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Abstract

Massive star formation takes place in the dense cores of molecular clouds where the
stars may be obscured at optical wavelengths. An excellent signpost of a massive
young stellar object is the presence of an ultra-compact HII region (UC H ii), which
is a dense photo-ionised cocoon of gas surrounding the newly formed star. The aim
of this project is to develop an assembly of numerical tools, caravela, that can simu-
late realistic data streams representing high-mass star forming regions in our Galaxy.
The synthetic output consists in images and photometric point source catalogues,
in the IRAS and Herschel wavebands. In an era when large observational surveys
are increasingly important, this tool can produce simulated infrared point-source
catalogues of high-mass star forming regions on a Galactic scale. The approach
used is to construct a synthetic Galaxy of star-forming regions represented by SED
templates. The star-forming regions are distributed randomly along a four spiral
arm morphology, although a wide range of geometries can be used including rings
and different numbers of spiral arms. The caravela code then observes the synthetic
Galaxy to produce simulated images and point source catalogues with appropriate
sensitivity and angular resolution. caravela was first used to model the simulated
Galaxy by constraining the synthetic output to observations made by IRAS. This
numerical tool will allow the user to infer physical properties of the Galactic popula-
tion of high-mass star forming regions from such observations. Second, the selected
model was again observed with caravela in Herschel mode. These are therefore pre-
dictive results for the future Herschel observations. A model with 4.0×104 compact
proto-stars embedded in larger grey-body envelopes (with T = 40 K and linear size
scale lIII = 5.0 × 106 AU) is the best-fit model to the IRAS observational data set
studied. We found a level of contamination from low- and intermediate-mass objects
of ∼ 90%. The modelled data set resulting from the Herschel simulation resulted
in the detection of approximately twice as many Herschel objects than IRAS, which
is consistent, in a limited way, with the real observed companion clump fraction
(CCF) of 0.90 ± 0.07 (Thompson et al., 2006) means that on average there were
observed 2 sources per one IRAS source. Our caravela and the real observed CCF
are therefore consistent. caravela was coupled with an independent diffuse emission
model (Paladini et al., 2007) and the resulting analysis is presented as an interesting
seed for the future.



All appearances to the contrary, the only watchmaker in nature is the
blind forces of physics, albeit deployed in a very special way. A true
watchmaker has foresight: he designs his cogs and springs, and plans
their interconnections, with a future purpose in his mind’s eye. Natural
selection, the blind, unconscious, automatic process which Darwin dis-
covered, and which we now know is the explanation for the existence and
apparently purposeful form of all life, has no purpose in mind. It has
no mind and no mind’s eye. It does not plan for the future. It has no
vision, no foresight, no sight at all. If it can be said to play the role of
watchmaker in nature, it is the blind watchmaker.

Richard Dawkins

This is not NAM. There are rules.

Walter Sobchak
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Chapter 1

Context: Observational Surveys

for Star Formation

1.1 Introduction

The universe is dominated by stars. The Miky Way contains a hundred billion stars

and it is nothing but one of the innumerable galaxies in the universe. Most of the

elements known to mankind on Earth were produced inside a star: these heavier

elements are converted by these fascinating objects, from the Big Bang hydrogen

and helium.

The understanding that stars are transient objects, that they begin their lives,

evolve following an evolutionary path and die, is the fruit of the last two hundred

years of research. The accepted theory is that stars work by nuclear fusion, and that

a constant balance must exist between fusion based outward pressure and gravity.

This delicate equilibrium controls the life cycle of stars.

A Sun-like star (with regards to its mass) lives for billions of years. The ob-

servation of the current number of stars in our Galaxy implies that there is a star

1



2 1.1 Introduction

formation process. As with human generations, new young stars must appear to

replace the dying ones.

This work exists in the context of star formation in our Galaxy. Astronomy

lives in a survey-driven era. Large unbiased observational surveys, also in the star

formation field of research, are underway or being prepared. These surveys represent

the most significant step forward, for observational star formation in the infrared

and sub-millimetre, since the IRAS mission launched in 1983.

The aim is to create computer software capable of simulating the survey results

in high-mass star forming regions in the Galaxy, producing a synthetic point source

catalogue of observed regions generated from a simulated survey of a model spiral

galaxy. The catalogues that are generated simulate a range of far infrared and

sub-millimetre observations including IRAS, Herschel and SCUBA-2.

This numerical tool will allow the user to infer physical properties of the Galactic

population of high-mass star forming regions from such observations.

The motivation behind the project is to provide a Galactic analogue to the

successful simulations of large scale extragalactic surveys such as SHADES and

SWIRE (van Kampen et al., 2005; Coppin et al., 2006; Lonsdale et al., 2003). These

surveys allow the predictions of observed source counts. With the survey data, these

the observed source counts to constrain the cosmological deduced from the survey.

The following two questions are the essential problems under analysis here.

1. Stars must be forming constantly. What is the distribution, in the Galaxy,

of the birth places of these objects? Massive stars in particular, have short

lifetimes compared with low- and intermediate-mass objects, therefore they

become rarer and further away thus very difficult to study.

2. What are the physical properties of high-mass star forming regions?
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The thesis, or the statement that is put forward as a premise to be maintained

and proved during the following chapters, of this project is: the developed tool can

produce simulated infrared point-source catalogues of high-mass star forming regions

that can be used to statistically study the physical properties of these sources.

The main contribution resulting from this work is a computer software program

that can be used to address the two open questions mentioned before.

1.2 Star formation

Although the first ideas that were correct about gravity playing a crucial role in star

formation were put forward in the eighteenth century (Kant, 1755; Laplace et al.,

1829; Beuther et al., 2006), the modern theory of star formation came to light only in

the second half of the last century (Larson, 1969; Shu et al., 1987; Beuther, 2002).

According to the standard theory, isolated stars with m < 8M! form inside cold

dense cloud cores collapsing due to the gravitational pull.

In this way a central protostar is born embedded in an envelope. The protostar

continues to accrete mass from its surroundings. Observations have shown that disks

can be formed at this stage, and that they are responsible for the majority of the

accreting activity. For m < 8M!, the protostar becomes optically visible, it evolves

along the Hertzsprung-Russel diagram. Its luminosity originates from gravitational

contraction and not from nuclear burning (Stahler et al., 2000). When the nuclear

luminosity (due to the CNO cycle; p-p for lower mass stars) becomes dominant, the

pre-main sequence path comes to an end. The star is now called a Zero Age Main

Sequence star (ZAMS) (Lada and Kylafis, 1999).

Low- and intermediate-mass stars have masses that range from 0.1 to a few

M!. Stars with m > 8M! form in a different manner. What causes the difference
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in formation processes between these two categories of stars? The short answer

is the radiation pressure which massive stars exert on the surrounding envelopes

from the moment their nuclear core ignites. From the cited mass cutoff (8M!), the

radiative pressure is too strong and prevents further accretion, therefore massive

stars could not exist ... the theory has to be adapted to the observations (massive

stars do exist!). The central difference between a low-mass and a high-mass star is

that high-mass star forming regions produce enough ultra-violet photons to ionise

its surroundings and form a HII region. The next section presents the different

alternatives.

1.3 High-mass star forming regions

The study of massive stars is characterised by three words: remote, rapid, and

mysterious. high-mass star forming regions statistically exist further away from the

Earth than low- intermediate-star forming regions. They evolve more rapidly than

their m < 8M! counterparts. Due to these issues and to the inadequacy of applying

the standard star formation theory (that was developed with lower mass stars in

mind), high-mass star formation is a challenging field with many mysteries to be

tackled.

Why study the infrared part of the spectralp energy distribution (SED)? Mas-

sive stars form in dense, cold and dark molecular clouds (i.e. high extinction) there-

fore clumps are only visible in infrared/sub-millimetre regime of the electromagnetic

spectrum.

The large columns of dust and gas (N(H2) = 3×1023 cm2, Morales et al. (2009))

of the dense molecular clouds that lie between them and the observer, making them

completely dark at visual wavelengths. Thus, the study of the environment around

recently formed massive stars is only successful through observations at infrared,
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millimeter, and radio wavelengths, where the extinction is much smaller.

Stars more massive than 10 M! have a profound influence on our Galaxy, but

their formation and how they are distributed remain poorly understood. The an-

swers to how high-mass stars are born, where they exist and what their observational

characteristics are, form the context for this report.

A list of the fundamental reasons why our understanding of the formation of

massive stars is very incomplete include (Zinnecker and Yorke, 2007):

• high dust extinction makes it difficult to observe high-mass stars during early

formation phases;

• they are rare;

• they evolve quickly;

• the theoretical problem is very hard to solve;

• massive stars rarely are formed in isolation from other stars.

The main difficulty of the study of high-mass star formation is the lack of

(global) observational data. This is due to a combination of causes, the most relevant

being: high-mass protostars evolve very quickly resulting in a statistically incomplete

sample of well-studied sources (selection effects are also important contributors to

the statistical incompleteness of high-mass star forming regions samples), and, they

seem to cluster and therefore it can be difficult to resolve individual sources.

Our current understanding of this interesting and complex topic is summarised

in this section. This is based chiefly on Zinnecker and Yorke (2007), Churchwell

(2002) and Beuther et al. (2006) (and references cited in these three reviews).

The study of the formation of high-mass stars still has basic problems not

solved (Barbosa and Finger, 2005, for a list of the most relevant open questions in
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this field), e.g. the radiation pressure high-mass stars produce on the surrounding

dust and gas is sufficiently strong to stop further accretion. So do high-mass stars

form in a qualitatively different way from low-mass stars?

The first phase of the evolution of what will become a high-mass star takes place

in the dense cores of giant molecular clouds. Giant molecular clouds’ structure

appears to be self-similar over a wide range in size and mass, i.e. the way giant

molecular clouds are fragmented, in terms of sizes and masses of the its substructures

(clumps), is similar, in scale, to how clumps fragment into cores (Blitz, 1991; Blitz

and Williams, 1999; Williams et al., 2000). High-mass stars and their lower mass

companions form from over dense regions of the giant molecular clouds named as

clumps.

Clumps contain most of the mass of the parent giant cloud, they are gravita-

tionally bound and have typical masses of ≥ 300−500M!. The most massive clumps

(> 103 − 104M!) will form stellar clusters (Blitz, 1991; Blitz and Williams, 1999).

Cores are smaller, denser, and have lower mass (≈ 101−103M!) than clumps. These

are the sites of individual star formation, and prestellar cores are identified as the

first stage in the process of forming high-mass stars.

During this phase, a central protostar is not yet present inside the prestellar

core therefore they are optically thick in the near infrared, they have temperatures

of only 10−20 K, and their SED peaks in the far infrared at ≈ 200 µm (Churchwell,

2002; Garay and Lizano, 1999). Research on prestellar cores is still immature and

incomplete as these objects are rare (lifetime less than ∼ 103 − 104 years, Parsons

et al. (2009); Chambers et al. (2009)) and no unequivocal detection has been reported

for a prestellar core that would unambiguously evolve into a high-mass star (Ward-

Thompson et al., 1994; Fuller and Myers, 1987; Churchwell, 2002; Motte et al.,

2008).
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Hot cores can be found in the centre of an equatorial accretion disk and a

massive bipolar outflow parallel to the core’s rotation axis. Outflows associated with

low-mass stars are ubiquitous but their masses and kinetic energy are much smaller

than those linked with high-mass stars. Also, high-mass outflows are generally

poorly collimated when compared with low-mass stars (Churchwell, 2002).

Although cores with diameters less that 0.1 pc, H2 density greater than

107 cm−3, warmer than 100 K, and containing massive protostars, are the pre-

cursors of UC HII regions, due to the rapid accretion, the protostar does not exhibit

a detectable HII region at this stage. This is a rare phase as a result of the short

lifetime of these objects.

The evidence that massive protostars have high accretion rates and short life-

times can be found in the analysis of properties of outflows associated with high-mass

star formation. Observations allow the determination of outflow dynamical ages and

masses through mass outflow rates (typical values of 10−3 M! yr−1). The net re-

sult should be that some mass is added to the protostar at this stage of evolution,

therefore, time scales for the lives of these objects are of the order of 104 − 105 yr

(Beuther, 2002; Zinnecker and Yorke, 2007; Zinnecker, 2007) a.

While the high-mass protostar is embedded in the core, it ionises the gas and

forms an ultracompact HII region. UC HII regions are one of the most reliable

tracers of recent massive star formation (Churchwell, 2002; Beuther et al., 2006;

Wood and Churchwell, 1989; Barbosa and Finger, 2005). They are dense, compact

(less than 0.1 pc) aggregations of photo-ionised gas.

The ionising star of a UC HII region is on the main sequenceb, and obeys

the empirical relations found for high-mass stars that no longer are inside a core,

the mass-luminosity relation (L ∝ M3) and mass loss rate relation (Ṁ ∝ L1.7)

athe working assumption used to determine these properties is that high-mass stars form via
accretion of surrounding material (through an equatorial disk).

bMassive stars begin burning H while they are still accreting matter
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(Churchwell, 2002).

An interesting empirical result is that UC HII only appear to have a few possible

morphologies. These were classified as cometary, core-halo, shell, and irregular and

multiple peaked structures (Wood and Churchwell, 1989; Kurtz et al., 1994).

Observations of UC HII regions in the far infrared reveal that these objects

are bright (i.e. have very high values of flux) in the far infrared wavelengths. This

combined with strong obscuration in the visible (and even in the near infrared)

allowed researchers to conclude that these objects are embedded in their original

cloud cores (Chini et al., 1986; Hoare et al., 1988; Wolfire and Churchwell, 1994).

UC H ii regions, due to their high luminosities, can be used to investigate the

global properties of our galaxy. They play the role of beacons spread throughout the

Galaxy that can be used to study the overall structure of our galaxy (Churchwell,

2002).

The Galactic population and spatial distribution of high-mass stars (and their

precursors) is unknown, and it is important to ascertain the number, spatial distri-

bution, and ages of high-mass stars. This would determine directly the current rate

of massive star formation in the Galaxyc, reveal the positions in space of high-mass

star formation relative to spiral arms (and define the spiral structure of the Galaxy),

give estimates of the mechanical and radiative energy and momentum contribution

to molecular clouds.

While the angular position (position in the sky) of the source is relatively easy to

determine with sufficient accuracy, the determination of the heliocentric distance is

not straightforward. For sources inside the solar circle there is a distance ambiguity

because, assuming a certain rotation curve, two sources observed in same direction

but located in the two locations where their trajectory intersects the line-of-sight,

cThis would be possible to estimate independently of uncertainties in the IMF in the high-mass
star regime
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have the same line-of-sight velocity (Zinnecker and Yorke, 2007). The observer is

therefore unable to discriminate between these two distances (see e.g. Busfield et al.,

2006, for methods of breaking this ambiguity). Nonetheless heliocentric distances

are needed if one is to use high-mass stars as tracers of the overall structure of the

Milky Way.

How can the distribution of high-mass stars reveal the spiral structure of the

Milky Way? There is empirical evidence from face on galaxies that the distribution

of high mass stars and spiral arms structure coincide.

The identification of UC HII regions has been done with IR-photometry. Data

from the Infrared Astronomical Satellite Point Source Catalogue (IRAS PSC) have

been extensively used to estimate the distribution and number of UC HII regions in

the Galaxy (Wood and Churchwell, 1989; Hughes and MacLeod, 1989; Zoonematk-

ermani et al., 1990; White et al., 1991; Helfand et al., 1992; Becker et al., 1994). The

IR fluxes at the IRAS wavebands are used to select candidate UC HII sources based

on the assumed colours of a typical object. Wood and Churchwell (1989) used it

most successfully and identified 1650 UC HII region candidates with a scale height of

0.6±0.05 degrees in galactic latitude corresponding to 90 pc at a distance of 8.5 pc.

They defined selection criteria based on 25− 12 and 60− 12 colours, i.e. F12 µm and

F25 µm ≥ 10 Jy, log (F60 µm/F12 µm) ≥ 1.30, and log (F25 µm/F12 µm) ≥ 0.57. UC

HII regions appear to over-populate quadrants I and IV of the Galactic plane. This

result seems to indicate that high-mass stars are more likely to be found within a

few tens of parsecs from the Galactic plane and that they lie inside the solar circle

(the solar circle is defined as the set of positions in the Galactic plane with the Sun’s

galactocentric distance).

While the IRAS was a very successful survey, studies based on the IRAS fluxes

suffer from the relatively poor positional accuracy and limited sensitivity. It is clear

that higher spatial resolution and more sensitivity observational surveys coupled
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with relevant modelling of the problem will allow a clearer understanding of the

Galactic population and distribution of high-mass stars.

The Initial Mass Function (IMF) describes the relative fractions of stars of dif-

ferent mass at their birth. The IMF was first measured by Salpeter (1955), and more

recent observations have confirmed this result. In principle the IMF can be consid-

ered across all scales: from a star cluster or association to a large region of a galaxy

or even for a whole galaxy. To a first approximation, the observed stellar IMF is uni-

versal and independent of abundance differences in our and other galaxies (Beuther

et al., 2006; Churchwell, 2002; Massey, 1999; Massey and Hunter, 1998; Meyer et al.,

2000; Kroupa, 2001). The origin and form of the IMF is a fundamental open prob-

lem in stellar Astrophysics. There is evidence that the chief mechanism determining

the IMF is the mass spectrum produced from cloud fragmentation (Beuther et al.,

2006; Corbelli et al., 2005).

As alluded before, we were assuming that massive stars are formed via accre-

tion of the surrounding matter through an equatorial disk. There is observational

evidence that support the presence of massive bipolar molecular outflows. Also the

detection of equatorial accretion disks has been reported. Nonetheless, there are

comparable strong arguments in favour of a paradigm change with respect to the

origin of massive stars (Churchwell, 2002). Within this new scenario, massive stars

form in a qualitatively different way from low-mass stars. This new scenario is called

the coalescence hypothesis and was first proposed by Bonnell et al. (1998).

The fact that massive stars appear to occupy the centres of stellar clusters

(Beuther et al., 2006), led to this scenario whereby the protostellar and stellar den-

sities within a forming massive cluster are high enough (∼ 108 pc3) that massive

young stellar objects physically collide and merge. In this way the outward effect of

radiation pressure is suppressed (Bonnell et al., 1998; Bally and Zinnecker, 2005).

Stahler et al. (2000) and Bonnell and Bate (2005) have proposed similar models for
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the formation of low-mass stars.

A less drastic model for the formation of massive stars suggests that the majority

of the stellar mass is accreted via competitive accretion (Bonnell et al., 2004). In the

competitive accretion scenario the coalescence of protostars is not required, but the

mass accretion rates of the more massive cluster members depend on the number of

stellar companions. Stars at the centre of the cluster have a higher accretion rate,

thus end up to be more massive than other stars that live in the cluster outskirts.

Competitive accretion is the idea that most of a star’s mass comes not from a parent

core, but from gas in the cluster-forming clump that was not originally bound to that

star. In competitive accretion, most stars do not continue to accrete significantly

such that their masses are set from the fragmentation process. It is the few stars

which continue to accrete that become higher-mass stars.

A recent development with potential to give important contribution to the field

is the successful fit of high-mass protostellar objects (HMPOs) SEDs with radiative

tranfer code (Fazal et al., 2007). 13 high-mass protostellar objects (HMPOs) were

studied and their SEDs fitted to a grid of 2-D axisymmetric radiative transfers mod-

els. Fazal et al. (2007) show that the models fit the observed SEDs well, supporting

the accretion-based scenario of massive star formation. The envelope accretion rates

were found to be Ṁenv ≈ 10−2.5M!/yr. They concluded that it appears likely that

stars with stellar masses M∗ > 20 solar masses can form via accretion.

To summarise, the main open problem of massive star formation can be

stated as follows (Beuther et al., 2006): Do high-mass stars form similarly to low-

intermediate-mass stars, i.e. via accretion from the surrounding envelopes, or are

fundamentally different physical processes, e.g. coalescence of protostars, taking

place?
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Figure 1.1: This figure illustrates the various stages during the formation of a group
of high-mass stars. Further details in the text. It is adapted from Frieswijk (2008).
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1.3.1 High-mass star formation may not be a scaled-up ver-

sion of low-mass star formation

Here we discuss in more detail the arguments for proposing a distinct formation

model for massive stars (Zinnecker and Yorke, 2007).

We use the terms massive star and high-mass star as synonymous. They refer

to an OB star sufficiently massive to produce a type II supernova, i.e. m > 8 M!

for solar abundances.

The 8 M! limit arises from the existence, above this mass cut-off, of radiative

forces on gas and dust. These forces are insignificant in the early stages of low-

mass, solar-type stars, formation but, for massive stars, a substantial fraction of the

luminosity is emitted in ionizing radiationd. This radiation is responsible for new

effects such as the photo evaporation of the star’s accretion disk and protostellar

envelope. This limits accretion and, crucially, the final stellar masse. In terms of

timescales, the difference between low- and high-mass star formation is that low-mass

stars form in a time t∗f short compared to the Kelvin-Helmholtz time tKH, whereas

high-mass stars generally have tKH ≤ t∗f (Beuther et al., 2006). As mentioned before,

this result in the fact that low-mass stars undergo extensive pre-main sequence

evolution after accretion has finished, whereas the highest mass stars can accrete a

significant amount of mass while on the main sequence.

Accordingly to Beuther et al. (2006), observational evidence suggests that stars

at least up to 30 M! form via an accretion based formation scenario, i.e. a simple

scaled-up version of the formation scenario for low- and intermediate-mass stars.

dMassive stars have Kelvin times (the time required for a star to radiate away its gravitational
binding energy) that are shorter than their formation times, and as a result they attain their full
luminosities while still accreting from their natal clouds. As the radiation from such an embedded,
massive star diffuses outward through the dusty gas in the protostellar envelope, it exerts a force
that opposes gravity.

eIn addition, the ionizing photons can photoevaporate the disks of the neighboring lower mass
stars
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The cited authors refer that the accretion-based formation scenario in turbulent

molecular cloud cores is the more probable method to form most stars of all masses.

1.3.2 The spiral structure of our Galaxy

Why study the 3D Galactic distribution of the birth places of massive stars? The

answer to this question has interest in itself, but also, it is, in principle, possible to

investigate the spiral arms of our Galaxy modelling the positions of the high-mass

star forming regions.

For external galaxies the distribution of star-forming regions along the spiral

arms is, in general, evident from direct imaging. The situation is fundamentally

different for the Milky-Way (Russeil, 2003). In our Galaxy, it is impossible to have

a view of the whole Galactic plane from a direction perpendicular to it. Furthermore,

the arms appear superimposed and merged together in any observation where the

line of sight is parallel to the galactic plane. And the kinematic distance ambiguity

makes it very hard to decompose the observed velocity structure into the true spiral

structure of the Milky Way.

One possible method to investigate the grand spiral structure is to model the

distribution of objects, on a galactic scale. These type of objects have to trace the

spiral arms.

In this work, we are considering high-mass star forming regions as excellent

tracers of the spiral structure of the Galaxy, as it is a well known observational

result that HII regions and OB stars exist in the spiral arms of external galaxies

(Russeil, 2003, and references therein).

The Russeil (2003) model for the Galaxy was adopted for caravela. It is a four

arm model, based on a equiangular or logarithmic spiral (figure 1.2, page 15).
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Figure 1.2: The Russeil (2003) model for the Galaxy was adopted for caravela. It
is a four arm model, based on a equiangular or logarithmic spiral. All the relevant
equations and physical parameters of this model are described in detail in the next
chapter.
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1.4 Hi-GAL

Hi-GAL is a key-time survey of the Galactic Plane to be carried out with the Herschel

Space Observatory. Herschel is the biggest far-infrared space observatory ever to be

launched (with a 3.5 m mirror) (Molinari and the Hi-GAL Team, 2009).

Hi-GAL will map 240 square degrees of our Inner Galaxy, delivering a census

of the following physical properties:

• temperature,

• luminosity,

• mass,

• Spectral Energy Distribution,

of star forming regions and cold diffuse structures.

Hi-GAL will map the inner Galactic Plane, i.e. (in degrees) −60 < ! + 60,

−1 < b < +1f, in 5 photometric bands between 70µm and 520µm at a 4 − 40′′

diffraction limited spatial resolution.

The aim is to provide an homogeneous data set for a large number of objects

well suited for statistical inferences on global properties (of high-mass star forming

regions).

The aim of Hi-GAL is to detect the earliest phases of the formation of molec-

ular clouds and high-mass stars and to use the optimum combination of Herschel

wavelength coverage, sensitivity, mapping strategy and speed to deliver a homoge-

neous census of star-forming regions and cold structures in the interstellar medium.

The resulting representative samples will yield the variation of source temperature,

luminosity, mass and age in a wide range of Galactic environments at all scales

fThe original proposal was to map (in degrees) 0 < ! + 360, −1 < b < +1
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from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary

sequence for the formation of intermediate and high-mass stars.

Hi-GAL is the first dedicated project to study the early phases high-mass star

formation in the Galaxy, with a legacy value similar to the IRAS mission some two

decades ago.

The outcomes of Hi- GAL will consist of source lists and images to be released

soon (during 2010).

The author of this work is part of the Hi-GAL team (data simulation working

group). It was within the scope of the data simulation working group of Hi-GAL,

that the collaborative work with Dr Roberta Paladini has emerged. The aim was to

use the obvious synergies between the Paladini et al. (2007) diffuse emission model

with caravela. Some results of this are presented in the final parts of this dissertation.

The author is included in the (long) authors list of (Molinari et al., 2010), where

the Hi-Gal Survey is described in detail.
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1.5 Motivation for the project

High-mass star forming regions occur throughout the Galaxy. They are very lumi-

nous in the infrared so can be seen at large distances. Large infrared observational

surveys are guaranteed to come on-line soon, e.g. Hi-GAL. For a statistical in-

terpretation of the observational data a model is needed. One of these models is

caravela. In theory, there is an advantage in modelling the observed data before the

observation. In practice, this is what caravela tries to achieve in chapter 4.

The main motivation for this work is to provide a model able to be used in the

interpretation of IR high-mass star forming regions survey data sets.

1.6 Outline of this dissertation

In this work, we describe how a numerical tool (caravela) was developed to study

high-mass star forming regions. Two categories of results are presented: one using

caravela to constrain known observations, the others apply the best-fit model found

from the latter to the upcoming Herschel data sets.

This dissertation includes a description of what has been done and in what

context (Chapters 2 and 1, respectively), what came out of this (Chapters 3 and 4),

a discussion of these results and finally some conclusions that can be drawn (Chapter

5). I also discuss how caravela can be used in the future (Chapter 5. The outline of

the thesis is as follows:

• We introduce in Chapter 1 the high-mass star formation research area as a very

active field of research, presenting its main results, assumptions and problems.

Some important differences between low-mass and high-mass star formation

are presented in §1.3. A set of observational surveysg will make a major con-

gHi-GAL is one of these surveys. It uses the photometric instruments on board the Herschel
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tribution to our understanding of how high-mass stars form. The directly

relevant to this work is described in §1.4.

• Chapter 2 presents caravela, the numerical tool developed during this project.

The caravela code aims to produce simulated data that can be used in the

interpretation of both currently available data sets (e.g. IRAS) and future

observational surveys (e.g. Hi-GAL). This chapter describes the method fol-

lowed during this project. At the end of chapter 2, caravela is put into use: a

sample model tests some of the code features with physically realistic input

parameters. This will give the reader a first preview of the following results

chapters.

