DIVISION OF COMPUTER SCIENCE

To Whom am I Speaking?
Remote Booting in a Hostile World

Mark Lomas
Bruce Christianson

Technical Report No.178

January 1994

To Whom am I Speaking?
Remote Booting in a Hostile World.

Mark Lomas

(tmal@cl.cam.ac.uk)
Computer Laboratory, University of Cambridge, England, Europe

Bruce Christianson
(B.Christianson@herts.ac.uk)

School of Information Sciences, Hatfield Campus, University of Hertfordshire, England, Europe

January 1994

Abstract. We consider the problem of booting a workstation across a network. We allow
“maintenance” (that is, change without notice by untrusted parties such as adversaries
and system managers) to be freely performed upon the network, the workstation, and the
remote boot service itself. We assume that humans are unable to recognise long sequences
of independent bits such as cryptographic keys or checksums reliably, but can remember
passwords which have been sufficiently poorly chosen to succumb to guessing attacks. We
also assume that a part of the workstation hardware (including a small amount of ROM)
can be physically protected from modification, but that the workstation cannot protect
the integrity of any mutable data, including cryptographic keys (which must change if a
secret is compromised.)

Nevertheless, we are able to provide strong guarantees that the code loaded by the
remote boot is correct, if the boot protocol says it is. The removal of maintenance and other
attacks upon system integrity then becomes desirable in order to improve performance,
rather than as a pre-requisite for ensuring correct behaviour.

Our approach makes essential use of a hash function which is deliberately chosen so as
to be rich in collisions, in contrast with prevailing practice.

1. Introduction and Summary. We consider the problem of securely booting a
relatively stateless workstation in a potentially hostile environment. By secure booting we
mean that the user initiating the boot requires a high degree of justified confidence that the
code loaded into the workstation as a result of the boot is code that the initiating user trusts
to act correctly’. By relatively stateless, we mean that the workstation, while unattended,
is not able to preserve with any degree of reliability the integrity of any mutable data (ie
data which can potentially be changed without replacing the hardware.) In particular, we
cannot rely upon the workstation to preserve the integrity of a secret such as a password or
cryptographic key, since a secret is potentially subject to compromise and hence is liable to
change. We also assume that the initiating user, being human, cannot reliably recognise or

In the present context, this means that the user is prepared to bear the risk of the right code acting
wrongly, but not to bear the risk of the wrong code being loaded.

1

remember a well chosen (ie high entropy) key, whether completely private, shared sccret,
or public.

On the positive side, we do assume that the user can remember a poorly chosen (ie
low entropy) password, that the user can force the workstation into a known initial state
at will, that the workstation CPU and memory hardware can be trusted by the user to
act correctly?, and that the workstation can maintain the integrity of a small amount
of immutable code (including a hash function and a driver for a secure keyboard), and
hence can preserve the secrecy of a password entered from the keyboard (by forgetting the
password prior to transferring control to any mutable code, including boot code.)

By a potentially hostile environment we mean that we make no assumptions about
the integrity of the rest of the system. We allow the network to which the workstation
is attached, and all the services accessed across the network, to be subject to passive or
active interference by chance or by deliberate attack. In addition, we do not rely on the
integrity of any boot code loaded locally into the workstation, including such things as
network device drivers.

We show how to perform a secure boot under these conditions. Our approach makes
essential use of a hash function which is deliberately chosen so as to be rich in collisions.
This contrasts with the practice of constructing hash functions so as to be as free as possible
from collisions, which has been the historical practice when secrecy rather than integrity
is at stake.

2. The Problem. Consider the following problem. We have a number of workstations,
possibly in a public area3, each of which may be used by a number of different, and possibly
mutually suspicious, users. Each user has an operating system kernel (which may include
access to a security policy service) which they trust for certain purposes, and which the
user wishes to be certain is running on-any workstation which they are using for as long as
they are using it for that purpose. But there need be no global kernel which is trusted by
all users for all purposes, or indeed by all users for any single purpose, and even a single
user may require to use a number of different kernels, which are trusted by that user for
different purposes.

The workstations are assumed to be tamperproof and initializable, in the sense that the
keyboard, CPU, RAM and ROM hardware all functions correctly? , the initial contents of
the ROM cannot be changed (neither by the user nor by anybody else under any circum-
stances) and there is a conceptual large red button which the user can press which has the
effect of setting the program counter to a fixed address in ROM and disabling any other
interrupts or untrusted hardware components such as DMA communications and storage
devices.

%Ie that the user has good reason while using the workstation to believe that the right hardware is in
the workstation, and is prepared to bear the risk of the right hardware acting wrongly. For the purpose
of this paper we regard the problems of ensuring physical hardware integrity as separate from those of
ensuring software integrity.

