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Abstract

There are many different methods available for the solution of the heat

equation and the choice of which to use is dependent upon the nature of

the problem and the specific regions of the domain where the temperature

is required. In the case of melting or freezing problems it is usual for the

position of the boundary, at which change of physical state (phase change)

occurs, to be of greater interest than the temperature at particular points.

Again there are several solution methods enabling the tracking of the moving

interface between the physical states of the material.

For this work we begin with the isotherm migration method, which first

appeared in the 1970s but is less frequently cited now. We first solve prob-

lems in one dimension with no phase change using the isotherm migration

method, which is in itself new work, since all references we have found al-

lude to it as a tool for the solution of phase change problems. We test the

method using a variety of examples to explore the difficulties and challenges

it produces, and we find it to be robust and tolerant of errors.

We then combine it with the Laplace transform method, a well-established

technique for solving ordinary and partial differential equations, in which

the number of independent variables is reduced by one. The solution is then

transformed back into the time domain using a suitable numerical process.

The Laplace transform isotherm migration method is a new process,

not mentioned previously to our knowledge, and it produces results which

are comparable with the isotherm migration method. The new process is

applied to one-dimensional phase change problems,where we find that due

to the mathematics at the phase change boundary, we are required to make

a modification to the usual manner of operating the Laplace transform. This

is novel as far as we are aware.

Our method is applied to a variety of problems and produces satisfactory
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results. We then move on to a two-dimensional setting where we find the sit-

uation to be much more complex and challenging, as it requires interpolation

and curve-fitting processes.

Finally we examine the possiblity of speeding up the calculation time

using the Laplace transform isotherm migration method by setting problems

in a parallel environment and using an MPI platform. This has not been

previously attempted and we are able to show a measure of success in our

objective.
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Glossary

The terms included in this glossary refer to items defined in the Laplace

transform isotherm migration method. For clarity we do not include sym-

bols used in chapter 2, the review of other methods.
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c specific heat

f(t) function of time

f̄(λ) transformed function of time

g(x, y) shape function of boundary condition

h difference in temperatures of adjacent isotherms

hc heat transfer coefficient

K thermal conductivity

Kliq thermal conductivity in the liquid phase

Ksol thermal conductivity in the solid phase

l length

lc characteristic length, the volume of a body divided by its surface area

L latent heat of fusion

L [f(t)] Laplace transform

M number of Stehfest parameters

p number of processors

s dimensionless Stefan number, L/c

Sp speed-up

t time

t̃ dimensionless t co-ordinate

t0 initial time

T specific value of t at which a solution is required
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u temperature

ũ dimensionless u co-ordinate

u0 initial temperature

ũ0 dimensionless u0 co-ordinate

uf fusion temperature

uF (x, y, t) = 0 contour on freezing front

ui isotherm of specific temperature

uL temperature of left boundary

uliq temperature in the liquid phase

ũL dimensionless temperature of left boundary

uR temperature of right boundary

ũR dimensionless temperature of right boundary

usol temperature in the solid phase

Ui approximation to u at grid point (xi)

Ui,j approximation to u at grid point (xi, tj)

V constant temperature of liquid phase

uv steady temperature outside wall at xL

uw temperature of wall at xL

ũw dimensionless temperature of wall at xL

v temperature function f1(x̃1, t̃)

v1 temperature of ice

v′1 transformed temperature of ice

v2 temperature of water

v′2 transformed temperature of water

w temperature function f2(x̃2, t̃)

wj Stehfest weight

x̃ dimensionless x co-ordinate

x0 position of isotherm with temperature u0

xix



x̄ position under Laplace transform

x̃0 dimensionless position of isotherm with temperature ũ0

X̃ approximation to dimensionless position x̃

α thermal diffusivity

β constant

ε(t) parameter in shape function of freezing front

θ difference in temperature of wall ũ
(n)
w and next isotherm ũi in convection case

λ Laplace transform parameter

λj Stehfest Laplace transform parameter

ρ density

ω parameter used in interpolation
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Chapter 1

Introduction

We begin our story with some background about what led us to choose the

Laplace transform isotherm migration method as a topic for our research.

Work had been ongoing in the Department of Mathematics at the Uni-

versity of Hertfordshire around some of the various solution methods for the

diffusion equation; examples of these are Davies (1993), Davies and Mushtaq

(1996), Davies and Mushtaq (1998) and Honnor et al. (2003).

A paper written by Crank and Phahle (1973), in which the authors

modelled a diffusion problem, that of a melting block of ice, and produced

a solution using a technique known as the ‘isotherm migration method’,

gave a different slant to the usual methods of solution to the heat equa-

tion, in that the movement of regions of the same temperature could be

tracked rather than finding the temperature at particular points in the do-

main. The method appeared to be attractive, it seemed to be simple to

set up the equations and produced results which compared well with the

analytic solutions. A search of the literature showed that the method was

the subject of some interest in the late 1970’s. Crank and Gupta (1975)

and Crank and Crowley (1978 and 1979) produced papers developing the

method, but it became less frequently used although from time to time it

still appears (Kutluay and Esen, 2004). The method was examined more
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closely, to look at any advantages and disadvantages and to try to see why

it was less used than other methods. Our intention was to develop the

method further and produce a solution using the Laplace transform, which

had also been a topic of research at the University of Hertfordshire, (Crann

1996, Honnor and Davies 2002 and Crann 2005), and which could then be

extended from one-dimensional to two-dimensional problems. A finite dif-

ference method was chosen by Crank and Phahle (1973) in their solution to

the melting ice block and at the outset we hoped to be able to provide an

alternative in a boundary element method solution for the two-dimensional

case. This was not possible, as we shall discuss later, since the boundary in

the transformation of the problem is not always complete.

Another thread to our research would be to implement the Laplace trans-

form isotherm migration method in a parallel environment, since the Depart-

ment of Mathematics at the University of Hertfordshire/Hatfield Polytech-

nic has had an interest in parallel computation for more than twenty years.

In the following we indicate some of the areas of interest and the parallel

environments involved:

The early work was done on the ICL DAP, a distributed array machine

with 4096 processors, an SIMD (Single Instruction Multiple Data) machine,

(Dixon and Ducksbury 1985 and Davies 1989).

In the mid 1990’s the Department had access to a small transputer net-

work comprising four T800 transputers configured to run a version of FOR-

TRAN. This is an MIMD (Multiple Instruction Multiple Data) environ-

ment running as SIMD. Davies and Mushtaq (1995 and 1996), Mushtaq and

Davies (1996) and Davies et al. (1997) refer to work using the transputer.

The next progression was to use PVM and HPF software on a network

of workstations including SUN workstation clusters and PC clusters. These

are MIMD environments. Papers were written by Davies et al. (1997)

and Mushtaq and Davies (1997a and 1997b) concerning work done on this
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system.

In 1998 the Department was given an nCUBE machine with sixty-four

processors arranged in a hypercube configuration. This provided an MIMD

environment and was used by Davies and Mushtaq (1998), Crann et al.

(1998) and Honnor and Davies (2002) in their work.

The most recent interest has been in the area of time domain-decomposition

methods, which are MIMD in nature, for diffusion processes, in particular

the use of the Laplace transform. Examples of work in this environment

include Crann et al. (1998), Davies et al. (2004), Crann (2005) and Crann

et al. (2007).

This thesis begins with a derivation of the heat equation and a review

of some of the many methods for its solution. Simple heat conduction prob-

lems in one dimension are then solved with the isotherm migration method

as in the model suggested by Crank and Phahle (1973) and we consider var-

ious scenarios in order to gain information regarding the robustness of the

method and to see its limitations. This leads on to new work in which the

Laplace transform and the isotherm migration method are combined and

a comparison is made with the results obtained in the previous examples.

The next step is to consider examples of heat problems with phase change,

in particular melting and freezing, which are solved using the new method,

before extending this to examples in two dimensions. Finally the work is

carried out in a parallel environment with a view to increasing efficiency in

calculation time.
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Chapter 2

The construction of the heat

equation and methods which

have been used to solve it

2.1 The heat equation

We will be using the heat equation as the basis of our work and so we begin

by giving a derivation in its most general form. The construction of the heat

equation is to be found in many publications. Examples include Carslaw and

Jaeger (1959), Spiegel (1959), Weinberger (1965), Kreider et al. (1966) and

Crank (1979).

We consider a material, with density ρ, and specific heat c, which oc-

cupies a region of space, V , and which is bounded by a surface S. If the

temperature of the material at any point in V is u (r, t), where r is the usual

position vector, then the total heat energy contained in the solid is

∫

V

ρcu dV .

Heat may only enter or leave the region by flowing across the boundary S.