• In chapter 3, the caravela grid of 21 models is presented. One model is selected

as being in better agreement with the IRAS point source catalogue distri-

bution. The selection process for the best-fit model is explained and some

conclusions about the real distribution of high-mass star forming regions are

discussed.

• Chapter 4 describes how caravela can be used as a predictive tool. The best-fit

model found in the previous chapter is observed through the model again, but

this time caravela was set up to simulate the future Herschel Space Observatory.

• Furthermore, caravela can be successfully combined with an independent, but

complementary, codeh. The latter is a simulation of the diffuse emission in the

Galaxy and the combined results are presented in Chapter 4.

• We summarise the main results of this thesis in chapter 4 and outline future

work. A discussion on the main conclusions of this project is part of the fifth

chapter.

Space Observatory to study the plane of the Milky Way. caravela is being used to support the work
of the Hi-GAL data simulation working group.

hThis independent code is a well established numerical tool developed by Paladini et al. (2007)
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• Finally, an example input parameter file for caravela is shown, and briefly

described, in appendix C.



Chapter 2

Method: The caravela code

2.1 Introduction

In this chapter we present the tool that is behind this work: the caravelaa code. It is

an assembly of numerical modules that simulate realistic data streams of high-mass

star forming regions from a chosen Galaxy model.

We start with a bird’s-eye view of caravela, and then a more detailed explanation

of the physical constrains follows. A few lines of code illustrate each of the main

components of the program. The description follows the sources - observation -

photometry and catalogue - plots and images logicb.

The structure of chapter 2 is as follows. Section 2.2, page 23, accounts for

the first decisions in the (complex) process of creating the caravela code, i.e. what

programming language and design would best serve our aims. It also summarises

the advantages of building the code in C++, and why caravela has an object oriented

acaravela (in English caravel, from Greek karabos horned beetle or light ship.) is named after the
fast Portuguese ships of the 15th-17th centuries. These ships were used to discover new countries,
helping the Europeans to estimate how many new lands there were and where to put Brazil, South
Africa, India and Japan on the 3D world map.

bIn a way this is different to an observer’s viewpoint, but it is how caravela works and its classes
are organised.

21
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structure. In section 2.3, page 27, an overview of the whole code is presented. Sec-

tion 2.4, page 33, explains how a novice user of caravela can start a first simulation.

This is intended to be a quick-start guide to caravela.

Next, the parameter file is explained in some detail, and all the input parameters

are described individually in section 2.5, starting at page 34. The first module of

caravela is summarised in section 2.6 (page 39), that is the building of the theoretical

catalogue. Functionally, the next step in the simulation is to implement a synthetic

observation of the objects that lie in area of analysis, this is presented in section 2.7,

page 52.

Section 2.8 (page 61) represents the final task that caravela does before quitting

one specific run: to identify the sources and extract a set of their photometric

properties, i.e. caravela generates the final point source catalogue. We present, in

section 2.9, page 61, an early application of caravela using realistic input parameters.

The reader can gain a feel for what the caravela output consists of and it is a prelude

to the following results chapters. Section 2.10, page 67, summarises the main results

from chapter 2.

The specific problem that caravela addresses is: what point source catalogue

results from an observation of a distribution of high-mass star forming regions?

Also given and observed distribution, can we estimate the number of high-mass star

forming regions present in the Milky Way?

The aim is to create a program capable of simulating the point-source catalogues

resulting from the IRAS, PACS, SPIRE and SCUBA-2 instruments, in the context

of high-mass star formation.

The main physical assumptions are:

• the interstellar medium is optically thin at the relevant wavelengths,
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• high-mass star formation takes place, predominately, in the spiral arms of the

Galaxy,

• the high-mass star forming regions are distributed in statistical uniform way

along the length of the Galaxy spiral arms.

In this chapter, the (theoretical) equations and their numerical implementation

are presented togetherc.

2.2 Programming language and design

From a numerical point of view, the first decisions made were on which programing

language to use, and how to structure caravela.

I decided to use C++. This decision was based on several factors, the most

relevant being that,

• C++ is a fast and flexible programing language which allows a straightforward

implementation of an object orientated design,

• it is increasingly used in similar scientific research projects (e.g. the Planck

mission simulation pipeline described in Reinecke et al., 2006),

• there is an important amount of (freely) available scientific libraries written

in C++ that are directly relevant to this project (e.g. library to create and

modify FITS files Wells et al., 1981; Dorman, 2001),

• there is a version of the Numerical Recipes book in C++ (Press et al., 2002).

An object-orientated design is more intuitive and fun than traditional functional-

style design and it has been used in similar scientific research projects (Reinecke

cI think this approach makes the code more transparent.
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et al., 2006). Figure 2.2.1, page 26, illustrates how class inheritance is explored

in caravela, in particular how this design takes advantage of the fact that different

types of astrophysical objects share a number of basic properties. An UC H ii and

a cold core both have a property called mass in the code, but are distinguished by

the type of SED associate to them (either a radiative transfer model for population

1 or a pure grey-body curve for population 2 objects), i.e., all objects, being either

UC H ii or cold cores, inherit some members from a base class (called high-mass star

forming regions object).d

IDL is used in the handling of the resulting images (FITS files), and the final

output catalogues are produced by cupide. IDL is used at this stage in caravela

because it is extremely efficient in handling large 2D arrays. This proved invaluable

to process operations on the super-resolution images (and subsequent final modelled

images).

The two libraries most extensively used in caravela are the slalib and Numerical

Recipes libraries. Slalib (C version) enabled caravela to transform 3D galactocentric

coordinates in 2D sky coordinates. Several Numerical Recipes’ functions form the

numerical backbone of the algorithm, in particular, all the Monte Carlo sampling

uses the NR::ran2() and NR::gasdev() random number generators (Press et al., 2002).

The code is not designed in parallel mode per se. In order to gain efficiency

when doing all-sky simulations (or multi-wavelength jobs), caravela was installed in

the University of Hertfordshire Centre for Astrophysics Research computer cluster.

dIn object-oriented programming, inheritance is a way to form new classes using classes that have
already been defined. The new classes, known as derived classes, inherit attributes or properties of
the pre-existing classes, which are referred to as base classes. It helps to structure the code better
and to reuse existing code.

ecupid (ClUmP IDentification) can be used for identifying clumps of emission in 1D, 2D or 3D
data arrays. It is primarily targeted at the needs of the SCUBA2 advanced data products pipeline,
it follows the Starlink pattern of being instrument-independent, so it can be used on the caravela
synthetic images. EXTRACTOR (EXTRACTOR is SExtractor (Source-Extractor) program re-
packaged for use in the Starlink Software Environment). This is can also be used in alternative to
cupid.
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A simple form of parallel computing is then obtained by setting ten or more caravela

jobs simultaneously.

2.2.1 Random variations

caravela uses random number generators extensively throughout. The random num-

bers generated by these stochastic functions are used to sample probability functions

that represent physical properties, e.g. the 3D distribution of positions of the objects,

or, the range in masses. Having a random probability distribution or pattern that

can be analysed statistically but not predicted precisely for all the relevant physical

properties, implies that results from any caravela simulation have to be analysed

from a statistical perspective. caravela results are, therefore, useful in the discus-

sion on constraining the total number of sources that will be detected by a specific

instrument. Trying to use caravela to investigate exactly where these objects will

appear in the observational image is, however, not possible.

It is important that caravela runs are statistically stable, i.e. that random

variations are insignificant when compared to the variations produced by changing

significant caravela parameters.

In order to study the statistical stability of caravela, we used the Press et al.

(2007) test for stochastic quality: any two different random number generators ought

to produce statistically the same results when coupled to your particular applications

program, in our case caravela. Both while building the code and during the final

stages, we tested caravela against this criterion by alternatively using all the distinct

random number generating functions from the C++ Numerical Recipes library (Press

et al., 2002): NR::ran0, NR::ran1, NR::ran2, NR::ran3, and, NR::ran4. These functions

use independent methods to simulate true random numbers.

The significant physical results were invariant, in a statistical sense, to the
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High-mass star forming region / object

Isolated Young Stellar Object Cold Grey-bodies

Warm Grey-bodies

Figure 2.1: Class diagram for caravela. Each arrow represents the dependence of the
derived class from the base class in C++.

choice of random number function. We conclude that caravela is stable.

caravela uses NR::ran2 because this is presented as the best random function

in the C++ Press et al. (2002) library. The authors of Press et al. (2002) will pay

a thousand dollars to anyone who can demonstrate that NR::ran2 is not a perfect

computer random number generator, i.e. by finding a statistical test that ran2 fails

in a nontrivial way. NR::ran2 has resisted to all attempts presented (Press et al.,

2007).

Summary

In summary, caravela is built using an object-oriented design in C++; IDL is used

to manipulate the FITS files; and a source detection algorithm (e.g., cupid or EX-

TRACTOR) generates the catalogue. To make the code (more) user-friendly and

easier to maintain, a C shell script controls all the caravela components. Also, all the

input parameters are defined in a single text (.txt) file. caravela is statically stable.
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2.3 Bird’s-eye view of caravela

The overall structure of caravela is presented here. The next sections are devoted to

a more detailed analysis of the code, illustrated with selected lines of code.

Theoretical Catalogue

Main Module
Objects 3D Distribution
Ideal images generated

caravela native instrument simulator
IRAS, PACS, SPIRE and SCUBA-2

Simulated images generated

Photometry: cupid or Sextractor
Final Point Source Catalogue created

Figure 2.2: caravela’s main stages.

Also, given a measured catalogue, the code can be used to estimate how many

high-mass star forming regions there are in the Galaxy. What is their distribution?

How does the observation and data reduction, e.g. photometry on automatically

identified clumps, affect the science conclusions?
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The following description is translated graphically in figure 2.2, page 27.

The first step in the code is to build a catalogue of synthetic sources. These

sources represent the real population of high-mass star forming regions in the model

Galaxy. The input parameters are grouped in four categories:

1. Total number of sources

(a) number of isolated Young Stellar Objects, SEDs sampled from Robitaille

et al. (2006)

(b) number of cold grey-body sources

(c) number of compound sources, i.e. YSO surrounded by a warm grey-body

2. Sources’ sizes

(a) average radius

(b) radius standard deviation

3. 3D distribution in the Galaxy

(a) distribution starting radius, i.e. the inner radius of the populationf

(b) distribution starting radius standard deviation

(c) standard deviation for the height of the distribution, i.e. how thick the

disk will be in the direction perpendicular to the Galactic plane

(d) spiral arms and/or rings

(e) length of the spiral arms (if present)

(f) width of the spiral arms (if present)

(g) number of spiral arms

fUsually this can be identified with half the size of the Galactic central bar.
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(h) where do the spiral arms start (this is usually set to the same value as

the distribution starting radius)

(i) spiral arms pitch angle

4. parameters for the spectral energy distribution (SED) for each type of source

(a) for the isolated Young Stellar Objects: (initial) mass function exponent

for radiative transfer SED sampling

(b) for the cold and warm grey-body sources:

i. grey-body equation parameters, i.e. optically thin frequency and beta

ii. (initial) mass function exponent (Nutter and Ward-Thompson, 2007)g

Three different types of objects can be selected by the user of caravela: compact

objects, grey-body objects, grey-body clouds with compact objects inside. These

are named populations 1, 2 and 3, respectively.

Populations 1, 2 and 3, were included as the built in populations in caravela

because they are adequate prototypes for distinct phases of star formation evolution

(described in the previous chapter). These populations do not represent all the stages

of stellar formation. In practice, these populations also result from the test runs of

caravela, i.e. during early stages of development of the code these populations seemed

to give the most consistent results when compared to a number of observational test

data sets.

caravela can use other sources from different populations. To this end, the user

provides caravela with a independent theoretical catalogue.

caravela will then use this information to generate one catalogue. Monte Carlo

gThe IMF is used in the sampling of the sources so that a more realistic set of high-mass star
forming regions objects can be used. In this way the masses of the objects used obey an observed
mass function (this refers to the input distribution of objects; the final distribution of sources
detected in the end of the simulation is a distinct distribution) and not necessarily the same as
the input distribution.
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techniques are used extensively in this part of the code, so the theoretical catalogue

is one possible realisation. The catalogue is the output from the first module of

caravela. For each source, the catalogue will contain the following data:

1. ID

2. 3D position in Galactocentric coordinates, i.e. distance to the centre of the

Milky Way, perpendicular distance to the Galactic plane, and, angle measured

from the Sun’s direction

3. 2D position in Galactic coordinates, i.e. ! and b

4. physical size

5. flux, at several wavebandsh, at the surface of the object

6. mass

As summarised in figure 2.2, page 27, when the catalogue is finally created, the

main module of caravela reads in the file and generates a set of imagesi. This is

second step. These images are super -resolution images, i.e. images with a spatial

resolution higher than any instrument simulated in subsequent stages of the code.

The images correspond to the wavelength, central position and sizej, selected by the

user. One of the issues here is to correctly account for the projection (and projection

errors) from 3D Galactocentric coordinates to 2D Galactic coordinates (and then to

2D coordinates on the detector plane). caravela uses the slalib C routines.

What the main module of caravela does, conceptually, is to implement a 3D

model of the distribution of high-mass star forming regions in the Galaxy, and

hFor the grey-body sources, 12µm, 25µm, 60µm, 70µm, 100µm, 110µm, 170µm, 250µm,
360µm, 520µm. For the isolated Young Stellar Objects, IRAS bands: 12µm, 25µm, 60µm,
100µm, PACS bands: 70µm, 110µm, 160µm, SPIRE: 250µm, 360µm, 500µm, SCUBA-2:
450µm, 850µm.

iThese images are in the FITS format, with World Coordinate System (WCS) header informa-
tion.

jImage central position and size selected in Galactic coordinates.
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then observe it from a super -resolution and ideal sensitivity telescope, at one of

the available wavelength bands. Each object’s position is determined from the 3D

spatial distributionk.

All the objects’ distances to the Earth are known, but not all objects will be

detected (and/or not detected as one object) and their distances will not be an

output from the simulated observation (the simulated observation is the next step).

The caravela’s next module tries to simulate the observing instrument (third

step). The instruments available are the IRAS Space Telescope and the Herschel

Space Observatory. The aim was not to build a complete simulation of these instru-

ments, as this would be beyond the scope of the project: the simulators modules

present in caravela are simple and only consider the instruments’ spatial resolutions,

wavebands and noise levels.

The output are FITS images that simulate the observed images (refer to fig-

ure 2.2, page 27). As with previous modules, the details of the native instrument

simulator will be explained in the next sections. Due to the modular approach that

underpins caravela, any other instrument simulator can, in principle, be used at

this point. The instrument teams of IRAS and Herschel have simulators that are

physically more realistic and efficient.

The final and fourth step missing to achieve caravela’s goal of producing a

Point Source Catalogue, is to measure the sources’ observed fluxes. The code uses

aperture photometry on the images described above. Two options are available:

Sextractor and cupid. Both techniques result in a photometric catalogue.

These are the fundamental steps (each is presented in more detailed in the

following sections) that form caravela. In addition, a number of quick plots and

checks are made throughout each run. E.g., these plots consist of galactic longitude

kAll the Monte Carlo sampling uses the NR::ran2() and NR::gasdev() random number generators
(Press et al., 2002).
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vs number of sources, and, 3D plot of the Galactocentric distribution of sources.

Figure 2.3, page 48, is an illustration of one of these graphs.

caravela can also be set to produce more than one wavelength in one run. This

can be particularly useful if one is trying to produce colour-colour diagramsl.

Note that one run of the code, i.e. one combination of the input parameters,

produces the following output (figure 2.2, page 27):

1. one theoretical catalogue

2. one (set) of super -resolution images

3. one (set) of instrument simulated images

4. one observed catalogue

5. ancillary plots, e.g. ! and b histograms

These output elements were designed to allow one to try to study: how the

3D distribution of sources and instrument properties affect the observed catalogues

(comparing 1 with 4), what effect does the instrument simulator have on the ob-

served images (comparing 2 and 3), the source extraction and photometry recipes

(comparing 3 to 4). The flow chart presented in figure 2.2, page 27, summarises the

above description.

In practice, caravela is run from a C shell script that sequentially compiles and

runs the C++ and auxilary IDL components of the code. All the input parameters

can be changed and saved in one ASCii text file.

lcolour-colour diagrams are automatically generated in this mode.
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2.4 Running caravela

A caravela run is started by typing

>./caravela.csh!input_file.txt!output_directory source_extractor_keyword

in the terminal window. caravela.csh is the overall shell script that compilesm

and runs the C++ and IDL parts of caravela.

input_file.txt is the text file containing all the input parameters needed

throughout the simulation. All the output products, i.e. theoretical catalogue,

observed catalogue, super -resolution image, real image, plots and control information

files, are saved in the output_directory directory chosen by the user. It is useful

to name this input file as caravela_input_waveband.txt, where waveband is the

waveband that defines the instrument to be used, e.g. SPIRE 250µm. An empty

input file (with only typical values for the parameters less likely to be changed filled

in) is part of the caravela distribution. The source_extractor_keyword can be set

to cupid_clumpfind, extractor, or no_source_extractionn.

A fake parallel mode is obtained by starting more than one simulation, as

described above, simultaneously in different UNIX/Linux terminals. For example,

a multi-wavelength simulationo is more efficiently achieved with the aforementioned

parallelism.

Although C++ can be compiled in MSWindows, the current version of the code

is limited to UNIX/Linux based terminal systems.

mIf needed ...
nThese three keywords are explained in the source extraction section
oSimilarly a single wavelength all-sky simulation can be set by running more than one caravela

simulation on contiguous areas of the sky.
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2.5 The parameter file

The caravela parameter file is described in more detail here.

An example of a complete input parameter file is presented in appendix C,

page 136, at the end of this work.

The first three blocks of input parameters present in a caravela parameter file

(the file is a text file) refer to the three possible populations to be used: populations

1, 2 and 3. In the next lines, index 1 is substituted by 2 and 3 in the next two

otherwise identical blocks of variables (not shown).

NUMBER_SOURCES_POP_1 0.0

OBJS_LINEAR_SIZE_SCALE_MU_POP_1_AU 5.0e5

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_1_AU 5.0e4

Z_RANGE_POP_1_KPC 0.05

TEMPERATURE_MU_POP_1_K 30.0

TEMPERATURE_SIGMA_POP_1_K 3.0

NU_0_MU_POP_1_HZ 1.8e13

NU_0_SIGMA_POP_1_HZ 0.0

BETA_MU_POP_1 2.0

BETA_SIGMA_POP_1 0.0

SPIRAL_FLAG_POP_1 1.0

SPIRAL_N_ARMS_POP_1 4.0

SPIRAL_A_ARM_1_POP_1 3.0

SPIRAL_B_ARM_1_POP_1 0.2493

SPIRAL_LENGTH_POP_1 30.0

SPIRAL_WIDTH_SIGMA_POP_1 0.2
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The first parameter is the total number of theoretical sources to be included in

the model, for population 1, 2 and/or 3.

The next two parameters are the objects’ linear size distribution average and

standard deviation (in AU), respectively.

The next parameter determines the distribution of the sources in the galacto-

centric coordinate z, i.e. the height from the galactic plane.

The following six parameters completely characterise the grey-body function

(used for population 2 and 3 objects). For population 1, this set of parameters is

not in use. These six parameters are of the form (for each distribution): average

value, standard deviation for temperature, ν, and β, respectively.

The SPIRAL_FLAG_POP_1 is a flag variable: if equal to 1 then the correspondent

population will be distributed in a spiral; if equal to 2 no spiral structure is generated

and the objects are distributed in rings; if equal to 3 the spiral and ring structures

coexist in the simulation.

The next five SPIRAL\_ parameters are the:

• number of spiral arms,

• equiangular spiral constant a,

• equiangular spiral constant b,

• spiral arm length (needed for the normalisation),

• spiral arm width,

respectively.

The same block is repeated three times.

Next, we have all the parameters that refer to the image(s) properties and

simulator to be used.
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IMAGE_WAVELENGTH_MICRONS 100.0

IMAGE_SIZE_X_DEGREES 1.0

IMAGE_SIZE_Y_DEGREES 0.0

IMAGE_CENTRAL_POSITION_LAT_DEGREES 0.0

IMAGE_CENTRAL_POSITION_LONG_DEGREES 40.0

INDIV_IMAGES_LINEAR_SIZE_X_DEGREES 2.0

INDIV_IMAGES_LINEAR_SIZE_Y_DEGREES 2.0

IMS_SCALE_PIXELS_PRE_DEGREE_X 180.0

IMS_SCALE_PIXELS_PRE_DEGREE_Y 180.0

PROJECTION_TYPE_FLAG 1.0

INSTRUMENT_RESOLUTION_ARCMIN 0.5

The first parameter defines the wavelength band to be used. This can be set to

any of the IRAS, Herschel or SCUBA bands.

Next, the user defines the image size (horizontally and vertically), in degrees:

parameters IMAGE\_SIZE\_X\_DEGREES and IMAGE\_SIZE\_Y\_DEGREES.

The following two parameters decide where the synthetic caravela telescope will

be pointing to, in galactic coordinates (b, !): IMAGE\_CENTRAL\_POSITION\_LAT\_DEGREES

and IMAGE\_CENTRAL\_POSITION\_LONG\_DEGREES.

The total area of the sky to be observed is set by IMAGE\_SIZE\_X\_DEGREES

and IMAGE\_SIZE\_Y\_DEGREES. This global area is subdivided into individual adja-

cent tiles. Each tile, in a caravela simulation, is INDIV\_IMAGES\_LINEAR\_SIZE\_X\_DEGREES

× INDIV\_IMAGES\_LINEAR\_SIZE\_Y\_DEGREES, in size (in degrees).

IMS\_SCALE\_PIXELS\_PER\_DEGREE\_X and IMS\_SCALE\_PIXELS\_PER\_DEGREE\_Y

define the scale of the output 2D matrices (i.e. the super-resolution images described

in this chapter), in units of pixels per degrees, in the horizontal and vertical direc-

tions respectively.
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PROJECTION\_TYPE\_FLAG is a flag variable that decides which projection type

should be used in caravela. This the projection between the 3D galactocentric co-

ordinates and the 2D Cartesian coordinates in the CCD instrument plane. In the

current version of the code, only the gnomic or tangent plane projection is available

to the user.

For the instruments where we did not have a realistic model PSF available,

e.g. the IRAS 100µm band, the super-resolution image is processed using a PSF

approximated by a Gaussian profile. This normal function is defined as having a

INSTRUMENT\_RESOLUTION\_ARCMIN full width half at half maximum value (in arc

minutes). The user should, for the majority of the foreseeable caravela applications,

make sure that this parameter and the IMAGE\_WAVELENGTH\_MICRONS (the first

parameter from this second set of variables) are consistent. These pair of parameters

define the same instrument.

The next group of input parameters define the Galactocentric rings that can be

considered in each caravela run. These are not the Galactocentric object distribution

rings but refer to ring images described in this chapter, i.e. the sources can be

distributed either in a spiral or ring 3D distribution and the ring images, that these

parameters refer to, can still be generated. The first parameter here, RING\_IMAGES

is a flag variable that if these ring images are to be generated or not (1 for no

and 0 for in the positive case). The following 12 RING\_ring\_number\_MIN and

RING\_ring\_number\_MAX type variables defined the start and end, respectively,

of each of the 6 possible rings to be considered in the generation of the described

ring images (in kpc).

RING_IMAGES 1.0

RING_1_MIN 0.1

RING_1_MAX 4.0
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RING_2_MIN 4.0

RING_2_MAX 5.6

RING_3_MIN 5.6

RING_3_MAX 7.2

RING_4_MIN 7.2

RING_4_MAX 8.9

RING_5_MIN 8.9

RING_5_MAX 14.0

RING_6_MIN 14.0

RING_6_MAX 17.0

Finally, the presented summarised description of the caravela input parameter

file ends with the mass function constants. MF\_A\_1 and MF\_B\_1 define the mass

function two exponents: for 1.0 < m(M!) < 2.4 and 2.4 < m(M!), respectively. The

former pair of parameters refers to population 1 sources. MF\_A\_2 and MF\_B\_2,

and MF\_A\_3 and MF\_B\_3 correspond to populations 2 and 3, respectively.

MF_A_1 0.3

MF_B_1 1.0

MF_A_2 1.2

MF_B_2 1.79

MF_A_3 1.2

MF_B_3 1.79

All these parameters are stored in the caravela caravela\_input\_XX.txt text

file (XX is the wavelength band to be used).
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2.6 A theoretical catalogue of High-mass star

forming regions

This is the first section where some of the core physical and numerical features of

caravela will be presented. caravela’s first step is to build a collection of objects to be

observed. This set of synthetic high-mass star forming regions form the theoretical

catalogue and is the starting point of the simulation.

The caravela_cat_gen_v11.cc filep is responsible for reading in the input

parameters and generating the output catalogue. The final catalogue is a tableq

listing all the properties of each individual source and the location of the source in

the model Galaxy, i.e. the 3D distribution of the sources is contained in the output

file.

2.6.1 The objects

Each caravela object represents a high-mass star forming region with the following

properties:

• sizer,

• spectral energy distribution (SED),

• mass.

Three different types of objects can be selected by the user of caravela: compact

objects, grey-body objects, grey-body clouds with compact objects inside. Any of

these three populations can be excluded setting the correspondent input variable to

nought, in the input file caravela_input_waveband.txt.

p2, 000 lines of C++ code.
qThe user is able to choose between ASC II or FITS format.
rThe size is a linear size scale of the region/object, assumed to be spherical.
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Size

The physical size of each object is sampled from the size scale distribution. The

distribution used here is the Gaussian distribution with centred on:

OBJS_LINEAR_SIZE_SCALE_MU_POP_#_AU,

and with standard deviation OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_#_AU.

The objects’ size distribution to be used is chosen by the user: for popu-

lation 2 objects, the grey-bodies, and the outer envelopes of population 3 ob-

jects, the user defines the values for OBJS_LINEAR_SIZE_SCALE_MU_POP_#_AU,

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_#_AU, in AU (as with all user definable in-

put values, these are defined inside caravela_input_waveband.txt. # is the pop-

ulation number, i.e. either 2 or 3.). OBJS_LINEAR_SIZE_SCALE_MU_POP_#_AU and

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_#_AU are the mean value and standard devi-

ation of the size distribution for the population, respectively. The gasdev() (Press

et al., 2002, page 292) routine returns a normally distributed deviate with µ = 0

and σ = 1. To generate the correct distribution, the N(0, 1) normal distribution is

transformed in the desired N(µ,σ) distribution by µ + σ × N(0, 1) = N(µ,σ), i.e.:

linear_size_scale = linear_size_scale_mu_pop_2 +

linear_size_scale_sigma_pop_2 * NR::gasdev(idum_1);

For population 1 and 2, the compact young stellar objects and the core of

population 3 high-mass star forming regions (Robitaille et al., 2006), respectively,

the linear size scale assumed by caravela is twice the value of the maximum between

the outer envelope radius and the outer disk radiuss used in the Whitney et al.

(2003) radiative transfer models.

sModels with no disk are treated as having outer disk radius zero.
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As it will become clear next, the sources’ sizes are crucial both in determining

their sizes in the image, and their grey-body masses (for populations 2 and envelope

of population 3 objects).

