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Abstract

Locating documents carrying positive or negative favourability is an im-
portant application within media analysis. This article presents some empir-
ical results on the challenges facing a machine-learning approach to this kind
of opinion mining. Some of the challenges include: the often considerable
imbalance in the distribution of positive and negative samples; changes in
the documents over time; and effective training and evaluation procedures
for the models. This article presents results on three datasets generated by
a media-analysis company, classifying documents in two ways: detecting the
presence of favourability, and assessing negative vs. positive favourability.
We describe our experiments in developing a machine-learning approach to
automate the classification process. We explore the effect of using five dif-
ferent types of features, the robustness of the models when tested on data
taken from a later time period, and the effect of balancing the input data by
undersampling. We find varying choices for the optimum classifier, feature
set and training strategy depending on the task and dataset.

Keywords: Bayesian models, favourability analysis, imbalanced data,
machine learning, sentiment analysis, support-vector machines

1. Introduction

Media analysis is a discipline closely related to content analysis [17],
with an emphasis on analysing content with respect to: (1) Favourability,
how favourable an article is with respect to an entity. This will typically
be on a five point scale: very negative, negative, neutral, positive or very
positive. (2) Key messages, topics or areas that a client is interested in.
This allows the client to gain feedback on the success of particular public
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relations campaigns, for example. Media analysis has traditionally been
done manually, however the explosion of content on the world-wide web, in
particular social media, has led to the introduction of automatic techniques
for performing media analysis, e.g., [20, 32].

In this article (an extended version of [7]), we discuss our recent findings
in applying machine learning techniques to favourability analysis. The work
is part of a two-year collaboration between Gorkana Group, which includes
one of the foremost media analysis companies, Metrica, and the University
of Hertfordshire. The goal is to develop ways of automating media analysis,
especially for social media. However, the data used here are from tradi-
tional media (newspapers and magazines) since at the time of starting the
experiment there were more manually analysed data available.

The Gorkana Group consists of three companies servicing the public
relations industry:

Gorkana who provide a journalist database
Durrants who provide a media monitoring service
Metrica who provide media analysis and evaluation

The documents we use are supplied by Durrants, the media monitoring
company within the Gorkana Group, and consist of text from newspaper
and magazine articles in electronic form. Each document is analysed by
trained human analysts at Metrica, given scores for favourability, as well as
other characteristics which the client has requested. This dataset is used to
provide feedback to the clients about how they are portrayed in the media,
and is summarised by Metrica for clients’ monthly reports.

The main challenges confronting a machine-learning project of this kind
are firstly, how to represent the data; secondly, how to train the models; and
thirdly, how to evaluate the resultant models giving the best information for
their expected use. The representation problem has been widely discussed
in the document classification literature; we explore the effectiveness of five
different types of features, including different n-grams, entity words and
dependency words. The training problem falls into two parts: given the
large number of features typical of document classification, how can these
be reduced to a more manageable number; and, given the imbalance in the
dataset, how can we train the models to respect both classes equally? The
evaluation problem also falls into two parts: given the imbalanced datasets,
what is a useful measure of effectiveness of the models’ performances; and,
given that the models will be used on documents from a later time period,



what is the likely impact on performance? We consider the training problems
by comparing approaches with balanced and imbalanced training sets, and
by using feature selection to reduce the number of features. We tackle the
evaluation problems using the geometric mean to measure performance, as
this measure reflects the performance of both classes, and by using separate
held-out test sets to look at performance from a later time period.

2. Favourability, Sentiment and Opinion Mining

Favourability analysis is very closely related to sentiment analysis, with
the following distinction: sentiment analysis generally focuses on a (subjec-
tive) sentiment implying an opinion of the author, for example:

(1) Microsoft is the greattteesssst at EVERYTHING

expresses the author’s opinion (which others may not share) whereas favoura-
bility analysis, whilst taking into account sentiment, also measures favourable
objective mentions of entities. For example:?

(2) Halloween Eve Was The Biggest Instagram Day Ever, Doubling Its
Traffic

is an objective statement (no one can doubt that the traffic doubled) that
is favourable with respect to the organisation, Instagram.

Similarly, subjectivity analysis focuses on distinguishing documents that
are entirely objective from those expressing “opinions, evaluations and spec-
ulations” [37]. Our task is subtly different, since we are not so interested in
the opinion of the author, but whether the expressed content (be it subjec-
tive or objective) is good or bad publicity for Metrica’s client.