We consider the heat flux vector, q, which represents the rate of heat flow
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at a point per unit area. If we have a small element of the surface area

dS with outward unit normal vector n̂, then the rate of heat flow outward

through this element of surface area is q.n̂ dS and so over the whole surface

the total rate of heat flow outwards is

∫

S

q.n̂ dS

According to the law of conservation of energy, the rate at which the total

heat energy within the region V changes must balance with the amount of

heat crossing the boundary. Therefore

d

dt

∫

V

ρcu dV +

∫

S

q.n̂dS = 0

because, if the flux of heat out of the region is positive, then the total

energy inside the region will decrease, so its derivative will be negative. We

now apply the divergence theorem to the flux integral and take the time

derivative inside the volume integral to obtain

∫

V

∂

∂t
(ρcu) dV +

∫

V

div q dV = 0

or
∫

V

[

∂

∂t
(ρcu) + div q

]

dV = 0

This expression has to be true for any volume V, which means that the

integrand must be zero everywhere. Therefore we must have

∂

∂t
(ρcu) + divq = 0

From Fourier’s law of heat flow we know that

q = −Kgradu (2.1)

where K is the thermal conductivity, which is not necessarily constant, and

div (Kgradu) =
∂

∂t
(ρcu)
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This is the most general form of the heat equation.

In our work, we consider the case where K is constant and ρ and c are

independent of time and we use the following form of the heat equation,

which is the most convenient for our purposes:

∇2u =
1

α

∂u

∂t
(2.2)

where α = K
pc

is the thermal diffusivity.

The partial differential equation for diffusion problems is set up in a

similar manner (Crank 1979) and its form is

∂2C

∂x2
=

1

D

∂C

∂t

C is the concentration of the diffusing substance and D is the diffusion

coefficient and the law equivalent to Fourier’s law in equation (2.1) is Fick’s

law

q = −DgradC

The heat equation is a partial differential equation and in the next section

we look at the classification of partial differential equations, because the

nature of the solution depends on the classification of the equation.

2.1.1 Classification of partial differential equations

In order to classify the equations, we will consider the linear partial differ-

ential operator L in two independent variables for simplicity, which can be

extended to three or more variables (Weinberger 1965). We define the linear

partial differential operator as

L [u] ≡ A (x, y)
∂2u

∂y2
+B (x, y)

∂2u

∂x∂y
+C (x, y)

∂2u

∂x2
+D (x, y)

∂u

∂y
+E (x, y)

∂u

∂x
+F (x, y)u

and if

L [u] = G
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where G(x, y) is some function independant of u, this is called a linear partial

differential equation. If

L [u] = 0

then the equation is called a homogeneous equation. If any of the coefficients

A,B,C,D, E and F are functions of u or its derivatives as well as x and y,

then the equation becomes a non-linear partial differential equation.

If B2 − AC is negative, then the partial differential equation is said to

be elliptic, an example of this being the Laplace equation

∇2u = 0

Elliptic equations are typically used for steady-state and potential problems

and their solution depends only on values known at the boundary. If we

consider a bounded region where C denotes the boundary, then the most

commonly occurring boundary conditions are:

Dirichlet, where

u(r) = u1 (s) on C1

Neumann, where
∂u

∂n
= q2 (s) on C2

Robin, where
∂u

∂n
+ σ(s)u = h3 (s) on C3

where σ is a function of s, which defines the position on C = C1 + C2 + C3

and r is the usual position vector of a point on the boundary.

If B2 − AC is positive, then we have a hyperbolic equation, an example

being the wave equation
∂2u

∂t2
= c

∂2u

∂x2

where c is the speed of propagation of the wave. Typically hyperbolic equa-

tions are concerned with the propogation of information through a system,
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and in order to solve these equations, we need as well as boundary condi-

tions, initial conditions of the form

u (x, 0) = f (x)

and
∂u

∂t
(x, 0) = g (x)

When B2−AC = 0 we have a parabolic problem, an example of which is

the heat equation whose form is shown in equation (2.2). Parabolic equations

require boundary conditions and an initial condition of the form

u (x, 0) = f (x)

The difference between parabolic and hyperbolic equations is that hyperbolic

problems have a finite propagation speed, whereas in parabolic problems the

effects of propagation are felt immediately throughout the domain.

2.1.2 Well-posed problems

In addition to the conditions described above, to be able to solve a partial

differential equation, we should also have a well-posed problem, in the sense

described by Hadamard (1923). We have a well-posed problem if

1. a solution to the problem exists.

2. the solution is unique.

3. the solution depends continuously on the problem data, that is, small

changes in data yield small changes in the solution.

For an elliptic problem, we need to have the partial differential equation

defined in the interior of some region, with the solution subject to a single

boundary condition at each point of the boundary. The type of boundary
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condition may vary from one point on the boundary to another, but only

one condition may be specified at any point.

Hyperbolic equations require the same constraints on the boundary con-

ditions as elliptic equations, but in addition they require two initial condi-

tions, one to describe the initial state of the system and the other to describe

the initial velocity.

Parabolic equations also require the boundary conditions described for

the previous two cases, but they need only a single initial condition specify-

ing the state of the system at t = 0.

2.2 Methods of solution for the heat equation

2.2.1 Analytic solutions

Assuming the thermal diffusivity α to be constant, we write the heat equa-

tion as
∂u

∂t
= α

∂2u

∂x2
(2.3)

The first method we consider is the method of separation of variables, men-

tioned by Crank (1979) . In this case we look for solutions of the form

u = X (x)T (t) (2.4)

where X(x) and T (t) are functions of x and t respectively. Substituting

equation (2.4) into equation (2.3) we get

X
dT

dt
= αT

d2X

dx2

and on separating the variables we have

1

T

dT

dt
=

α

X

d2X

dx2

so that the left hand side depends only on t and the right hand side depends

only on x. Both sides therefore must be equal to the same constant and to
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simplify the algebra we write this as −µ2α. The solutions are then

T = T0e
−µ2αt

where T0 is a constant and

X = A sin µx + B cos µx

with A and B constants. A solution of equation(2.3) is then

u = T0(A sin µx + B cos µx) exp
(

−µ2αt
)

(2.5)

and since the heat equation is a linear equation, the most general solution

is obtained by summing solutions of equation (2.5) type to get

u =
∞
∑

m=1

T0,m(Am sin µmx + Bm cos µmx) exp
(

−µ2
mαt

)

The constants Am,Bm,T0,m and µm are determined from the initial and

boundary conditions and again, examples are to be found in Crank (1979).

Another analytic method is the use of similarity solutions.

We define the dimensionless variable

η =
x√
αt

and then look for solutions of the form

u (x, t) = tpg (η) (2.6)

where the number p and the function g(η) are to be found. Substituting

equation (2.6) into equation (2.3) we find

tp−1
(

pg − η

2
g′ − g′′

)

= 0

which implies

g′′ +
η

2
g′ = pg (2.7)

subject to appropriate boundary conditions using equation (2.6). This is

difficult to solve in closed form for arbitrary values of p.
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We can find the solution in different forms and we show the solution for

two cases of p.

For p = 0:

Equation (2.7) may be solved to give

g′ (η) = Ae
−η2

4

where A is a constant. Integrating this gives

g (η) = A

∫ η

−∞
e

−η2

4 dη′

which gives a full solution for u(x, t)

u (x, t) = A

∫ x√
αt

−∞
e

−η′2

4 dη′ = 2a
√

πerf

(

x

2
√

αt

)

(2.8)

where the error function erf (ξ) is defined as

erf (ξ) =
1√
π

∫ ξ

−∞
e−y2

dy

For p = −1
2 :

Another solution can be obtained by defining G(η) = ge
η2

4 and then equation

(2.7) can be written as

G′′ − η

2
G′ =

(

p +
1

2

)

G

This has the trivial solution

G(η) = b = constant

Therefore

g (η) = be
−η2

4

which gives a full solution for u(x, t) in the form

u (x, t) = bt−
1

2 e−
x2

4αt (2.9)
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Figure 2.1: Grid for using the finite difference method

The constants A in equation (2.8) and b in equation (2.9) need to be found

using the boundary and initial conditions.

Crank (1979) presents several mathematical solutions, mostly in the form

of infinite series, but he notes that their use is restricted to simple geometries

and constant thermal properties such as the thermal diffusivity. For most

problems we need to turn to numerical methods to evaluate their solutions

and we describe some well-known methods as follows.

2.2.2 The finite difference method

For a rectangular domain, probably the simplest method available is the

finite difference method. This method is described fully by Smith (1978).