SED

caravela produces images and point-source catalogues at 10t distinct wavebands

(from IRAS 12µm to SPIRE 500µm), therefore each object is associated with a

spectrum. This is the spectral energy distribution, SED, of the object. The SED is

an intrinsic property of the object, regardless of where it lies in the model Galaxy.

Objects belonging to populations 2 and the outer envelopes of the composite

population 3 objects have their intrinsic SED given by the grey-body equation:

Fe ν = Bν ×
(

1 − e
−

“

ν
ν0

”β
)

(2.1)

where Fe ν is the emitted flux at frequency ν, Bν at frequency ν is the Planck

function, and ν0 is the frequency where the material is optically thin, and β is

called the grey-body exponent. At this point it is unimportant if the object will be

resolved or unresolved by the observer, hence the physical units of Fe ν are units of

specific intensity, i.e. W m−2 Hz−1 sr−1. If the source will be resolved, what is being

measured by the observer is the specific intensity (and this is independent of the

distance to the source). However, it is the radiation flux that is being measured for

an unresolved source. As the source recedes farther and farther, the energy received

from the entire source will disperse throughout the diffraction pattern (the Airy

disc and rings) defined by the telescope’s aperture. Because the light arriving at

the detector leaves the surface of the source at all angles, the detector is effectively

integrating over all directions: this is just the definition of radiative flux.

t12 considering the two SCUBA bands, 450µm to 850µm
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Note that the SEDs are integrated with the corrected transmission function, i.e.

Robitaille et al. (2006) (hence population 1 and 3 objects) radiative transfer SEDs

take into account the width and transmission function of the wavelength band for

IRAS and Herschel filters.

For an unresolved source, the linear size of the source R and its distance d, are

important. The relation between received and emitted fluxes is:

Fr = Fe ×
R2

d2
(2.2)

In caravela, the values of ν0 and β are defined by the user (by setting

NU_0_MU_POP_#_HZ, NU_0_SIGMA_POP_#_HZ, BETA_MU_POP_#, and BETA_SIGMA_POP_#,

where # is either 1 or 2).

The values of d will become determined only when the spatial distribution of

the objects will be made.

The SEDs of population 1 and the core of population 3 objects were obtained

from radiative transfer models of high-mass star forming regions, by Robitaille et al.

(2006)u. There are 207100 objects in this databasev, and the objects are selected

according to the mass distribution set by the user of caravela.

Robitaille et al. (2006) consist of a grid of radiation transfer models of ax-

isymmetric young stellar objects (YSOs), covering masses from 0.1 to 50M!. The

models comprehend a wide range of high-mass star forming regions evolutionary

stages, from early envelope infall stage to the disk-only stage. The set of models,

that is integrated in caravela for populations 1 and 3, is made of ∼ 20000 models

with SED computed at ten different viewing angles, resulting in 200, 000 distinct

objects.

uThe Herschel bands were kindly released via a personal email from the author. The other
wavebands are freely available from the website.

v20710 from ten viewing angles.



43 2.6 A theoretical catalogue of High-mass star forming regions

Mass

The masses of the objects are used to choose a realistic set of objects, i.e. the result-

ing true distribution of the high-mass star forming regions obeys a mass function

defined by the user. The (final) observed distribution can, in principle, be different.

The grey-body objects (population 1 and 3) have their masses determined by

(equation 1, Fontani et al., 2005, assuming a gas-to-dust ratio of 100 and β = 2):

M(M!) = 1.3 × 10−3

(

π Iν(Jy sr−1)

(

R

2

)2
)

×
(

e
h ν
k T − 1

) ( ν

2.4 THz

)−3−β
(2.3)

where R is the linear size of the object in kpc. This equation is independent of the

temperature since

Iν = Bν ×
(

1 − e
−

“

ν
ν0

”β
)

(2.4)

All the objects based on Robitaille et al. (2006) (i.e. populations 1 and 3)

have their masses assigned from the radiative transfer model (mass of the dusty

envelope/disk added to the mass of the central source).

The mass function used is based on the IMF found in Nutter and Ward-

Thompson (2007). The authors claim to have observed a Salpeter-like (i.e. a mass

function obeying the ζ(log m) ∝ m−x) mass function for clumps (the CMF). From

Chabrier (2003), the mass function was defined by Salpeter (1955) as the number of

stars N in a volume V observed at time t per logarithmic mass interval d log m (n

is the stellar number density):

ζ(log m) =
d

(

N
V

)

d log m
=

dn

d log m
(2.5)
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The mass function can also be defined as:

ζ(m) =
n

m
=

1

m ln 10
ζ(log m) (2.6)

In caravela, the mass function is assumed to be a power-law, i.e. a Pareto

function:

ζ(log m) ∝ m−x (2.7)

The problem that caravela needs to solve is how to sample a value of mass ac-

cording to the power-law mass function chosen by the user. In other words, numeri-

cally, how do we sample a set of random numbers from any probability distribution

function (only the uniform and Gaussian are usually available in the Mathematics

libraries). The technique implemented in caravela is the Inverse transform sampling.

This method enables one to generate any number of numbers (in our case the high-

mass star forming regions masses) from the inverse of the cumulative distribution

(for the Pareto distribution the inverted distribution is

T =
b

U
1
a

(2.8)

where a and b are normalisation constants and U is an uniform deviate between 0

and 1). Given a continuous uniform variable U in [0, 1] and an invertible cumulative

distribution function F , the random variable X = F 1(U) has distribution F .

Therefore, caravela uses the above equation and the NR uniform random number

generator to produce a set of masses to be used. More precisely, this technique is

used to calculate the number of sources in each mass bin (of the distribution).

Then, the objects are generated until all the mass bins are filled with the correct

number of sources. In this way, each source has a mass and SED that are physically

compatible. Although the grey-bodies and the radiative transfer sources have their
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masses calculated in fundamentally different ways, the former technique assures that

the SED, masses and sizes are physically sound amongst them. This means that the

set of selected objects obeys a physical mass function.

Numerically, equation 2.8, page 44, is:

Mass = (MF_b) / (pow((NR::ran2(idum_2)), (1.0/MF_a)));

2.6.2 3D distribution

The set of objects described in the previous sections still does not have 3D properties,

i.e. the objects are not distributed in space. The distribution of the objects is

configurable by the user in the following ways:

• all sources are distributed in a ring centred on the Galactic centre.

• all sources lie along a number (one, two, three or four) of spiral arms.

• a fraction of the total sources forms a ring structure and the rest form the

spiral arms(s).

This flexibility could perhaps be useful to study the issue of the number (and loca-

tion) of spiral arms in the Milky Way.

It has been suggested in the literature that (high mass) star formation regions

could form 3D ring structures, tori, with kpc length scales. In this configuration, the

objects are distributed in a toroidal region centred at a radius from the centre of the

Galaxy, with a Gaussian width. The radius and the Gaussian thickness, both in the

direction parallel to the Galactic plane and perpendicular to it, of the distribution

are the relevant input parameters here. The user also has the possibility of creat-

ing several of these rings with separate populations of sources living in each ring.

Alternately, all the different populations can be mixed within the ring structures.
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The physical coordinates that best explore the symmetry of the problem, hence

simplifying the calculations, during this stage are the galactocentric coordinates: r,

φ and z, the distance to the centre of the Galaxy, the angle measured in the Galactic

plane from the Sun’s direction, and the height from the Galactic plane, respectively.

The creation of the rings of high-mass star forming regions, numerically, is

simple. To each object is assigned a value of r using a Gaussian distribution centred

at the ring radius, the φ distribution is uniform form [0, 2π] radians and z is Gaussian

distributed using the z scale height given by the user (symmetrically to the Galactic

plane).

No clustering is assumed between each pair of sources, i.e. all the objects’

3D positions are independent. Note that having a random alignment of a pair of

population 1 and population 2 objects is not the same as having a single population

3 object, although these alignments may occurw. Russeil (2003) spiral arms model

is included in caravela insofar as the spiral arms are logarithmic.

From extragalactic observations, it is accepted that massive star formations

traces the spiral structure of spiral galaxies. Assuming the Milky-way is no excep-

tion, it was crucial that caravela could be used to study the spiral structure of the

Galaxy.

There is no consensus (Benjamin et al., 2008) on the characterisation of the

spiral structure of our galaxy (it is easier to determine the number of spiral arms

in extragalactic objects than in our galaxy). The model we adopted is the Russeil

(2003) spiral model: four logarithmic spiral arms with 14 degree pitch angle.

How could we distribute the objects along the spiral arms? caravela needs to

ensure both that:

1. there is a uniform distribution of sources along the spiral arm, i.e. if the spiral

wThese alignments could be determined in caravela.
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arm is forced to become a straight line there should not be any noticeable

concentration of sources at any point along the straight line.

2. the spiral arm cannot flare, i.e. the width of the cross section has to be constant

form the inner to the outer regions of the Galaxy.

The logarithmic (or equiangular) spiral is defined by:

r(θ) = a eb θ (2.9)

where (r, θ) are the standard 2D polar coordinates (2D is sufficient in the following

discussion since the z component is trivial). r is the distance to the centre of the

Galaxy and θ is the angle measured from the Sun’s direction. The constants a and b

have the following physical interpretation in this context: a is the galactocentric dis-

tance where the arm begins, and, b determines the spiral pitch angle. a corresponds

to half the size of the Milky Way central bar.

Figure 2.3, page 48, illustrates a logarithmic spiral distribution of sources (left

panel), and only those sources who lie inside the solid angle defined by the user (right

panel). The latter are the source candidates to feature in the final cupid catalogue.

In 2D, hence working only on the Galactic plane, the Cartesian and polar co-

ordinates exhibit the following relations:

x(t) = r cos t (2.10)

and

y(t) = r sin t (2.11)
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Figure 2.3: The figure illustrates a logarithmic spiral distribution of sources (left
panel), and only those sources who lie inside the solid angle defined by the user
(right panel).

t is a parameter used to parametrise equations of the spiral arm (let c̄(t) be the

curve representing the equiangular spiral), i.e.:

c̄(t) = (x(t), y(t)) = (r cos t, r sin t) =
(

a eb t cos t, a eb t sin t
)

(2.12)

To tackle point 1, i.e. to ensure a uniform distribution of sources along the

length of the spiral arm, the naive approach of generating uniform random numbers

for t and then determining (x(t), y(t)) is wrong. The objects would concentrate more

at the start of the arm because the parameter t does not walk along the arm at a

constant speed. In other words, the curve t is not the natural parametrisation of

the curve.

caravela implements the natural parametrisation of each spiral using the arc-

length of the curve c̄(t) =
(

a eb t cos t, a eb t sin t
)

:

s(t) =

∫ t

t0

||c′(τ)|| dτ (2.13)
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Note that ||c′|| is the modulus of the derivative of c̄, i.e. the speed at which we

run along the curve. All we are doing is to find the exact parametrisation with speed

one, this will mean that caravela can simply use a uniform random number generator,

between [0, 1], and multiply it by the length of the spiral arm (in kpc). The result

will be a distribution along the arm with no regions of statistically significant over

density of sources.

To determine the natural parametrisation we need to find s(t), equation 2.13:

c̄(t) =
(

a eb t cos t, a eb t sin t
)

(2.14)

so,

dc̄(t)

dt
= c̄′(t) =

(

a b eb t cos t − a eb t sin t, a b eb t sin t + a eb t sin t
)

(2.15)

Using the Pythagoras theorem to find the modulus,

||c̄′(t)|| =
√

(a b eb t cos t − a eb t sin t)2 + (a b eb t sin t + a eb t sin t)2 = a eb t
√

b2 + 1

(2.16)

Finally, we can insert this result into equation 2.13 and,

s(t) =

∫ t

t0

(

a eb τ
√

b2 + 1
)

dτ =
√

b2 + 1
a

b

(

eb t − eb t0
)

(2.17)

Solving the above equation in order to isolate t, we get,

t =
1

b
ln

(

s√
b2 + 1 a

b

+ eb t0

)

(2.18)

and this what is implemented in the code:

// select a point in the spiral parametrised by t.
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s = 0.0 + NR::ran2(idum_3) * spiral_length_pop_1;

// now use the natural parametrisation

t = ( 1/b ) * log ( (s / (sqrt(b * b + 1)* a / b )) + exp (b * 0.0) );

Therefore, for each random number generator caravela finds a xc and yc from

the centre of the spiral.

We have solved and implemented the uniform distribution of sources along the

spiral arm. The final normalisation (second issue listed in page 46) is to prevent

the spiral arms from flaring, i.e. ensure a constant cross section along the arm. The

aim is to find x, y (Cartesian coordinates in the Galactic plane) where to place each

object. x and y will, in general, be different from xc and yc, i.e. the object will not

lie exactly on the spiral curve but it will have, in general, a non-zero perpendicular

distance to the curve.

At each point xc, yc), the tangent vector is c′(t) determine in equation 2.15,

page 49. The perpendicular vector p(t) is needed give the perpendicular direction

at the point. p(t) is then,

p(t) =
(

−a b eb t sin t − a eb t sin t, a b eb t cos t − a eb t sin t
)

(2.19)

The second normalisation is used in caravela to prevent flaring of the spiral

arms. It can also be used to insert a controlled degree of flaring.

In summary, caravela uses the speed one normalisation of the spiral curve to

find a point on top of the spiral arm. It then uses the direction of the perpendicular

vector to determine the final (x, y) coordinate of the object. The process is repeated

for each spiral arm to be built (this is defined by the user). The arms are equally

spaced between them. The result is n spiral homogeneous non flaring spiral arms,

extending from the two input parameters SPIRAL_A_ARM to SPIRAL_LENGTH.
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2.6.3 Galactic structure model

In caravela the user is able to choose his favourite large scale pattern for the Milky

Way.

If a spiral structure is selected, the following input parameters are needed:

number of spiral arms, spiral arms pitch angle, and, spiral arms starting positionx.

The spiral nature of our Galaxy has been accepted for a long time, however

its precise design is still widely discussed. Indeed, neither the number of arms nor

their pitch angle are yet well defined. In the models presented in this work, one

Galactic model was adopted: the Russeil (2003) best fit model. The latter is simply

described as a four arm logarithmic spiral structure with 14 degrees pitch angle.

xEach spiral is symmetric to all the others, i.e. it is rotated by 90 degrees. Also, the arms
always start with direction tangent to a galactocentric circumference with radius defined by the
arm starting position. As noted by M. Silva (private communication), these are limitations of the
Galactic model used in caravela.
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2.7 Simulated observation

In the context of a caravela run, a simulated observation is the generation of phys-

ically realistic images. In other words, caravela simulates what a telescope in the

Sun’s position would observe if it was embedded in the model Galaxy described in

the previous sections.

So far, the code has produced a 3D distribution of objects (with sizes, masses

and SEDs). This is one possible representation of the high-mass star forming regions

in the Galaxy, obeying the input parameters given by the user in the input file. The

distribution of objects, i.e. the set of synthetic sources, is read in. The input to this

caravela module is the theoretical catalogue. Note that the user could, in principle,

have generated the synthetic catalogue not using the first part of caravela but using

any program of its preference (or he could test the code by giving a real observed

distribution as input), so long as the Galactocentric positions of the objects are

given.

The observation part of caravela has three main parts:

1. projection of the sources in the CCD plane and selection of sources inside each

individual image,

2. generation of the pre-telescope image (this stage includes giving a morphology

to the sources, i.e. an specific intensity profile),

3. instrument simulator (convolution, noise level and noise fluctuations),

The positions of the objects in the theoretical catalogue are in galactocentric

coordinates. Part 1 is to correctly select the sources that exist in the solid angle

defined by the image central position and image size. Both these values are defined

by the user (often the user selects a large area of the sky to be observed so the image
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central position and image size refer to the smaller individual images that form the

requested composite images). caravela uses the SLALib (c version) functions to con-

vert galactocentric coordinates to X, Y coordinates in the CCD instrument plane,

and galactocentric coordinates to standard Galactic coordinates (galactic latitude

and longitude, (!, b)). Note that there is always an error associated with this pro-

jection. This error has a minimum value in the centre of the image and increases

towards the edge of the image. caravela (through the SLALib functions) takes into

account this error and rejects all the source with large errors (and anti-starsy, of

course).

The observation is assumed to be carried out from the adopted Earth position

of (r,φ, z) = (8 kpc, 0, 0), i.e. in the galactic plane at 8 kpc from the galactic centre.

The observation is defined by the central direction and size of the field of view. Which

sources lie within each observation is not trivial and involves geometrical projection

between two coordinates systems. As described before, the galactic coordinates,

(!, b), of the sources are known. It is, however, incorrect to define which sources are

inside a specific field of view by including all the sources within a defined range in

(!, b), e.g. (! ± ∆, b ± ∆). It is more correct to map the galactic coordinates onto

tangent plane coordinates. This projection is included in the program using the C

version of the SlaLib package kindly sent by P.T. Wallace. In this way, the spherical

coordinates (!, b) are transformed into (X,Y ) plane coordinates. (X,Y ) result from

a gnomic projection, having the contact point between the surface of the sphere,

where (!, b) are defined, and the tangent plane, where (X,Y ) exist, defined by the

central direction of the observation, (!0, b0).

To convert from Galactocentric coordinates r,φ, z to Galactic coordinates,

galactic longitude and latitude, (!, b), caravela uses the cosine rule to the trian-

yAnti-stars are spurious objects resulting from projecting the real object on the incorrect hemi-
sphere
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gle defined by the Sun, the Galactic centre and point A, which is the position of the

orthogonal projection, to the Galactic plane, of the source position.

Let a be the length of the side between the Sun and A, k the length of the side

between the galactic centre and A, and, m is the distance from the Sun to the centre

of the Galaxy. Then,

k2 = a2 + m2 − 2 a m cos ! (2.20)

and, applying the cosine rule again to the same triangle,

a2 = k2 + m2 − 2 a m cos φ (2.21)

The calculation of k is simple because, by construction, k = r. Now we can

calculate a using equation 2.21, and, finally, ! and b are calculated by,

! = arccos

(

a2 − k2 + m2

2 a m

)

(2.22)

b = arctan
(z

a

)

(2.23)

The right ascension and declination are calculated from the galactic coordinates,

applying the cited coordinate conversion library directly to (!, b).

As the sources are distributed in three dimensions, it is possible to determine

the heliocentric distance to the source, d. If the source is in the galactic plane, i.e.

z = 0, then d is,

d = a (2.24)
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if not, then,

d =
z

sin b
(2.25)

The determination of d is crucial to predict observable fluxes using this method.

The projection takes into account the presence of spurious anti-stars, i.e. stars

that, due to periodicity of the trigonometric functions, involved in the projection,

may appear to lie inside the image but are, in fact, in diametrical positions. Anti-

stars are removed.

This is the inverse method of that included in the analysis of all astronomi-

cal observations, i.e. the (X,Y ) observed in the detector plane is transformed to

astronomical coordinates by the inverse of the projection described.

(X,Y ) is expressed in pixel coordinates defining a pixel to degrees scale. The

limits of the field of view to be observed are defined by the projection (gnomic or

tangent plane projection) of the four vertices (!0 ± ∆, b0 ± ∆), i.e. sources with

projected (X,Y ) within (X0 ± ∆proj, Y0 ± ∆proj).

It was decided that data would be generated and exchanged between modules in

FITS format (Wells et al., 1981), therefore the program generates both these outputs

in FITS format. This allows data (tables and images) to be exchanged between

modules in a standardised and machine-independent way. This is crucial due to the

modular nature of the simulation, in particular during the input-output interfaces

of the modules. This follows other astronomical simulations (Reinecke et al., 2006)

and has the great advantages over other image and table storing formats that it is

widely used within the community, and there are numerous programs that are able

to open and analyse FITS files.

Part 2 of the simulated observation module in caravela is to actually generate
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the images. Up to this point, the code knows which of the sources lie inside the solid

angle defined by each individual image, so it is finally possible to start to populate

the 2D matrix that is the image.

Images are implemented numerically as 2D matrices, where each pixel corre-

sponds to a matrix element, which can be identified by two indices, (i, j). The

matrix is flat, in the sense that it does not follow the curvature of the sphere where

(!, b) are defined, therefore a projection onto a flat plane is needed. This is imple-

mented as described previously, so (X,Y ) correspond, for each source, to (i, j).

For each waveband, caravela generates a super resolution image, i.e. an image

with very high spatial resolution. This high resolution is, in principle, much bet-

ter than the characteristics of any instrument. These images, although expensive

memory wise, are prove to be of great value for further analysis. It is possible that

the user wants to use a better and more sophisticated instrument simulator (e.g.

the official instrument teams of Herschel), so these images can be used as input to

different simulators (and not only to caravela’s)

A simulator in this context is a computer program designed to provide a realistic

imitation of the controls and operation instrument, i.e. map scanning direction and

speed, and CCD properties.. Note that the output from caravela can be stopped here

if different simulators want to be used or tested. This modular approach is important

and it allows the SPIRE and PACS instrument teams to use the output from caravela

at this point, and test it with their official simulators. This work already started and

is ongoing under the umbrella of the Hi-GAL Simulation working group. The output

from this is then fed into the map making algorithms (The Hi-GAL consortium is

using madmap as main map making procedure. caravela alone does not consider the

map-making phase of the simulator.

Each source (that its angular size is larger than the pixel size defined the user)
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has a Gaussian symmetric intensity profile, in (X,Y ).

One key feature of this work is that there are no ambiguities in the deter-

mination of the distances to the sources (even for sources inside the solar circle),

thus, the observed fluxes can be calculated and used to generate these images. This

is a fundamental difference between caravela’s simulated observation and a real ob-

servation.

The super resolution images do not have any of the observational artifacts

(e.g. diffraction spikes, instrumental noise and confusion) present in caravela’s final

images. They correspond to an idealisation: images before the telescope observes

them.

As a side product, the code generates a set of ring images. These are 6 im-

ages per each super resolution images, that correspond to observations of isolated

galactocentric rings (these are not the rings discussed just before the spiral arms

description), i.e. each ring image is observed as if only the sources with galacto-

centric distances within a minimum and maximum distance to the Galactic centre

exist. The aim of these images is then to be coupled with the diffuse emission images

created by Paladini et al. (2007). The inversion technique used in the cited paper is

forced to assume that the diffuse emitting material in distributed in Galactocentric

rings. This limitation arises from the well documented distance ambiguity that ex-

ists for sources inside the solar ring. These ring images correspond, ring by ring, to

Paladini et al. (2007) images and can be combined to yield a compact sources plus

diffuse emission image.

Part 3 of the observation module is to submit the super resolution images to

the caravela instrument simulators. The instruments available are: the IRAS bands,

the SPIRE and PACS bands, and the SCUBA-2 bands. Each image is convolved

with the correspondent Point Spread Function (PSF) and instrument’s noise level
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and fluctuations are also added. For the four IRAS bands and the two SCUBA-2

bands, the convolution is extremely naive: a Gaussian kernel with full width half

maximum (FWHM) of the size of the instrument resolution is applied to the ideal

image. The Herschel bands errors should be reduced by a factor of square root of

2, if the user wants to simulate the parallel mode as used in Hi-GAL. This is the

case since in parallel mode the same area of the sky is observed for longer and more

times than in non-parallel mode.

For the SPIRE and PACS (the Herschel Space Observatory instruments) wave-

bands, the proper synthetic PSF used by the both instrument teams is used in

caravela. Aesthetically this results in very interesting patterns of diffraction spikes .

Physically, the confusion levels and the obstacles put by this realistic convolutions

to the source extraction (and subsequent photometry) should add to the user confi-

dence in the final results. This is illustrated in figures 2.4 and 2.5, pages 59 and 60,

respectively.

The result of the caravela instrument simulators is the set of the code most

realistic images (WCS keywords are included in the FITS headers, to allow further

analysis by the user of the images using GAIA or DS9). Due to the realism of the

final images, not all objects that existed inside the solid angle defined by the user

(i.e. the image) from the theoretical catalogue will be retrieved during the next

stage of the simulation: source detection and photometry.
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Figure 2.4: PACS and SPIRE simulated PSFs. Top panels show the simulated psf
at 350µm used in caravela. This correspond to the SPIRE instrument. Images are
0.027◦ × 0.027◦ in area (pixel size is 2

′′

). Top Left: 98% of the integrated values
lie in the central region corresponding to a FWHM of 24

′′

resolution. Top Right:
The Airy rings are clearly visible as this is in logarithmic scale. Bottom panels
show the simulated psf at 110µm used in caravela. This correspond to the PACS
instrument. Images are 0.255◦ × 0.255◦ in area. (pixel size is 0.000222◦). Bottom
Left: 98% of the integrated values lie in the central region corresponding to a FWHM
of 7.7

′′

resolution. Bottom Right: Diffraction spikes are clearly visible as this is in
logarithmic scale.
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Figure 2.5: Output from the SPIRE simulator. The nominal voltage bias used
was 21.2 mV. and the maps were made using madmap. The region scanned was
2◦ × 2◦, and 2 cross scans were performed. The top left, top right, bottom left, and
bottom right are the 250µm, 350µm, 500µm, and a three colour combined image,
respectively. See text for further details.
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2.8 Photometry

The aim of caravela is to produce point source catalogues of high-mass star form-

ing regions. The simulation can, at this point, produce catalogues (one per each

wavelength band). The method used is aperture photometry on the final images

generated.

The code implements CUPID as the starlink software package responsible for

the photometry. CUPID (ClUmP IDentification) can be used for identifying clumps

of emission in 1D, 2D or 3D data arrays. Whilst primarily targeted at the needs

of the SCUBA2 advanced data products pipeline, it is a perfect tool to be used

within caravela. It enables a excellent comparison between different source extraction

algorithms using the caravela final images as test images, as well as, produces the

final point source catalogue.

The main cupid input parameter decision consists of what source detection and

photometry algorithm to use. As described in section 2.4, page 33, the user provides

a keyword, at the instant caravela is set up, that defines if clumpfind, fellwalker, or

extractor is to used.

2.9 Simulated observations using caravela

The aim of this section is to test caravela using a realistic set of input parameters (ta-

ble 2.1, page 62). These input parameters are an educated guess at the total number

of sources, spectral energy distribution of sources, and 3D source distribution. The

physical assumptions behind the numbers used are explained in the subsequent sec-

tions. Two images are presented as an illustration of the caravela output (figure 2.6,

page 66).

The model described next is a sample model, i.e. caravela is being put to use
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Table 2.1: Input parameters for the IRAS simulation
Parameter Value Units Description
nspiral 4 number of spiral arms
aspiral 3 kpc start of the spiral armsa

bspiral 14 ◦ spiral arms pitch angleb

nI 106c number of isolated compact sources
lI 5.0 × 106 linear size scale
x1 0.3 mass function exponent for 1.0 < m(M#) < 2.4
x2 1.2 mass function exponent for 2.4 < m(M#)

nII 0.0 number of isolated extended sources
lII − linear size scale
x1 − mass function exponent for 1.0 < m(M#) < 2.4
x2 − mass function exponent for 2.4 < m(M#)
TII − Grey-body temperature
β − Grey-body β parameter

nIII 0.0 number of embedded sources
lIII − AU linear size scale for the envelope sources
x1 − mass function exponent for 1.0 < m(M#) < 2.4
x2 − mass function exponent for 2.4 < m(M#)
TIII − K Grey-body temperature for the envelope sources
β − Grey-body β for the envelope sources

aThis is parameter a in equation 2.9, page 47, and corresponds to half the size of the Galactic
bar used.

bFrom Russeil (2003) best-fit model.
c§2.9.1 for the more details.

with realistic input parameters for the first time during this work.