3A large number of locations must be regarded as effectively public for this purpose, including most
people’s homes and offices.

4“Functions correctly” is here used as a euphemism for “functions the way it did when the manufacturer
tested it”.

If there were a legitimate way of changing the contents of ROM, then there would
be a potential attack corresponding to misuse of the change method. Apart from conve-
nience of maintenance®, our assumption that the ROM cannot ever be changed provides
automatic protection against any such attack. We shall show below that this apparently
very restrictive tamper proofing assumption need not actually cost anything in the way of
convenience, whereas it does allow us to guarantee the user a high level of integrity.®

We assume that the kernel which a particular user wishes to use cannot be placed in
ROM. This could be because the kernel is too big to fit, or because all the kernels available
to be used by all the users are collectively too big to fit, or because the user wishes to be
free to change to using a new kernel (or a new version of an old kernel) without altering
the ROM (which by our assumptions would require alteration of the hardware.)

Therefore the workstation must download the kernel from somewhere else, for instance
from a boot service accessed across a network to which the workstation is attached. How
can we ensure that the code which we download is a true copy of the code which the user
wishes to use?

3. Solution Strategies. The most obvious approach to the problem involves securing
the entire network including all the boot servers. But even this would require the network
addresses of all possible boot servers to be hardwired immutably into ROM at start of day.
We shall show that this approach is not only impractical, but unnecessary.

An alternative is to adopt an end-to-end approach ([5]) and try to check that the code
loaded (by whatever means) is correct prior to passing control to it. As we shall see,
this approach has the added benefit that the user does not need to trust the boot code
(including drivers) responsible for downloading the kernel, which can therefore be placed
in RAM and changed (maintained) at will.

The simplest way of realizing this approach is to precalculate a checksum (hash) of
the correct kernel code, and to check that the loaded code has the correct hash. But
how can we be sure at boot time what the correct checksum is? If the checksum is long
enough and sufficiently collision free to provide a strong guarantee of integrity, then by
our assumptions neither the user nor the workstation can be relied upon to remember the
checksum, since the checksum has high entropy and changes periodically when the kernel is
updated by some party whom the user regards as competent to do so”. And it is not safe to
store and download the checksum with the kernel code, since the hash function is publicly
available and an attacker could therefore modify the kernel and recalculate the appropriate
hash value. We could require the hash value to be signed by the party responsible for
maintaining that particular kernel, for example using a public-key cryptographic system
such as RSA, but neither the user nor the workstation can be relied upon to remember
the appropriate public key, since this key has high entropy and will change abruptly if the
keyholder believes their private key to have been compromised.

SThere may be thousands of workstations.

6Provided that whatever protects the workstations from theft also protects their hardware from modi-
fication. This was not at one stage the case in the public area of the Computer Laboratory at Cambridge
University: the anti-theft device allowed access to the workstation processor and students were able to
insert an emulator which captured other users’ passwords.

"It may be that the only such party is the user.

Some security could be provided by using a poorly chosen (low entropy) unshared
secret, which we call a password, and which we assume is known only to a single user, and
is used by them only for this purpose. The user can employ this password to maintain the
integrity of a piece of data to be downloaded (data such as a checksum or a public key)
as follows. First the user must obtain by some means an authentic copy of the data to
be protected against modification. Next, the password is hashed together with the data
in some way to produce a checksum. (For example, the password could be prepended
to the data and the result hashed to give the checksum. Alternatively, the data could
be hashed and then the hash encrypted, using the password as a secret key, to give the
checksum.) Finally, this checksum is appended to the data. At the time when the data is
downloaded, if the checksurmn calculated using the password matches that appended to the
data, then there is a high probability that either the password is compromised or the data
is unmodified.

Unfortunately, the first of these possibilities is quite likely if we use a conventional
collision free hash function. A determined opponent can make an offline guessing attack
by downloading the data and then repeatedly guessing the password and calculating the
checksum. Since the hash function is collision free, a match indicates to the opponent
a high probability that the password has been correctly guessed. Since the password is
poorly chosen, an exhaustive search within the computational resources of the opponent
is likely to succeed. The opponent is then able to modify the data in a way that will not
readily be detected by the protocol in operation at the workstation.