Consider an example of heat conduction in which the heat equation is solved

to find the temperature u at a distance x units of length from one end of

a thermally insulated bar of length l after t seconds of heat conduction. In

such problems the temperatures at the ends of the rod are often known for

all time and these are the boundary conditions. Usually we also know the

temperature distribution along the bar at some particular starting time, and
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this is the initial condition. The solution to the problem gives the values of

u for values of x between 0 and l and values of t from zero to infinity.

Figure 2.1 shows the area of integration in the x, t-plane, that is the infinite

area bounded by the x-axis and the parallel lines x = 0 and x = l. We see

that the area is covered by a grid, and the size of a step, or mesh size, in the

x direction is assigned the variable h, while the mesh size in the t direction

is k. We use a truncated Taylor series to obtain an approximation to the

temperature at the point P .

We write the approximated temperature as Ui,j, the subscripts denoting

the position of the point on the grid. The subscript i tells us which row we

are in and the subscript j, which column. So by knowing the mesh size we

can pinpoint the position on the grid.

The temperature at a typical point such as Pi,j is found by reference to

its neighbouring points. Here we see a central difference approximation in

space and a forward difference approximation in time. The temperature in

this case is given by

Ui,j+1 = Ui,j + r(Ui−1,j − 2Ui,j + Ui+1,j)

where r = k
h2 and Ui,j is the approximation to the actual value ui,j. The

method has a limitation which is that the value of r is critical.

Smith (1978) describes an analysis of the stability of the method and

finds that for values r < 1
2 the finite difference solutions agree reasonably

well with the analytical solutions, but for values r > 1
2 the problem be-

comes unstable in the sense that errors increase without limit and this means

that to use the method we are forced to take a large number of small time

steps. The instability in the explicit method may be overcome by using

the Crank-Nicolson implicit method (1947), which is unconditionally stable.

The expression for this approximation is

−rUi−1,j+1 + (2 + 2r) Ui.j+1 − rUi+1,j+1 = rUi−1,j + (2 − 2r) Ui,j + rUi+1,j
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The left hand side contains three unknowns at time level j + 1 and on the

right hand side we have the three known values at time level j. This involves

solving a set of simultaneous equations and obviously more work is involved

at each time step, but the solution does remain stable for all values of r.

We can thus proceed with larger and therefore fewer time steps, but we

bear in mind that in developing the formula from the Taylor series, we have

neglected higher order terms as being comparatively small in value which

may influence the accuracy if the steps are too large.

The advantage of using the finite difference method is that for rectan-

gular domains it is easy to discretise using the grid construction, and the

solution procedure is simple to operate. However the disadvantage is that

it is not suitable for domains with a non-rectangular shape.

2.2.3 The finite element method

The finite element method has been used for some time by engineers inter-

ested in stress analysis problems and steady-state potential problems, but

has also been used for transient heat problems. Full accounts of the method

are to be found in Davies (1986) and Zienkiewicz and Taylor (2000). In this

method, the domain is covered with a mesh, often triangular, in which the

triangles may be of varying size thereby giving a better approximation to

domains having an irregular shape, as shown in figure 2.2. We outline the

theory, full details of which can be found in Davies (1986). Suppose that u

satisfies Poisson’s equation

∇2u = b (x, y) in D

subject to the Dirichlet condition

u = h (s) on C1
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Figure 2.2: Typical grid for the finite element method

and the Robin condition

∂u

∂n
+ σ (s)u = g (s) on C2

where D is a two-dimensional region bounded by a closed curve C = C1+C2.

A Neumann boundary condition is a special case with σ ≡ 0.

Suppose that D is subdivided into m elements, De, over each of which

u is interpolated from its nodal values Uj , there being n nodes in all. A

piecewise polynomial approximation to u of the form is obtained

u =

n
∑

j=1

wj (x, y)Uj

where {wj (x, y) : j = 1, 2, . . . , n} is a set of linearly independent basis func-

tions. A set of linear algebraic equations for the nodal values Ui (i = 1, 2, . . . , n)

follows. The Dirichlet boundary condition is an essential condition which

must be enforced, while the Robin condition is a natural condition and the

values of U at the nodes which lie on C2 will be found as part of the solution

process.
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The method leads to a system of algebraic equations having the form

KU = F (2.10)

where K is a symmetric banded matrix, U is the vector containing the nodal

values and F is a vector of known quantities obtained from non-homogeneous

terms in the boundary-value problem. The global matrix K is formed using

element matrices k by using the terms from the elements which contain

both i and j and placing these into the i, j position in the global matrix.

The matrix F is formed in a similar manner. Where a node, r, lies on the

boundary and has an essential boundary condition, equation r is removed

from the set of equations (2.10) and Ur = h (sr) is placed in the remaining

equations. So if there are p boundary nodes with an essential condition, the

global stiffness matrix will be of order N × N where N = n− p. The terms

in the element matrices are of the following forms:

ki,j =

∫∫

De

(

∂wi

∂x

∂wj

∂x
+

∂wi

∂y

∂wj

∂y

)

dxdy +

∫

Ce
2

σwiwjds

fi,j =

∫∫

De

fwidxdy +

∫

Ce
2

gwids

where Ce
2 is that part of the boundary of element e which lies on C2.

Other meshes are possible, for example those using isoparametric ele-

ments, so that a curved boundary can be more accurately represented be-

cause a polynomial is used to approximate it.

2.2.4 The boundary integral equation method

By way of example we consider a region D on which Laplace’s equation

∇2u = 0

holds, this region being bounded by a closed curve. The boundary conditions

may be Dirichlet, Neumann or Robin (mixed condition), and we choose a
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fundamental solution which satisifies the Laplace equation on the region,

usually

u∗ (r) = − 1

2π
ln r

where r is the distance between one point and another. Application of

Green’s second theorem leads to an expression in which the potential at any

point may be expressed as an integral equation.

We have already stated in subsection 2.1.2 that for a well-posed problem,

only one condition may be specified at each point of the boundary. When

the boundary integral expression has been formulated, we are in a position

to find both the potential and flux at all points on the boundary and from

there we can find the potential at any internal points required.

2.2.5 The boundary element method

Jaswon and Symm (1977) discuss the numerical solution of boundary inte-

gral equations in which they approximate the boundary of the region by a

polygon and they choose the solution to the problem and its normal deriva-

tive on the boundary to be constants on each polygon side. Fairweather et

al. (1979) consider a method in which the approximations to the solution

and the flux on the boundary of the region are generated from piecewise

quadratic polynomial functions. However, the familiar term ‘boundary ele-

ment method’ was first used by Brebbia and Dominguez (1977) and a full

description of the method is to be found in Brebbia and Dominguez (1989).

The method involves collocation between a base node and a target ele-

ment as shown in figure 2.3 and once the system of equations has been solved

so that the values on the boundary are known, the user may then find the

solutions at particular internal points. The boundary element method has

emerged as a powerful alternative to the finite difference and finite element

methods. The method has the advantage that the user can avoid a grid

method where solutions have to be found at each mesh point irrespective
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Figure 2.3: Diagram showing the discretisation of the boundary into ele-
ments and the collocation of a typical base node with a target element for
the boundary element method

of whether they are required. It may be used on domains of most shapes,

provided the elements used are sufficiently small to accurately represent the

boundary.

However, difficulties arise when the boundary contains corners and points

with discontinuous boundary conditions. The problem with boundaries con-

taining corners is the ambiguity of the direction of the normal derivative at

the corner. An approach to overcoming this is discussed by Toutip (2001) in

which he compares the multiple node method described by Mitra and Ingber

(1993) and the gradient approach of Alarcón et al. (1979) and Paris and

Cañas (1997). He concludes that both methods produce equally acceptable

results, but the multiple node method is simpler from a programming point

of view.

Although the boundary element method is attractive in having smaller

amounts of data which need to be processed, there are difficulties in ex-
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tending the technique to non-homogeneous, non-linear and time-dependent

problems, because the domain in these problems needs to be discretised into

a series of internal cells to deal with terms which are not taken to the bound-

ary by applying the fundamental solution. A typical example is the Poisson

equation

∇2u = b(x, y)

where we now need to carry out a domain integral on the term b. According

to Partridge et al. (1992), the simplest way of computing the domain term

is to use a cell integration approach by subdividing the region into a series of

internal cells and carrying out a numerical integration such as Gauss quadra-

ture on each. Another method they note is the Monte Carlo method (Gipson

1985) which uses random integration points within the domain rather than

the regular grid of the cell integration method; they report this method as

being expensive in computer time, as a large number of points is needed to

compute the domain term. We describe the most commonly used ‘domain

term’ method in the next section.

2.2.6 The dual reciprocity method.

We describe how the dual reciprocity method (DRM) works for a general

Poisson equation, a full account being available in Partridge et al. (1992).