2.9.1 The input parameters

Table 2.1 presents the input parameters for the simulation.

The first three parameters define the 3D distribution of the objects. The objects

in this simulation are distributed in nspiral = 4 spiral arms. Each spiral arm starts at

aspiral = 3 kpc from the Galactic centre, and has a pitch angle of bspiral = 14◦. These

three values correspond to the best fit model for the Milky Way found by Russeil

(2003). These three parameters are kept constant in all simulations presented in this

work. This is because we feel that the cited model can be trusted in the context of

this work. Also, the number of free parameters is reduced using in this approach.
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Physical sizes, masses and SEDs

As explained in the previous chapter, the physical size distribution of the objects

to be observed is one of the parameters set by the user before each caravela run.

In this case, we have used lI = 5.0 × 106 AU (with a standard variation of 1%).

This is based on an average size for the population I objects used. These objects

are sampled (according to a mass function) from Robitaille et al. (2006) radiative

transfer models.

Only population I objects are used in this simulation, therefore the SEDs are

sampled from Robitaille et al. (2006) considering the user defined x1 and x2 mass

function exponents for 1.0 < m(M!) < 2.4 and 2.4 < m(M!), respectively.

Galactic distribution of sources

The total number of sources used in this simulation is nI = 106. As with any caravela

run, this is a key parameter. Why nI = 106 ?

The argument is as follows. If ρ is the number density of high-mass star forming

regions in the Galaxy, and V is the total volume occupied by these regions, then the

equation,

nI = ρ × V (2.26)

gives the as estimate of the total number of sources.

To determine ρ we have calculated the number density of sources in the regions

observed in Nutter and Ward-Thompson (2007). The authors have observed four

regions in Orion: Orion AN, Orion AS, Orion BN, and Orion BS.

The volume of these four regions can be approximated as the region inside

the solid angle observed considered only between the near and far distance, that is

the thickness of the region being studied. The assumed near and far distances are
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dn = 320 pc and df = 500 pc, respectively (Nutter and Ward-Thompson, 2007). The

solid angles αi observed are also needed for the calculation, and this is by the sum

of the four areas mapped in deg2. For the four regions (in sr): α1 = 7.0 × 10−5,

α2 = 1.2 × 10−4, α3 = 9.7 × 10−5, and, α4 = 1.3 × 10−4. This corresponds to

0.23 deg2, 0.41 deg2, 0.32 deg2, and 0.45 deg2.

The volume inside a solid angle α (in sr), cut off at the near distance dn and

far distance df is given by,

v =

∫ df

0

∫ α

0

r2 dΩ dr −
∫ dn

0

∫ α

0

r2 dΩ dr =
α

3

(

d3
f − d3

n

)

(2.27)

Applying this equation to the four Orion regions, i.e. to αi with i = 1 to i = 4:

v1 = 2153.99 pc3, v2 = 3839.72 pc3, v3 = 2996.85 pc3, v4 = 4214.32 pc3. The total

volume observed is V Orion =
∑

i vi = 13204.9 pc3.

The number of star forming regions candidates in the four volumes is NOrion =

120 (only objects with m > 1M! are included). Therefore, the number density of

sources for the four regions is,

ρOrion = 9.0 × 10−3 pc−3 (2.28)

To estimate the total volume V representing all the regions where there is active

star formation in the Milky-Way, I have determined the volume of four idealised

(and equal) spiral arms. Each spiral arm is approximated by a cylinder with length

l = 30 kpc and area of (circular) cross section given by a typical average width of a

spiral arm a = 0.05 kpc. Then,

V = 4 × l × a ≈ 109 pc3 (2.29)
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Assuming that ρOrion is representative of an average star forming region, a crude

estimate of the total number of sources to be used in this caravela run is,

nI = ρ × V ≈ 10−3(pc−3) × 109(pc3) = 106 (2.30)

Considering the assumptions used, the estimate for the number of star forming

regions in the Galaxy is ≈ 106z. This is not the total number of sources detected

(after photometry) at the end of the simulation.

2.9.2 Simulated images

IRAS wavebands

At the heart of caravela there is a Monte-Carlo technique, i.e. the objects properties

(e.g. their positions in the 3D Galaxy model) result from stochastic distributions.

That is to say that caravela is built to be used as a statistical tool. How many

high-mass star forming regions are consistent with the real observed point source

catalogues? What distribution of objects will reproduce exactly a given real im-

age? Between the two questions, caravela is capable of addressing the former but is

completely inadequate to answer the latter.

The caravela user cannot expect a one-to-one correspondence between observa-

tions and synthetic sources.

Figure 2.6, page 66, exhibits four panels comparing the synthetic caravela images

with IRAS real images. The real and simulated images correspond to the input

parameters listed in table 2.1, page 62. They represent a qualitative comparison

between model and real data.

zIf we consider the 3D porosity parameter (or volume ratio) Q3D = 0.4 from Oey and Clarke
(1997), the estimate for the total number of sources is reduced to nI = ρ × V × Q3D ≈ 105
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Figure 2.6: Comparison between IRAS and caravela images (3σ contours). Top pan-
els show IRAS caravela image (left) and IRAS real image (right) at 60µm. Bottom
panels exhibit IRAS caravela image (left) and IRAS real image (right) at 100µm.
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2.10 Summary

Here the main aspects from caravela are put together in order to summarise the

second chapter.

1. The fundamental physical assumptions underpinning caravela are

• the interstellar medium is optically thin at the IRAS and Herschel wave-

bands,

• high-mass star formation takes place, predominantly, in the spiral arms

of the Galaxy,

• the high-mass star forming regions are distributed in a statistically uni-

form way along the length of the Galaxy spiral arms (hence the two

normalisations built-in the code and presented in section 2.6.2, page 45).

2. caravela is written in C++ supported by IDL, with an object oriented design.

Two main reasons justify the use of C++: it is a fast and flexible programing

language which allows a straightforward implementation of an object orien-

tated design; and, it is increasingly used in similar scientific research projects

(e.g. the Planck mission simulation pipeline Reinecke et al., 2006).

3. The output from the code has two fundamental forms: images and photometric

catalogues. The images are in FITS format and can be subject to independent

further analysis using any FITS viewer, and immediately processed by caravela

(e.g. through cupid) in order to generate the point source catalogue to be

compared with the real observational one.

4. In practice, caravela’s input parameters are all defined by the user in a single

parameter file (ASC II format). To start a caravela run the user types the

command in a terminal. There is no graphical user interface at this stage.
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5. The mains stages of the code are:

• building a theoretical catalogue containing both the objects intrinsic

physical properties (i.e. mass, size and SED), and, their 3D spatial dis-

tribution attributes (i.e. Galactocentric 3D coordinates for each object).

Three distinct populations of objects are available to the user: isolated

compact objects, isolated grey-bodies, and, compound objects charac-

terised by a central core surrounded by a grey-body extended cloud.

• simulating an observation using the instrument selected by the user. The

built-in observatories are IRAS, Herschel and SCUBA,

• finally, a photometric analysis is performed on all images generated by the

code. The end result is a photometric catalogue. For multi-wavelength

simulations, a cross-match catalogue is also produced.

6. There are no ambiguities in the determination of the distances to the sources

(even for sources inside the solar circle), thus, the observed fluxes can be

calculated and used to generate these images. This is a fundamental difference

between caravela’s simulated observation and a real observation.

7. caravela is capable of successfully dealing with physically realistic input param-

eters, e.g. total number of sources ∼ 106. Assuming that ρOrion is representa-

tive of an average star forming region, a crude estimate of the total number of

sources to be used in this caravela run is, nI = ρ×V ≈ 10−3(pc−3)×109(pc3) =

106. Considering the assumptions used, the estimate for the number of high-

mass star forming regions in the Galaxy is ≈ 106 . This is not the total

number of sources detected (after photometry) at the end of the simulation. If

we consider the 3D porosity parameter (or volume ratio) Q3D = 0.4 from Oey

and Clarke (1997), the estimate for the total number of sources is reduced to

nI = ρ × V × Q3D ≈ 105.



Chapter 3

High-mass Star Formation as Seen

by IRAS

3.1 Introduction

This chapter presents an example on how to successfully use caravela to reproduce

existing observations from the IRAS telescope. We conclude that caravela can be

used to gain insight into the star formation population that is contained in the IRAS

point source catalogue.

The method behind the next chapters is to compare caravela against what is

known and well studied first: the study of the distribution of UC H ii regions by

Wood and Churchwell (1989). The aim is to constrain a set of parameters, i.e. a

model that is a more consistent against observational data sets. Then, the model will

be used as an ingredient to develop a number of predictions of future observations

of high-mass star forming regions in the Milky Way.

69
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3.2 From synthetic IRAS colour-colour diagrams

to a model for the UCH ii regions in the

Galaxy

In this section we present a more detailed example of the use of caravela to interpret

real data. A sensible region of the parameter space is surveyed (refer to figure 3.13,

page 96, corresponding to 21 independent models), and best-fit model is selected

(using a 2D K-S test).

The aim is to use caravela to go from IRAS colour-colour diagrams to a model

for the UC H ii regions in the Milky Way.

This section uses an extra script to run four caravela models in the simple parallel

mode described in the method chapter.

In this exercise, only the distribution of UC H ii regions is being modelled. The

simulated colour-colour diagrams are compared with the longstanding observational

results presented in figure 1 of Wood and Churchwell (1989). Hence the total number

of sources is of the order of 103 to 105 (Wood and Churchwell, 1989). This estimate

for the total number of sources has two origins:

• the upper limit of 105 results from fine-tuning the model parameters during the

run of several caravela models. In practice, these models formed the foundation

for the models presented in tables 3.1, 3.2, and 3.3 (pages 73, 74, and 75).

These 21 models are studied in detail next.

• the lower limit of 103 objects, corresponds to the estimation of Wood and

Churchwell (1989). The authors refer to ≈ 1717 UC H ii candidates using

their colour-colour cut criterion.
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3.2.1 Input Parameters

The 21 models studied belong to four distinct categories: population 1 only, popu-

lation 2 and 3 only, population 1 and 3 only, and, finally, an ensemble of all popu-

lations.

The 3D spatial distribution for all 21 models is exactly the same as described

in the previous section.

Due to the spiral nature of the caravela model (and the real Milky-Way) it is

crucial that the models and the real data represent the same area of the sky. In this

study, that is sources taken from a 2◦× 2◦ box in the plane of the Milky Way at 40◦

galactic longitude.

To compare the number of sources detected, the photometry and source de-

tection algorithms used are important. CUPID is used in a caravela a specific way

when more than one waveband is analysed. Each run of caravela produces a point-

source catalogue, but to create and understand correctly colour-colour diagrams, the

photometry at each wavelength should correspond to the same source.

The process developed for caravela in multi-waveband mode is:

• a mask with the positions of the clumps in one single waveband image is

created

• the sizes of the clumps are determined for the same image

• the cupid::extractclumps routine is applied to the complete set of images, using

the position/size mask

• a final multi-wavelength catalogue is built with only confirmed detection at

the four IRAS bands (the criteria used to validate an object was the same as

the one used with real IRAS data)

aIn fact, any multi-wavelength study uses this technique.
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Tables 3.1, 3.2, and 3.3 (pages 73, 74, and 75) list the input parameters used in

the 21 models studied.
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Table 3.1: Input parameters for models A, . . . ,G.
Parameter Model A Model B Model C Model D Model E Model F Model G Description
nspiral 4 4 4 4 4 4 4 number of spiral arms
aspiral 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc start of the spiral armsa

bspiral 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ spiral arms pitch angleb

nI 5.0 × 105 0.0 0.0 1.0 × 105 0.0 2.5 × 105 0.0 number of isolated compact sources
x1 0.3 − − 0.3 − 0.3 − for 1.0 < m(M#) < 2.4 c

x2 1.2 − − 1.2 − 1.2 − for 2.4 < m(M#) d

nII 0.0 2.5 × 105 0.0 1.0 × 105 0.0 0.0 0.0 number of isolated extended sources
x1 − 0.3 − 0.3 − − − for 1.0 < m(M#) < 2.4
x2 − 1.2 − 1.2 − − − for 2.4 < m(M#)
TII − 10.0 K − 10.0 K − − − Grey-body temperaturee

β − 2 − 2 − − −

nIII 0.0 2.5 × 105 5.0 × 105 3.0 × 105 5.0 × 105 2.5 × 105 2.0 × 103 number of compound sourcesf

x1 − 0.3 0.3 0.3 0.3 0.3 0.3 for 1.0 < m(M#) < 2.4
x2 − 1.2 1.2 1.2 1.2 1.2 1.2 for 2.4 < m(M#)
TIII − 50.0 K 10.0 K 10.0 K 50.0 K 50.0 K 50.0 K Grey-body temperature of outer sourcesg

β − 2 2 2 2 2 2

Nh 479 191 514 430 524 516 2 Simulated sources detected by cupid
P i 29.85 % 70.15 % 46.49 % 28.37 % 77.09 % 57.55 % 100 % Percentage of UCH ii regions candidates
nj 143 134 239 122 404 297 2 cupid UCH ii regions candidates
2D K-Sk test 1.37 9.96 × 10−4 − − − − − 2D K-S test on the UCH ii regions candidates

aThis is parameter a in equation 2.9, page 47, and corresponds to half the size of the Galactic bar used.
bFrom Russeil (2003) best-fit model.
cCorresponds to x on equation 2.7, page 44.
dBest fit for the mass function found by Nutter and Ward-Thompson (2007), x on equation 2.7, page 44.
eEquation 2.1, page 41.
fType III sources correspond to a type I source inside a type II.
gEquation 2.1, page 41.
hIRAS PSC observational value is 927. Wood and Churchwell (1989) observational value is 736.
iPercentage of number of simulated sources that satisfy the Wood and Churchwell (1989) for UCH ii regions. Observational value is 2.26% .
jNumber of simulated sources that satisfy the Wood and Churchwell (1989) for UC H ii regions. Observational value is 21.
k2D K-S in units of 10−2.
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Table 3.2: Input parameters for models H, . . . ,N .
Parameter Model H Model I Model J Model K Model L Model M Model N Description
nspiral 4 4 4 4 4 4 4 number of spiral arms
aspiral 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc start of the spiral armsa

bspiral 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ spiral arms pitch angleb

nI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 number of isolated compact sources
x1 − − − − − − − for 1.0 < m(M#) < 2.4 c

x2 − − − − − − − for 2.4 < m(M#) d

nII 0.0 0.0 0.0 0.0 0.0 0.0 0.0 number of isolated extended sources
x1 − − − − − − − for 1.0 < m(M#) < 2.4
x2 − − − − − − − for 2.4 < m(M#)
TII − − − − − − − Grey-body temperaturee

β − − − − − − −

nIII 2.0 × 104 7.0 × 104 4.0 × 104 4.0 × 104 4.0 × 104 4.0 × 104 3.0 × 104 number of compound sourcesf

x1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 for 1.0 < m(M#) < 2.4
x2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 for 2.4 < m(M#)
TIII 50.0 K 50.0 K 50.0 K 10.0 K 60.0 K 40.0 K 50.0 K Grey-body temperature of outer sourcesg

β 2 2 2 2 2 2 2

Nh 12 48 46 48 56 48 14 Simulated sources detected by cupid
P i 56.25 % 58.33 % 60.89 % 20.83 % 67.85 % 41.66 % 35.71 % Percentage of UCH ii regions candidates
nj 5 28 28 10 38 20 5 cupid UCH ii regions candidates
2D K-Sk test − 1.80 74.21 62.6 78.32 84.73 51.47 2D K-S test on the UCH ii regions candidates

aThis is parameter a in equation 2.9, page 47, and corresponds to half the size of the Galactic bar used.
bFrom Russeil (2003) best-fit model.
cCorresponds to x on equation 2.7, page 44.
dBest fit for the mass function found by Nutter and Ward-Thompson (2007), x on equation 2.7, page 44.
eEquation 2.1, page 41.
fType III sources correspond to a type I source inside a type II.
gEquation 2.1, page 41.
hIRAS PSC observational value is 927. Wood and Churchwell (1989) observational value is 736.
iPercentage of number of simulated sources that satisfy the Wood and Churchwell (1989) for UCH ii regions. Observational value is 2.26% .
jNumber of simulated sources that satisfy the Wood and Churchwell (1989) for UC H ii regions. Observational value is 21.
k2D K-S in units of 10−2.
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Table 3.3: Input parameters for models O, . . . ,U .
Parameter Model O Model P Model Q Model R Model S Model T Model U Description
nspiral 4 4 4 4 4 4 4 number of spiral arms
aspiral 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc 3 kpc start of the spiral armsa

bspiral 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ 14◦ spiral arms pitch angleb

nI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 number of isolated compact sources
x1 − − − − − − − for 1.0 < m(M#) < 2.4 c

x2 − − − − − − − for 2.4 < m(M#) d

nII 0.0 0.0 0.0 0.0 0.0 0.0 0.0 number of isolated extended sources
x1 − − − − − − − for 1.0 < m(M#) < 2.4
x2 − − − − − − − for 2.4 < m(M#)
TII − − − − − − − Grey-body temperaturee

β − − − − − − −

nIII 2.0 × 104 3.0 × 104 4.0 × 104 7.0 × 104 3.0 × 104 4.0 × 104 7.0 × 104 number of compound sourcesf

x1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 for 1.0 < m(M#) < 2.4
x2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 for 2.4 < m(M#)
TIII 40.0 K 40.0 K 40.0 K 40.0 K 30.0 K 30.0 K 30.0 K Grey-body temperature of outer sourcesg

β 2 2 2 2 2 2 2

Nh 12 14 48 49 15 47 46 Simulated sources detected by cupid
P i 25.00 % 28.57 % 39.58 % 28.57 % 26.66 % 25.53 % 13.04 % Percentage of UCH ii regions candidates
nj 3 4 19 14 4 12 6 cupid UCH ii regions candidates
2D K-Sk test − − 75.6 19.64 − 2.83 − 2D K-S test on the UCH ii regions candidates

aThis is parameter a in equation 2.9, page 47, and corresponds to half the size of the Galactic bar used.
bFrom Russeil (2003) best-fit model.
cCorresponds to x on equation 2.7, page 44.
dBest fit for the mass function found by Nutter and Ward-Thompson (2007), x on equation 2.7, page 44.
eEquation 2.1, page 41.
fType III sources correspond to a type I source inside a type II.
gEquation 2.1, page 41.
hIRAS PSC observational value is 927. Wood and Churchwell (1989) observational value is 736.
iPercentage of number of simulated sources that satisfy the Wood and Churchwell (1989) for UCH ii regions. Observational value is 2.26% .
jNumber of simulated sources that satisfy the Wood and Churchwell (1989) for UC H ii regions. Observational value is 21.
k2D K-S in units of 10−2.
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Models A to G

All models A to U correspond to a 4 spiral arm model in agreement to Russeil (2003)

best-fit model.

Model A has 5.0 × 105 isolated YSOs (population 1) distributed in the model

Galaxy. No population 2 or 3 sources were included. Of the 479 sources detected

in all IRAS wavelength (927 is the IRAS PSC observational value), 143 lie within

the UC H ii criterion. The K-S test between the caravela model distribution and the

real observed distribution is 1.37 × 10−2.

Model B has 2.5× 105 single cold grey-body sources with T = 10.0 K randomly

mixedb with 2.5×105 population 3 sources. The latter are compound compact YSOs

surrounded by larger warmer grey-bodies (T = 50.0 K). No population 1 sources

were included. Of the 191 sources detected in all IRAS wavelength (927 is the IRAS

PSC observational value), 134 lie within the UC H ii criterion.

Model C has 5.0 × 105 population 3 objects distributed in the model Galaxy.

No population 1 or 2 sources were included. Of the 514 sources detected in all IRAS

wavelength (927 is the IRAS PSC observational value), 239 lie within the UC H ii

criterion.

Model D has 1.0×105 population 1 objects, 1.0×105 population 2 objects, and

3.0×105 population 3 objects. Therefore there are the same number of total objects

as in A. Of the 430 sources detected in all IRAS wavelength (927 is the IRAS PSC

observational value), 122 lie within the UC H ii criterion.

Models E to G all have population 3 objects. Of the 2 sources detected in model

G both of them lie within the UC H ii colour-colour box.

We conclude that models A to F result in values of n (tables 3.1, 3.2, and 3.3

(pages 73, 74, and 75) one order of magnitude too high when compared with the

bThere is no spatial correlation between populations.
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real observational value of 21 (Wood and Churchwell, 1989).

Model G, with 2.0× 103 total number of sources (nIII), results in only 2 sources

being detected. This led us to explore a number of models with intermediate number

of sources, i.e. models H to U all have a total number of sources ≈ 104 (this

corresponds to one order of magnitude less than models A to F and one order of

magnitude more than models H to U , for the total number of sources).

Model G is the sole model with total number of sources ∼ 103, and, analysing

the output results, I concluded that it was not worthwhile pursuing this class of

models further.

Models H to N

From the analysis of the output values of models A to G (and comparing them to

real data), I have concentrated all the following models on population 3 objects.

These compound objects seem to have the correct SED properties in this contextc.

The total number of objects has been reduced by one order of magnitude with

respect to the first models. We took this decision because models with 105 total

sources produce one order of magnitude too many sources detected, as explained in

detail above.

Also, the temperature that defines the grey-body curve now varies from 10 K to

60 K. Although the reduction of the total number of sources was motivated by the

analysis of values presented in the output tables (the value of n in particular), the

increase in temperature was motivated by the study of the colour-colour diagrams

(figures 3.2 to 3.12 (pages 81 to 91)).

This is the temperature of the grey-body envelope of population 3 objects. The

grey-body curve, and hence also the object’s observed infrared colours (described in

cThis conclusion was the motivation for extending caravela to incorporate this class of sources.
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next section), is determined by the aforementioned temperature.

The two real observed colour-colour diagrams that guided us, i.e. this change in

temperature improved the Kolmogorov-Smirnov test (KS-test) between the synthetic

and real IRAS data 60µm/12 µm vs 25 µm/12 µm.

It is worthwhile to study model M in detail. In this model, 4.0×104 population

3 objects (with T = 40 K and linear size scale lIII = 5.0×106 AU) yield the following

output: 48 detected sources by CUPID, ≈ 42% UC H ii candidates (20), 84.73 K-S

test result.

Models O to U

Models O to U are constituted exclusively by population 3 objects. The total number

of sources range between 2.0 × 104 to 7.0 × 104. We conclude that none of these

models is an improvement with respect to model M.

3.2.2 Wood and Churchwell (1989) total IRAS sources

Here we would like to address the discrepancy between the number of sources found

by Wood and Churchwell (1989) in the ! = 40 degrees box being studied, and the

correspondent number of caravela sources.

Wood and Churchwell (1989) found 209 IRAS sources in the 2 × 2, centred at

! = 40 degrees. The caravela model M result, N , presented in Table 3.2, page 74, re-

veal 48 sources detected by cupid. Nonetheless, when filtering the sources using the

colour-colour cut, the caravela and Wood and Churchwell (1989) are in good agree-

ment for this model: 21 Wood and Churchwell (1989) against 20 caravela sources.

This can be interpreted as follows: the caravela input catalogue has a higher

percentage of UC H ii candidates than the correspondent true IRAS set. Therefore,
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the UC H ii regions selection criteria applied to the caravela input catalogue returns

≈ 50% of the sources as positive identifications: 20 out of 48.

This is consistent with the properties of the caravela input catalogue used here:

a catalogue of young stellar objects sampled from a representative mass function.

3.2.3 Infrared colours

We present in figures 3.2 to 3.12 (pages 81 to 91) the colour-colour diagrams for

models A to U . The colours plotted result from the multi-wavelength CUPID anal-

ysis described before. The colours plotted are, for each model, 60 µm/12 µm vs

25 µm/12 µm and 100µm/12 µm vs 25 µm/12 µm.

In all colour-colour panels, the black crosses are the CUPID detected sources,

the red dots are the theoretical catalogue sources (i.e. the total number of sources

that could be detected), the green and blue dots correspond to the two sets of real

IRAS sources described in figure 3.1, page 80. The dotted lines in the left panels

represent the Wood and Churchwell (1989) UC H ii selection criteria.

The real observed data colours are plotted in figure 3.1, page 80.
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Figure 3.1: Wood and Churchwell (1989) colour-colour diagrams. IRAS sources
associated with known UC H ii regions are plotted as filled circles. Sources taken
from a 2◦ × 2◦ box in the plane of the Milky Way at 40◦ galactic longitude. Crosses
and open squares are representative IRAS sources. Left: colour-colour diagram
for 60µm/12 µm vs 25 µm/12 µm. The dashed lines indicate the boundary of the
region used to discriminate between UC H iiregions and other IRAS sources. Right:
colour-colour diagram for 100µm/12 µm vs 25 µm/12 µm, for the same sources.
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Figure 3.2: Each line corresponds to one of the four A, . . . ,B models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.3: Each line corresponds to one of the four C, . . . ,D models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.4: Each line corresponds to one of the four E , . . . ,F models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.5: Each line corresponds to one of the four G, . . . ,H models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.6: Each line corresponds to one of the four I, . . . ,J models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.



86
3.2

A
m

o
d
el

for
th

e
U

C
H

ii
region

s
in

th
e

G
alax

y

Figure 3.7: Each line corresponds to one of the four K, . . . ,L models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.8: Each line corresponds to one of the four M, . . . ,N models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.9: Each line corresponds to one of the four O, . . . ,P models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.10: Each line corresponds to one of the four Q, . . . ,R models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.11: Each line corresponds to one of the four S, . . . , T models, from top to bottom. Left column: colour-colour diagrams
for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines
in the left panels represent the Wood and Churchwell (1989) UC H ii selection criteria.
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Figure 3.12: Model U . Left column: colour-colour diagrams for 60µm/12 µm vs 25 µm/12 µm. Right column: colour-colour
diagrams for 100µm/12 µm vs 25 µm/12 µm. The dotted lines in the left panels represent the Wood and Churchwell (1989)
UC H ii selection criteria.
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The dashed lines indicate the boundaryd of the region established by Wood and

Churchwell (1989) to discriminate between UC H iis and other IRAS sources. They

correspond to log(F60 µm/F12 µm) > 1.30 and log(F25 µm/F12 µm) > 0.57.

3.2.4 The distribution of UCH ii regions in the Galaxy

Two main quantitative criteria were used to select, from models A to U , the one

that is in better agreement with the data set. These statistical tests are:

• A two dimensional Kolmogorov-Smirnov teste (2D KS-test) between the syn-

thetic colours and the IRAS observed colours. The test was applied to the

cumulative distribution of the log (25µm/12 µm) set of values, and, the cu-

mulative distribution of the log (60µm/12 µm), hence a 2D test.