Also closely related to this task is that of determining implicit senti-
ment [2] in statements such as “I'm going to a party.” Here it is assumed
that the speaker is conveying an opinion in addition to the objective ex-
pressed meaning, and that this opinion is implicit in the meaning of the
sentence: if the speaker likes parties then a positive sentiment is implied. If
the sentence was spoken, we might imagine the sentiment conveyed in the
tonality of expression. This task seems much closer to ours, since sentiment
is now attached to statements that seem objective on the surface. Never-
theless we maintain that a distinction should be made, as the objective is

! Actually, this is an ironic comment on a blog post at TechCrunch.
2A headline from TechCrunch



different: we attempt to determine the favourability of the document for the
client as opposed to discerning the opinion of the speaker.

The distinction may be important when considering the available infor-
mation and opportunities for creating a machine-learning model. In senti-
ment or subjectivity analysis, the words themselves may convey the target
sentiment, which may be picked up by statistical analysis. In favourability
analysis, the words may need more interpretation and background knowl-
edge, which will not be available to a pure learning-based system. Although
many authors treat favourability and subjectivity (or sentiment) analysis to-
gether, we believe it is useful to distinguish the two tasks, if only to assist in
evaluating comparative performance of learning systems applied to different
kinds of documents. Having said this, the task of determining favourabil-
ity clearly subsumes that of sentiment (subjectivity) analysis, since positive
or negative sentiment generally implies a corresponding favourability. We
therefore hypothesise that similar techniques will be useful in developing
classifiers in both areas, and so provide a brief summary of the more rele-
vant techniques.

The most closely related task to ours is opinion mining, determining
sentiment with respect to a particular target. Balahur, Hermida and Mon-
toyo [3] examine this task for newspaper articles. They show that sepa-
rating out the objective favourability from the expressed sentiment led to
an increase in inter-annotator agreement, which they report as 81%, after
implementing improvements to the process; this improvement lends further
support to our argument above, that it is worthwhile distinguishing favoura-
bility from sentiment. Melville, Gryc and Lawrence [22] report on an auto-
mated system for opinion mining applied to blogs, which achieves between
64% and 91% accuracy, depending on the domain, while Godbole, Sriniva-
saiah and Skiena [11] describe a system applied to news and blogs; these
systems take advantage of prior lexical knowledge about the “sentiment-
polarity” of words when assessing a text.

Pang, Lee and Vaithyanathan [27] introduced machine learning to per-
form sentiment analysis. They used naive bayes, support-vector machines
(SVMs) and maximum entropy on the movie review domain, and report ac-
curacies between 77% and 83% depending on the feature set, which included
unigrams, bigrams, and part-of-speech tagged unigrams. More recent work
along these lines is described in [26, 28].

One approach to sentiment analysis is to build up a lexicon of sentiment
carrying words. Turney [33] describes a way to automatically build such a
lexicon based on co-occurrences of words with other words whose sentiment
is known. This idea was extended by Gamon et al. [10] who also considered



the lack of co-occurrence as useful information.

Koppel and Schler [16] show that it is important to make use of neutral
sentiment documents when considering the task of positive versus negative
sentiment. They also show that some non-standard combinations of these
tasks (such as negative against neutral) can provide useful information. Kop-
pel and Schler suggest using stacked decisions to optimise the separation of
documents into different classes. We separate the tasks of detection and
type in our experiments, although we do not combine the results from the
two tasks.

3. Feature Selection and Evaluation

Document classification, of which favourability analysis is an example,
is an ideal domain for machine learning, because the raw data, the text,
are easily manipulated, and often large amounts of text can be obtained,
making the problems amenable to statistical analysis.

A classification model is essentially a mapping, from a document de-
scribed as a set of feature values to a class label. In most cases, this class
label is a simple yes-no choice, such as whether the document is favourable
or not. In the experimental section of this article we describe results from
applying a range of different classification algorithms to our datasets.

In general, two issues that affect machine-learning approaches are the
selection of features, and the presence of imbalanced data. Their impact will
vary depending on the precise learning algorithm used, and how training is
conducted, as we discuss in our experiments.

3.1. Features

Useful features for constructing classification models from text docu-
ments include sets of unigrams, bigrams or trigrams, dependency relation-
ships or selected words: we describe these features in the next section in
relation to our datasets. From a machine-learning perspective, it is useful
for the features to include only relevant information [5], and also to be inde-
pendent of each other. This feature-selection problem has been tackled by
several authors in different ways, and various studies of the effect of different
feature-selection techniques have been performed, e.g., [9, 13, 24, 30]. In our
experiments, we evaluate a technique to reduce the number of features using
feature selection.

Alternative approaches to identify the sentiment of text attempt to go
beyond the simple labelling of the presence of a word. Some authors have



described experiments augmenting the above feature sets with additional in-
formation. For example, WordNet has been used to add information about
words found within text [4, 25|, leading to improved classification perfor-
mance in a sentiment analysis task [25]. Also, Li and Wu [20] analyse a
document for sentiment carrying words, use K-means clustering to identify
hotspots, and then employ machine-learning techniques to identify docu-
ments which fall within hotspots.