We begin with the usual form of the Poisson equation

∇2u = b

which may be considered as the sum of the solution to the Laplace equation

and a particular solution û so that

∇2û = b

We approximate the term b by

b ≈
N+L
∑

j=1

βjfj (2.11)
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where βj are a set of initially unknown constants, fj are approximating

functions, usually radial basis functions, N is the number of boundary nodes

and L is the number of internal nodes. The particular solutions ûj and the

fj are related by

∇2ûj = fj

After some algebraic manipulation we arrive at the expression

∇2u =
N+L
∑

j=1

βj

(

∇2ûj

)

which is then multiplied by the fundamental solution and integrated over the

domain. We apply Green’s second theorem, as before, but this time it must

be applied to both sides of the equation, hence the name ‘dual’ reciprocity.

Thus, as in the boundary element method, we are able to find the potential

and flux at all points on the boundary and then to find the potential at

points of interest.

The dual reciprocity method allows the solution of a variety of problems

where b may be a constant or a function of any of x, y, u and t. Naturally

the method becomes increasingly complex to use when b is a function of

more variables. The heat equation may be solved using the dual reciprocity

method and this is described in Partridge et al. (1992).

Tanaka et al. (2003) solved transient heat conduction problems in three

dimensions using a method similar to that described above, and they used

a finite difference scheme to approximate the time derivative. Each time

step related back to the previous result as a kind of new initial condition.

They noted that the time-step width was an important factor for accuracy

and stability and suggested that this was considered when setting up the

problem. They concluded that very accurate results can be obtained if

appropriate computational conditions are selected.
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2.2.7 The method of separation of variables with the finite

difference method

The method of separation of variables has already been discussed in sub-

section (2.2.1). Here we describe a less frequent manner of using this which

was developed following a method described by Brunton and Pullan (1996)

in which they used the method of separation of variables and a modal-

decomposition solution based on an eigenvalue problem developed using the

dual reciprocity method in the space variables. Davies and Radford (2001)

followed the same approach but used a finite difference process in the space

variables.

We take the usual heat equation in two dimensions with constant thermal

diffusivity α

∇2u =
1

α

∂u

∂t
in the region D (2.12)

subject to the usual boundary conditions

u = 0 on C1

q ≡ ∂u
∂n

= 0 on C2







and the initial condition

u (x, y, 0) = u0 (x, y)

We use a standard separation of variables approach to get a solution to the

heat equation of the form

u (x, y, t) = P (x, y)T (t) (2.13)

where P (x, y) is a function of position only and T (t) is a function of time

only. Substituting into equation (2.12)

T (t)∇2P (x, y) =
1

α
P (x, y)

dT (t)

dt

gives
1

P (x, y)
∇2P (x, y) =

1

αT (t)

dT (t)

dt
(2.14)
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The left-hand side of equation (2.14) is a function of space only, while the

right-hand side is a function of time only. This means that both sides

are equal to some constant, say µ, thus producing two equations which

independently describe the effects of varying time and space:

dT (t)

dt
= −µαT (t) (2.15)

and

∇2P (x, y) = −µP (x, y) (2.16)

The analytic solution to equation (2.15) is

T (t) = A exp (−µαt)

where A is a constant. Equation (2.16) is the usual Helmholz equation, and

together with the boundary conditions, gives an eigenvalue problem.

The eigenvalues are the values of µ for which equation (2.16) has a non-

trivial solution for P and the eigenfunctions are the corresponding values

Pi(x, y). A Helmholtz equation in a finite domain has an infinite number of

non-negative eigenvalues, µi, i = 1, 2, ..., which are real, discrete and non-

degenerate, (Courant and Hilbert 1953). The corresponding eigenfunctions

form a complete orthogonal set and it follows that a general solution to the

heat equation with homogeneous boundary conditions may be written in the

form

u (x, y, t) =

∞
∑

i=1

aiPi (x, y) exp (−µiαt) (2.17)

where the constants ai are determined by the initial conditions and are given

by

ai =

∫

D

u0PidA

∫

D

P 2
i dA

(2.18)

and the integration is carried out over the bounded region D. Davies and

Radford (2001) solved equation (2.16) by using a finite difference approxima-

tion, restricting the problem to two-dimensional rectangular regions leading
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to a set of linear equations of the form

AP = −µh2P

A is an N × N square matrix whose elements depend on the form of the

finite difference approximation used, P is a vector of nodal values of P (x, y)

and h is the finite difference mesh-size parameter. If µi and Pi, i = 1, 2, ..., N

are the eigenvalues and eigenvectors respectively of the matrix A then the

approximate separated solution, equivalent to equation (2.17)

U =

N
∑

i=1

aiPi exp (−µikt)

where U is the vector of approximate values of u at the nodes.

The initial condition u (x, y, 0) = u0 (x, y) leads to

U0 =

N
∑

i=1

aiPi

so that, since the Pi are orthogonal,

ai =
PT

i U0

PT
i Pi

which is the discrete analogue of equation (2.18).

In this case the Laplacian operator is replaced by the ‘five-point’ formula

uS + uW + uE + uN − 4ui

h2

and the eigenvalues and eigenvectors are found using the Jacobi method.

Although this method is interesting and produces results of good accuracy

it is rarely used. The fact that it requires a rectangular mesh to cover the

domain means that its use is limited.

2.2.8 The method of fundamental solutions

This method was introduced by Kupradze (1964) and is discussed in detail

by Golberg (1995). It is of interest because unlike the finite element method

23



Figure 2.4: Region of geometry for the method of fundamental solutions

and the boundary element method, it requires neither domain nor boundary

discretisation. We consider the method for solving a Poisson equation.

In figure 2.4 we show how to set up the geometry of the method. We have

the domain D enclosed by the boundary C in which the Poisson equation

is satisfied. First we choose a fundamental solution to the equation, and as

before, the usual choice for the Laplace operator in two dimensions being

u∗(r) =
1

2π
ln (r)

where r is the distance between two points . We then enclose the domain D

entirely within a circle of radius R, and it is suggested by Golberg that the

radius of this circle should be at least four times the maximum distance of

the boundary C from the origin.

Having decided on the number of boundary points, n, on C in which

we are interested, we place n − 1 points on the curve CR. These points are
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labelled Qk, where k = 1, 2, ..., n − 1 and we use these for collocation.

Let P be any point in D then u may be approximated by the function

Un (r) =

n
∑

k=1

cku
∗ (rk) + c (2.19)

where rk represents the distance between P and Qk and ck and c are con-

stants, for a Dirichlet boundary condition.

A Neumann boundary condition is approximated by

Qn (r) =

n
∑

k=1

ck
∂u∗ (rk)

∂n

and a Robin condition is approximated by

Gn (r) =
n
∑

k=1

ck

[

∂u∗ (rk)

∂n
+ σ (r)u∗ (rk)

]

+ σ (r) c

The ck are calculated by solving a system of equations and we can then find

all the unknown values on the boundary and calculate the internal solutions

required. Golberg (1995) compared the results using this method with the

dual reciprocity method and concluded that the numerical results obtained

were superior.

The method was one of five methods compared by Davies et al. (1997),

which provided a solution to the heat equation, using a Laplace transform

method, which will be discussed later, in a parallel environment. It per-

formed as well as any other in terms of speed-up in a parallel environ-

ment. Fairweather and Karageorghis (1998) described the development of

the method of fundamental solutions over the previous three decades and

discussed several applications. They concluded that the method is easy to

implement and requires relatively few boundary points to produce accurate

results. They also found that corners in a region which may cause problems

in the boundary element method, are not a specific source of inaccuracy in

this method. It neither needs discretisation of the boundary, nor does it in-

volve integrals on the boundary. Furthermore, to find a solution for a point
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in the domain we only need to evaluate the approximate solution, whereas

the boundary element method requires us to use numerical quadrature. The

method of fundamental solutions is one of a family of methods known as

mesh-free methods (Liu 2003). These techniques are not yet widely used

but there is an increasing interest in them since they offer advantages from

the point of view of problem set-up.

2.2.9 The isotherm migration method

Generally this method is particularly useful for solving problems involving

phase change, that is a change in the material from one state to another,

for example, a change from ice to water. However, there might be situations

when rather than finding the temperature at certain points in the domain, we

would like to know the movement of lines passing through points having the

same temperature. These are known as isotherms. The isotherm migration

method enables us to do this, but first we have to re-formulate the heat

equation. The heat equation (2.2) defines the temperature u as a function

of space (x, y) and time t. For this method we need to re-write the heat

equation so that position is now a function of temperature and time. This

leads to a non-linear partial differential equation. The method was proposed

by Chernous’ko (1970) where he described the method for one-dimensional

problems and the ideas were further developed by Crank and Phahle (1973).

