bifur-
cation. On the other hand, when w increases and decreases, the bursting oscillations
are not symmetric due to the switching control of different subsystems. Thus, the
bursting pattern can be classified as asymmetric Fold/Fold busting.
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Fig. 5. Asymmetric Fold-Fold bursting oscillators for A = 3: (a) transformed phase portrait
on w−x plane, (b) transformed phase portrait with the overlapped equilibrium point curves.

4.1.2 Asymmetric Fold/Fold-delayed supHopf/supHopf bursting

Setting A = 7, the system includes four Fold bifurcation points and four Hopf bifur-
cation points. Therefore, more special oscillations may occur. Comparing Fig. 6(a),
(b) with Fig. 4(a), (e), it is true that the bursting phenomena are different.

Similarly, we will use the transformed phase portrait overlapped with the equilib-
rium distribution curves (see Fig. 6(d)) to demonstrate the bursting oscillation and
bifurcation mechanism in this case. Assuming that the curve starts from M4, because
of the Hopf bifurcation, the system firstly manifests itself as SP and forms sharp os-
cillations within the stable limit cycle LC2−. When the trajectory moves to supH2−,
LC2− disappears, the stable equilibrium curve EB−

1 takes place. In theory, the sys-
tem will change from SP to QS, however, due to the delay effect, periodic oscillations
will continue for a while. Then the oscillation of the system decreases, resulting in
QS. The trajectory will stabilize at EB−

1 and move along it. As w increases to 0.24,
the equilibrium point becomes unstable, causing the trajectory jumps.

As same as case A, during the jump, the trajectory passes across the boundary. The
subsystem which controls the trajectory will change back and forth since the stable
equilibrium curve and the corresponding subsystem are located in different regions.
The system trajectory crosses the boundary many times, implying the transition
from QS to SP. However, unlike case A, since the amplitude of excitation w is much
bigger, the oscillation will decrease more slowly. The distance between the trajectory
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and the non-smooth boundary is not zero until it moves to M2. As a result, the sliding
phenomenon does not appear.

When the trajectory moves to M2, if it enters the region D+, for the stable equi-
librium curve EB+

4 of the subsystem D+ is also located in D+, the trajectory will
move along EB+

4 , changing from SP to QS. Hopf bifurcation occurs and limit cycles
are observed when w = 4.9, however, until w increases to 7, the system is almost in
QS, the reason is also the delay effect of the supHopf bifurcation point.

When w reduces, the trajectory moves from M5, due to the Hopf bifurcation, the
system is in SP and sharp oscillations occur. However, different from the former, the
stable limit cycles are not all in the region D+. Once the trajectory moves from D+

to D− across the non-smooth boundary, the system is controlled by the subsystem
D−. Since the stable limit cycle LC1− of the corresponding subsystem is in D+,
the trajectory will move back to D+ and be attracted by the subsystem D+ once
again. Likewise, there is a stable limit cycle LC2+ of the subsystem D+ in D−, so
the trajectory will return to D− soon. Based on the above, when w decreases from
M5 to supH1+, since the controlling subsystem and the corresponding stable limit
cycles are located in different regions, once the trajectory moves across the boundary
to another region, there is a trend of return. Under the effect of alternating control
between the two subsystems, the extent of the Hopf bifurcation will be compressed,
namely, the compressed oscillation phenomenon within the limit cycle.
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Fig. 6. Asymmetric Fold/Fold-delayed supHopf/supHopf for A = 7: (a) time-domain wave-
form of x, (b) phase portrait on x− y plane, (c) transformed phase portrait on w− x plane,
(d) transformed phase portrait on w − x plane with overlapped equilibrium point curves.
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As the trajectory moves to supH1+, the stable limit cycles disappear. Likewise,
due to the delay effect, the trajectory does not immediately move along EB+

4 but
continues to oscillate for some time before changing from SP to QS. Consistent with
case A, when the trajectory moves to M2, it will slide to M1 since the stable equilib-
rium curve and the corresponding subsystem are located in different regions. If the
trajectory enters D−, because the stable equilibrium curve EB−

1 of the subsystem D−
is also in D−, the trajectory will jump down to EB−

1 , entering the SP stage. During
the jump, the curve gradually approaches EB−

1 and finally stabilizes at it, forming
QS. When the curve reaches supH2−, influenced by Hopf bifurcation, the stable limit
cycle LC2− occurs. The system should enter SP, however, QS will last for a while
until the trajectory enters SP because of the delay effect. When w decreases to -7, a
cycle of motion completes.