3.2. Imbalanced Data

Our datasets, as is usual in many real-world applications, present vary-
ing degrees of imbalance between the two classes, ranging from 70:30 to
94:6. Various approaches to handling imbalanced data, and experiments
on the effect this has on the performance of learning algorithms, have been
explored in the literature. Techniques for handling imbalanced data can be
separated into two areas: during training, to ensure the model is capable of
working with both classes, and in evaluation, to ensure a model with the
best performance is selected for use on novel data.

First considering evaluation, the standard measure of accuracy (propor-
tion of correctly classified examples) is inappropriate if 90% of the documents
are within one class. A simple ZeroR classifier (selecting the majority class)
will score highly, but it will never get any examples of the minority class
correct. A good overview of the dangers of relying on accuracy is provided
by Gray et al. [12], who argue that measures such as precision must be
provided to give any meaningful evaluation of performance.

One proposal for managing imbalanced data is to modify the output
threshold of those algorithms where it is appropriate to do so [29, 31]. For
example, we might train a naive Bayes classifier on a dataset, and adjust its
output threshold to reflect the class distribution in the data. However, in
our target application, classifying live data in a media-analysis company, we
cannot assume anything about new data, including the class distribution,
so adjusting the output threshold is not feasible in live use, although it is
useful in evaluating a model against a known test set.

Frequently in the literature, the imbalanced data problem is discussed
in the context of a single class. One class (usually the minority class) is of
particular interest, and so evaluation measures are typically decided with
respect to that class, for example, the F-measure, or taking an average of
precision and recall. Alternative measures, such as those based on the ROC
curve [36], are also frequently employed, especially to look at the impact
of varying sample distribution [14]. In our application, it is important that
both classes have good accuracy, so we use the geometric mean [18], which



combines the separate accuracy measures on the two classes as y/a; X ag,
where a; denotes the proportion of instances from class ¢ that were judged
correctly. This has the property that it strongly penalises poor performance
in any one class: if either a; or as is zero then the geometric mean will be
zero. This characteristic is important for our purposes, since it is “easy” to
get high accuracy on the majority class, the measure will favour classifiers
that perform well on the minority class without significant loss of accuracy in
the majority class. In addition, the geometric mean does not give preference
to any one class, unlike, for example, the F-measure.

The second area is to consider the training process. An imbalanced train-
ing set can lead to bias in the construction of a machine-learning model (as
discussed, for example, by Mitchell [23]). Such effects are well-known in the
literature. The explanation is that machine-learning algorithms generally
attempt to construct the simplest hypothesis to fit the training data, fol-
lowing a principle such as Occam’s razor or minimal description length. For
example, a decision tree algorithm attempts to find the smallest tree fitting
the training criteria. With an imbalanced dataset, the simplest hypothesis
may tend to ignore examples from the minority class.

A popular range of approaches for handling imbalanced data in training
use some kind of sampling: under or over sampling the examples from one
class to create a balanced dataset based on the original training data. In our
experiments we use undersampling (where a random sample is taken from
the majority class to balance the size of the minority class); this technique
has the disadvantage of discarding training data. In contrast, approaches
such as SMOTE [6] or SMOTE with Different Costs (SDC) [1] are techniques
for artificially creating new instances of the minority class, to balance the
number in the majority class.

The ‘best’ approach is dependent on the precise dataset. Hulse et al. [34]
present a series of experiments on imbalanced data, considering different
choices of sampling technique and use of performance metrics. They found
that undersampling produced “very good performance” overall, and this
was particularly so under performance measures such as geometric mean.
In one study [1], support-vector machines were tested on a range of imbal-
anced datasets, comparing undersampling, SMOTE and the author’s own
algorithm (SDC). As shown in their results, undersampling produced on
average the second-best results (behind the author’s own) for the support-
vector machine on 10 UCI datasets. Sun et al. [31] applied ten different
strategies to handling imbalanced data in a textual domain, and came to
the conclusion that SVMs perform well on moderate amounts of imbalanced
data without special treatment. Overall, these results support the idea that



Dataset | Mixed | V. Neg. | Negative | Neutral | Positive | V. Pos.
A 472 86 138 1610 1506 1664
C 7 0 5 2824 852 50
S 522 94 344 9580 2057 937

Table 1: Number of documents in each class for the datasets A, C and S.

random under-sampling of the majority class is a promising strategy, espe-
cially when there are adequate training data, but for optimal performance
in any particular application some evaluative experiments on a range of
techniques should be carried out.

4. Experiments in Favourability Analysis

In this section, we report on some experiments in favourability analysis.
We conduct two sets of experiments, looking for the presence of favoura-
bility, and also if the favourability is positive or negative. Experiments are
performed using three source datasets, a range of classifiers, five feature sets,
and different choices for training strategy.