However we can defeat this attack by using a different type of hash function, deliberately
chosen so as to provide a large number of collisions. The idea is to ensure that an exhaustive
offline search by the opponent will produce not one, but a largish number of candidate
passwords, any one of which will produce the correct checksum for the correct data, but
only one of which will produce the checksum that will be expected by the user for the
bogus data as modified by the opponent. (A similar approach is applied to a different
problem in [2].) ' '

As we shall see, the effect of this strategy is to ensure that any guessing attack by the
opponent is effectively forced online, in the sense that the attack now requires the user’s
interactive participation, and hence allows the user to offer a defence, which an offline
attack does not.

4. Collision Rich Hashing. Before giving the details of a secure booting proto-
col, we show one way of constructing an appropriate collision-rich hash function from a
conventional collision free hash function.

Suppose that h is a collision free one way hash function. Then the hash function defined
by

a(k,) = B((h(klz) mod 2)[a),

where | denotes concatenation, will have the properties which we require, provided m
is suitably chosen and % has suitable mixing properties (see [1] for details.) It is the
reduction modulo 2™ which generates the deliberate collisions. We consider the choice of
an appropriate value for m in Section 5.

So suppose that « is the data whose integrity the user wishes to protect, that & is the

user’s password, and that the checksum ¢(k,) is appended to z. Now the attacker is faced
with a dilemma. The attacker wishes to modify the data in some way, and then construct
a checksum for the modified data which will pass the user’s validation check. But now
there is not enough information to allow the attacker to determine the password uniquely.
The attacker must abandon the attack or guess the password (which is at least a better bet
than guessing the checksum directly.) But if the attacker guesses wrongly then the user
will become aware of the attack. Of course, the user may wrongly attribute the mismatch
of the checksum to a network error, or to a dirty sector on the boot server disk. But if the
data z is followed by both ¢ = (h(k|z) mod 2™) and ¢2 = h(q:1]|z) = ¢(k, z), then the user
can almost certainly tell the difference between chance and deliberate attack.

If ¢1 # (h(k|z) mod 2™) but g, = h(q1|z) then an attacker is almost certainly at work.
In order not to allow the attacker to obtain the user’s password by repeated guessing, the
user should change password immediately upon detecting an attack of this kind. This
cannot be done from the workstation being booted, for a number of reasons, many of them
obvious. Consequently, as with most defences against an on-line penetration attack, there
is now a risk of a denial of service attack, where the attacker deliberately corrupts the value
of ¢; and re-calculates g, in order to prevent the user from using any of the workstations,
possibly in the hope that the user will eventually respond by ignoring the integrity failure
and proceeding regardless. But this is of course precisely what the user should do in any
case, in order to ensure that the attacker gains no information about the correctness of the
guessed password. The point is that the user is now aware that an attack is being made,
and so knows not to continue to rely upon the integrity of the data.

As well as changing password upon detecting an attack, the user must also change
password whenever the protected data changes, because otherwise the attacker will have
two independent pieces of information about the password, which will reduce the number
of possibilities for k revealed by exhaustive search to a dangerously small value®. Because
of this, the burden on the user is less if the data protected directly by the password
changes rather infrequently. Rather than use the password directly to protect the integrity
of mutable data, it is therefore better to hash the data with a collision free hash function,
and sign the hash with a (high entropy) private key. The password can then be used
to protect the integrity of the corresponding public key (and of any cryptographic code
necessary to verify the signature.) To ensure that the mutable data is fresh, a datestamp
should be appended prior to hashing.

5. A Secure Boot Protocol. Now we apply the ideas which we have developed to
give an example of a secure boot protocol for a relatively stateless workstation.

The user approaches a workstation and executes some untrusted local boot code. In
response to a prompt, the user indicates that the secure boot protocol is being initiated,
and which kernel it is desired to load. The untrusted boot code may load device drivers and
various other bits of software from untrusted sources into the workstation before accessing
the secure boot service via the network. As a result of execution, the local boot code may
or may not correctly load into the workstation RAM the following:

1. certification code (described below), including code to perform public key cryptog-

8Typically one.

raphy;

2. the public key of the authority which the user regards as responsible for maintaining
the kernel;

3. the two hash values ¢; and ¢, as defined in Section 4, taken over the concatenation
of the data in (1) and (2);

4. the code for the secure kernel;
5. a certificate for the kernel, which consists of

(i) an identifier for the kernel
(ii) the value of a collision free hash function k applied to the kernel code in (4) and

(iii) a datestamp (for freshness),
all signed under the private key corresponding to (2).

The user now presses the red button to pass control to the immutable ROM code, and then
inputs the password. The ROM code computes the values in (3) and then forgets (erases)
the user’s password. If the computed values match, the ROM code then passes control to
the certification code (1) in RAM, which is now known to be acceptable to the user. The
certification code first uses the public key (2), which is also now known to be acceptable to
the user, to check the validity of the certificate (5). If this check succeeds, the certification
code next computes the hash h of the kernel code (4), and checks this against the value
(ii) in the certificate (5). If the certificate value agrees with the calculated value, then the
certification code will interact with the user to check whether the correct kernel has been
loaded, and whether the datestamp is acceptable. If all is well, then the certification code
will pass control to the kernel.