From the analyses above, affected by the Fold bifurcation points and Hopf bifurca-
tion points, bursting oscillations occur four times in a cycle (see Fig. 6(a)). However,
due to the existence of the non-smooth boundary, the bursting oscillations are not
symmetric, like the sliding phenomenon and the compressed oscillation phenomenon.
Case B can be named as asymmetric Fold/Fold-delayed supHopf/supHopf bursting.

4.2 Type-II piecewise-smooth memristor-based SM system

Similar to 4.1, 3 subsystems (see Fig. 2) are merged into a whole system and the
bifurcation sets of w are illustrated in Fig. 7. The solid lines manifest stable solutions
and the unstable solutions are presented by dotted lines. Although the red curves in-
dicate the solutions exist, because of the non-smooth boundary, such solutions cannot
be achieved. On the contrary, the curves shown in blue are real because the solutions
and the corresponding subsystem are in the same domain. It is easy to find the blue
curves in Fig. 7 correspond to the curves in Fig. 2.

As shown in Fig. 7, each of these three subsystems contains two Fold bifurca-
tion points and two Hopf bifurcation points. There are two intersection points, re-
spectively, M2(1.51,2), which is between the equilibrium curve of the subsystem Dα

and the non-smooth boundary Σ1; M1(-1.51,-2), which is between the equilibrium
curve of the subsystem Dγ and the non-smooth boundary Σ2. Fold bifurcation points

are FBα1 (-0.24,1.37) and FBα2 (0.24,0.63) for the subsystem Dα, FBβ1 (-0.24,0.37) and

FBβ2 (0.24,-0.37) for the subsystem Dβ , FBγ1 (-0.24,-0.63) and FBγ2 (0.24,-1.37) for the
subsystem Dγ ; Hopf bifurcation points are supH1α(4.90,2.36) and supH2α(-4.90,-
0.36) for the subsystem Dα, supH1β(4.90,1.36) and supH2β(-4.90,-1.36) for the sub-
system Dβ , supH1γ(4.90,0.36) and supH2γ(-4.90,-2.36) for the subsystem Dγ . The
equilibrium curves and limit cycles are divided into 27 sections due to the influence
of the bifurcation points and the non-smooth boundaries. Take the subsystem Dα as
an example, its equilibrium curve and limit cycles are divided into six parts and three
parts, respectively. Wherein, EBα1 and LC1α are stable and can be achieved; EBα2 ,
EBα4 , LC2α, and LC3α are stable, however, due to the influence of the non-smooth
boundary Σ1, they cannot be achieved. EBα3 is unstable and not realizable because
of Fold bifurcations and the boundary Σ1. EBα5 and EBα6 are unstable due to Hopf
bifurcations, and only the former is realizable because of Σ1. The segmentation anal-
yses of equilibrium curves and limit cycles in the subsystem Dβ and the subsystem
Dγ are similar to those of the subsystem Dα.
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Fig. 7. The equilibrium distribution and bifurcation diagram for the type-II system.

4.2.1 Random bursting

From the previous discussion, one can find that the equilibrium distribution and
bifurcation diagram of the type-II system is more complex due to the change of the
piecewise function. The type-II system will be discussed under the assumption that
the amplitude of the excitation w is 7.

Compared with the type-I system, Fig. 8(a) manifests the biggest difference is
that the bursting phenomenon is no longer cyclical. In each period of w, whether w
increases from -7 to 7 or decreases from 7 to -7, the number of bursting oscillations is
three or four, randomly. For convenience, there are four types of bursting oscillations,
namely, A, B, C, and D (see Fig. 9). As w increases from -7 to 7, type-A means
the bursting phenomenon occurs three times, type-B means the number of bursting
oscillations is four; When w decreases from 7 to -7, type-C corresponds to type-A,
type-D corresponds to type-B. So, during the period of w, A, B and C, D will be
combined freely, with random combinations of A-C, A-D, B-C, and B-D.
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Fig. 8. Random bursting oscillations for A = 7: (a) time-domain waveform of x, (b) local
enlargement figuration of time-domain waveform of x, (c) phase portrait on x− y plane.
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To analyze the process of bursting oscillations, the transformed phase portraits
on w − x plane and the corresponding overlapped diagrams with equilibrium point
curves are shown in Fig. 9.