4.1. Description of Data

The source documents have been tagged by analysts for favourability
and unfavourability, both of which are given a non-negative score that is
indicative both of the number of favourable/unfavourable mentions of the
organisation and of the degree of favourability /unfavourability. Neutral doc-
uments are assigned a score of zero for both favourability and unfavoura-
bility. We assign each document a class based on its favourability f and
unfavourability u scores. Documents are categorised as follows:

f>0and u>0: mixed
f=0and u > 1: very negative
f=0and u=1: negative
f=0and u=0: neutral
f=1land u=0: positive

f>1and u=0:

Table 1 shows the number of documents in each category for three datasets
A, C and S, which are anonymised to protect Metrica’s clients’ privacy.
A and S are datasets for high-tech companies, whereas C is for a charity.
This is reflected in the low occurence of negative favourability with dataset
C. Datasets A and C contain only articles that are relevant to the client,

very positive



Dataset | Neutral | Non-neutral
A 1610 3866
C 2824 914
S 9580 3954

Table 2: Class distributions for pseudo-subjectivity task

Dataset | Positive | Negative
A 3170 224
C 902 5
S 2994 438

Table 3: Class distributions for pseudo-sentiment task

whereas S contains articles for the client’s competitors. We only make use
of favourability judgments with respect to the client, however, so those that
are irrelevant to the client we simply treat as neutral. This explains the
overwhelming bias towards neutral sentiment in dataset S.

In our experiments, we consider only those documents which have been
manually analysed and for which the raw text is available. Duplicates were
removed from the dataset. Duplicate detection was performed using a mod-
ified version of Ferret [19] which compares occurrences of character trigrams
between documents. We considered two documents to be duplicates if they
had a similarity score higher than 0.75.

We performed experiments for two tasks:

Pseudo-subjectivity — detecting the presence or absence of favourability.
This is a two-class problem with neutral documents in one class, and all
other documents in the other.

Pseudo-sentiment — distinguishing between documents with generally pos-
itive and negative favourability. In our experiments, we treat this as a two
class problem, with negative and very negative documents in one class
and positive and very positive documents in the other (ignoring mixed
sentiment).

4.2. Method

We follow a similar approach to [27]: we generate features from the
documents, and train a classifier using the manually analysed data.

We sorted the documents by time, and then selected the earliest two
thirds as a training set, and kept the remainder as a held out test set. This
allows us to get an idea of how the system will perform when it is in use,



Type Relation | Term
governor det the
governor rcmod sued
governor nn leader
dependent poss conference
dependent nsubj bullish
dependent dep beat

Table 4: Example dependency relations extracted from the data. “Type” indicates
whether the term referring to the organisation is the governor or the dependent in the
expression.

since the system will necessarily be trained on documents from an earlier
time period. We performed cross validation on the randomised training
set, giving us an upper bound on the performance of the system, and we
also measured the accuracy of every system on the held out dataset. We
hypothesised that new topics would be discussed in the later time frame, and
thus the accuracy would be lower, since the system would not be trained on
data for these topics.

We also experimented with balancing the input data to the classifiers;
each system was run twice, once with all the input data, and once with data
which had been undersampled so that the number of documents in each
class was the same. And we experimented with feature selection: reducing
the number of features used to describe the dataset.

4.2.1. Features for documents

We used five types of features:
Unigrams, bigrams and trigrams: produced using the WEKA tok-
enizer [38] with the standard settings.
EntityWords: unigrams of words occurring within a sentence containing a
mention of the organisation in question. Mentions of the organisation were
detected using manually constructed regular expressions, based on datasets
for organisations collected elsewhere in the company. Sentence boundary
detection was performed using an OpenNLP* tool.
Dependencies: we extract dependencies using the Stanford dependency
parser [8]. For the purpose of this experiment, we only considered dependen-
cies directly connecting the term relating to the organisation. Table 4 gives

3We used the StringToWordVectorClass constructed with an argument of 5,000.
“http://opennlp.sourceforge.net

10



example dependencies extracted from the data. For example, the phrase
“...prompted [organisation name] to be bullish...” led to the extraction
of the term bullish, where the organisation name is the subject of the verb
and the organisation name is a dependent of the verb bullish. For each
dependency, all this information is combined into a single feature.

4.8. Classification Algorithms

We used the following classifiers in our experiments: naive Bayes, Sup-
port Vector Machines (SVMs), k-nearest neighbours with £ = 1 and k = 5,
radial basis function (RBF) networks, Bayesian networks, decision trees
(J48) and a propositional rule learner, Repeated Incremental Pruning to
Produce Error Reduction (JRip). We also included two baseline classifiers,
ZeroR, which simply chooses the most frequent class in the training set, and
Random, which chooses classes at random based on their frequencies in the
training set.