Since we shall be referring to the isotherm migration method throughout our

work, we shall not discuss it here, but a full explanation of its operation will

be provided further on.

2.3 Moving boundary problems

Moving boundaries occur frequently in diffusion problems. Such problems

may involve a change of state which occurs on the interface, for example,
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in the case of melting ice (Crank and Phahle 1973). Diffusion in a medium

where the concentration of substance is higher in one region than another

may also be modelled in this way. Crank and Gupta (1972a) described a

moving boundary problem arising from the diffusion of oxygen in absorbing

tissue, and Voller et al. (2006) produced a model to track the movement of

the shoreline of a sedimentary ocean basin, one feature of which was sediment

transportation via diffusion. The applications of moving boundary problems

are therefore varied. Their common feature is that they are known as Stefan

problems, since they were first referred to by Stefan (1891) in his study of

the thickness of the polar ice cap, and they involve situations in which there

is a phase change, which occurs when a material exists in two states on each

side of a boundary. A new condition arises on the moving boundary as a

result of the phase change, the so-called Stefan condition. We shall return

to this topic in greater depth in chapter 5. In the following sections we

consider methods available to solve the Stefan moving boundary problem.

2.3.1 Similarity solutions

There are very few analytical solutions and they are mainly for the one-

dimensional cases of an infinite region with simple initial and boundary

conditions and constant thermal properties. These exact solutions take the

form of functions of x√
t
. There are many examples of these to be found in

Carslaw and Jaeger (1959).

One important solution is that due to Neumann, which solves the prob-

lem for a substance in a region x > 0 initially liquid at a constant tempera-

ture uc with the surface x = 0 maintained at zero for t > 0. The solutions

u1 and u2 for the temperatures in the solid and liquid phases respectively

are given by

u1 =
uf

erf (µ)
erf

(

x

2 (α1t)
1

2

)
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and

u2 = uc −
(uc − uf )

erfc
(

µ (α1/α2)
1

2

)erfc

(

x

2 (α2t)
1

2

)

where µ is a constant to be determined, uf is the solidifying point of the

material and α1 and α2 are the thermal constants associated with the solid

and liquid phases respectively.

Lightfoot (1929) used an integral method in which he assumed that the

thermal properties of the solid and liquid were the same. He considered the

surface of solidification which was moving and liberating heat and this led

to an integral equation for the temperature.

2.3.2 The heat-balance integral method

Goodman (1958) integrated the one-dimensional heat flow equation with re-

spect to x and inserted boundary conditions to produce an integral equation

which expressed the overall heat balance of the system. Goodman says that

although the solution was approximate it provided good accuracy and the

problem was reduced from that of solving a partial differential equation to

one of solving an ordinary differential equation. Poots (1962) extended the

heat-balance integral method to study the movement of a two-dimensional

solidification front in a liquid contained in a uniform prism.

2.3.3 Front tracking methods

These are methods which compute the position of the moving boundary at

each step in time. If we use a fixed grid in space-time, then in general,

the position of the moving boundary will fall between two grid points. To

resolve this, we either have to use special formulae which allow for unequal

space intervals or we have to deform the grid in some way so that the moving

boundary is always on a gridline. Several numerical solutions based on the

finite difference method have been proposed. Their approach to the grid

28



and the moving boundary differs. In general, the moving boundary will not

coincide with a gridline if we take δt to be constant.

Douglas and Gallie (1955) chose each δt iteratively so that the boundary

always moved from one gridline to the next in an interval δt.

Murray and Landis (1959) kept the number of space intervals between

the fixed and moving boundary constant and equal to some parameter, r.

So for equal space intervals,

δx =
x0

r

where x0 is the position of the moving boundary. The moving boundary

is always on grid line r. They differentiated partially with respect to time

t, following a given grid line instead of at constant x. They compared this

method with a fixed grid approach and concluded that the variable space

grid is preferable if we want to continuously track the fusion front travel, but

the fixed space network is more convenient if we wish to know temperatures

within the domain.

Crank and Gupta (1972a) described a moving boundary problem arising

from the diffusion of oxygen in absorbing tissue by using Lagrangian-type

formulae and a Taylor series near the boundary. They subsequently (1972b)

developed a method making use of a grid system which moved with the

boundary. This had the effect of transferring the unequal space interval from

the neighbourhood of the moving boundary to the fixed surface boundary

and resulted in an improved smoothness in the calculated motion of the

boundary when compared with the results using the Lagrange interpolation.

Other methods involving grids are discussed in Crank (1984).

Furzeland (1980) describes another method, the method of lines, which

he attributes to Meyer (1970). In this method, by discretising the time

variable the Stefan problem is reduced to a sequence of free boundary value

problems for ordinary differential equations which are solved by conversion

to initial value problems.
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2.3.4 Front-fixing methods

We have already discussed the isotherm migration method in a previous

section, and this is one example of a front-fixing method.

The simplest case of front-fixing suitable for the one-dimensional case was

proposed by Landau (1950). He suggested making the transformation

ξ =
x

x0 (t)

which fixes the melting boundary at ξ = 1 for all t. The heat equation and

the equation for the moving boundary are also transformed, before being

solved using some method such as the finite difference method, as described

by Crank (1957).

Another approach is to use so-called body-fitted curvilinear co-ordinates.

In this method a curve-shaped region is transformed into a fixed rectangular

domain by transforming to a new co-ordinate system. This is useful, because,

when working on Stefan problems in two dimensions, the shape of the region

is continuously changing as the phase-change boundary moves. However the

transformed partial differential equation does increase in complexity because

a change of variable has to be used,

x = x (ξ, η)

and

y = y (ξ, η)

This leads to the Laplace equation being transformed to an expression with

five partial derivatives in both ξ and η which have constants which need to be

solved using a system of simultaneous equations. The curvilinear mesh also

has to be generated at each time step. This method was used by Furzeland

(1977).
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2.3.5 Fixed-domain methods

In certain cases it might be difficult to track the moving boundary and

one way to overcome this is to reformulate the problem so that the Stefan

condition is implicitly bound up in a new form of the equations, which applies

over the whole of a fixed domain. The position of the moving boundary then

appears as a component of the solution after the problem has been solved.

To do this, a total heat function or so-called enthalpy function is introduced.

The use of enthalpy was proposed by Eyres et al. (1946). Later, Price

and Slack (1954) looked at the solution of the heat equation where the

latent heat of freezing was a factor and in which they considered the total

heat content of the system. The enthalpy function describes the total heat

content of the system, which is the sum of the specific heat and the latent

heat needed for a phase change. Therefore when shown graphically, this is

a step function, the step occurring at the boundary where we have a phase

change. In the case where we have a mushy region, a region where material

exists in both solid and liquid forms, the step will not be so steep. We shall

not consider problems of this type.

Crowley (1979) solved the Stefan problem using the enthalpy method

together with a weak solution method. A weak solution is a general solution

to a partial differential equation, for which the derivatives in the equation

may not all exist, but which is still deemed to satisfy the partial differential

equation in some way. To find the weak solution, the differential equation is

first rewritten in such a way so that no partial derivatives show up. This is

usually achieved by multiplying it by a suitable test function, writing the in-

tegral form and changing the order of integration. The solutions to this new

form of the equation are the weak solutions, because although they satisfy

the equation in the second form, they may not satisfy the original equation.

A differential equation may have solutions which are not differentiable and

the weak formulation allows one to find such solutions. Crowley compared
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her results with other numerical methods and concluded that results using

this method are in good agreement.

Furzeland (1980) produced a comparative study of numerical methods for

moving boundary problems. He considered the method of lines in time, the

co-ordinate transformation method, a method combining both of these and

the enthalpy method. He used four different examples and concluded that

the enthalpy method was very attractive because it was easy to program and

there was no extra computation involved in tracking the moving boundary

and it could be used for mushy phase-change problems and for complicated

shaped domains. However for high accuracy it needs many space points and

it is not suitable for all problems. The ‘front-tracking’ methods produce very

accurate solutions both for the moving boundary and other temperatures,

but cannot be used for mushy problems.

Chun and Park (2000) developed a modification to the enthalpy method,

which avoided oscillations in temperature and phase front which can be

observed in certain cases. They introduced a fictitious temperature on the

phase-change front based on values obtained at the previous time step, and

then used finite difference equations to solve across the interface. Their

results compared favourably with two other methods.

The enthalpy method has been used together with the finite element

method (Elliott 1981), the finite difference method (Voller 1985) and more

recently with the boundary element dual reciprocity method (Honnor et al.

2003 and Kane et al. 2004), which indicates that it is still a favourable

method.