• After discovering which parameters were the key inputs to the model (i.e. a

small change in the value of one of these variables would imply a significant

modification of the output values), a 2D parameter space grid was built. To

each coordinate point, on the temperature vs total number of sources grid,

was assigned a δ value. Each δ is the distance between the synthetic output

value and the real IRAS observed value in this grid. The variable chosen in

this study to determine δ was the number of simulated sources that satisfy

the Wood and Churchwell (1989) criterion for UC H ii regions. A 2D region of

optimal fit was then identified in this δ parameter space, (figure 3.13, page 96).

The models close to the centre of this optimal region were the ones considered

with a higher degree of consistency with the real data set.

dThis limits are the ones still accepted and in use today for UC H iiregions.
eThe Kolmogorov-Smirnov test (KS-test) tries to determine if two data sets differ significantly.

The KS-test has the advantage of making no assumption about the distribution of data. It is
non-parametric and distribution free.
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3.2.5 2D Kolmogorov-Smirnov Test

All the numerical tasks included in caravela use the algorithms from the latest edi-

tions of Numerical Recipes (Press et al., 2007, 2002). The inclusion of these algo-

rithms in caravela was facilitated by the adoption of C++ as the de facto scientific

computer language in Press et al. (2007) (caravela is built in C++).

Here, we would like to investigate if the synthetic colours and the IRAS ob-

served colours distributions are consistent, i.e. are the two distribution different?

Proving that two distributions are different, or showing that they are consistent, is

a ubiquitous in research. We adopted the Kolmogorov-Smirnov (or K-S) test. This

test uses the a statistics to measure the overall difference between two cumulative

distribution functions: the maximum value of the absolute difference between two

cumulative distribution functions.

As we are comparing two 2D distributions, therefore a 2D K-S test is re-

quired. Unfortunately, cumulative probability distribution is not well-defined in

more than one dimension. The function used in caravela to circumvent this prob-

lem is NR::ks2d2s. This implements an original idea from (Peacock, 1983), and is

described in detail in Press et al. (2007). In summary, Peacock (1983) insight was

that a good estimation could be achieved using the integrated probability in each of

four natural quadrants around a given point.

One numerical disadvantage of the two-dimensional tests, by comparison with

their one-dimensional counterparts, is that the two-dimensional tests require more

operations: N2 instead of N . In NR::ks2d2s used in caravela, two nested loops of

order N take the place of an N sort for the 1D case.
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Parameter space of the 21 models presented

Two more qualitative arguments were also used in this decision: the difference be-

tween the synthetic and the real number of simulated sources that satisfy the Wood

and Churchwell (1989) criterion for UC H ii regions.

We explored the parameter space corresponding to the 21 models presented

previously in the current chapter. Graphically, the parameter space explored is

presented in the left panel of figure 3.13 (page 96), where each cross is one model.

The right panel of figure 3.13 (page 96) is the δ = ||nIRAS −ncaravela|| parameter

space representation.

We conclude that model M is the model that is the more likely given the IRAS

PSC observational data. Here I present three pieces of evidences to support this:

• model M corresponds to ≈ 85 % 2D K-S test probability parameter (this is

near the maximum of this parameter distribution for the models tested)

• model M lies in the centre of the optimal region (dark blue region in figure 3.13,

page 96) in the parameter space investigated

• the number of sources that satisfy the Wood and Churchwell (1989) criterion

for UC H ii regions is 20 (compared with observed 21 by IRAS)

• the 60µm/12 µm vs 25 µm/12 µm and the 100µm/12 µm vs 25 µm/12 µm

colour-colour diagrams are in good agreement with the observed data (top

panel of figure 3.8, page 3.8)

The first step in the search for a model that would be a good representation of

the data was to find the most important input parameters. These are the parameters

that, with a small change in their value, alter the output of caravela dramatically.

This sensitivity study of the input parameters revealed that the temperature of
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the envelope of the embedded sources, TIII, and the total number of (embedded

population 3) sources in the Galaxy, nIII, were the parameters to explore in detail.

Figure 3.14, page 96, in a bar plot for the 2D K-S test significance output value

between the observed between the synthetic colours and the IRAS observed colours:

log (25µm/12 µm) and, log (60µm/12 µm).

Models J to Q have a good behaviour in the 2D K-S test, and seem to be

grouped together, showing similar values.

Interestingly, caravela’s model M (the best-fit model) yields a significantly bet-

ter constraint in n than in T , i.e. the true value of the total number of sources can

be estimate with more accuracy than the temperature of the grey-body envelope. In

fact, this trend is observed when all the models are considered. The right panel in

figure 3.13, page 96, and figure 3.14, page 96, illustrate this argument. The former

shows that the optimal dark blue δ region appears to be stretched horizontally (the

envelope temperature) and squeezed vertically (the total number axis), the latter

exhibits that the 2D K-S test values for models J to Q are all good and similar.

These are exactly the models with similar n and a spread in the temperature values.

The two figures have independent origins and there seems to be a consistency

between them.

In conclusion, n is constrained to the [1× 104, 9× 104] interval in total number

of objects, and T lies within ≈ 30 to ≈ 50 Kelvin, for the grey-body temperature.

Note that the model elected as the best-fit one, uses exclusively population 3

sources. This category of sources, the compound central compact sources embedded

in a larger grey-body envelope, were idealised for and implemented for the first time

during the development of caravela.

The conclusion is that a total number of 4.0 × 104 population 3 objects dis-

tributed in 4 spiral arms are compatible with the IRAS PSC data. This is our best
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estimate for the number of UC H ii objects in the Galaxy.

Figure 3.13: Right : 2D parameter space searched. Dark blue colours indicate a
minimum in the δ function and hence an optimum model. Here, δ = ||nIRAS −
ncaravela||. Left : Each cross is one of the 21 models in this parameter space.

Figure 3.14: 2D K-S plot for models described in tables 3.1, 3.2, 3.3, pages 73, 74,
75.
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Table 3.4: IRAS cross-matching results: Theoretical input catalogue vs caravela
output observational catalogue, for modelM.

na αb βc n1
d n2

e n1&2
f sg (′′) mh (M#) σmass

i σs
j (′′)

Input catalogue 469 2.0′k 2 25l 9 9 98.44 3.35 5.12 23.45
Output catalogue 20 2.0′ 2 25 9 9 98.44 3.98 4.01 23.45

aNumber of sources that satisfy the Wood and Churchwell (1989) criterion.
bSeparation error.
cNumber of high-mass star forming regions, i.e. number of objects with m ≥ 8M".
dNumber of sources in the theoretical catalogue with a match in the caravela cupid output table.
eNumber of sources in the output catalogue with a match in the theoretical input catalogue.
fNumber of matches between catalogues
gMean value for the distribution of separations between catalogues.
hMean value for the distribution of masses.
iStandard deviation for the distribution of masses.
jStandard deviation for the distribution of separations.
kThe matching algorithm used was topcat::sky
lNumber of distinct sources.

3.2.6 Low- and Intermediate-mass contamination

The aim is to compare the theoretical catalogue to the cupid photometry final cata-

logue, for modelM, the best fit model for the UC H ii regions. In this way caravela

can be use to investigate which are the masses, and other physical properties, of the

objects that satisfy the Wood and Churchwell (1989) criterion, i.e. investigate which

input physical objects survive the caravela process thus being detected by cupid as

an end product of caravela.

The two catalogues are cross-matched with α = 2′ angular radiusf. The theo-

retical catalogue and the simulated observed catalogue. The theoretical catalogue

corresponds to the caravela input objects (distribution of objects described in §2.6,

page 39), and consists of the position in the sky, SEDs and the mass for each ob-

jectg. The simulated observed catalogue is the output from applying cupid to the

four caravela synthetic IRAS maps (12 µm, 25 µm, 60 µm, and 100 µm).

fThe cross-matching of the theorectical and simulated observed catalogues was made using Tool
for OPerations on Catalogues And Tables, i.e. topcat

gEach object can be a type I, II or type III source.
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Figure 3.15: Left: Distribution of UC H ii regions detected in model M. This
results from the cross-correlation between the caravela input catalogue and cupid
detected clumps. Lighter bins represent the low- and intermediate-mass objects,
i.e. sources cross-correlated to input objects with m < 8 M!. Darker bins represent
the high-mass star forming regions, i.e. sources cross-correlated to input objects
with m ≥ 8 M!. Here only β/n1 = 2/25 = 8 % of the UC H ii candidates have
m > 8 M!. The dotted line is the input mass function with Salpeter exponent of
1.2. Right: Galactic longitude for the input sources vs galactic longitude for the
output catalogue after cross-matching of sources. The plot shows that the cross-
matching is consistent (with a maximum difference of 0.02◦).

Only β/n1 = 2/25 = 8 % of the UC H ii candidates have m > 8 M!, suggesting

≈ 90% of contamination by low- and intermediate-mass objects.

UC H ii regions have sizes of order 0.1 pc. The ionised gas within has sound

speed cs ∼ 10 km s−1, so they should have dynamical times of order 104 yr. However,

there are roughly 10% as many UC H ii regions as there are OB stars in the Galaxy,

suggesting lifetimes an order of magnitude longer (Mac Low et al., 2004). This is

referred to as the UC H ii lifetime problem.

The level of contamination from low- and intermediate-mass objects supported

by the analysis of the described models, ∼ 90%, could be a possible solution for

this conundrum. In principle, we could be overestimating the number of UC H ii

regions in the Galaxy due to the fact that our UC H ii samples are polluted with

low- intermediate-mass objects.
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Contamination by low-mass objects

The level of contamination by low- and intermediate-mass objects found by this

caravela study is, nevertheless, a problem. This is the case since Kurtz et al. (1994)

concluded that ≈ 50% of the sources in their sample (based on the Wood and

Churchwell (1989) criteria) were UC H ii regions; and, ≈ 40% were IRAS sources

not confirmed to be UC H ii. The rest belonged to some other class of objects.

This discrepancy is not resolved in this work and remains an interesting ques-

tions to investigated with further analysis using caravela and future observational

data sets.
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3.2.7 Galactic distribution

Figure 3.16, page 100, is the 2D plot for the galactic latitude and galactic longitude,

i.e. ! vs b.

Figure 3.16: Galactic latitude vs galactic longitude for the caravela sources.

The synthetic caravela data sets can be compared with a number of additional

observational products, e.g.:

1. mass function, Figure 3.15 (selection or input mass function, and, simulated

output or observed mass function, against real observed mass function);

2. global brightness distribution.

Detailed comparisons of both the mass function and global brightness function

with the IRAS PSC is nor presented here. Their implications are discussed concisely
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in the Future Work section.
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3.3 Summary

This chapter is an attempt to use caravela in order to interpret real observational

data sets.

The following conclusions result from this effort:

1. The grid of models studied in this chapter consists of 21 models spanning a

significant area of the parameter space. Model M is the model that is the more

likely given the IRAS PSC observational data. Here I present three evidences

to support this:

• model M corresponds to ≈ 85 % 2D K-S test probability parameter (this

is near the maximum of this parameter distribution for the models tested)

• model M lies in the centre of the optimal region (dark blue region in

figure 3.13, page 96) in the parameter space investigated

• the number of sources that satisfy the Wood and Churchwell (1989) cri-

terion for UC H ii regions is 20 (compared with observed 21 by IRAS)

• the 60µm/12 µm vs 25 µm/12 µm and the 100 µm/12 µm vs 25 µm/12 µm

colour-colour diagrams are in good agreement with the observed data (top

panel of figure 3.8, page 3.8)

2. caravela’s model M (the best-fit model) yields a significantly better constraint

in n than in T , i.e. the true value of the total number of sources can be esti-

mated with more accuracy than the temperature of the grey-body envelope. In

fact, this trend is observed when all the models are considered. In conclusion,

n is constrained to the [1 × 104, 9 × 104] interval in total number of objects,

and T lies within ≈ 30 to ≈ 50 kelvin, for the grey-body temperature.

3. We were able to conclude that a total number of 4.0× 104 population 3 objects
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distributed in 4 spiral arms are consistent with the IRAS PSC data. This is

our best estimate for the number of UCH ii objects in the Galaxy.

4. There is contamination by low and intermediate mass star forming regions

of the Wood and Churchwell (1989) region for UC H ii regions. This effect

was quantified to be of the order of 1 − (β/n1&2) = 1 − (2/9) ≈ 77 % (using

the same notation as in table 3.4, 97) in this caravela best fit simulation. If

one considers all the sources in the input catalogue that have a match in the

output catalogue, then 1 − (β/n1) = 1 − (2/25) ≈ 92%. This may be caused

by confusion of observations due to the lack of resolution of the IRAS survey.

5. The level of contamination from low- and intermediate-mass objects supported

by the analysis of the described models, ∼ 90%, could help to understand the

UC H ii lifetime problem. In principle, we could be overestimating the number

of UC H ii regions in the Galaxy due to the fact that our UC H ii samples are

polluted with low- intermediate-mass objects.

6. The Salpeter mass function is found in the subset of UC H ii regions, for this

best-fit caravela model studied, therefore there is no evidence that the Wood

and Churchwell (1989) criterion selects high-mass star forming regions prefer-

entially.

7. Column β in table 3.4, page 97, shows that all the high-mass star forming

regions that were UC H ii candidates in the input catalogue were detected in

the output catalogue (2/2).



Chapter 4

The UCH II regions observed by

Herschel

4.1 Introduction

In the previous chapter, a model has emerged as being in reasonably good agreement

with the observations of UC H ii regions. caravela was used to establish that model

M, formed by 4.0 × 104 population 3 sources distributed in 4 spiral arms, was

consistent with the IRAS point source catalogue.

As seen in Chapter 2, caravela has the ability to generate catalogues and images

simulating the Herschel Observatory photometry instruments: The Photodetector

Array Camera and Spectrometer (PACS), and The Spectral and Photometric Imag-

ing REceiver (SPIRE)a.

Here, we observe the best-fit model M with PACS and SPIRE, and present

some results.

In particular, we aim to predict how many UC H ii regions the Herschel Space

aPACS is provided a consortium led by A. Poglitsch, MPE, Garching, Germany; SPIRE is
provided by a consortium led by M. Griffin, Cardiff University, UK.

104
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Observatory would detected using PACS and SPIRE independently, and, with the

two instruments working together in parallel mode, under the assumption that model

M is a realistic representation of the high-mass star forming regions in the Galaxy.

In principle the proposed exercise is straightforward: we use the same input

parameter file with only the wavelength modified to 70µm, 110µm, 170µm, and

250 µm, 360µm, and 500µm. The spatial resolution and sensitivity change accord-

ingly. This implies six caravela runs in fake parallel computing. The code associates

the chosen wavelength with the correspondent instrument, i.e. the correct SED

transmission band for each object and the correct instrument (resolution, sensitivity

and synthetic PSF).

4.2 A model for the UCH II regions in the Galaxy

Model M observed by caravela applying only the four IRAS bands, 4.0 × 104 pop-

ulation 3 objects (with outer envelope modelled by a grey-body shell of T = 40 K

and linear size scale lIII = 5.0 × 106 AU), resulted in the following output:

• 48 sources detected simultaneously in coherent positions in all four bands,

• ≈ 42% UC H ii candidates (i.e. 20 sources).

These results were then compared, in chapter 3, with the IRAS UC H ii regions

survey (Wood and Churchwell, 1989).

The work presented in this chapter results from submitting the identical model

M to the Herschel caravela simulator. The output of this will then be assessed

against the IRAS synthetic output, and used to estimate the number of sources

Herschel could detect in the near future.

The input parameters for model M are described in table 4.1, page 106.
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Table 4.1: Input parameters for the Herschel simulation (model Mb is described in
detail in section3.2.1, page 77.)

Parameter Value Units Description
nspiral 4 number of spiral arms
aspiral 3 kpc start of the spiral armsc

bspiral 14 ◦ spiral arms pitch angled

nI 0.0 number of isolated compact sources
lI − linear size scale
x1 − mass function exponent for 1.0 < m(M#) < 2.4
x2 − mass function exponent for 2.4 < m(M#)

nII 0.0 number of isolated extended sources
lII − linear size scale
x1 − mass function exponent for 1.0 < m(M#) < 2.4
x2 − mass function exponent for 2.4 < m(M#)
TII − Grey-body temperature
β − Grey-body β parameter

nIII 4.0 × 104 number of embedded sources
lIII 5.0 × 106 AU linear size scale for the envelope sources
x1 0.3 mass function exponent for 1.0 < m(M#) < 2.4
x2 1.2 mass function exponent for 2.4 < m(M#)
TIII 40.0 K Grey-body temperature for the envelope sources
β 2 Grey-body β for the envelope sources

aModel M
bModel M
cThis is parameter a in equation 2.9, page 47, and corresponds to half the size of the Galactic

bar used.
dFrom Russeil (2003) best-fit model.
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4.3 Herschel synthetic images

Although the final output for each caravela run is a point source catalogue at the

requested wavelength band (or wavelength bands, if multiple instruments are to be

simulated at once), the code also produces synthetic images (and three colour images

for multiple bands simulations). Figure 4.3, page 108, is an illustration of caravela

output showing the three PACS wavebands combined.

The PACS and SPIRE caravela simulator is used, i.e. the real PSFs and noise

levels were used in the simulators. Figure 4.3, page 108, is a three colour caravela

image at the PACS wavebands: 70µm (blue), 110µm (green), and 170µm (red).

Note the diffraction spikes visible in the bright source on the bottom left of the

image. caravela is able to simulate these artifacts (and study the subsequent effect

on the point source catalogue) because it uses the correct PACS synthetic PSF.

The noise levels used in the PACS and SPIRE images define how efficiently

the source detections and extraction algorithm will work. This corresponds to the

instrumental noise. The values built-in to the caravela simulator are (in MJy sr−1):

19.9, 8.8, 2.9, 2.1, and 0.8, for 70µm, 170µm, 250µm, 360µm, and 500µm, respec-

tively. In MJy beam−1 the noise values used are: 17.6, 26.8, 12.8, 17.6, and, 14.9, for

70 µm, 170µm, 250µm, 360µm, and 500µm, respectively. These are the 1σ noise

values.
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Figure 4.1: Three colour caravela image at the PACS wavebands: 70µm (blue),
110 µm (green), and 170µm (red). Note the diffraction spikes visible in the bright
source on the bottom left of the image. caravela is able to simulate these artifacts
(and study the consequent effect on the point source catalogue) because it use the
correct PACS synthetic PSF. The SED models for population 3 objects use the
correct PACS transmission filters.
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4.4 Results

The results described next are summarised in table 4.2, page 110, and table 4.3,

page 113.

Table 4.2, page 110, presents the output from the caravela simulation of model

M using the PACS and SPIRE wavebands.

In order to be coherent with the Chapter 3 area of study, the area of the sky

examined is a 2◦ × 2◦ box centred in the plane of the Milky Way at 40◦ galactic

longitude.

The final photometry, considering all PACS and SPIRE wavebands combined,

resulted in nPACS = 46 sources and nSPIRE = 42 sources. nPACS is the number of

sources detected simultaneously and in the same positions in all PACS wavebandsb.

nSPIRE is the number of sources detected simultaneously and in the same positions

in all SPIRE wavebands. Note that these are high-mass star forming regions can-

didates, selected from population 3 objects following a x1 = 0.3, x2 = 1.2, for

ζ(log m) ∝ m−x, mass function.

A number of Herschel key programs, e.g. the Hi-GAL survey, will be using

PACS and SPIRE in parallel mode. It is interesting to estimate the number of

common objects detected at all Herschel wavelengths. This is given by n (table 4.2,

page 110). In this study, n = 40. In order to successfully estimate the common ob-

jects detected in more than one image (i.e more than one wavelength band), caravela

uses cupid::extractclumps to try to detect the same clumps on all six wavelengths.

One waveband must be selected as a mask image.

Once the objects are detected and cupid is able to extract their photometric

information, it is possible to build colour-colour diagrams for the Herschel bands.

In table 4.2, page 110, the mean value and standard deviation of these colours are

bIn reality, the PACS instrument cannot work simultaneously at its three wavelengths.
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Table 4.2: Output parameters for the Herschel simulation (model M)
Parameter Value Units Description

nPACS 46 number of sources detected at all PACS wavelengths
nSPIRE 42 number of sources detected at all SPIRE wavelengths

n 40a number of sources detected at all Herschel wavelengths

110 µm/70 µm −1.6811149 mean value of the 110 µm/70 µm colour
σ110 µm/70 µm 0.80768770 standard deviation for the 110 µm/70 µm colour

170 µm/70 µm −0.81292277 mean value of the 170 µm/70 µm colour
σ170 µm/70 µm 0.32876475 σ value of the 170 µm/70 µm colour

360 µm/250 µm −0.43023142 mean value of the 360 µm/250 µm colour
σ360 µm/250 µm 0.46501149 σ value of the 360 µm/250 µm colour

520 µm/250 µm −1.1800373 mean value of the 520 µm/250 µm colour
σ520 µm/250 µm 0.24772479 σ value of the 520 µm/250 µm colour

acupid::extractclumps was used to try to detect the same clumps on all six wavelengths.

listed. The colour-colour diagrams are presented in figure 4.2, page 112.

For log [110 µm/70 µm], the mean value observed is −1.6, with σ110 µm/70 µm =

0.80. For log [170µm/70 µm], the mean value observed is −0.8, with σ170 µm/70 µm =

0.32. For log [360µm/250 µm], the mean value observed is −0.43, with σ360 µm/250 µm =

0.46. Finally, for log [520µm/250 µm], the mean value observed is −1.18, with

σ520 µm/250 µm = 0.24.

Figure 4.2, page 112, presents four selected colour-colour diagrams for model

M. This is the best-fit model using the IRAS data set (presented in the previous

chapter).

The cited Herschel colour-colour diagrams may have a two-fold utility. Re-

veal some insight into the model M (and hence the true physical distribution of

high-mass star forming regions, since this the more likely model). And, produce a

direct comparison between real PACS and SPIRE data and caravela data set (we

look forward for this comparison). On the former, it is interesting to note the rela-

tively narrow range in the log (360µm/250 µm) in Figure 4.2, page 112. One valid

interpretation for this result is as follows. The SEDs for the model high-mass star
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forming regions peak at ∼ 250 µm therefore a variation in temperature (T controls

the shape of the SED curve) would result in a small variation in the fluxes at 250µm

and 360µm, since both values are relatively close to the peak wavelength. On the

other hand, the same variation of temperature would yield a significant variation in

the other colours, since their correspondent fluxes lie further away from the peak

wavelength.

However, IRAS did not detect any cold objects such as IRDCs (Egan et al.,

1998; Netterfield et al., 2009; Simon et al., 2006). These type of objects fall below the

IRAS detection threshold at 100µm. Therefore, the Herschel colour-colour diagrams

that result from the described Hi-GAL caravela simulation, can be used as a sensitive

test on the number of cold objects. If the log (360µm/250 µm) colour would exhibit

a wide range, then IRAS would have missed a significant fraction of cold sources.
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Figure 4.2: Herschel predicted colour-colour diagrams. Clockwise: 170 µm/70 µm
vs 110 µm/70 µm, 520µm/250 µm vs 360 µm/250 µm, 70 µm/170 µm vs
250 µm/520 µm , and 70 µm/110 µm vs 360 µm/250 µm.

The two catalogues are cross-matchedc. The theoretical catalogue and the sim-

ulated observed catalogue. Therefore,

• using the objects’ positions in the sky, all the objects in the theoretical cata-

logue are compared with the cupid catalogue resulting in n1,

• using the sources’ positions in the sky, all the objects in the cupid final photom-

etry catalogue are compared with the theoretical catalogue catalogue resulting

in n2,

• using the objects’/sources’ coordinates, only the common objects to both cat-

cThe cross-matching of the theorectical and simulated observed catalogues was made using Tool
for OPerations on Catalogues And Tables, i.e. topcat
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Table 4.3: Herschel cross-matching results: Theoretical input catalogue vs caravela
output observational catalogue, for modelM.

n αa βb n1
c n2

d n1&2
e sf (′′) mg (M#) σmass

h σs
i (′′)

Input catalogue 1720j 2.0′k 2 20l 18 18 87.51 5.54 8.71 29.37
Output catalogue 40m 2.0′ 2 20 18 18 87.51 5.54 8.71 29.37

aSeparation error.
bNumber of high-mass star forming regions candidates, i.e. number of objects with m ≥ 8M".
cNumber of sources in the theoretical catalogue with a match in the caravela cupid output table.
dNumber of sources in the output catalogue with a match in the theoretical input catalogue.
eNumber of matches between catalogues
fMean value for the distribution of separations between catalogues.
gMean value for the distribution of masses.
hStandard deviation for the distribution of masses.
iStandard deviation for the distribution of separations.
jNumber of objects in the region of the sky simulated.
kThe matching algorithm used was topcat::sky
lNumber of distinct sources.

mNumber of objects detected by cupid.

alogues are selected, resulting in n1&2.

The theoretical catalogue corresponds to the caravela input objects (distribution

of objects described in §2.6, page 39), and consists of the position in the sky, SEDs

and the mass for each objectd. The simulated observed catalogue is the output from

applying cupid to the six caravela synthetic PACS/SPIRE Herschel maps (70 µm,

110 µm, 170 µm, 250µm, 350µm and 520 µm).

Analysing table 4.3, page 113, it is interesting to note that the modelled data

set resulting from the Herschel simulation presented here has n1&2 ≈ 2 × nIRAS
1&2 ,

where n1&2 is the number of cross matches between the theoretical catalogue for

Herschel instruments and the final cupid list, and nIRAS
1&2 is the number of cross

matches between the theoretical catalogue for IRAS caravela simulation and the

final photometric catalogue.

In order to interpret the n1&2 ≈ 2× nIRAS
1&2 result, i.e. that Herschel at all wave-

lengths will detect twice as many sources than IRAS, the findings from Thompson

dEach object can be a type I, II or type III source.
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et al. (2006) can be useful. The authors studied 105 sources selected from the Wood

and Churchwell (1989), and observed them with SCUBA. Thompson et al. (2006)

quantify the likelihood of finding neighbouring clumps within a SCUBA field using

the companion clump fraction (CCF). The CCF is defined as,

CCF =
B + 2 T + 3 Q

S + B + T + Q
(4.1)

where S, B, T and Q, are the number of single, binary, triple and quadruple sources.

The observed result was (Thompson et al., 2006),

CCF = 0.90 ± 0.07 (4.2)

where the error was determined by simple Poisson statistics. Is this result consistent

with n1&2 ≈ 2 × nIRAS
1&2 ?

A CCF = 0.90 ± 0.07 means that on average there were observed 2 SCUBA

sources per IRAS source. Assuming that SCUBA and Herschel are similar, then the

our caravela and the real observed CCF are compatible.

4.4.1 Companion Clump Fraction interpretation

The comparison between the caravela results and the CCF from Thompson et al.

(2006) must be interpreted with caution. It is tempting to assume that the factor of

2 discussed previously is consistent with the a CCF = 0.90±0.07, but this may not

be the case. The CCF presented does take into account the proximity (although in

2D project terms, and not in 3D) of the pairs of sources. In contrast, the factor of

2 found in these caravela simulated images does not. It is possible that the Herschel

caravela simulations are resulting in twice as many sources detected, on average, but

these sources may not be clustered (in 2D).
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In principle, a more rigorous analysis on the clustering of sources in the caravela

images (and the detections rates for different caravela instruments) is possible using

the input and output information from each caravela run. This will be described in

the Future Work section.