Firstly, when w increases from -7 to 7, as for the type-A bursting phenomenon
(see Fig. 9(a) and (b)), assuming that the oscillations start at M3, the trajectory
is controlled by the subsystem Dβ . Due to the influence of the stable limit cycles
LC3β and LC4β , the system manifests itself as SP and the trajectory begins to
sharply oscillate. Since LC4β is in Dγ , once the system trajectory enters Dγ , it will
be attracted by the corresponding subsystem, in other words, LC2γ and LC3γ . As
we can see, only LC3β , LC3γ and their corresponding subsystems are in the same
region. Thus, in the initial stage, the trajectory oscillates within LC3β and LC3γ ,
namely, double loop oscillations. Since the control abilities of the subsystem Dβ and
the subsystem Dγ are almost identical, with the further increase of w, the system
trajectory may eventually be captured by LC2γ and LC3γ or LC3β and LC4β . As
for type-A, the trajectory is captured by the latter and continues to oscillate in the
region Dβ . When w increases to -4.9, limit cycles disappear, however, due to the
delay effect, the periodic oscillations continue for a while before the trajectory moves

along the stable equilibrium curve EBβ3 , changing from SP to QS. The equilibrium

point loses its stability when the trajectory arrives at FBβ2 . Soon jump phenomenon
happens, implying the transition from QS to SP, bursting oscillations occur.

As w continues to increase, the amplitude of oscillations decays gradually and then

the system trajectory moves along EBβ1 , entering the QS stage. When the trajectory
reaches supH1β , limit cycles occur, however, because of the delay effect, the system
will keep QS over a period of time. After that, the trajectory oscillates sharply due
to Hopf bifurcation and the system enters the SP stage.

For the type-B bursting phenomenon (see Fig. 9(c), (d)), which corresponds to the
situation that the trajectory is finally captured by the limit cycle LC2γ and LC3γ ,
the trajectory oscillates in Dγ . When w increases to -4.9, the limit cycles disappear,
due to the delay effect, the trajectory continues to oscillate for some time before it
moves along EBγ4 and enters the QS stage. As the trajectory moves to M1, because
of the non-smooth boundary Σ2, the trajectory will jump to the stable equilibrium

curve EBβ3 , triggering a bursting phenomenon. After that, w continues to increase,
the amplitude of oscillations rapidly decreases and the trajectory moves along the

stable equilibrium curve EBβ3 , leading to the change from SP to QS.

When the trajectory reaches FBβ2 , due to the influence of Fold bifurcations, the

equilibrium point becomes unstable again, which leads to the jump to EBβ1 . The
bursting oscillations occur again, implying the transition from QS to SP. Then, as
w increases further, the amplitude of the system reduces and the trajectory moves

along EBβ1 , entering the QS stage. When w increases to 4.9, the limit cycles appear,
however, the QS stage will keep for a while due to the delay effect. After that, the
system enters the SP stage and the trajectory oscillates sharply.

Similarly, when w decreases from 7 to -7, type-C (see Fig. 9(e), (f)) and type-
D (see Fig. 9(g), (h)) bursting phenomena may occur, corresponding to type-A and
type-B, respectively. The details of the analyses will not be presented here.

To sum up, the randomness of the bursting oscillations in the type-II system
is decided by the special structure of the equilibrium distribution and bifurcation.
Within the limit cycles, during the sharp oscillations, the two subsystems will compete
for the control of the trajectory, which leads to the uncertain skewing of the trajectory.
So, the bursting pattern can be called random bursting.
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5 Circuit simulation

A simulation circuit of system (1) in Cadence is built to verify the authenticity of the
bursting phenomena discussed above. To achieve low voltage, the circuit is scaled. The
schematic of this circuit is shown in Fig. 10. V2 and V3 are DC power supplies of 0.5V
and 1V, respectively. It should be noted that the low voltage low power operational
amplifier (OA) for the fully integrated piecewise-smooth chaotic system is presented in
Fig. 11 [36]. The supply voltage of this operational amplifier is VCC = −VSS = 2.5V.
The designed OA is made up of three parts, the bias circuit, the differential input
circuit, and the output circuit.
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Fig. 10. Cadence simulation circuit of the type-I piecewise-smooth memristor-based SM
system.