Of course, the public key in (2) could be the user’s own pubhc key, which would
allow the user complete control over the certificate (5). Any system code or device drivers
loaded during the preliminary local boot and which are required to have integrity following
the secure kernel boot need not be re-loaded, but can simply be included in the kernel
checksum in field (ii) of (5). A single password can also allow the use of variant public key
cryptographic systems and key sizes, if the h-hash of more than one piece of certification
code is included in (1). Similarly, even if a user requires the flexibility of using kernels (or
parts of kernels) maintained by many different authorities (with different public keys), still
only one user password is required, since more than one public key can be included in (2).

A user can even add new public keys dynamically without changing password (and
without revealing two independent checksums calculated with the same password), by
placing the user’s own public key in (2), and then appending, to each kernel certificate in
(5), a proxy which contains (i) the kernel identifier (ii) the public key of the appropriate
authority for that kernel and (iii) a datestamp, all signed under the user’s private key
corresponding to the public key in (2). This use of self-authenticating proxies is developed
in [4]. Heterogeneity of hardware among workstations can also be accommodated in this
way.

We conclude this section by discussing the choice of password. A number of tools are
available which will generate, from a uniform distribution, a sequence of syllables which
looks and sounds like an english word, but isn’t. For example, the Concept Laboratories
password generator [3] if asked to generate a twelve letter password will give one with an
effective entropy of slightly over 28 bits?. Assuming that the user password k is generated
in some similar fashion, and has an effective entropy of 2m bits, then an exhaustive search
for k£ by an attacker will (by our assumptions on ¢) reveal on the order of 2™ plausible
passwords, ie values in the domain for k which satisfy ¢(k,z) = ¢,. Consequently the
attacker has only a one in 2™ chance of correctly guessing the value of k employed by
the user. Alternatively, the attacker could try and guess directly the correct value of
h(k|z') mod 2™ for the modified data z’ and so deduce the values of ¢; and ¢; which would
be accepted by the user as a guarantee of integrity for the bogus z’. However this attack
also has only a one in 2™ chance of success.

6. Discussion and Conclusion. A user can approach a workstation previously
used by a rival, perform a local boot from a floppy lying beside the workstation, and
then download a system kernel and some RSA code from bulletin boards respectively
maintained by a hackers’ club and an intelligence agency, across a public access network
with no security features. The user can then be very sure that the workstation is in
the same state as if the user had correctly hand typed the kernel into the workstation.
Although some users will doubtless continue to prefer the second option, it is pleasant to
have the choice.

It is perhaps worth pointing out that our approach to secure booting makes a complete
separation of secrecy (read protection) and integrity (write protection). We require ROM
code to be protected against tampering (unauthorized writing) but allow this to be done
by not permitting any writing to it at all (immutability), and by making the code publicly
visible (no read protection.) Similarly, we require the user’s password to be kept secret
(protected against unauthorized reading) but allow this to be done by not permitting it
to be read at all by mutable code, and by forgetting (erasing or mangling) the password
after a very short time (the opposite of write protection.)

We do not require of the workstation that tamper proof data be kept secret, nor that
secret data be protected from modification by untrusted code.

References.

[1] L. Gong, T. Bergson and M. Lomas, 1994, Secure, Keyed and Collisionful Hash
Functions, EUROCRYPT’94, to appear.

[2] L. Gong, T.M.A. Lomas, R.M. Needham and J.H. Saltzer, 1993, Protecting Poorly
Chosen Secrets from Guessing Attacks, IEEE Journal on Selected Areas in Commu-
nication, 11(5) 648-656. |

%A password has an effective entropy of m bits if the password was equally likely to have had any one of
2™ different values. Allowing the user to choose the password results in a lower entropy, since then some
choices are then more likely than others. In either case, the effective entropy is considerably less than the
bit-length of the password.

[3] J. Gordon, 1993, Password Generation Software, Concept Laboratories, Lynfield
House, Datchworth Green, Hertfordshire, England

[4] M.R. Low and B. Christianson, 1994, A Technique for Authentication, Access Con-
trol and Resource Management in Open Distributed Systems, Electronics Letters to
appear.

[5] J.H. Saltzer, D.P. Reed and D. Clark, 1984, End-to-End Arguments in System De-
sign, ACM Transactions on Computer Systems 2(4) 277-288