Another fixed-domain method is the method of variational inequalities

(Elliott 1980). The variational expressions refer to a fixed domain and ex-

plicit use of the Stefan condition is avoided.

32



2.4 Summary of Chapter 2

In this chapter we began by giving a derivation of the heat equation and we

discussed the class of partial differential equations to which it belongs.

We then described the many methods of solving the heat equation, start-

ing with analytic solutions for very simple cases and then giving brief de-

scriptions of the numerical methods available. These included the finite

difference, finite element, boundary element and dual reciprocity methods.

Less common methods were also mentioned, in particular the method of

separation of variables in combination with the finite difference method and

the method of fundamental solutions.

We will elaborate on the isotherm migration method and the Laplace

transform methods later, as these form the basis of our work.

We moved on to discuss situations in which we have a phase change and

gave brief details of different methods which may be employed to solve such

problems.

2.4.1 Contribution

We have compared many methods available for solving the heat equation

and commented on their suitabilty for use in various scenarios.
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Chapter 3

The isotherm migration

method for one-dimensional

problems with no phase

change

3.1 Background to the isotherm migration method

Our work is based on the solution of the heat equation using the isotherm

migration method. We described in the previous chapter how this method

is usually used to solve problems involving a phase change. However, we

first note another method for dealing with moving boundary problems, the

level set method. The level set method of Osher and Sethian (1988) tracks

the motion of an interface by embedding the interface as the zero level set

of the distance function. The motion of the interface is matched with the

zero level set of the level set function, and the resulting initial value partial

differential equation for the evolution of the level set function resembles

a Hamilton-Jacobi equation. In this setting, curvatures and normals may
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be easily evaluated, topological changes occur in a natural manner, the

technique extends to three dimensions.

We also note that there are different approaches to solving the heat

equation. The Eulerian method considers changes as they occur at a fixed

point in the domain while the Lagrangian method considers changes which

occur as a particle is followed along a trajectory. The Eulerian derivative

is the rate of change at a fixed position and by definition this is the usual

partial derivative ∂
∂t

. The Lagrangian derivative is normally written as D
Dt

.

The relationship between the Eulerian and Lagrangian deriviatives is

such that
Du

Dt
=

∂u

∂t
+ v

∂u

∂x

where v is the velocity of the medium, for example fluid flow.

We return to the isotherm migration method which was proposed in-

dependently by Chernous’ko (1970) and Dix and Cizek (1970) and is an

effective solution technique for solving moving boundary problems. Several

authors have produced efficient numerical solution processes based on the

isotherm migration approach including Crank and Phahle (1973), Crank and

Gupta (1975), Crank and Crowley (1978 and 1979), Wood (1991a, 1991b

and 1991c) and Kutluay and Esen (2004).

In the first instance, we use the method to solve one-dimensional prob-

lems with no phase change. This is because we wish to look at several aspects

of the method to see how robust it is and to understand any difficulties which

have to be overcome.

Before we use the isotherm migration method, we need to rewrite the

heat equation so that rather than giving the temperature as a function of

position and time, the equation gives us position as a function of temperature

and time. To get the heat equation in the correct form we perform a mapping

process.
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3.2 The mapping of the heat equation

In heat transfer problems it is usual to express the temperature as a function

of space and time i.e. u = u (x, t) where u is the temperature, x is the space

variable, and t is the time. In the isotherm migration method we map

the heat equation so that x is the dependent variable and u and t are the

independent variables, so that x = x (u, t) and in this way we are able to

find the positions of the isotherms, which move across the domain with time.

This mapping was discussed by Dix and Cizek (1970). Rose (1967) derived a

mapped equation but did not develop a numerical method. Crank and Phale

(1973) discuss a mapping and then go on to solve a problem in melting ice

using a finite difference method.

A convenient way of describing the mapping is to consider a rod, of length

a, initially at temperature u0, which is held at a constant temperature at

each end. The temperature, u, of the rod satisifes the usual heat equation

given in equation (2.2) which we will write as

∂u

∂t
= α

∂2u

∂x2
(3.1)

together with the boundary conditions

u(0, t) = uL, u(a, t) = uR

where uL and uR are the temperatures of the left and right hand ends of

the rod respectively and the initial condition

u(x, 0) = u0

We use the change of variables

ũ = u, x̃ =
x

a
, t̃ =

αt

a2
, ũ0 = u0, ũL = uL, ũR = uR (3.2)

which leads to the following dimensionless equation:

∂ũ

∂t̃
=

∂2ũ

∂x̃2
, 0 < x̃ < 1, t̃ > 0 (3.3)
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We wish to write the heat flow equation (5.21) so that x̃ is expressed as a

function of ũ and t̃.

Since

δx̃ =
∂x̃

∂ũ
δũ +

∂x̃

∂t̃
δt̃

to first order, if t̃ is constant then

δx̃ =
∂x̃

∂ũ
δũ

Hence

1 =
∂x̃

∂ũ

∂ũ

∂x̃

which implies
∂ũ

∂x̃
=

1
∂x̃
∂ũ

=

(

∂x̃

∂ũ

)−1

(3.4)

Similarly,

δũ =
∂ũ

∂x̃
δx̃ +

∂ũ

∂t̃
δt̃

where, on an isotherm, ũ is constant so that δũ is 0. Therefore, on an

isotherm

0 =
∂ũ

∂x̃
δx̃ +

∂ũ

∂t̃
δt̃

−∂ũ

∂x̃
δx̃ =

∂ũ

∂t̃
δt̃

−
(

∂x̃

∂ũ

)−1

δx̃ =
∂ũ

∂t̃
δt̃

Hence
∂x̃

∂t̃
= −∂ũ

∂t̃

∂x̃

∂ũ
(3.5)

= −∂2ũ

∂x̃2

∂x̃

∂ũ

= − ∂

∂x̃

(

∂ũ

∂x̃

)

∂x̃

∂ũ
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Using equation (3.4) this becomes

∂x̃

∂t̃
= − ∂

∂x̃

(

∂x̃

∂ũ

)−1 ∂x̃

∂ũ
(3.6)

We now consider
∂

∂x̃

(

∂x̃

∂ũ

)−1

=
∂

∂ũ

(

∂x̃

∂ũ

)−1 ∂ũ

∂x̃

= −
(

∂x̃

∂ũ

)−2 ∂2x̃

∂ũ2

∂ũ

∂x̃

= −
(

∂x̃

∂ũ

)−3 ∂2x̃

∂ũ2
(3.7)

Substituting this into equation (3.6) gives

∂x̃

∂t̃
=

(

∂x̃

∂ũ

)−3 ∂2x̃

∂ũ2

(

∂x̃

∂ũ

)

so that
∂x̃

∂t̃
=

(

∂x̃

∂ũ

)−2 ∂2x̃

∂ũ2
(3.8)

When we consider the heat equation with u as a function of x and t the

quantities ∂u
∂x

and ∂2u
∂x2 represent the rate of change of temperature with

respect to distance and diffusion respectively. However under the isotherm

migration mapping there is no equivalent meaning for the terms ∂x̃
∂ũ

and ∂2x̃
∂ũ2

and this is one example of the difficulty that when using this method it is

difficult to visualise the problem in a physical sense.

The boundary conditions are

x̃
(

ũL, t̃
)

= 0, t̃ > 0 (3.9)

x̃
(

ũR, t̃
)

= 1, t̃ > 0 (3.10)

and the initial condition is

x̃ (ũ, 0) = x̃0, ũL < ũ < ũR (3.11)
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Equations (3.8), (3.9), (3.10) and (3.11) form the system describing the

isotherm migration method and will be used for our work in the one-dimensional

case.

3.3 A method to solve the transformed equation

We can see that equation (3.8) is in a form which makes it suitable to solve

using an explicit finite difference method. This method was discussed by

Crank and Phahle (1973). We use a forward difference in t̃ and a central

difference in ũ. This gives an explicit finite difference approximation X̃i for

the position, of the isotherms:

X̃
(n+1)
i = X̃n

i + 4δt̃











X̃
(n)
i−1 − 2X̃

(n)
i + X̃

(n)
i+1

(

X̃
(n)
i−1 − X̃

(n)
i+1

)2











(3.12)

where δt̃ is a suitable time-step size.

We have not attempted an analysis of the stability of the finite difference

equation.

If ũL is greater than ũR, then the isotherms move along the positive x-

axis. For the isotherms to move forward in the correct way as time increases,

X̃
(n+1)
i must be greater than X̃

(n)
i . The expression

4δt̃











X̃
(n)
i+1 − 2X̃

(n)
i + X̃

(n)
i−1

(

X̃
(n)
i−1 − X̃

(n)
i+1

)2











must therefore be positive.