By using Cadence IC Design Tools with the chart18 CMOS process, we can analyze
the amplitude and phase frequency characteristics of the OA (see Fig. 12). Its voltage
gain is 54.73dB and the phase margin is 85.96◦. Its power consumption is about
1.2mW with ±2.5V supply voltage.
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Fig. 11. The designed operational amplifier.
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Fig. 12. The amplitude and phase fequency characteristics of the operational amplifier.

As for the multiplier in Fig. 10, a low voltage low power CMOS four-quadrant
analog multiplier is presented in Fig. 13 [37]. To verify the function of this multiplier,
two sinusoidal voltages were input to the circuit, where VY d was a 5-MHz carrier
signal with peak amplitude of 0.4V and VXd was a 200-kHz modulating signal with
the same amplitude. We can obtain the double sideband AM signal waveform in Fig.
13. Moreover, this multiplier consumes about 3.9mW of quiescent power.

To sum up, the power consumption of the whole circuit is about 31.2mW with
±2.5V supply voltage.
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Fig. 13. Proposed multiplier circuit and the corresponding transient response.

According to Kirchhoff’s laws, the circuit in Fig.10 can be listed as follows

dvx
dt

=
1

R1C1
y

dvy
dt

=
1

R4C2
[x+ g(x)]− 1

R5C2
y − 0.1

R6C2
z[x+ g(x)] +

1

R9C2
V1

+ { 0.01

R8C2
[x+ g(x)]2 − 1

R7C2
}y (10)

dvz
dt

=
0.1

R13C3
[x+ g(x)]2 − 1

R12C3
z

Wherein, we set the output voltages of the OA as Vx, Vy, and Vz, respectively.
The slow-varying parameter corresponds to V1 = Asin(2πft). Considering the pro-
portional compression effect and analyzing the relationship between (10) and (1), one
can figure out the value of circuit elements, which are illustrated in Table 1. What
calls for special attention is that capacitors over 40 pF do not apply to integrated cir-
cuits based on the chart18 CMOS process. Thus, ten 25 pF capacitors are paralleled
to realize one 250 pF capacitor in the practical circuit.
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The amplitude of the excitation V1 is set as A = 1.5V with the excitation frequency
f = 1.59Hz. According to the related time-domain waveform of x and the phase
portrait in Fig. 14, the circuit manifests asymmetric Fold/Fold bursting. Compared
Fig. 14 with Fig. 4, the Cadence simulation results and the MATLAB simulation
results are consistent. It is a piece of convictive evidence that such complex bursting
oscillators surely exist in the piecewise-smooth memristor-based SM system.

Table 1. The value of circuit elements

Parameters Significations Values

C1 C2 C3 Capacitance 250pF
R2 R3 R20 Resistance 1kΩ
R25 Resistance 2.5kΩ
R10 R11 R14-R18 R21-R24 R26-R30 Resistance 10kΩ
R19 Resistance 13.5kΩ
R8 Resistance 16.7kΩ
R6 R13 Resistance 200kΩ
R7 Resistance 3.33MΩ
R1 R4 R9 Resistance 4MΩ
R5 Resistance 5MΩ
R12 Resistance 10MΩ

Fig. 14. Simulation results of the type-I piecewise-smooth memristor-based SM system for
A = 3. (a) time-domain waveform of x, (b) phase portrait on x− y plane.

6 Conclusion

This paper discussed relevant issues on a fully integrated piecewise-smooth chaotic
system. Firstly, A piecewise-smooth memristor-based SM system has been built math-
ematically. According to different piecewise functions, two systems are considered.
Based on the amplitude of the excitation w and the type of the piecewise function, dif-
ferent bursting phenomena are revealed. The corresponding bifurcation mechanisms
are analyzed by using the transformed phase portraits, the time-domain waveforms,
and the phase portraits. It is found that not only the properties of the nominal equi-
librium orbits and limit cycles but also the existence of the non-smooth boundary
contributes to the sorts of bursting phenomena. For feasibility, the practical circuit is
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fully integrated in Cadence. The circuit simulations are conducted to verify the cor-
rectness of these new bursting phenomena, and the results are identical to theoretical
analyses. Our study broadens the area of bursting dynamics.
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