These are taken from the WEKA toolkit [38], with the exception of
SVMs, for which we used the LibSVM implementation, naive Bayes (since
the Weka implementation does not appear to treat the value occurring with
a feature as a frequency) and Random, both of which we implemented our-
selves. We used WEKA'’s default settings for classifiers where appropriate.

4.3.1. Parameter search for SVMs

We used a radial-basis kernel for our SVM algorithm which requires
two parameters to be optimised experimentally. This was done for each
fold of cross validation. Each fold was further divided, and three-fold cross
validation was performed for each parameter combination. We varied the
gamma parameter exponentially between 10~° and 10° in multiples of 100,
and varied cost between 1 and 15 in increments of 2. We used the geometric
mean of the accuracies on the two classes to choose the best combination of
parameters; using the geometric mean enables us to train and evaluate the
SVM from either balanced or imbalanced datasets.

4.8.2. Feature Selection

Because of the long training time of many of the classifiers, we also
looked at whether reducing the dimensionality of the data before training
by performing feature selection would enhance or hinder performance. The
feature selection was done by ranking the features using the Chi-squared
measure and taking the top 250 with the most correlation with the class.
The exception to this was k-nearest neighbours, for which we used random
projections with 250 dimensions. For the RBF network we tried both feature

11



= I

s = | 8

= S| =

A Features | Best Classf. | = | @ | Cross val. acc. | Held out acc.

S Random 0.465 £ 0.008 | 0.461 + 0.007
S | Ent. Words SVM | X 0.912 £ 0.002 | 0.952 + 0.001
S Unigrams JRip | X | X | 0.907 £ 0.002 | 0.952 + 0.002
S Bigrams SVM | X | X | 0.875 4+ 0.007 | 0.885 4 0.004
S Trigrams | Naive Bayes 0.791 + 0.003 | 0.759 £ 0.003
S Dep. RBFNet X | 0.853 +£0.005 | 0.766 + 0.054
C Random 0.417 £ 0.017 | 0.419 = 0.027
C | Ent. Words | Naive Bayes | X 0.704 £ 0.011 | 0.640 £ 0.018
C Unigrams | Naive Bayes | X 0.735 £ 0.007 | 0.659 £ 0.032
C Bigrams | Naive Bayes 0.756 £+ 0.012 | 0.640 £ 0.014
C Trigrams | Naive Bayes 0.757 £ 0.004 | 0.679 £ 0.017
A Random 0.453 £+ 0.004 | 0.453 + 0.017
A | Ent. Words BayesNet | X 0.691 £+ 0.008 | 0.625 £ 0.019
A Unigrams SVM | X | X | 0.696 + 0.005 | 0.619 + 0.010
A Bigrams SVM | X | X | 0.680 + 0.012 | 0.609 £+ 0.026
A Trigrams | Naive Bayes X | 0.610 £ 0.011 | 0.536 £ 0.019

Table 5: Results for the pseudo-subjectivity task, distinguishing documents neutral with
respect to favourability from those which are not neutral. The accuracy was computed
as the geometric mean of accuracy. The best-performing classifier on cross-validation is
shown for each feature set, along with the Random classifier as a baseline. An indication
is given of whether the best-performing system used feature selection and/or balancing on
the input data.

selection and random projections, and naive Bayes was run both with and
without feature selection.

4.4. Results

Tables 5 and 6 show the best classifier on the cross-validation evaluation
for each dataset and feature set for the pseudo-subjectivity and pseudo-
sentiment tasks respectively, together with the Random classifier baseline.
The accuracies shown were computed using the geometric mean of the ac-
curacy on the two classes. This was computed for each cross-validation fold;
the value shown is the (arithmetic) mean of the accuracies on the five folds,
together with an estimate of the error in this mean. The values for the
held out data were computed in the same way, dividing the data into five,
allowing us to estimate the error in the accuracy.

5. Discussion

The results clearly show variability in the best classifier and results across
datasets and training technique. We now discuss these results, looking sep-

12
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A Features | Best Classifier | @ | Cross val. acc. | Held out acc.