We conclude that the number of sources detected by caravela in IRAS and

Herschel mode is consistent with a CCF = 0.90±0.07 from Thompson et al. (2006)

only in a limited way: the number of detections may be coherent but a spatial

investigation is needed.
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However, the factor of two resulting from the presented caravela simulations

seems, intuitively, too low, due to the better resolution and sensitivity of Herschel

when compared with IRAS. We suggest two possible reasons that could explain this:

• the sources used in caravela are not clustered, i.e. although line of sight align-

ments can occur, the objects’ positions are correlated. There is no real 3D

clustering function between objects,

• the values of n1&2 and nIRAS
1&2 refer to the cross-matched sources, i.e. sources

detected in all wavebands for Herschel and IRAS, respectively. To achieve this

one of the wavebands images was taken as a mask. For the Herschel analysis,

the mask image was the 500µm one, so all the sources were searched in the

other wavebands using this waveband as a mask.

Following these two arguments, the factor of two found in the modelling could

be considered as a lower limit value, i.e. to each IRAS source will correspond two

or more sources. When a similar analysis on the future Herschel data sets will be

made, it will be interesting to try to understand where the adopted caravela model

is incorrect.

We conclude that the improved spatial resolution of the Herschel Space Ob-

servatory when compared with the IRAS telescope (between 0.5′ and 2.0′ for IRAS

and ranging between 5.2′′ and 35′′ for Herschel, from shorter to longer wavelengths)

improves significantly the detection rate of common sources.

Quantitatively, caravela has shown here that twice as many sources are detected,

at all 6 wavelengths, in Herschel than they were positively found with caravela sim-

ulating the 4 IRAS bands. This is based on the sixth column (labelled n1&2) of

table 4.3, page 113, and table 3.4, page 97, Herschel and IRAS models respectively.

In Chapter 3 (considering the four bands of IRAS), we have shown that
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Figure 4.3: Distribution of UC H ii regions detected in model M at the Herschel
wavebands. This results from the cross-correlation between the caravela input cata-
logue and cupid detected clumps. Lighter bins represent the low- and intermediate-
mass objects, i.e. sources cross-correlated to input objects with m < 8 M!. Darker
bins represent the high-mass star forming regions, i.e. sources cross-correlated to
input objects with m ≥ 8 M!. Here 2/20 = 10 % of the UC H ii candidates have
m > 8 M!. The dotted line is the input mass function with Salpeter exponent of
1.2. The set of objects plotted correspond to n1 (table 4.3, page 113), i.e. number
of sources in the theoretical catalogue with a positive match in the caravela cupid
final output catalogue.

β/n1 = 2/25 = 8 % of the UC H ii candidates have m > 8 M!, suggesting ≈ 90% of

contamination by low- and intermediate-mass objects.

Table 4.3, page 113, and figure 4.3, page 117, indicate that the Herschel

simulation presented here quantifies the contamination by m < 8 M! as ∼ 90%

(β/n1 = 2/20 = 10 %).

Although model M is the one that is in better agreement with the data set

presented in the previous chapter, it is still limited to the simulation of compact

objects, i.e. no diffuse emission is considered. This is the final step in the com-

plexity ladder for caravela and is presented in chapter 5: adding the diffuse emission

(Paladini et al., 2007, 2004, 2003) to the caravela models.
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4.5 Summary

A model has emerged as being in reasonably good agreement with the observations

of UC H ii regions. caravela was used to establish that model M, formed by 4.0×104

population 3 sources distributed in 4 spiral arms, was consistent with the IRAS point

source catalogue. The methodology used in this chapter is to observe the best-fit

model M with PACS and SPIRE.

Here we present the more relevant results that emerged from the modelling

described in the fourth chapter.

1. The final output for each caravela run is a point source catalogue at the re-

quested wavelength band. The code also produces synthetic images (and three

colour images for multiple bands simulations). In this chapter, a three colour

caravela image at the PACS wavebands: 70µm (blue), 110µm (green), and

170 µm (red) is presented. caravela is able to simulate these artifacts (and

study the consequent effect on the point source catalogue) because it use the

correct PACS synthetic PSF.

2. The final photometry, considering all PACS and SPIRE wavebands combined,

resulted in nPACS = 46 sources and nSPIRE = 42 sources. nPACS is the number

of sources detected simultaneously and in the same positions in all PACS

wavebands. nSPIRE is the number of sources detected simultaneously and in

the same positions in all SPIRE wavebands.

3. In this study, n = 40, where n is the number of sources extracted for all PACS

and SPIRE wavelengths.

4. The analysis of the Herschel colour-colour diagram showed that log [110µm/70 µm],

the mean value observed is −1.6, with σ110 µm/70 µm = 0.80. For log [170µm/70 µm],

the mean value observed is −0.8, with σ170 µm/70 µm = 0.32. For log [360µm/250 µm],
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the mean value observed is −0.43, with σ360 µm/250 µm = 0.46. Finally, for

log [520µm/250 µm], the mean value observed is −1.18, with σ520 µm/250 µm =

0.24.

5. The cited Herschel colour-colour diagrams revealed that a relatively narrow

range in the log (360µm/250 µm). We interpret this result as follows: the SEDs

for the model high-mass star forming regions peak at ∼ 250 µm therefore a

variation in temperature (T controls the shape of the SED curve) would result

on a small variation on the fluxes at 250µm and 360 µm, since both values are

relatively close to the peak wavelength. On the other hand, the same variation

of temperature would yield a significant variation in the other colours.

6. the modelled data set resulting from the Herschel simulation presented here

has n1&2 ≈ 2 × nIRAS
1&2 , where n1&2 is the number of cross matches between

the theoretical catalogue for Herschel instruments and the final cupid list, and

nIRAS
1&2 is the number of cross matches between the theoretical catalogue for

IRAS caravela simulation and the final photometric catalogue.

7. A CCF = 0.90 ± 0.07 means that on average there were observed 2 sources

per one IRAS source. Our caravela and the real observed CCF are consistent,

with the limitations discussed in section 4.4.1.



Chapter 5

Conclusions and Future Work

5.1 Summary

The results presented in this dissertation are concerned with the physical properties

and spatial distribution of high-mass star forming regions. These objects are far

more difficult to study than their low- and intermediate-mass counterparts because

they are rare and their lifetimes are short. Whereas there exist a number of low- and

intermediate-mass sources at distances of a few hundreds of pc, the average distance

of high-mass star forming regions is of the order of 103 pc. As a consequence the

current knowledge of high-mass star forming regions is less complete, both on the

intrinsic physical properties and their spatial distribution in the Galaxy. caravela was

developed to help users to address this issue in a statistical manner by providing a

simulated Milky Way of star formation that can be used as a benchmark to upcoming

surveys.

The aim of this work is to create a computer program capable of simulating the

high-mass star forming regions as observed point source catalogues. The catalogues

that can currently be simulated result from the IRAS, Herschel and SCUBA-2 sur-
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veys. This numerical tool has to allow the user to infer physical properties of the

Galactic population of high-mass star forming regions.

The following two questions were the essential problems under analysis during

the previous chapters.

1. Stars must be forming constantly. What is the distribution, in the Galaxy,

of the birth places of these objects? Massive stars in particular, have short

life times compared with low- and intermediate-mass objects, therefore they

become rarer and further away thus very difficult to study.

2. What are the physical properties of high-mass star forming regions?

This dissertation includes a description of what has been done and in what

context (chapters 2 and 1, respectively). Chapters 3 and 4 analyse the caravela

output against known and future observational data sets, respectively.
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5.2 Main results and conclusions

1. A numerical tool, caravela, has been built to study the distribution of high-mass

star forming regions in our Galaxy. In an era when large observational surveys

are increasingly important, this tool can produce simulated infrared point-

source catalogues of high-mass star forming regions on a Galactic scale. The

general properties of this population of objects can be studied using caravela.

2. A model with 4.0 × 104 population 3 objects (with T = 40 K and linear size

scale lIII = 5.0 × 106 AU) yield the following output: 48 detected sources by

CUPID, ≈ 42% UC H ii candidates (20), 84.73 K-S test result, for a 2 × 2

degrees box. This is the best-fit model to the IRAS observational data set

studied.

3. caravela’s model M (the best-fit model) yields a significantly better constraint

in n than in T , i.e. the true value of the total number of sources can be

estimated with more accuracy than the temperature of the grey-body envelope.

In fact, this trend is observed when all the models are considered.

4. In conclusion, n is constrained to the [1×104, 9×104] interval in total number

of objects, and T lies within ≈ 30 K to ≈ 50 K, for the grey-body temperature.

5. A total number of 4.0 × 104 population 3 objects distributed in 4 spiral arms

are consistent with the IRAS PSC data under analysis. Population 3 objects

are defined as compound sources constituted by a compact YSO surrounded

by a larger grey-body object.

6. There is contamination by low and intermediate mass star forming regions of

the Wood and Churchwell (1989) region for UC H ii regions. This effect was

quantified to be of the order of 1 − (β/n1&2) = 1 − (2/9) ≈ 77 % (using the

same notation as in table 3.4, 97) in this caravela best fit simulation. If one
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considers all the sources in the input catalogue that have a match in the output

catalogue, then 1 − (β/n1) = 1 − (2/25) ≈ 92%. The level of contamination

from low- and intermediate-mass objects supported by the analysis of the de-

scribed models, ∼ 90%, may help to understand the UC H ii lifetime problem.

In principle, we could be overestimating the number of UC H ii regions in the

Galaxy due to the fact that our UC H ii samples are polluted with low- to

intermediate-mass objects.

7. caravela was used to produce single-band and three colour synthetic images of

the future Herschel Space Observatory survey Hi-GAL.

8. The final photometry, considering all PACS and SPIRE wavebands combined,

resulted in nPACS = 46 sources and nSPIRE = 42 sources, in a 2× 2 degree box

centred at ! = 40 degrees.

9. In this study, n = 40, where n is the number of sources extracted for all PACS

and SPIRE wavelengths.

10. The analysis of the Herschel colour-colour diagram showed that log [110µm/70 µm],

the mean value observed is −1.6, with σ110 µm/70 µm = 0.80. For log [170µm/70 µm],

the mean value observed is −0.8, with σ170 µm/70 µm = 0.32. For log [360µm/250 µm],

the mean value observed is −0.43, with σ360 µm/250 µm = 0.46. Finally, for

log [520µm/250 µm], the mean value observed is −1.18, with σ520 µm/250 µm =

0.24.

11. The cited Herschel colour-colour diagrams revealed that there is a relatively

narrow range in the log (360µm/250 µm). We interpret this result as follows:

the SEDs for the model high-mass star forming regions peak at ∼ 250 µm

therefore a variation in temperature (T controls the shape of the SED curve)

would result on a small variation on the fluxes at 250µm and 360µm, since



124 5.2 Main results and conclusions

both values are relatively close to the peak wavelength. On the other hand,

the same variation of temperature would yield a significant variation in the

other colours.

12. the modelled data set resulting from the Herschel simulation presented here

has n1&2 ≈ 2 × nIRAS
1&2 , where n1&2 is the number of cross matches between

the theoretical catalogue for Herschel instruments and the final cupid list, and

nIRAS
1&2 is the number of cross matches between the theoretical catalogue for

IRAS caravela simulation and the final photometric catalogue.

13. The observed companion clump fraction (CCF) is 0.90±0.07 (Thompson et al.,

2006) means that on average there are observed 2 sources per one IRAS source.

Our caravela and the real observed CCF are therefore consistent, only in a

limited sense as discussed in detail in the previous chapters.

14. caravela can work together with a diffuse emission model successfully. The

images presented make a strong case for the co-adding of caravela and diffuse

emission coherent images. Some examples were presented and discussed at the

end of this work.
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5.3 The future

Section 5.3.1, page 127, presents a few selected synthetic images resulting from

the partnership between caravela and a model for the diffuse emission (Paladini

et al., 2004). This serve to illustrate the interesting future scientific potential of this

compound technique.

This work presented caravela first and then the code was used to reach a number

of results. I believe that the best is still to come for caravela, i.e. more time than

initially planned has been spent idealising and then developing the code. In the

next paragraphs we present both what we think can be achieved using caravela in

the future, and a set of future modifications to the code.

• Include the possibility to change the viewpoint of each observation. This would

result in face-on images of the Milky Way, as well as it would enable to use

caravela for other galaxies.

• Use caravela to model an all sky simulation, co-adding the diffuse background

emission.

• Include a built-in clustering function for population 1, 2, and 3 objects.

• Compare the results from the caravela native built-in instrument simulator

with the SPIRE and PACS simulators from their instruments’ teams.

• Test different spiral arms configurations, i.e. altering the number of spiral

arms, pitch angle, width and scale height of the arms. Investigate if Russeil

(2003) best fit model is consistent with Hi-GAL or even IRAS.

• Wrap-up caravela in a user-friendly window-based interface. Put caravela freely

available on the web.
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• Expand the families of sources used, e.g. include a built-in brown dwarf and

planetary nebulae populations.

• Extract the background from a caravela simulated image with diffuse emission.

Then compare this with the image with only the diffuse emission, i.e. the

simulated image that results solely and directly from Paladini et al. (2004)

simulation. Subtract the images and study the resulting image in detail.

• Explore the random number parameter space in more detail, i.e. study what

effect changing the stochastic seed has on the results (and conclusions).
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5.3.1 caravela and the Diffuse Emission Model

Introduction

The aim is to demonstrate that caravela can be used to try to simulate a distribution

of high-mass star forming regions considering the diffuse background emission, i.e.

that caravela can be used to complement the diffuse emission model developed by

Paladini et al. (2004)a. We think this could be one of the main avenues to be explored

in the near future, as the images generated offer a more realistic match to the real

observations.

Note that this is the case where the galactocentric ring images described in

chapter 2 are used.

5.3.2 caravela combined with the diffuse emission

This collaboration exists in the context of Hi-GAL (cf. §1.4, page 16) project, more

specifically within the Data Simulation working group. This group is responsible for

supplying the Map Making working group with realistic synthetic sky images so that

the map making routines are tested. The Map Making working group then gives

its output to the Point Source Extraction and Photometry working group. In this

chapter, caravela maps are combined with the diffuse emission maps at all Herschel

bands (PACS and SPIRE).

The results presented in this section are simply qualitative results to illustrate

the case for the co-adding of caravela and diffuse emission models. In particular, the

effect of diffuse structure on compact or point source photometry could be investi-

gated by this approach.

i.e. the images presented make a strong case for the co-adding of caravela and

aAs mentioned in Chapter 4, the diffuse emission model has been developed independently by
Paladini et al. (2004).
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diffuse emission models, but there is a lack of quantitative analysis. The synergies

and complementary nature of caravela and Paladini et al. (2007) result from:

• both models can be use to investigate the distribution of high-mass star form-

ing regions in the our Galaxy,

• one of the fundamental limitations in caravela is the absence of the diffuse

component.

As with the Herschel colour-colour diagrams (figure 4.2, page 112), it will be in-

teresting to do a comparative analysis of the synthetic caravela + diffuse emission

images with the future real PACS and SPIRE images, e.g. from the Hi-GAL survey.

A selection of these images is displayed in the following sections.

5.3.3 The diffuse emission model

Here we describe succinctly the diffuse emission model (Paladini et al., 2007).

Along the Galactic plane, the detected diffuse infrared emission is a blend of

radiation arising from dust that is spread over a wide range of distances and Galactic

radii. The diffuse emission model simulates this emission by applying an inversion

method: the observed diffuse emission is decomposed into radial bins associated with

each phase of the interstellar gas. The physical properties of each phase in each bin

are determined. A core step in the technique is to employ kinematic distances to

assign gas to radial bins. This is why caravela generates the galactocentric radius

images. This may also be a limitation of the diffuse emission model: due to the

inescapable use of kinematic distances only rings can be assumed/used. No spiral

structure is permitted.
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5.3.4 PACS and SPIRE co-added images

Here we present the maps. Figure 5.1, page 130, represents the same region of

the sky at the six Herschel bands. The area observed is a 3 × 3 degrees square

centred at (!, b) = (21, 0). The pixel size is 2′′. For the three PACS images the

correct synthetic PSF is used. These maps are integrated with the correct PACS

and SPIRE transmission filters for both compact and diffuse emission models. All

images correspond to 106 population 3 objects, but only 103 lie within the solid

cone of the observation. The Galactic plane is the most remarkable feature in all

panels. Note however, that the number of sources and the distribution of the diffuse

emission is not symmetrical with respect to ! = 0. There seems to be an over density

of emission centred at (!, b) = (20.2, 0.0). This is due to the fact that we are looking

in a direction parallel to the spiral arm, hence the line of sight lies along the arm

(this effect can be visualised in 3D in figure 2.3, page 48).
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Figure 5.1: PACS and SPIRE + diffuse emission maps (Paladini et al., 2007). The panels show the same region of the sky at
the six Herschel bands: 70 µm, 110µm, 170µm, 250µm, 360µm, and 520µm, from top to bottom respectively.
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5.3.5 PACS and SPIRE three-colour images

Figure 5.2, page 132, present the composite rgb images for PACS and SPIRE, co-

added with the diffuse emission model (Paladini et al., 2007). These two panels are

the most realistic output presented in this dissertation. We look forward to compare

it with the real Herschel images.
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Figure 5.2: PACS and SPIRE + diffuse emission three colour maps (Paladini et al., 2007). Left: PACS three colour image.
Right: SPIRE three colour image.
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The Grey Havens

Away from the glowing cities, a diffuse band of light emerging from a countless

number of objects can be observed. These objects reach from horizon to horizon

and constitute the disk of the Galaxy. caravela is limited (just infrared wavebands

are reproduced), admittedly incomplete (only high-mass star forming regions are

considered) and starts from arguable physical assumptions. It is also an attempt to

understand and reproduce the Milky Way, and this gave the author of this work the

energy and motivation for this project.

He drew a deep breath. ‘Well, I’m back’, he said.

- - -



Appendix A

The Hershel Hi-GAL Milky Way:

the first observational science

highlights
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ABSTRACT

We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic
plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2◦ × 2◦ tiles
approximately centered at l = 30◦ and l = 59◦. The two regions are extremely rich in intense and highly structured extended emission which
shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be
extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores’ in the following) are
found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself
shows that a core seems to appear when a threshold around AV ∼ 1 is exceeded for the regions in the l = 59◦ field; a AV value between 5 and 10 is
found for the l = 30◦ field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first
collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well
in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm−2. Our results are in good agreement with recent
MHD numerical simulations of filaments forming from large-scale converging flows.

Key words. stars: formation – ISM: structure – ISM: clouds – Galaxy: general

1. Introduction

From the diffuse cirrus to the molecular clouds, onto the forma-
tion and death of stars, the Galactic plane is the set where all the
phases of the Galaxy life-cycle can be studied in context. Dust,
best observed in the infrared and in the submillimeter, cycles
through all these phases and is, as such, a privileged tracer for
the Galactic ecology. IRAS (Neugebauer et al. 1984) and COBE
(Mather et al. 1990) were of tremendous importance in boosting
the research in Galactic star formation and interstellar medium to
the prominent positions they have today. As remote as they may
now seem, however, these missions are only some 20 years away.
Since then, a continuing explosion of Galactic plane surveys,

! Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

both in the mid-infrared at λ ≤ 70 µm (Omont et al. 2003; Price
et al. 2001; Benjamin et al. 2003; Carey et al. 2009) and in the
submillimeter at λ ≥ 800 µm (Schuller et al. 2009; Rosolowsky
et al. 2009), are assembling a picture where the galactic plane
has become accessible at sub-30′′ resolution over three decades
of wavelength. The exception is the critical interval between 70
and 500 µm where the bulk of the cold dust in the Galaxy emits
and reaches the peak of its spectral energy distribution (SED).
The Hi-GAL key program (Herschel Infrared GALactic plane
survey) will fill this gap.

Hi-GAL is the key program (KP) of the Herschel satellite
(Pilbratt et al. 2010) that will use 343 h observing time to carry
out a 5-band photometric imaging survey at 70, 160, 250, 350,
and 500 µm of a | b |≤ 1◦-wide strip of the Milky Way Galactic
plane in the longitude range −60◦ ≤ l ≤ 60◦. Hi-GAL is going
to be the keystone in the multiwavelength Milky Way, opening
up unprecedented opportunities with a promise of breakthroughs
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Fig. 1. Three-color image (blue 70 µm, green 160 µm, red 350 µm) of
the 2◦ × 2◦ field around l = 30◦.
in several fields of Galactic astronomy. A full description of the
survey and its science goals are given elsewhere (Molinari et al.
2010b). This contribution presents the first Hi-GAL data ob-
tained in the Herschel science demonstration phase (SDP) and
describes a few of the main early results that will be detailed in
other contributions in this volume.

2. Observations and data reduction
The Herschel PACS (Poglitsch et al. 2010) and SPIRE (Griffin
et al. 2010) imaging cameras were used in parallel mode at 60′′/s
satellite scanning speed to obtain simultaneous 5-band coverage
of two 2◦ × 2◦ fields approximately centered at [l, b] = [30◦, 0◦]
and [59◦, 0◦]. The detailed description of the observation set-
tings and scanning strategy adopted is given in Molinari et al.
(2010b). Data reduction from archival data to Level 1 stage was
carried out using the Herschel interactive processing environ-
ment (HIPE, Ott 2010) using, however, custom reduction scripts
that considerably departed from standard processing for PACS
(Poglitsch et al. 2010) and, to a lesser extent, for SPIRE (Griffin
et al. 2010). Level 1 time ordered data (TODs) were exported
from HIPE into FITS files. Further processing including the map
generation was carried out using dedicated IDL and FORTRAN
codes. Saturation conditions were reached for all detectors only
in SPIRE 250 µm and 350 µm images in correspondence with
the 3 brightest peaks in the l = 30◦ field. The prescribed flux
correction factors for PACS (Poglitsch et al. 2010) and SPIRE
(Swinyard et al. 2010) were applied to the maps since their pho-
tometric calibration was carried out using the default calibration
tree in HIPE. A detailed description of the entire data process-
ing chain, including the presentation of the maps obtained in the
five bands for the two observed fields, can be found in Traficante
et al. (in prep.). In the present letter we present in Figs. 1 and 2
the three-color images obtained using the 70, 160, and 350 µm
data (l = 30◦ and l = 59◦, respectively).

These amazing maps convey the immediate impression of
extended filamentary structures dominating the emission on all
spatial scales. Measurements of the standard deviation of the
signal at all wavelengths in the lowest brightness regions of
the l = 59◦ field yield average values a factor two higher than
the sensitivity predictions for point source sensitivity from the
HSpot time estimator for all bands except at 70 µm where the
predicted limit is effectively reached, confirming that the noise
in our maps is dominated by the cirrus confusion at all wave-
lengths. A more detailed quantitative analysis is presented by
Martin et al. (2010).

Fig. 2. Three-color image (blue 70 µm, green 160 µm, red 350 µm) of
the field around l = 59◦.

3. Results and science highlights
3.1. From IRDCs to mini-starburst and their impact

on the ISM
Herschel’s ability to observe such large areas with unprece-
dented wavelength coverage and extraordinary signal dynamical
range allows us to image simultaneously progenitors clouds for
massive protoclusters to entire clusters of young stellar objects
(YSOs) in acitve star forming regions, while also measuring the
effect of their strong stellar winds and powerful outflows on the
surrounding medium.

Infrared dark clouds (IRDCs) have received considerable at-
tention in recent years (e.g. Rathborne et al. 2006; and Peretto
& Fuller 2009) as potential sites for precursors of cluster form-
ing sites. Found in silhouette against the bright mid-IR back-
ground, they shine in emission with Herschel. Peretto et al.
(2010) shows how temperature effectively decreases from am-
bient values (20−30 K) down to T = 8−15 K toward the
densest (∼1023 cm−2) peaks of these objects, resolving further
temperature substructures that can be proxies for subsequent
fragmentation.

At the other end of the massive star formation timeline, we
find W43, visible in the left portion of Fig. 1, as an outstand-
ing case of Galactic mini-starburst. Detailed SED construction
and luminosity estimates allow us to assess the very early evo-
lutionary stage of the most luminous and massive YSOs in the
region. It is remarkable how the same images show a prominent
ridge extending southward which encompasses a 70 pc-wide
large cavity excavated by the W43 cluster and which possibly
triggers further star formation (Bally et al. 2010). Triggered star
formation in less extreme environments can also be studied in
statistically significant fashion modeling the SED of the sources
found in correspondence of the multitude of H-driven bubble-
like structures found in the images, as shown for the bubble N49
by Zavagno et al. (2010).

Feedbacks from massive star formation, together with the in-
tricate relationship between the interstellar radiation field and
molecular clouds, are at the origin of the observed complexity
of the ISM emission structure, where temperature ranges from
∼10 K of pre-stellar cores to the ∼40−50 K of the photodissoci-
ation regions (Bernard et al. 2010).

3.2. Census of compact sources
The extraction of compact sources is quite a challenging task in
these fields, which we faced using a novel approach based on the
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study of the multidirectional second derivatives in the image to
aid in source detection and size estimate, and subsequent con-
strained multi-Gaussian fitting. This approach greatly increases
the dynamical range between compact sources and diffuse emis-
sion, irrespective of the local absolute value of the emission. The
method is fully described elsewhere (Molinari et al. 2010a) and
has been applied for this first attempt to generate source catalogs.
As the thresholding for source detection is done on the curvature
image (Molinari et al. 2010a), the S/N of the detected sources is
determined a posteriori measuring the ratio of the source peak
flux over the rms of the residuals after the Gaussian fit. Source
catalogs were generated for the two fields and for the 5 bands and
are made available in tabular form in the online version of the pa-
per. Catalogs completeness was estimated with artificial source
injection experiments, and the peak flux levels for 80% com-
pleteness for the 70, 160, 250, 350 and 500 µm photometry are
[0.5, 4.1, 4.1, 3.2, 2.5] Jy/beam for the l = 30◦ field, and [0.06,
0.9, 0.7, 0.7, 0.8] Jy/beam for the l = 59◦ field. The difference is
entirely compatible with the very different intensity regimes of
the underlying diffuse emission in the two fields.

Estimating the source’s physical properties requires that de-
tection in the various band catalogs are merged in coherent
SEDs, a process that can only be done coarsely in this early
stage, but which is nonetheless useful for isolating 528 sources
in the l = 30◦ field and 444 sources in the l = 59◦ field (see
Elia et al. 2010). The two observed fields encompass emission
from regions at very different distances. In a considerable effort,
which involved a critical re-evaluation of available data and evi-
dence, and the collection of additional data for hundreds of pre-
viously unknown objects, Russeil et al. (in prep.) provide recom-
mended distances for a fraction of the detected sources (312 out
of 528, and 91 out of 444 sources for the two fields, respec-
tively) for which the derivation of masses and luminosities is
possible. Adopting standard prescriptions for Class 0 classifica-
tion (Lλ≥350 µm/Lbol ≥ 0.005, André et al. 2000) results in almost
the totality of sources being Class 0 (90 out of 91 sources in l =
59◦ and 306 out of 312 in l = 30◦, see Elia et al. 2010).