4δt̃











X̃
(n)
i+1 + X̃

(n)
i−1

(

X̃
(n)
i−1 − X̃

(n)
i+1

)2











is always positive and so if we ensure that

X̃
(n)
i + 4δt̃











−2X̃
(n)
i

(

X̃
(n)
i−1 − X̃

(n)
i+1

)2










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is also positive, then X̃n+1
i will be greater than X̃

(n)
i .

We therefore have a condition on δt̃ such that

1 − 8δt̃
(

X̃
(n)
i−1 − X̃

(n)
i+1

)2 > 0

which leads to

δt̃ <
1

8

(

X̃
(n)
i−1 − X̃n

i+1

)2

and this allows δt̃ to be determined as the solution progresses rather than

being fixed for all time. According to Dix and Cizek (1970) the truncation

error is proportional to δt̃ and (δũ)2.

Example 3.1

We consider a rod of unit length, initially at uniform temperature ũ0. A

constant heat source is applied so that the left-hand end of the rod is main-

tained at a temperature ũL, while the right-hand end is maintained at ũR.

The boundary conditions for the problem are

ũ(0, t̃) = ũL, ũ(1, t̃) = ũR (3.13)

and the initial condition is

ũ(x̃, 0) = ũ0 (3.14)

The analytic solution to this problem is

ũ(x̃, t̃) = ũL + (ũR − ũL) x̃ +

∞
∑

n=1

bn sin(nπx̃) exp(−n2π2t̃) (3.15)

where

bn =
2

nπ
{(ũ0 − ũL) (1 − (−1)n) + (ũR − ũL) (−1)n}

This analytic solution is derived using the separation of variables and ex-

pressing the solution as a series, which we mentioned in Chapter 2.
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In this example we consider the case where ũL = 10, ũR = 0 and ũ0 = 0.

We notice that no isotherms other than u = 0 exist at t̃ = 0, and so we must

have some means of generating a set of initial positions for the isotherms at

some small time.

In all our work, if an analytic solution is available we shall use it to

provide starting values and as a benchmark with which to compare our

solutions. When we do not have such a solution, we use a numerical method

to provide starting values and we compare our results with those produced

by another method, or by looking at expected trends.

The analytic solution provides a method for starting this problem as

well as a method for checking the accuracy of the solution. As ũ(x̃, 0) = 0

throughout the region when t̃ = 0, we need to use the solution to equa-

tion (3.15) at a small time, say t̃ = 0.1, to find a starting position for the

isotherms. Under the mapping equations described in equations (3.9) and

(3.10), equations (3.13) become

x̃(10, t̃) = 0, x̃(0, t̃) = 1

and from equation (3.11), the initial condition, equation (3.14) is

x̃(ũ, 0) = 0

and we consider isotherms of temperature 2 units apart. When we refer to

‘isotherm N’, we mean the contour having a temperature value of N units.

The positions of isotherms 2 and 8, for times up to t̃ = 1.5 are shown in

tables 3.1 and 3.2 respectively.

We note that the results are in excellent agreement with the analytic

solutions. We also show the movement of isotherms 2, 4, 6 and 8 with time

in figure 3.1, where IMM refers to the results obtained with the isotherm

migration method, and we note that the steady state is reached at about

t̃ = 0.6 and that our calculated solutions closely follow the analytic solutions.
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Table 3.1: The position of isotherm 2 with increasing time for example 3.1
time IMM analytic % error

0.1 0.5713 0.5713 0.00
0.2 0.7320 0.7346 0.35
0.3 0.7787 0.7789 0.02
0.4 0.7927 0.7925 0.02
0.5 0.7974 0.7973 0.01
0.6 0.7990 0.7990 0.01
0.7 0.7997 0.7996 0.00
0.8 0.7999 0.7999 0.00
0.9 0.8000 0.7999 0.00
1.0 0.8000 0.7999 0.00
1.1 0.8000 0.8000 0.00
1.2 0.8000 0.8000 0.00
1.3 0.8000 0.8000 0.00
1.4 0.8000 0.8000 0.00
1.5 0.8000 0.8000 0.00

Table 3.2: The position of isotherm 8 with increasing time for example 3.1
time IMM analytic % error

0.1 0.1133 0.1133 0.00
0.2 0.1582 0.1578 0.24
0.3 0.1823 0.1822 0.09
0.4 0.1933 0.1930 0.17
0.5 0.1974 0.1973 0.05
0.6 0.1991 0.1990 0.03
0.7 0.1997 0.1996 0.01
0.8 0.1999 0.1999 0.00
0.9 0.2000 0.1999 0.00
1.0 0.2000 0.2000 0.00
1.1 0.2000 0.2000 0.00
1.2 0.2000 0.2000 0.00
1.3 0.2000 0.2000 0.00
1.4 0.2000 0.2000 0.00
1.5 0.2000 0.2000 0.00

Example 3.2

In this example we consider the case when ũL = 10, ũR = 5 and ũ0 = 0

As shown in section 3.2 equations (3.13) and (3.14) become

ũ(0, t̃) = 10, ũ(1, t̃) = 5 (3.16)
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Figure 3.1: The movement of the isotherms with time in example 3.1

and

ũ(x̃, 0) = 0 (3.17)

When t̃ > 0, there will be temperatures 5 6 ũ 6 10 along the rod. We

notice that for some values of ũ there will not be a unique position, x̃. We

show this in figure 3.2 where we can see that, for example, isotherm 4 is at

x̃ = 0.25 and x̃ = 0.9 approximately. This shows that x̃ = x̃(ũ, t̃) may not

have a unique solution for all ũ.

A further difficulty arises because some of the isotherms exist for only

very short times. The analytic solution in equation (3.15) with ũL = 10 and

ũR = 5 shows that the mid-point of the rod, x̃ = 0.5, reaches a temperature,

ũ = 7.5 at the steady state. We consider the region 0 6 x̃ 6 0.5. Here

isotherms for temperatures ũ in the interval [0, 7.5) will exist only for a

finite time and we show this in figure 3.3 where we plot the positions of the

isotherms as a function of time. Some of the isotherms exist only for very

brief times. The points shown in figure 3.3 are the positions of the isotherms

from t̃ = 0.005 to t̃ = 0.15. For example, isotherm 2 and isotherm 4 clearly

do not exist for time t̃ = 0.15.
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Figure 3.2: Temperature plotted as a function of position in example 3.2 for
t̃ = 0.05

Considering the region 0 6 x̃ 6 1, if we use the mapping in the way

described in example 3.1, only isotherms representing regions of temperature

between ũ = 5 and ũ = 10 lie within the bounded region in ũ, t̃-space. We

cannot therefore use the isotherm migration method to solve the problem

directly.

To overcome this, we consider the case as two problems. Because the

heat equation is linear, we may write

∂v

∂t̃
=

∂2v

∂x̃2
(3.18)

with boundary and initial conditions

vL = 10, vR = 0 and v0 = 0

and
∂w

∂t̃
=

∂2w

∂x̃2
(3.19)

with boundary and initial conditions

wL = 0, wR = 5 and w0 = 0
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Figure 3.3: The positions of the isotherms for 0 6 x̃ 6 5 plotted as a function
of time for example 3.2

and then the required solution is the sum of the solutions to these equations,

ũ = v + w. Now, although the heat equation in x̃, t̃-space is linear, the

mapped equation in ũ, t̃-space is not linear and therefore we cannot simply

add the values of x̃(v, t̃) and x̃(w, t̃). In order to solve the problem, we plot

the functions v = f1(x̃1, t̃) and w = f2(x̃2, t̃) for each time to which we seek

a solution. We find the trendlines for the graphs obtained and then find the

value of ũ, the required temperature, by interpolation.

Figures 3.4 and 3.5, show the graphs of v = f1(x̃1, t̃) and w = f2(x̃2, t̃) at

time t̃ = 0.1, and in figure 3.6 we show the graph obtained by summing these

to get ũ(x̃, t̃) = f1(x̃1, t̃) + f2(x̃2, t̃) which also shows the analytic solution

for ũ for comparison. The legend IMM refers to the isotherm migration

method. Similarly, figures 3.7 and 3.8 show the graphs of v = f1(x̃1, t̃) and

w = f2(x̃2, t̃) at time t̃ = 0.5, and in figure 3.9 we show the graph obtained

by summing these to get ũ(x̃, t̃) = f1(x̃1, t̃)+f2(x̃2, t̃) which again shows the

analytic solution for ũ for comparison.