S Random 0.332 £ 0.023 | 0.365 £ 0.03

S | EntityWords Naive Bayes | X | 0.738 & 0.008 | 0.552 4+ 0.033
S Unigrams Naive Bayes | X | 0.718 £ 0.017 | 0.650 £ 0.024
S Bigrams Naive Bayes | X | 0.748 £ 0.013 | 0.682 £ 0.023
S Trigrams Naive Bayes | X | 0.766 + 0.014 | 0.716 + 0.038
S | Dependencies Naive Bayes 0.566 + 0.014 | 0.523 &+ 0.060
A Random 0.253 £ 0.026 | 0.111 £ 0.072
A | EntityWords Naive Bayes | X | 0.737 £ 0.016 | 0.656 + 0.067
A Unigrams Naive Bayes | X | 0.769 4+ 0.008 | 0.756 + 0.031
A Bigrams Naive Bayes 0.755 + 0.009 | 0.618 & 0.157
A Trigrams Naive Bayes 0.800 + 0.02 0.739 + 0.088

Table 6: Results for the pseudo-sentiment task, distinguishing positive and negative
favourability. See the preceding table for details. None of the best performing systems
used feature selection on this task. Dataset C is not shown, as there were not enough
negative documents in the test set to compute the accuracies.

arately at the overall accuracy, feature choice and selection, and techniques
for training from imbalanced data.

5.1. Owerall accuracy

The most notable difference between the two tasks, pseudo-subjectivity
and pseudo-sentiment, is that the best classifier for the pseudo-sentiment
task was naive Bayes in every case, whereas the best classifier varies with
dataset and feature set for the pseudo-subjectivity task. This is presumably
because the independence assumption on which the naive Bayes classifier
is based holds very well for the pseudo-sentiment task, at least with our
datasets.

The level of accuracy we report for the pseudo-sentiment task is lower
than that typically reported for sentiment analysis, e.g., [27], but in line with
that from other results, such as [22]. This could be because favourability
is harder to determine than sentiment. For example it may require world
knowledge in addition to linguistic knowledge, in order to determine whether
the reporting of a particular event is good news for a company, even if
reported objectively.

Accuracy on the held out dataset is up to 10% lower than the cross-
validation accuracy on the pseudo-subjectivity task, and up to 6% lower on
the pseudo-sentiment task. This is probably due to a change in topics over
time. This degradation in performance could be reduced by techniques such
as those used to improve cross-domain sentiment analysis [21, 35].
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Imbalanced Balanced

Features Classifier | Neut. ‘ Non. ‘ Cross val. acc. | Neut. ‘ Non. ‘ Cross val. acc.

Entity Words BayesNet | 0.968 | 0.850 | 0.907 £ 0.003 1 0 0+0
Entity Words J48 | 0.794 | 0.907 | 0.849 4+ 0.005 | 0.908 | 0.882 | 0.895 + 0.002
Entity Words JRip | 0.917 | 0.883 | 0.900 &+ 0.004 | 0.966 | 0.852 | 0.907 &+ 0.003
Entity Words SVM | 0.962 | 0.864 | 0.912 £+ 0.003 | 0.959 | 0.864 | 0.911 £ 0.002

EntityWords | Naive Bayes | 0.969 | 0.850 | 0.908 + 0.003 1 0 0+0
Entity Words RBFNet | 0.856 | 0.894 | 0.875 £ 0.006 | 0.832 | 0.895 | 0.863 £ 0.011
Unigrams BayesNet | 0.933 | 0.745 | 0.834 & 0.004 | 0.978 | 0.338 | 0.575 £ 0.008
Unigrams J48 | 0.802 | 0.906 | 0.852 4+ 0.002 | 0.933 | 0.867 | 0.899 + 0.004
Unigrams JRip | 0.941 | 0.859 | 0.900 &+ 0.005 | 0.967 | 0.851 | 0.907 &+ 0.002
Unigrams SVM | 0.959 | 0.857 | 0.907 &+ 0.002 | 0.954 | 0.859 | 0.905 + 0.002
Unigrams | Naive Bayes | 0.774 | 0.789 | 0.781 4+ 0.006 | 0.910 | 0.581 | 0.727 4+ 0.008
Unigrams RBFNet | 0.402 | 0.946 | 0.616 + 0.017 | 0.413 | 0.943 | 0.622 + 0.019
Bigrams BayesNet | 0.899 | 0.821 | 0.859 £ 0.007 | 0.957 | 0.517 | 0.703 £ 0.012
Bigrams J48 | 0.715 | 0.921 | 0.812 £ 0.006 | 0.844 | 0.845 | 0.844 + 0.004
Bigrams JRip | 0.746 | 0.912 | 0.825 4+ 0.005 | 0.801 | 0.828 | 0.813 &+ 0.007
Bigrams SVM | 0.747 | 0.933 | 0.835 £ 0.006 | 0.849 | 0.901 | 0.875 + 0.007
Bigrams | Naive Bayes | 0.883 | 0.716 | 0.795 £ 0.004 | 0.947 | 0.569 | 0.734 £+ 0.005
Bigrams RBFNet | 0.614 | 0.941 | 0.760 £ 0.008 | 0.609 | 0.939 | 0.757 £ 0.006
Trigrams BayesNet | 0.620 | 0.883 | 0.739 £ 0.009 | 0.975 | 0.118 | 0.289 + 0.086
Trigrams J48 | 0.356 | 0.964 | 0.586 + 0.012 | 0.441 | 0.942 | 0.644 + 0.008
Trigrams JRip | 0.422 | 0.963 | 0.637 &+ 0.003 | 0.388 | 0.963 | 0.605 % 0.042
Trigrams SVM | 0.575 | 0.921 | 0.728 + 0.008 | 0.604 | 0.909 | 0.740 + 0.009
Trigrams | Naive Bayes | 0.810 | 0.758 | 0.784 + 0.003 | 0.922 | 0.593 | 0.739 £ 0.005
Trigrams RBFNet | 0.459 | 0.949 | 0.659 + 0.010 | 0.478 | 0.934 | 0.667 + 0.013