3.3. Filamentary star formation
The most extraordinary feature exhibited by the Herschel maps
is the ubiquitous pattern of filaments in the ISM structure. This is
more apparent when we enhance the contrast of the filaments us-
ing the same method (see Sect. 3.2) as used for the source detec-
tion (Molinari et al. 2010a). Here we start from the ∂2 derivatives
carried out in four directions (x, y, and the two diagonals), as for
the standard detection method, and then create another image F
of the same size so that the maximum curvature is selected for
each pixel: Fi j = max[∂2xi j, ∂2yi j, ∂2D1i j, ∂

2D2i j]. In this way
we are following the direction of maximum curvature pixel-by-
pixel for all compact features in the image. We show in Fig. 3
the result of this processing on the l = 59◦ field at 250 µm.

The maps clearly show an interconnected maze of filaments
at different levels of brightness (e.g. different levels of emis-
sion intensity and curvature), and the striking aspect is that
the compact sources detected at 250 µm are distributed for the
most part along the brightest filaments. Interestingly, a simi-
lar scenario was also reported for Taurus by Goldsmith et al.
(2008) where the physical conditions and spatial scales involved
are radically different. Since the source integrated fluxes are
estimated by fitting Gaussians on top of planar plateaus, the
values of the local background at every wavelength are a by-
product of our source extraction and, after applying the abso-
lute correction factors as recommended by Bernard et al. (2010)
and subtracting the foreground contribution estimated using

Fig. 3. Multidirectional second-derivative image (see text) of the l = 59◦
field at 250 µm. The blue circles represent the compact sources detected
at 250 µm. The filamentary structure of the ISM appears at various lev-
els of intensity, i.e. curvature, and it is striking how the detected com-
pact objects are for the most part distributed only along the brightest
filaments.

Bohlin (1975), can be used to estimate the local beam-averaged
column density in the hosting filaments. The relationship be-
tween the mass of the detected cores (when the SED is reliable
and the distance is known, see previous paragraph) and the local
beam-averaged H2 filament column density is reported in Fig. 4.
The points for the l = 59◦ field mostly lie in the range of column
densities (1021 cm−2 ≤ N(H2) ≤ 1022 cm−2) that corresponds to
1 mag ≤ AV ≤ 10 mag, values that are entirely reasonable for
the transition regime between diffuse ISM and dense molecular
clouds (Cambresy 1999; Snow & McCall 2006). Higher values
of N(H2) are found for the points for the l = 30◦ field, most likely
due to the larger relative distances of the sources in this latter
field. The core masses are spread between 1 and 104 M%, with
no indication of a correlation between the two quantities. The
strong impression, however, is that of a threshold at AV ∼ 1 mag
for the l = 59◦ field above which dense cores are found, a thresh-
old that is evidently exceeded only in bright filaments (Fig. 3).
More in particular, the AV ∼ 1 mag threshold corresponds to
∼17 M% pc−2 in molecular hydrogen, which is suprisingly close
to the 10 M% pc−2 value that Krumholz et al. (2009) find critical
for the dust content in HI clouds to efficiently shield the cloud in-
terior from external FUV field and allow effective H2 formation.
It is tempting to relate the appearance of clumps to an extinc-
tion regime where the H/H2 boundary shields the cloud interi-
ors from interstellar FUV field, causing the photoelectric heating
efficiency to drop considerably and causing in turn a drop in dust
and gas temperature (Tielens & Hollenbach 1985). This thresh-
old value seems to be of the order of AV ∼ 5÷ 10 for the l = 30◦
field most likely due to the relatively larger distances of sources
in this field (Russeil et al., in prep.).

The ubiquitousness of dense filaments in the ISM, the high
degree of association between bright filaments and cores, and
the suggestion of a column density threshold for the appearance
of dense cores, all appear to coherently support a formation sce-
nario that starts with the condensation of diffuse clouds into long
filaments. As the column density increases, a threshold is ex-
ceeded and denser star-forming (or potentially star forming) con-
densations start to appear. A preliminary association with Spitzer
24 µm counterparts (Elia et al. 2010) suggests that our detected
sources may be a mixture of protostellar and pre-stellar objects,
although more work will be needed to ascertain the composition
of this mixture.

Page 3 of 5

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014659&pdf_id=3


A&A 518, L100 (2010)

Fig. 4. Mass of detected cores as a function of the hosting filament lo-
cal column density, for the cores where the distance is known and the
mass could be estimated. The red diamonds represent the cores in the
l = 59◦ region, while the plus signs represent the cores from the l =
30◦ region. The top X-axis represents the equivalent AV .

Since our source extraction also yields a measure of the core
sizes, we are in the position to estimate their surface density Σ.
These values appear to be on average a factor 3−5 higher than
the column densities of the underlying filaments as reported in
Fig. 4, spanning a range of 0.03 g cm−2 ≤ Σ ≤ 0.5 g cm−2, after
changing units, with a mean value of 0.1 g cm−2. It is puzzling
that the number of cores exceeding L/M ratios of a few (the ex-
act number depending on the core masses), corresponding to the
critical surface density threshold of 1 g cm−2 for the formation of
massive stars (Krumholz & McKee 2008), is not consistent with
very few of the cores actually exceeding that critical threshold
(see also Elia et al. 2010). The difference of a factor ∼2 between
the dust opacities that we used compared to Krumholz & McKee
(2008) is not sufficient to reconcile this apparent discrepancy.
This result deserves more attention and needs to be confirmed in
the future with more detailed and accurate analysis.

Testing of large-scale “dynamical” star formation scenar-
ios (e.g., Hartmann et al. 2001), where filaments are formed in
the post-shock regions of large H converging flows, is one of
the original science goals of Hi-GAL. It is remarkable how the
predictions from recent MHD numerical simulations (Banerjee
et al. 2009) of formation and subsequent fragmentation of fil-
aments, agree with our results. Besides the morphological re-
semblance of these simulations with the structures we see in our
Herschel maps (Fig. 3), there is striking agreement of their pre-
dictions with the N(H) regime we measured for our core-hosting
filaments, as well as with the mass regime of the cores being
formed.

Instability and fragmentation of dense filaments has also
been investigated in the context of helical magnetic fields en-
closing the filaments by Fiege & Pudritz (2000); interestingly,
the models predict the formation of regularly spaced condensa-
tions at length scales that depend on the properties of the mag-
netic field, the velocity dispersion, and density of the filament.
The predicted length scale for filament velocity dispersion of
0.5 km s−1 and density of 104 cm−3 is 2.8 pc, and curiously this
is not at all far from the median distance of each source to its

nearest neighbor: ∼1.8 pc for the 250 µm sources in the l =
59◦ field for the sources’ average distance (Russeil et al., in
prep.). It is also interesting that the typical fragmentation length
scale decreases with increasing filament density, in broad qual-
itative agreement with a higher spatial density of sources in the
brightest filaments. This clearly deserves further investigation to
be confirmed as a viable hypothesis.

4. Conclusions
The first science highlights presented in this paper, as well as
in the accompanying papers in this volume and elsewhere, show
that owing to its optimal use of unique Herschel characteristics
of wavelength coverage, spatial resolution and mapping speed,
the Hi-GAL survey has the potential to lead to a quantum leap
in our understanding of large-scale Galactic star formation from
cloud to cluster-forming clump formation and of the evolution
of protoclusters and massive protostars.

The outstanding feature emerging from these first images is
the impressive and ubiquitous ISM filamentary nature. Dense
cores seem to appear when a certain beam-averaged column
density threshold is exceeded in close spatial association with
these filaments.
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ABSTRACT

Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the
Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic
Plane by mapping a two-degree wide strip in the longitude range | l |< 60◦ in five wavebands
between 70µm and 500µm. The aim of Hi-GAL is to detect the earliest phases of the formation of
molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength
coverage, sensitivity, mapping strategy and speed to deliver a homogeneous census of star-forming
regions and cold structures in the interstellar medium. The resulting representative samples will
yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic
environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an
evolutionary sequence for the formation of intermediate and high-mass stars. This information is
essential to the formulation of a predictive global model of the role of environment and feedback
in regulating the star-formation process. Such a model is vital to understanding star formation
on galactic scales and in the early Universe. Hi-GAL will also provide a science legacy for decades
to come with incalculable potential for systematic and serendipitous science in a wide range of
astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA.

Subject headings: ISM–star formation–high-mass stars–IR–Herschel
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gata”, Rome, Italy
30National Research Council of Canada
31University of Toronto, CITA, Canada
32Nagoya University, Japan
33Jodrell Bank Centre for Astrophysics, University of

Manchester, UK
34APC/Université Paris 7, France
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1. Introduction

Dust is the most robust tracer of the ‘Galactic
ecology’ - the cycling of material from dying stars
to the ionized, atomic, and molecular phases of
the ISM, into star forming cloud cores, and back
into stars. While atoms, ions, and molecules are
imperfect tracers because they undergo complex
phase changes, chemical processing, depletion onto
grains, and are subject to complex excitation con-
ditions, dust is relatively stable in most phases of
the ISM. It is optically thin in the Far Infrared
(FIR) over most of the Galaxy, so that its emis-
sion and absorption simply depend on emissivity,
column density and temperature. Cold dust in
particular (10K≤T≤ 40K) traces the bulk of non-
stellar baryonic mass in all of the above “habitats”
of the Galactic ecosystem.

Temperature and luminosity and, as their by-
product, mass of cold dust measured over the en-
tire Galactic Plane (GP), are, at sub-parsec reso-
lution, the critical quantities needed to formulate
a global predictive model of the cycling process be-
tween the Galactic ISM and star formation. This
process drives the galactic ecology in normal spi-
rals as well as the enhanced star-formation rates of
starburst galaxies and mergers and a quantitative
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understanding of it is needed in order to follow
the formation and evolution of galaxies through-
out the cosmos. The adequate measurement of
these key quantities has been beyond the capabili-
ties of the previous mid- to far-infrared surveys of
the Galactic Plane (IRAS, Neugebauer et al. 1984;
MSX, Price et al. 2001; COBE/DIRBE and FI-
RAS, e.g. Sodroski et al. 1994; ISO, Omont et al.
2003; Spitzer, Benjamin et al. 2003; Carey et al.
2009) either due to limited wavelength coverage
and/or inadequate spatial resolution leading to
confusion. The balloon-borne BLAST experiment
(Pascale et al. 2008) implements Herschel/SPIRE
detector arrays and is providing exciting anticipa-
tions of what Herschel will do. The AKARI satel-
lite (Murakami et al. 2007) improves over IRAS,
and results from its FIR photometric mapping of
the GP are eagerly awaited.

Observing the distribution and temperature of
dust across the Galaxy will resolve many current
debates such as the modes of formation of molec-
ular clouds and high-mass stars.

Molecular clouds are traditionally thought to
follow a “slow formation” scheme, where dis-
tributed material is accumulated by large-scale
perturbations such as the passage of a spiral arm.
Shielding by dust and surface reactions on grains
promotes the Hi→H2 transition, which in turn
allows the formation of other molecules that cool
the cloud. Gravity, mediated by magnetic fields,
leads to star formation. In this scenario cloud life-
times are about ∼30 Myr (Leisawitz et al. 1989).
This picture has difficulty explaining the absence
of quiescent, non star forming GMCs (however,
see Palla & Galli 1997) and the continuous re-
generation of turbulence needed to support GMCs
for many crossing times. Alternatively, a “fast for-
mation” scenario has been proposed (Hartmann
et al. 2001) in which most MCs are transient,
short-lived structures (Stone et al. 1998; Padoan
& Nordlund 1999) created in the post-shock re-
gions of converging large-scale flows. Stars form on
very short timescales (Elmegreen 2000). However,
rapid MC formation requires rapid Hi→H2 con-
version (Goldsmith & Li 2005). Accelerated H2

formation requires either high-density pre-shock
conditions (n∼200 cm−3, T≤100K; Price et al.
2001), or strong turbulence (Glover & Mac Low
2007), higher than observed.

On the other hand, the formation of high-mass

stars and of the star clusters hosting them is likely
the most important process that shapes the forma-
tion and evolution of galaxies. Massive stars are
responsible for the global ionization of the ISM.
Their energetic stellar winds and supernova blast
waves direct the dynamical evolution of the ISM,
shaping its morphology, energetics and chemistry,
and influencing the formation of subsequent gen-
erations of stars and planetary systems. Despite
their importance, remarkably little is known about
how massive stars form (McKee & Tan 2003). We
lack a “fundamental theory” or, rather, a galaxy-
scale predictive model for star formation. One of
the main limitations to this goal is the lack of sta-
tistically significant and well-characterized sam-
ples of young massive stars in the various evolu-
tionary stages and environments on which a theory
can be based. In turn, this results from the diffi-
culty of gathering observational data on on a large
number of forming high-mass stars: they make up
only a very small fraction of the total number of
stars in the Galaxy, their early evolutionary phases
of massive stars are more rapid than those of low-
mass stars, they lie at large distance and form in
crowded environments.

There is thus a long list of questions that the
community has been addressing for some time, not
finding satisfactory answers. Here is an abridged
list:

• What is the temperature and density structure
of the ISM? How do molecular clouds form,
evolve, and how are they disrupted?

• What is the origin of the stellar initial mass
function (IMF)? What is its relationship to the
mass function (MF) of ISM structures and cloud
cores on all scales?

• How do massive stars and clusters form and
how do they evolve? What are the earliest
stages of massive star formation and what are
the timescales of these early phases?

• How do the Star Formation Rate (SFR) and Ef-
ficiency (SFE) vary as a function of Galacto-
centric distance and environmental conditions
such as the intensity of the Interstellar Radi-
ation Field (ISRF), ISM metallicity, proximity
to spiral arms or the molecular ring, external
triggers, and total pressure?
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Fig. 1.— Left panel: l− b plot of λ-rising SED IRAS sources; the straight thin line is the Galactic midplane.
The asterisks mark the median latitude of the sources computed in 10◦l bins. The thin lines delimit the
regions where 50% and 75% of |b| ≤ 5◦ IRAS sources are contained. Right panel: b-distribution of the same
IRAS sources in the |l| ≤ 60◦ region.

• Does a threshold column density for star forma-
tion exist in our Galaxy? What determines the
value of this possible threshold?

• What are the physical processes involved in trig-
gered star formation on all scales and how does
triggered star formation differ from spontaneous
star formation?

• How do the local properties of the ISM and the
rates of spontaneous or triggered star formation
relate to the global scaling laws observed in ex-
ternal galaxies ?

Using the Herschel telescope, the largest ever
in space, Hi-GAL, the Herschel infrared Galactic
Plane survey, will provide unique new data with
which to address these questions. Hi-GAL will
make thermal infrared maps of the Galactic Plane
at a spatial resolution 30 times better than IRAS
and 100 times better than DIRBE, from which a
complete census of compact source luminosities,
masses, and spectral energy distributions (SEDs)
will be derived. Source distances are a crucial pa-
rameter in this respect, and a dedicated effort will
be needed (see §4). Extraction of statistically sig-
nificant samples of star-forming regions and cold
ISM structures will be possible in all the environ-
ments of the Milky Way at all scales from massive
Young Stellar Objects (YSOs) in individual pro-
toclusters to complete spiral arms.

In the following we present the specific charac-
teristics of the survey as well as some of the sci-
ence outcomes that we expect to obtain with this
unique project.

2. Hi-GAL Observing Strategy

The area covered by Hi-GAL (| l |≤ 60◦, | b |≤
1◦) contains most of the star formation in the
Galaxy, and it is the one which offers the best
coverage in ancillary data which will be critical in
the scientific analysis (see §4). The b distribution
and extent of the survey is shown in Fig. 1 along
with the l − b plot of λ-rising SED IRAS sources
(F100 > F60 > F25 > F12) which are potential
YSOs. The Hi-GAL area (thick dashed lines in
that figure) represents the |b| ≤1◦ strip centered
on the midplane and contains about 80% of all
potential YSOs contained in |b| ≤ 5◦ strip, thus
encompassing most of the potential star formation
sites in the inner Galaxy.

The Herschel photometric cameras PACS (Poglitsch
et al. 2008) and SPIRE (Griffin et al. 2009) will
be used in parallel mode (pMode1) to maximize
survey speed and wavelength coverage. Due to the
instruments wavelength multiplexing capabilities,

1
In pMode the Herschel telescope is scanning the sky in

a raster fashion at constant speed while both PACS and

SPIRE acquire data simultaneously
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one pMode observation delivers maps at five dif-
ferent wavelengths: 70 and 170µm with PACS and
250, 350 and 500µm with SPIRE. Both cameras
cameras use bolometric detector arrays to map the
sky by scanning the spacecraft along approximate
great circles. Both instruments require their on
board sub-kelvin coolers to be recycled to provide
the detectors with the operating temperature re-
quired of about 0.3 K in each case. In pMode both
instruments are placed into their photometric ob-
serving mode with the detectors at their correct
operating temperature, i.e. both instrument cool-
ers are recycled, and data are taken from the five
arrays simultaneously as the spacecraft is scanned
across the sky.

PACS photometer FOV 
3.5’ x 1.75’ 

SPIRE  
photometer FOV 

8’ x 4’ 

+ Y 

+ Z 
(Sun direction) 

42.5° 42.5° 

Map scanning directions 

D
istance ! 21’ 

HERSCHEL FOV radius 14’.94 

Fig. 2.— The field of view of the PACS and SPIRE
instruments shown in the context of the Herschel
field of view as viewed in the co-ordinate system
of the spacecraft +Z refers to the axis towards the
Sun. The +X axis is along the telescope bore-
sight out of the page. The scan directions used to
map the sky are as indicated. The different photo-
metric channels of each instrument map the same
region of the sky.

The size and separation of the fields of view of
PACS and SPIRE are shown in Fig. 2 as viewed
in the spacecraft co-ordinate system. Although
the PACS array fully spatially samples the point
spread function from the telescope it still has gaps

between the sub-arrays, and the SPIRE arrays
only sparsely sample the sky. In order to make
fully spatially sampled maps it is necessary to scan
the SPIRE array at an angle of 42.5◦ with respect
to its short symmetry axis. Scanning at an angle is
also used for the PACS arrays to fill in for the gaps
between sub-arrays. To achieve redundancy in the
data and remove instrumental effects such as high-
frequency detector response, slow drifts in gain or
stray light, saturation and environmental (cirrus
confusion) effects it is also necessary to make at
least a second pass over the same region of the sky
using the other scan angle at −42.5◦ angle which,
quite conveniently, is nearly orthogonal to the first
one (see fig. 3).

The distance between each scan in parallel
mode is set by the size of the PACS array (being
the smaller of the two), and the effective length of
each leg of the raster takes into account the sep-
aration between the two fields of view. HSPOT,
the Herschel-SPOT observing tool2, automatically
calculates these parameters to ensure that the area
required is covered. The distance between scans is
approximately 155�� and the excess length of the
scan beyond the required length to cover the area
is typically 20�. An example of how the sky is cov-
ered in a Parallel Mode observation used in Hi-
GAL is shown in Fig. 3.

Fig. 3.— Sample AORs (Astronomical Observa-
tion Request) overlaid on the IRAS 100µm im-
age of a portion of the Galactic plane. From left
to right we show: both nominal and orthogonal
2.2◦x2.2◦ pMode AORs overlaid on one another.
The PACS-covered area is outlined in pink while
SPIRE is green.

2
ftp://ftp.sciops.esa.int/pub/hspot/HSpot download.html
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The strategy employed to cover the −60◦≤ l ≤
60◦, |b| ≤1◦ survey area is to conduct observations
with series of 55 2.2◦ ×2.2◦ square tiles with two
passes over each tile with the two above mentioned
scan angles (see Fig. 2). These tiles will be spaced
every 2◦, so that the overlap between tiles ensures
that no coverage gaps are introduced by different
tile orientation due to variable satellite roll angles
with time; fig. 3 shows a section of the galactic
plane with consecutive observing blocks overlaid
providing overlapping coverage.

Given the spatial separation required for PACS
in the pMode observations, the SPIRE data is
heavily oversampled and we cover a greater area
than required with each individual instrument
than would be required using them sequentially.
Although it might seem that sequential PACS and
SPIRE scan mode observations would be more ef-
ficient in fact the satellite overheads, set up, cal-
ibration and pointing acquisition, et cetera, mean
that it requires 30% more time to cover the same
area sequentially compared to using the pMode.

In order to cover the maximum area in the
shortest time Hi-GAL data will be taken at the
maximum possible scan speed for the satellite of
60 ��/sec. This implies a beam crossing time for
the short wavelength, 250 µm band of SPIRE of
3Hz well within the bandwidth available in the
detectors of 5 Hz. However, although the PACS
detectors have a similar response time the much
smaller point spread function will be smeared out
compared to that achievable with a slower scan.
Additionally because of the finite data transmis-
sion bandwidth between the Herschel satellite and
the ground, it is necessary to perform on-board
data compression for the PACS data which are
the most demanding in terms of number of pixels
(2048 for the 70µm array and 512 for the 170µm
array) at the frame acquisition rate of 40Hz. The
baseline configuration for the pMode is then to av-
erage on board groups of 8 frames at 70µm and 4
frames at 170µm. Since the telescope is contin-
uously scanning while acquiring, this coaddition
will result in a further degradation of the Point
Spread Function in the direction of the scan from
its original diffraction limited shape; the effect will
be more severe at 70µm where the degradation
should be of a factor two based on simulations.
This loss in imaging fidelity at the shortest wave-
length is considered acceptable for a survey like

Hi-GAL because, as discussed in the previous sec-
tion, our main focus is toward a large-scale picture
of the galaxy. Taking advantage of the orthogonal
cross scan observing strategy, we may be able to
recover some of the spatial resolution by careful
deconvolution during post processing.

2.1. Detection of compact sources

The SPIRE digital readout electronics impose
a limitation on the brightest sources that can be
observed for a given offset setting (DC voltage
removal) before digitization (SPIRE Instrument
Users Manual, 2007). This problem can be al-
leviated to some extent by choosing a bias set-
ting that gives the largest dynamic range per offset
range. Simulations of the effect of bias variation
show that setting a bias higher (∼3x) than the
predicted nominal value will approximately dou-
ble the dynamic range for most detectors under
the conditions likely to be found in orbit (tele-
scope temperature and emissivity and sky back-
ground). The same simulations show that a sig-
nificant (>10%) fraction of the SPIRE 250µm ar-
ray detectors will saturate on sources greater than
500 Jy. The situation is slightly more relaxed for
the 350 and 500µm arrays. We take the upper
limit of detectable sources in the SPIRE bands as
500 Jy/beam assuming that a strong source in-
strument setting is used. This setting is required
for all observations of bright regions/sources with
SPIRE and is not a special Hi-GAL configuration.
The saturation limits for PACS should be around
2000Jy at nominal bias, that will be used for the
Hi-GAL survey.

The 1-σ sensitivities provided by HSPOT, for a
single Astronomical Observation Request (AOR),
are 17.6 and 26.8mJy in the two PACS 70 and
170µm bands, and 12.8, 17.6 and 14.9mJy for
the SPIRE bands; co-addition of the orthogonal
scanning patterns will provide

√
2 better figures.

These sensitivities result from the adopted scan-
ning strategy designed to maximize redundancy
and map fidelity especially for large scale diffuse
structures. However, the limiting factor for the de-
tectability of sources and clouds will likely be cir-
rus confusion. Estimates based on recent BLAST
measurements (Roy et al. 2010) suggest values of
the order of 75, 140, and 160 mJy in the 170, 250
and 500µm Herschel bands for a representative re-
gion of the Galactic Plane at l=45◦; these values
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Fig. 4.— Flux expected in the 170, 250 and

500µm Herschel bands (color coded) from a 20M⊙
core (dust+gas) for different temperatures (differ-
ent symbols), as a function of distance in kpc.

The dashed lines represent the confusion noise ex-

pected in the three bands.

are greater than the detector sensitivities. Fig. 4

shows the expected flux from a 20M⊙ envelope as

a function of distance (in kpc) in each of three

bands above mentioned, and for three different
dust temperatures; we adopted β=2 and the dust

opacity from Preibisch et al. (1993). The hori-

zontal dashed lines (color-coded with wavelength)

represent the predicted confusion noises based on

BLAST images. Fig. 4 shows that we will de-

tect the representative 20M⊙ core everywhere in

the Galaxy except for very cold dust (T≤10K),

for which detectability is predicted to be limited

within a distance of about 5 kpc. We may then

conclude that cirrus confusion is not going to be

a problem for the investigations of the interme-

diate and high-mass star formation studies which

are the ”core science” of this project (see §3.3 and

3.4).

2.2. Detection of extended structures

The diffraction-limited instrument beams at all

wavelengths can be used to translate the confusion

noises reported in the previous section into bright-

ness units to investigate the detectability limits

expected for diffuse extended structures. Calcula-

tions of the expected brightness levels from opti-

cally thin dust as a function of temperature and H

column density (assuming gas/dust=100) are re-

ported in Fig. 5a,b for λ=170 and 500µm respec-

Fig. 5.— Brightness (in MJy/sr) of optically thin

dust as a function of temperature and column den-

sity at 170µm (top) and 500µm (bottom). The red

lines indicate the expected confusion noise.

tively, where the expected confusion noise levels

are also reported in red lines.

The figures show that with a typical confusion

noise of about 10 MJy/sr at 500µm it will be pos-

sible to detect most Infrared Dark Clouds (IRDCs,

see §3.2), where column densities are in the range

10
23
-10

25
cm

−2
. Less dense clouds with column

densities of the order of few 10
21
cm

−2
should be

easily detectable at levels of tens of MJy/sr at

170µm at temperatures as low as T∼20K. The

situation may be less simple in the regions closer

to the Galactic center. However, our broad spec-

tral coverage provides an important advantage

for measuring the temperature accurately, and
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for isolating structures and sources with tempera-
ture different from the standard diffuse ISM cir-
rus (∼20K). Besides, all of the above is based
on extrapolated estimates and we will provide the
definitive measurement of the cirrus confusion at
Herschel wavelengths and resolution.

2.3. Checks on photometric calibration

Virtually every block of the Hi-GAL survey will
contain secondary calibrators, either stars or other
well known objects, ensuring accurate checks of
the flux calibration of Hi-GAL data. Our base-
line calibration targets will be the 400 stars used
as calibrators for the Spitzer GLIMPSE-I/II sur-
veys. These are mostly A0-5V or K0-M0III stars,
although they also include ∼60 calibrators of hot
or warm dwarfs (B-G). In order to remove sources
with non-photospheric FIR emission we will make
predictions for the 24µm fluxes and then test for
excesses in the MIPSGAL data first. Once anoma-
lous sources are excluded we can extrapolate to the
FIR and create an initial set of calibrators.

We will also be able to obtain a reliable calibra-
tion for extended sources, which is one of the more
difficult parts of the nominal instrumental calibra-
tion activity. As part of the calibration scheme
we will compare fluxes in the SPIRE 500µm band
with fluxes from the same band of Planck-HFI in
suitable locations3.

3. Hi-GAL Key Science

3.1. The Distribution of the ISM Temper-

ature and the Intensity of the Inter-

stellar Radiation Field

At near-infrared wavelengths, the emission
from dust is produced by small particles whose
abundance varies significantly, being strongly de-
pleted by coagulation processes in the dense ISM
(e.g. Bernard et al. 1993; Abergel et al. 1994;
Stepnik et al. 2003). Far-infrared (FIR) emission
is produced by larger grains which are more sta-
ble and dominate the total dust mass and trace
all phases of the ISM. The ISM dust spectrum
peaks in the FIR where the Galaxy is transpar-
ent. FIR emission is therefore a reliable tracer
of the overall ISM column density structure in

3
many of the Hi-GAL Co-Is are also Planck Consortium

members

our Galaxy. Other phase-independent tracers in-
clude dust absorption and gamma-ray production,
where however the former can be used to sample
only the nearest 1 kpc, and γ-ray surveys currently
lack sensitivity and angular resolution.