Dependencies BayesNet | 0.678 | 0.931 | 0.794 £ 0.006 1 0 0+0
Dependencies J48 | 0.377 | 0.963 | 0.602 + 0.012 | 0.437 | 0.947 | 0.643 &+ 0.005
Dependencies JRip | 0.452 | 0.953 | 0.656 £+ 0.008 | 0.638 | 0.929 | 0.769 + 0.009
Dependencies SVM | 0.645 | 0.943 | 0.780 £ 0.006 | 0.683 | 0.928 | 0.796 + 0.006
Dependencies | Naive Bayes | 0.764 | 0.914 | 0.835 £ 0.005 | 0.990 | 0.006 | 0.074 £ 0.007
Dependencies RBFNet | 0.508 | 0.961 | 0.698 £+ 0.008 | 0.529 | 0.959 | 0.711 £+ 0.012

Table 7: Balanced versus imbalanced cross validation accuracies (geometric mean) for
dataset S, pseudo-subjectivity task, together with the accuracies on the individual classes,
neutral and non-neutral. (Models trained without feature selection.)
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Imbalanced Balanced
Features Classifier | Neut. ‘ Non. ‘ Cross val. acc. | Neut. ‘ Non. ‘ Cross val. acc.
Entity Words BayesNet | 0.987 | 0.044 | 0.205 + 0.02 0.987 | 0.045 | 0.208 £ 0.019
EntityWords J48 | 0.784 | 0.498 | 0.623 + 0.011 | 0.596 | 0.712 | 0.651 £ 0.008
EntityWords JRip | 0.89 | 0.349 | 0.554 + 0.023 | 0.643 | 0.694 | 0.668 + 0.008
EntityWords SVM | 0.872 | 0.394 | 0.587 + 0.006 | 0.575 | 0.812 | 0.683 £ 0.007
EntityWords | Naive Bayes | 0.972 | 0.111 | 0.326 £+ 0.021 | 0.944 | 0.192 | 0.426 £ 0.015
EntityWords RBFNet | 0.71 | 0.591 | 0.596 + 0.087 | 0.574 | 0.787 | 0.671 + 0.01
Unigrams BayesNet | 0.835 | 0.378 | 0.56 & 0.015 | 0.802 | 0.424 | 0.581 £ 0.013
Unigrams J48 | 0.816 | 0.438 | 0.597 + 0.013 0.67 | 0.629 | 0.649 £ 0.005
Unigrams JRip | 0.902 | 0.294 | 0.511 + 0.024 | 0.653 | 0.658 | 0.654 + 0.003
Unigrams SVM | 0.837 | 0.464 | 0.622 + 0.011 | 0.694 | 0.698 | 0.696 + 0.005
Unigrams | Naive Bayes | 0.896 | 0.318 | 0.531 + 0.018 | 0.736 | 0.582 | 0.652 + 0.012
Unigrams RBFNet | 0.829 | 0.37 | 0.552 + 0.016 | 0.851 | 0.369 | 0.557 £ 0.021
Bigrams BayesNet | 0.89 | 0.321 | 0.534 4 0.008 | 0.849 | 0.392 | 0.577 £ 0.009
Bigrams J48 | 0.847 | 0.324 | 0.523 £+ 0.013 | 0.593 | 0.716 | 0.652 + 0.012
Bigrams JRip | 0.942 | 0.141 | 0.353 + 0.038 | 0.636 | 0.674 | 0.654 + 0.01
Bigrams SVM | 0.852 | 0.36 | 0.553 %+ 0.006 0.58 0.8 | 0.68 £+ 0.012
Bigrams | Naive Bayes | 0.959 | 0.203 | 0.439 + 0.017 0.86 | 0.433 | 0.605 + 0.024
Bigrams RBFNet | 0.908 | 0.28 | 0.501 + 0.019 | 0.804 | 0.428 | 0.56 + 0.02
Trigrams BayesNet | 0.919 | 0.216 | 0.443 &+ 0.019 | 0.903 | 0.24 | 0.464 £+ 0.019
Trigrams J48 | 0.963 | 0.102 | 0.306 + 0.03 0.376 | 0.864 | 0.57 + 0.011
Trigrams JRip | 0.999 | 0.006 | 0.036 + 0.036 | 0.366 | 0.858 | 0.561 + 0.006
Trigrams SVM | 0.935 | 0.173 | 0.401 + 0.018 | 0.407 | 0.851 | 0.588 =+ 0.009
Trigrams | Naive Bayes | 0.938 | 0.249 | 0.481 + 0.013 0.84 | 0.446 0.61 £+ 0.011
Trigrams RBFNet | 0.951 | 0.144 | 0.368 + 0.014 | 0.948 | 0.17 | 0.398 + 0.02