Variations in the FIR emissivity (the ratio of
surface brightness to column density) are domi-
nated by the non-linear effects of dust temper-
ature through the Planck function. Fortunately,
the shape of the dust SED as measured by PACS
and SPIRE will be most sensitive to temperature
variations as the spectral bands sample the peak
of the Big Grain emission and the contribution
of Very Small Grains can be estimated from the
Hi-GAL data at 70µm and MIPSGAL at 24µm.
The dust temperature (Td) and its spatial varia-
tions will therefore be measured precisely. This
important parameter can be used, in conjunction
with complementary data from Planck, HI, CO,
Hα and γ-ray surveys , to estimate the strength
and spectral shape of the InterStellar Radiation
Field (ISRF), which is set by the stellar content
in a given region. So far, the dust temperature in
the Galactic Plane has been mapped over limited
regions using IRAS (Kim et al. 1999, Douglas &
Taylor 2007, and over the entire Plane at a resolu-
tion of 40� (Lagache et al. 1998) using DIRBE. Hi-
GAL will improve with respect to the latter by a
factor of about 100 in linear scales. It will trace the
local radiation field on scales relevant to star for-
mation, and provide mass estimates even at large
distances. In the case of the dense medium, deter-
mining the 3-D distribution of the ISRF strength
and spectral shape in a given cloud will require
radiative transfer modeling. This is possible, even
for complex geometries, using Monte-Carlo codes
(e.g. Juvela & Padoan 2003). Using such codes,
the equilibrium dust temperature Td and the dust
emission can be predicted at any 3D location in
the cloud. Integration along the line-of-sight in
turn allows to predict 2D emission maps.

3.2. Molecular cloud formation

About a quarter of the mass in the ISM is in
molecular form (Blitz 1997) and most of that ma-
terial resides in giant molecular clouds (GMCs).
Since GMCs are also the dominant sites of star for-
mation, understanding their origins and evolution
is essential to our understanding of the Galactic
environment.
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Fig. 6.— Model of a typical IRDC after Stamatellos et al. (2004) at seven different wavelengths illustrates
the importance of the Herschel wavelength coverage and resolution (at 2 kpc the linear extent is 5�) to obtain
measurements of IRDCs in emission.

In combination with molecular line surveys, Hi-
GAL will provide the data needed to derive basic
physical properties of GMCs. We will detect and
characterize cold structures in the inner GP and
classify them based on star formation activity. De-
tection statistics for clouds with different temper-
atures and degree of star formation activity will
provide the fraction of quiescent vs star-forming
clouds. It will thus be possible to constrain the
properties and lifetimes of GMCs in our Galaxy
and to compare with the predictions of fast evo-
lution of molecular clouds (Hartmann et al. 2001)
or a more traditional slow evolution of star for-
mation in our Galaxy (Shu et al. 1987). Varia-
tions with Galactocentric radius will determine if
the slow/fast scenarios are mutually exclusive or
reflect different initial/environmental conditions.
A large-area survey like Hi-GAL will provide the
needed statistical significance in all mass bins, es-
pecially at the high-mass end, and in a variety of
Galactic environments.

Direct detection of cold (i.e. T<20 K) dust
which could be the quiescent counterparts to
GMCs, is difficult (Sodroski et al. 1994; Reach
et al. 1995; Lagache et al. 1998) either because

of insufficient wavelength coverage (e.g. IRAS) or
inadequate spatial resolution (DIRBE, FIRAS).
CO observations are problematic due to molecu-
lar freeze-out onto grains (Flower et al. 2005), or
photo-chemical effects in low-metallicity environ-
ments (Bot et al. 2007). The recent detection of
very cold clumps in the GP with Archeops (Désert
et al. 2008), confirms the FIR and submm con-
tinuum as the best tool to trace cold ISM compo-
nents. Notable examples are Infrared Dark Clouds
(IRDCs) and Hi Self-Absorption (HISA) clouds.

IRDCs are structures initially discovered as ex-
tinction features against the bright mid-IR Galac-
tic background, and soon verified to exhibit prop-
erties similar to molecular clouds. Their prop-
erties (n > 105 cm−3, NH ∼ 1022 − 1024 cm−2

and T < 25K - Egan et al. 1998; Carey et al.
2000, R ∼ 5 pc and M ∼ 103 M⊙Simon et al.
2006; Rathborne et al. 2006) suggest that they are
the precursors of cluster-forming molecular clumps
like Orion. Thus, IRDCs are ideal for the study of
the pristine, undisturbed physical conditions that
may produce massive stars and clusters. IRDCs
have only been detected against the bright Galac-
tic mid-IR background (mostly for |l| ≤ 30◦); their
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true Galactic distribution is unknown. Modeling
of IRDCs in the IR and submm (Fig. 6, Stamatel-
los et al. 2004) proves Herschel’s unique ability to
detect them and to measure their SEDs. IRDCs,
with τ200µm ≥ 1, are not detectable by either
IRAS or Spitzer. Hi-GAL will provide a defini-
tive inventory of cold dust and potential sites of
massive star cluster formation everywhere in the
inner GP.

HISAs are traced by cold Hi gas seen in absorp-
tion against a background of warm Hi emission
(Gibson et al. 2000, 2005; Goldsmith & Li 2005);
they may provide additional clues to the formation
of molecular clouds. When compared with molec-
ular tracers, these cold (relative to the ambient
neutral medium) and relatively quiescent (∆v ∼
1− 3 kms) clouds show a wide range of Hi/H2 ra-
tios (Li & Goldsmith 2003; Klaassen et al. 2005)
which suggests that they might be Hi→H2 con-
version sites. Detailed studies of their FIR→mm
SED shapes can help clarify this issue, providing
evidence for the grain types necessary for a reason-
able Hi→H2 formation timescale (Goldsmith & Li
2005).

3.3. Timeline of high-mass star formation

The paradigm for the formation of solar-type
stars via accretion through a circumstellar disk
(Shu et al. 1987) predicts an evolution from cores
to protostars and, finally, pre-main sequence stars
that is well matched with distinctive characteris-
tics of their SEDs (Lada & Wilking 1984; Andre
et al. 1993). The empirical classification of the
SED of low mass YSOs has thus been used as a
powerful tool to constrain theoretical models.

Higher mass stars reach the conditions for H-
burning faster than the time required to assemble
them, so that winds and radiative feedback will
strongly influence accretion and may limit the fi-
nal mass of the star (Zinnecker & Yorke 2007).
However, since massive stars exist, several theories
have been proposed to solve this puzzle including
accretion from a disk, a very high-pressure ambi-
ent medium, ”flashlight effect” (Yorke & Sonnhal-
ter 2002; McKee & Tan 2003), competitive ac-
cretion, or coalescence (e.g. Stahler et al. 2000).
Application of SED-based classification tools, and
evolutionary diagnostics like the Menv-Lbol dia-
gram which relates the bolometric luminosity of
a YSO to the mass of its envelope (Molinari et al.

2008), to a large sample of luminous protostar can-
didates in the GP will define a timeline for the
various phases of massive star formation that will
constrain the theories and lead to new estimates of
the SFR. Clearly the source distance is the crucial
parameter here; we are collecting the information
from the major molecular line surveys over the in-
ner Galactic Plane, while planning to undertake
additional surveying activities at a variety of fa-
cilities in several high-density tracers to get addi-
tional data (see §4 for more detail).

An evolutionary sequence for massive YSOs
has been proposed (cold massive cloud core; Hot
Molecular Core with outflow; IR-bright massive
YSO; ultracompact (UC) Hii region, e.g. Evans
et al. 2002; Kurtz et al. 2000) but it is qualitative
and based on small and possibly incomplete sam-
ples. Samples of bright and massive YSOs (Moli-
nari et al. 1996; Sridharan et al. 2002; Hoare et al.
2004) are IRAS or MSX selected and tend to suf-
fer from age biases and confusion which prevent
firm quantitative conclusions. A phase of intense
and accelerating accretion prior to H-burning igni-
tion, that may be observable (e.g. Molinari et al.
1998) in the form of dense condensations devoid
of IR as well as radio continuum emission, seems
confirmed by recent large mm surveys (Beltrán
et al. 2006; Hill et al. 2005). Millimeter contin-
uum alone, however, cannot distinguish between
pre-collapse condensations and rapidly accreting
cores; Hi-GAL will use the full potential of Her-
schel wavelength coverage and spatial resolution to
trace the SED peak of dust envelopes in all phases,
from massive pre-stellar condensations to UCHii
regions. An angular resolution of 30�� or less,
typical of Hi-GAL, has been proven (e.g. Moli-
nari et al. 2008) to be the key to building accu-
rate SEDs, deriving reliable luminosities for mas-
sive YSOs, and distinguishing embedded UCHiis
strongly emitting in the Mid-IR and radio from
pre-UCHiis (Fig. 7).

The abundance of high-mass YSOs per mass
bin in the various evolutionary phases will provide
an estimate of the duration of each phase. This
timeline can be directly compared with the pre-
dictions of various models, and together with the
YSO mass function, will be used to infer the SFR.
As an example, using current estimates for SFR
and IMF (McKee & Williams 1997; Kroupa 2001),
and a 105 yr period to assemble a massive star
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Fig. 7.— Mid-IR 21µm MSX images for a candidate precursor of a Hot Core (IRAS23385+6053, left),
and a UCHii (IRAS05137+3919, right). Full and dashed contours represent the millimeter (cold dust) and
radio (jet) continuum emission (from Molinari et al. (2008)). Hi-GAL will complement these with similar
resolution FIR data.

(McKee & Tan 2003) , we expect ≥ 1000 FIR/sub-
mm objects with M>15M⊙ in the Galaxy, and
only ∼180 objects with M>50M⊙. Recent mil-
limeter surveys in the Cyg X region (Motte et al.
2007) confirm the rarity of such massive precursors
and strengthen the need for a systematic unbiased
search.

3.4. Bridging the Gap between Global and
local star formation

Galactic phenomenology currently invokes an
indeterminate mixture of spontaneous and trig-
gered star formation. Triggering agents include
radiation pressure from OB stars (Sugitani et al.
1989), compression by expanding Hii regions
(Elmegreen & Lada 1977; Deharveng et al. 2005),
or fragmentation of supershells by multiple su-
pernovae in OB associations (McCray & Kafatos
1987). On larger scales we still do not know if
spiral density waves actively induce star forma-
tion (e.g., Elmegreen 2002) or simply assemble
star-forming regions, with local feedback and trig-
gering becoming more important within the arms

(Sleath & Alexander 1996). The mean SFE of
a galaxy can increase (up to 50 times) in star-
bursts (Sanders et al. 1991) and galaxy mergers
due to strong feedback effects, a process observed
in miniature in Galactic star-forming regions (e.g.
Moore et al. 2007). Whether the IMF depends on
local triggering and other environmental factors is
unclear.

Hi-GAL will enable quantitative analysis based
on basic observables - the luminosity functions of
YSOs, the mass function of dense star-forming
structures and quiescent clouds. Hi-GAL will pro-
vide the essential context of high-mass star for-
mation, as it relates to molecular gas, Hi gas,
stars, Hii regions, OB associations, SNRs and spi-
ral arms. Theoretical models and numerical sim-
ulations will be tested in multiple ways. We will
discover whether a local triggering agent is nec-
essary for high-mass star formation or if a spiral
arm is sufficient, clarifying the differences between
spontaneous and triggered star formation. We will
quantify the relationship between the interaction
strength (estimated using available data from an-
cillary surveys) and the resulting increase in SFE
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above the spontaneous rate. By locally relating
the SFR to the properties of the ISM we will probe
star formation thresholds as a function of envi-
ronment and spatial scale, and possibly unveil the
mechanism giving rise to global Schmidt-like scal-
ing laws. We will determine the dominant physical
process underlying triggering.

3.5. Serendipitous Science

The 5-band FIR images and source catalogues
provided by Hi-GAL will allow research in many
fields that can only be partially anticipated. A
detailed description of the specific outcomes in all
these fields goes beyond the scope of the present
paper. These aspects will of course be the object of
dedicated publications to be released in due time.
In the following we list some of the possible by
products of Hi-GAL :

• An input catalogue for ALMA: we expect to de-
tect some 200-400 objects per tile, most of which
will mark very cold objects to be studied at all
possible wavelengths;

• complete characterization of the Galactic fore-
ground in the Far-IR and submillimeter, critical
for the correct interpretation and modeling of
cosmological backgrounds;

• Dust formation and destruction in supernovae
remnants

• Debris dust disks around main sequence stars,
with unbiased statistics on frequency and mass
as a function of star age

• Evolution of dust properties, especially around
AGB stars, the factories of cosmic dust;

• Detection of detached dust shells around first
ascent giant stars to investigate missing mass in
AGB envelopes;

• Detection of multiple shells around AGB stars,
post-AGB objects and planetary nebulae, as
well as around various classes of interacting bi-
naries;

• Detection of ejecta shells and swept-up ISM
bubbles around massive stars, providing a com-
plete census of WR and LBV stars;

• Extinction maps to aid in correcting Near-IR
galactic star counts;

• Detection of Solar system objects via compari-
son of cross-linked rasters: in particular the de-
tection of asteroids will be very interesting for
studies of the albedo

• Nearby Low-Mass SFRs in the GP: Herschel will
detect many nearby star forming regions and
individual YSOs.

4. Hi-GAL and its place in the context of

the Multi-Wavelength Milky Way

PACS and SPIRE are unique in tracing the
peak of the Spectral Energy Distribution (SED) of
cold dust and, hence, temperatures and luminosi-
ties of both star-forming complexes and the ISM,
at resolutions unmatched by any previous instru-
ments. However, the full potential of the Hi-GAL
survey will be realised in the context of the other
unbiased Galactic Plane surveys which are shaping
our understanding of the Galactic ecosystem. A
suite of surveys in the mid- and far-infrared contin-
uum, ISOGAL (Omont et al. 2003), MSX (Price
et al. 2001), GLIMPSE (Benjamin et al. 2003),
MIPSGAL (Carey et al. 2005), IRAS (Neugebauer
et al. 1984) and Akari (Murakami et al. 2007), has
been and will be complemented by surveys in the
submillimeter and millimeter spectral range in-
cluding the BGPS survey with Bolocam at 1.1mm
(Rosolowsky et al. 2009), the ATLASGAL survey
currently underway with the LaBoCa camera at
APEX (Schuller et al. 2009), and the SCUBA2
JPS survey beginning in 2010 (Fig. 8).

BLAST and AKARI have wavelength cover-
age and resolution not too different form PACS
and SPIRE. However, BLAST has been used to
map limited portions of the GP while results from
AKARI photometric imaging of the GP are not
yet found in the literature.

Hi-GAL will be the scientific keystone of this
suite of surveys, completing the continuous cov-
erage of the dust continuum over three orders of
magnitude in wavelength at sub-30�� resolution,
and allowing the measurement of dust tempera-
tures and luminosity over the inner Galactic Plane.

An extensive plan for radio spectroscopic cross-
correlation and follow up of the Hi-GAL survey
has been devised. The top priority is for radio
spectroscopic observations to obtain distance esti-
mates for detected sources and structures. CO and
13CO data at sub-arcminute spatial resolution are
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Fig. 8.— Wavelength-longitude coverage plot for
photometric (green) and spectroscopic (blue) ex-
isting or planned GP surveys for the next decade.
Hi-GAL (red) fills the critical gap where the ISM
dust emission peaks, between MIPSGAL and the
SCUBA2/LaBoCa/Bolocam surveys.

available via the IGPS for the first Galactic Quad-
rant (QI); lower resolution CO data are available
from the NANTEN survey (QIV). Should CO res-
olution not be sufficient, e.g. in case of very cold
cores with CO depletion, we plan extensive follow-
up programs (e.g. N2H+, NH3) at the Mopra 22m
antenna (Australia) for QIV, and at Green Bank,
Effelsberg, Medicina and Onsala for QI. HI is also
available for QI and IV at sufficient resolution
from the IGPS to help resolve the distance am-
biguity in the inner Galaxy Busfield et al. 2006.
Hα VPHAS+IPHAS surveys will be also used.

In addition to the kinematic distance estimates,
we plan to use NANTEN2, Mopra and APEX
for detailed multiline studies of evolution-sensitive
chemical tracers (N2H+, NH3, CS, HCN, CH3OH,
CH3CN, etc.) toward clouds and objects discov-
ered by Hi-GAL. Hi-GAL catalogues will be the
primary source of major future high spatial reso-
lution follow ups in the sub-mm with ALMA; in
the meantime such programs will be attempted us-
ing the SMA interferometer through Legacy class
proposals.

5. Data Processing and Products

It is relatively easy to translate our scientific
goals into a clear set of requirements on the data
processing: we require that the dust continuum

emission be detectable, and accurately measur-
able, at all bands over the broadest range in sig-
nal levels (down to the confusion limit) and spa-
tial scales. The observing strategy is carefully de-
signed to that effect, but ensuring that this infor-
mation is properly extracted from the data stream
over a 240 sq.deg. area is a formidable challenge.
We will use the Herschel Interactive Processing
Environment (HIPE) for all those processing steps
dealing with fundamental instrumental calibration
and issues, but we anticipate areas where a ded-
icated set of specialised tools can take advantage
of the homogeneous observing strategy and deliver
higher quality results compared to the standard
pipeline products; pointing refining, map-making,
source extraction and photometry are examples.

We will make available a set of data products
which will include maps and compact source cat-
alogues at the five Hi-GAL wavelengths. These
products will be made available after the end of
observations (EoO) for the entire survey via in-
cremental releases.

Improved reprocessed maps and source cata-
logues will be subsequently made public, together
with a first release for an extended source cata-
logue. All public deliveries will be accompanied
by an Explanatory Supplement.

In addition to this minimum set of products,
quite standard for any large-scale survey like Hi-
GAL, we plan to make available to the community
a set of scientific value-added products which will
be created during our scientific analysis, including
band-merged catalogues integrated with data from
continuum surveys at adjacent wavelength, color
maps, source-subtracted maps. The public access
to this final set of products is foreseen for EoO+42
months.

6. Conclusions

Hi-GAL is an Open Time Key Project to be
performed with the 3.5m orbiting Herschel tele-
scope, to map photometrically the inner Milky
Way (| l |< 60◦, | b |< 1◦) in five wavebands
between 70µm and 500µm simultaneously, using
∼350 hours of observing time. The unique com-
bination of survey speed, high sensitivity, high
spatial resolution and wavelength coverage (across
the peak of the dust emission) make Hi-GAL the
first dedicated project to study the early phases
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of GMC- and high-mass star formation in the
Galaxy, with a legacy value similar to the IRAS
mission some 20 years ago. The outcomes of Hi-
GAL will consist of source lists and images to be
released in due course after EoO.

We are grateful to all the people who made
the building and launch of Herschel such a suc-
cess. In particular ESA and the Herschel Project
Scientist G. Pilbratt, and the instrument teams
of PACS and SPIRE magnificently led by A.
Poglitsch (MPE, Garching) and M. Griffin (Univ.
of Cardiff).

Facilities: Herschel, SPIRE, PACS.
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Appendix C

caravela input parameter file

The next lines form the parameter file used in model M for the IRAS 100µm band,

chapter 3. This was the best-fit model found in cited results chapter.

NUMBER_SOURCES_POP_1 0.0

OBJS_LINEAR_SIZE_SCALE_MU_POP_1_AU 5.0e5

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_1_AU 5.0e4

R_AVERAGE_POP_1_KPC 4.0

R_SIGMA_POP_1_KPC 0.4

Z_RANGE_POP_1_KPC 0.05

Z_MAX_POP_1_KPC 0.0

TEMPERATURE_MU_POP_1_K 30.0

TEMPERATURE_SIGMA_POP_1_K 3.0

NU_0_MU_POP_1_HZ 1.8e13

NU_0_SIGMA_POP_1_HZ 0.0

BETA_MU_POP_1 2.0

BETA_SIGMA_POP_1 0.0
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SPIRAL_FLAG_POP_1 1.0

SPIRAL_N_ARMS_POP_1 4.0

SPIRAL_A_ARM_1_POP_1 3.0

SPIRAL_B_ARM_1_POP_1 0.2493

SPIRAL_LENGTH_POP_1 30.0

SPIRAL_WIDTH_SIGMA_POP_1 0.2

NUMBER_SOURCES_POP_2 0.0

OBJS_LINEAR_SIZE_SCALE_MU_POP_2_AU 5.0e5

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_2_AU 5.0e4

R_AVERAGE_POP_2_KPC 4.0

R_SIGMA_POP_2_KPC 0.4

Z_RANGE_POP_2_KPC 0.05

Z_MAX_POP_2_KPC 0.0

TEMPERATURE_MU_POP_2_K 10.0

TEMPERATURE_SIGMA_POP_2_K 1.0

NU_0_MU_POP_2_HZ 1.8e13

NU_0_SIGMA_POP_2_HZ 0.0

BETA_MU_POP_2 2.0

BETA_SIGMA_POP_2 0.0

SPIRAL_FLAG_POP_2 1.0

SPIRAL_N_ARMS_POP_2 4.0

SPIRAL_A_ARM_1_POP_2 3.0

SPIRAL_B_ARM_1_POP_2 0.2493

SPIRAL_LENGTH_POP_2 30.0

SPIRAL_WIDTH_SIGMA_POP_2 0.2
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NUMBER_SOURCES_POP_3 4.0e4

OBJS_LINEAR_SIZE_SCALE_MU_POP_3_AU 5.0e6

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_3_AU 5.0e5

R_AVERAGE_POP_3_KPC 4.0

R_SIGMA_POP_3_KPC 0.4

Z_RANGE_POP_3_KPC 0.05

Z_MAX_POP_3_KPC 0.0

TEMPERATURE_MU_POP_3_K 40.0

TEMPERATURE_SIGMA_POP_3_K 1.0

NU_0_MU_POP_3_HZ 1.8e13

NU_0_SIGMA_POP_3_HZ 0.0

BETA_MU_POP_3 2.0

BETA_SIGMA_POP_3 0.0

SPIRAL_FLAG_POP_3 1.0

SPIRAL_N_ARMS_POP_3 4.0

SPIRAL_A_ARM_1_POP_3 3.0

SPIRAL_B_ARM_1_POP_3 0.2493

SPIRAL_LENGTH_POP_3 30.0

SPIRAL_WIDTH_SIGMA_POP_3 0.2

NUMBER_SOURCES_POP_4 4.0e4

OBJS_LINEAR_SIZE_SCALE_MU_POP_4_AU 4.123

OBJS_LINEAR_SIZE_SCALE_SIGMA_POP_4_AU 4.12e2

R_AVERAGE_POP_4_KPC 4.0

R_SIGMA_POP_4_KPC 0.4
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Z_RANGE_POP_4_KPC 0.05

Z_MAX_POP_4_KPC 0.0

TEMPERATURE_MU_POP_4_K 10.0

TEMPERATURE_SIGMA_POP_4_K 1.0

NU_0_MU_POP_4_HZ 1.8e13

NU_0_SIGMA_POP_4_HZ 0.0

BETA_MU_POP_4 2.0

BETA_SIGMA_POP_4 0.0

SPIRAL_FLAG_POP_4 1.0

SPIRAL_N_ARMS_POP_4 4.0

SPIRAL_A_ARM_1_POP_4 3.0

SPIRAL_B_ARM_1_POP_4 0.2493

SPIRAL_LENGTH_POP_4 30.0

SPIRAL_WIDTH_SIGMA_POP_4 0.2

IMAGE_WAVELENGTH_MICRONS 100.0

IMAGE_SIZE_X_DEGREES 1.0

IMAGE_SIZE_Y_DEGREES 0.0

IMAGE_CENTRAL_POSITION_LAT_DEGREES 0.0

IMAGE_CENTRAL_POSITION_LONG_DEGREES 40.0

OVERLAP_FRACTION_X 1.0

OVERLAP_FRACTION_Y 1.0

INDIV_IMAGES_LINEAR_SIZE_X_DEGREES 2.0

INDIV_IMAGES_LINEAR_SIZE_Y_DEGREES 2.0

AUTO_RESOLUTION_FLAG 0.0

IMS_SCALE_PIXELS_PRE_DEGREE_X 180.0
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IMS_SCALE_PIXELS_PRE_DEGREE_Y 180.0

PROJECTION_TYPE_FLAG 1.0

INSTRUMENT_RESOLUTION_ARCMIN 0.5

NOISE_SKY_LEVEL_MJY_SR 0.0

NOISE_SKY_ERROR_MJY_SR 0.04

RING_IMAGES 1.0

RING_1_MIN 0.1

RING_1_MAX 4.0

RING_2_MIN 4.0

RING_2_MAX 5.6

RING_3_MIN 5.6

RING_3_MAX 7.2

RING_4_MIN 7.2

RING_4_MAX 8.9

RING_5_MIN 8.9

RING_5_MAX 14.0

RING_6_MIN 14.0

RING_6_MAX 17.0

MF_A_1 0.3

MF_B_1 1.0

MF_A_2 1.2

MF_B_2 1.79

A description of each input parameter is present in section 2.5, page 34.
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Fournon, I., Pierre, M., Puetter, R., Stacey, G., Castro, S., Polletta, M. d. C.,

Farrah, D., Jarrett, T., Frayer, D., Siana, B., Babbedge, T., Dye, S., Fox, M.,

Gonzalez-Solares, E., Salaman, M., Berta, S., Condon, J. J., Dole, H., and Ser-



145 BIBLIOGRAPHY

jeant, S. (2003). SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey.

PASP , 115, 897–927.

Mac Low, M.-M., Toraskar, J., Oishi, J. S., and Abel, T. (2004). Ultracompact H

II Regions Formed by Gravitational Collapse in Expanding Shells of Larger H II

Regions. In Bulletin of the American Astronomical Society , volume 36 of Bulletin

of the American Astronomical Society , pages 1574–+.

Massey, P. (1999). Massive stars in the mcs: What they tell us about the imf,

stellar evolution, and upper mass cutoffs. New Views of the Magellanic Clouds,

IAU Symposium no 190 .

Massey, P. and Hunter, D. A. (1998). Star formation in r136: A cluster of o3 stars

revealed by hubble space telescope spectroscopy. Astrophysical Journal , 493.

Meyer, M. R., Adams, F. C., Hillenbrand, L. A., Carpenter, J. M., and Larson,

R. B. (2000). The stellar initial mass function: Constraints from young clusters,

and theoretical perspectives. Protostars and Planets IV .

Molinari, S. and the Hi-GAL Team (2009). Global star formation in the Milky

Way with Hi-GAL, the Herschel infrared Galactic Plane Survey . Memorie della

Societa Astronomica Italiana, 80, 111–+.

Molinari, S., Swinyard, B., Bally, J., Barlow, M., Bernard, J., Martin, P., Moore,

T., Noriega-Crespo, A., Plume, R., Testi, L., Zavagno, A., Abergel, A., Ali, B.,
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Opinionum commenta delet dies, naturae judicia confirmat.

[Time erases the comments of opinion, but it confirms the judgements of
nature.]

Cicero