Table 8: Balanced versus imbalanced cross validation accuracies (geometric mean) for
dataset A, pseudo-subjectivity task, together with the accuracies on the individual classes,
neutral and non-neutral. (Models trained without feature selection.)
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5.2. Features

Trigrams proved the most effective feature type in 3 out of the 5 different
experiments, with unigrams and entity words proving the best in 1 case
each. However, in many cases, there is not a significant difference between
the results for different datasets.

Although we only computed dependencies for one dataset, S, we found
that they did not provide significant benefit on their own. This may be due
to the sparseness of the data, since we only extracted dependencies with
respect to the organisation in question. Dependencies may be useful when
combined with other features, such as unigrams.

Feature selection was not always effective in improving classification,
even with the high-dimensionality of the data. In the pseudo-sentiment task,
none of the best classifiers used feature selection. In the pseudo-subjectivity
task, 8 out of 13 results showed a benefit in using feature selection. This
is probably because, as shown by [15], there are few irrelevant features in
text. This issue deserves further exploration, not least because reducing the
number of features can considerably speed-up the training process. Even
if few features are totally irrelevant, there will likely be a subset of greater
importance. Some authors [9, 39] argue that selecting the right features may
be more important for classification in situations with imbalanced data, and
this is an important area for future work.

5.3. Imbalance

Finally, we look at our results considering the imbalanced data problem.
Within some of the algorithms, balance is actively taken account during
the training process: e.g., naive Bayes has a weighting on its class output
to compensate for different frequencies, and the SVM training process uses
geometric mean for computing performance, which encourages a good per-
formance on imbalanced data. In addition, we have presented results on the
difference between training with balanced and imbalanced datasets. Better
results are obtained in 6 out of the 13 results for the pseudo-subjectivity
task (Table 5), and in 6 out of 9 results for the pseudo-sentiment task (Ta-
ble 6), suggesting that balancing the training data is a useful technique in
most cases.

However, a surprising result is found in Table 7, which shows pseudo-
subjectivity results for dataset S with and without balanced input data,
and the best results for each type of classifier. This dataset has an approx-
imately 70:30 imbalance in the class distribution. Interestingly, balancing
the data shows mixed results for this dataset. In particular, the accuracy of
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the Bayesian network, and sometimes the naive Bayes classifier, are severely
reduced when the training data are balanced. We found similar behaviour
with dataset C (with a 75:25 imbalance), however, as shown in Table 8,
we found the converse on dataset A (with a 30:70 imbalance): every clas-
sifier performed better with balanced data. Further, Table 6 shows that
balancing data has proven effective for the naive Bayes classifiers in the
pseudo-sentiment task, where the imbalance is more severe (94:6 for A, and
88:12 for S).

Given these results, we suggest that balancing the training datasets using
random undersampling of the majority class is usually an effective strategy,
although sometimes the benefits are small if account of balancing is also part
of the parameter-selection process for the learning algorithm. These results
broadly support those obtained across a range of different datasets [34],
but are in contrast to those obtained in other document-classification stud-
ies [31]. It is therefore advisable, when applying these techniques, that pre-
liminary experiments are performed to identify the most effective technique
on the specific dataset used.

6. Conclusion and Further Work

We have empirically analysed a range of machine-learning techniques
for developing favourability classifiers in a commercial context. These tech-
niques include different classification algorithms, use of feature selection to
reduce the feature sets, and treatment of the imbalanced data problem.
Also, we used five different types of features to create the datasets from the
raw text. We have found a wide variation, from less than 0.7 to over 0.9
geometric mean of accuracy, depending on the particular set of data anal-
ysed. We have shown how balancing the class distribution in training data
can be beneficial in improving performance, but some algorithms (in partic-
ular naive Bayes) can be adversely affected. In future work we will apply
these techniques to larger volumes of social media, and further explore the
questions of balancing datasets, other features and feature selection, as well
as the opportunities and implications of embedding these algorithms within
the workflow of the company.
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