The results agree favourably with the analytic solutions at both times.
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Figure 3.4: The graph of f1(x̃1, t̃) for t̃ = 0.1 in example 3.2

We include tables 3.3 and 3.4 respectively showing the percentage error

in using the isotherm migration method at times t̃ = 0.1 and t̃ = 0.5 respec-

tively. We see that the isotherm migration method gives accurate results,

particularly for the larger value of t̃.

Table 3.3: Error in value of ũ at t̃ = 0.1 for example 3.2
x̃ IMM analytic % error

0.1 8.2422 8.3818 1.67
0.2 6.7205 6.8783 2.29
0.3 5.4902 5.5913 1.81
0.4 4.5513 4.5973 1.00
0.5 3.9039 3.9413 0.95
0.6 3.5479 3.6334 2.35
0.7 3.4834 3.6497 4.56
0.8 3.7102 3.9368 5.76
0.9 4.2285 4.4179 4.29

3.4 The effect of errors in the initial data

Generally we will need to use a numerical method to find some starting

values at a small initial time. As the results of the numerical method will
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Figure 3.5: The graph of f2(x̃2, t̃) for t̃ = 0.1 in example 3.2
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Figure 3.6: The graphs of ũ(x̃, t̃) = f1(x̃1, t̃) + f2(x̃2, t̃) and the analytic
solution at t̃ = 0.1 in example 3.2
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Figure 3.7: The graph of f1(x̃1, t̃) for t̃ = 0.5 in example 3.2
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Figure 3.8: The graph of f2(x̃2, t̃) for t̃ = 0.5 in example 3.2
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Figure 3.9: The graphs of ũ(x̃, t̃) = f1(x̃1, t̃) + f2(x̃2, t̃) and the analytic
solution at t̃ = 0.5 in example 3.2

themselves contain errors, we wish to know how the isotherm migration

method will perform under these conditions.

Example 3.3

We revisit the problem in Example 3.1 and consider the effect of introducing

errors of ±1%, ±5% and ±10% in the initial data. We show the results for

the positions of isotherms 2 and 8 in tables 3.5 and 3.7 respectively. We

also show the percentage errors in the calculated positions for isotherms 2

and 8 respectively in tables 3.6 and 3.8. In all cases, as time progresses, the

calculated solution rapidly approaches the analytic solution, suggesting that

the isotherm migration method is tolerant of errors in the initial data.

3.5 The case when α is not constant

Since α depends on the physical properties of specific heat, density and

thermal diffusivity, it is possible that α might not be constant, for example,

if the material is non-homogeneous. In this section we consider the case

when α depends on position, that is it varies with x and in particular we
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Table 3.4: Error in value of ũ at t̃ = 0.5 for example 3.2
x̃ IMM analytic % error

0.1 9.4744 9.4788 0.05
0.2 8.9534 8.9596 0.07
0.3 8.4385 8.4444 0.07
0.4 7.9295 7.9347 0.07
0.5 7.4265 7.4313 0.06
0.6 6.9294 6.9347 0.08
0.7 6.4383 6.4444 0.09
0.8 5.9530 5.9596 0.11
0.9 5.4741 5.4788 0.09

look at the case when α = 1 + βx where β is another constant.

We need to re-write equation (3.3) as

∂u

∂t
=

∂

∂x

(

(1 + βx)
∂u

∂x

)

(3.20)

= (1 + βx)
∂2u

∂x2
+ β

∂u

∂x
(3.21)

We then apply the change of variables x̃ = x/a, t̃ = t/a2, x̃0 = x0/a, ũ = u

to equation (3.21), so that
∂u

∂t
=

1

a2

∂ũ

∂t̃
(3.22)

∂u

∂x
=

1

a

∂ũ

∂x̃
(3.23)

∂2u

∂x2
=

1

a2

∂2ũ

∂x̃2
(3.24)

1 + βx = 1 + βax̃ (3.25)

Substituting equations (3.22), (3.23), (3.24) and (3.25) into equation (3.21)

we have

1

a2

∂ũ

∂t̃
= (1 + βax̃)

1

a2

∂2ũ

∂x̃2
+

β

a

∂ũ

∂x̃

∂ũ

∂t̃
= (1 + βax̃)

∂2ũ

∂x̃2
+ βa

∂ũ

∂x̃
, 0 < x̃ < 1, t̃ > 0 (3.26)
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Table 3.5: Effect of errors in starting values for isotherm 2 in example 3.3
Time Analytic 1% 5% 10% -1% -5% -10%

0.1 0.5713 0.5771 0.5999 0.6285 0.5656 0.5428 0.5142
0.2 0.7346 0.7338 0.7407 0.7487 0.7302 0.7228 0.7129
0.3 0.7789 0.7793 0.7812 0.7835 0.7783 0.7762 0.7735
0.4 0.7925 0.7928 0.7935 0.7942 0.7925 0.7918 0.7910
0.5 0.7973 0.7974 0.7976 0.7979 0.7973 0.7971 0.7968
0.6 0.7990 0.7991 0.7991 0.7992 0.7990 0.7989 0.7988
0.7 0.7996 0.7997 0.7997 0.7997 0.7996 0.7996 0.7996
0.8 0.7999 0.7999 0.7999 0.7999 0.7999 0.7999 0.7998
0.9 0.7999 0.8000 0.8000 0.8000 0.8000 0.8000 0.7999
1.0 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.1 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.2 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.3 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.4 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
1.5 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

At first it appears that equation (3.26) is no less complicated than equa-

tion (3.21). However, we now working with non-dimensionalised or scaled

variables. Now we have shown in section (3.2) that

∂ũ

∂t̃
= −

∂x̃
∂t̃
∂x̃
∂ũ

∂2ũ

∂x̃2
= −

∂2x̃
∂ũ2

(

∂x̃
∂ũ

)3

and
∂ũ

∂x̃
=

1
∂x̃
∂ũ

Therefore equation (3.26) can be written

−
∂x̃
∂t̃
∂x̃
∂ũ

= − (1 + βax̃)
∂2x̃
∂ũ2

(

∂x̃
∂ũ

)3 + βa
1
∂x̃
∂ũ

which on simplifying becomes

∂x̃

∂t̃
= (1 + βax̃)

∂2x̃

∂ũ2

(

∂x̃

∂ũ

)−2

− βa (3.27)
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Table 3.6: Percentage errors in solution for isotherm 2 in example 3.3
Time 1% 5% 10% -1% -5% -10%

0.1 1.00 5.00 10.00 1.00 5.00 10.00
0.2 0.11 0.82 1.91 0.60 1.61 2.96
0.3 0.04 0.29 0.58 0.08 0.35 0.69
0.4 0.04 0.11 0.21 0.01 0.09 0.20
0.5 0.02 0.05 0.08 0.00 0.02 0.06
0.6 0.01 0.02 0.03 0.00 0.01 0.02
0.7 0.00 0.01 0.01 0.00 0.00 0.01
0.8 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.01 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00
1.1 0.00 0.00 0.00 0.00 0.00 0.00
1.2 0.00 0.00 0.00 0.00 0.00 0.00
1.3 0.00 0.00 0.00 0.00 0.00 0.00
1.4 0.00 0.00 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00 0.00

We then express equation (3.27) in the finite difference form

X
(n+1)
i = X

(n)
i +

(

(1 + βaX)X
(n)
i

)

4δt̃











X
(n)
i−1 − 2Xn

i + X
(n)
i+1

(

X
(n)
i−1 − X

(n)
i+1

)2











− βaδt̃

(3.28)

Example 3.4

In this example we consider the case when ũL = 10, ũR = 0, ũ0 = 0 and

a = 1 as in example 3.1, but where the heat conductivity varies as in equation

(3.20), with α = 1 + βx̃.

We consider the cases when β = 0.1, 0.5, 1, 2 and 5. In this case, we

do not know the analytic solution and we need some initial values at a

small time to start the isotherm migration method. To do this, we use

equation (3.20), which is the usual form of the heat equation, and we use a

finite difference method with δt̃ = 0.0001 and δx̃ = 0.1 to generate a set of

temperatures at intervals of x̃ = 0.1 in the domain. From this the values u

at positions x̃ may found for our chosen starting time. As β increases, the

rate of heating also increases and we find that the starting time has to be
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Table 3.7: Effect of errors in starting values for isotherm 8 in example 3.3
Time Analytic 1% 5% 10% -1% -5% -10%

0.1 0.1133 0.1144 0.1190 0.1246 0.1122 0.1076 0.1020
0.2 0.1578 0.1589 0.1617 0.1652 0.1575 0.1547 0.1513
0.3 0.1821 0.1827 0.1840 0.1857 0.1820 0.1806 0.1788
0.4 0.1930 0.1933 0.1938 0.1945 0.1930 0.1924 0.1917
0.5 0.1973 0.1975 0.1977 0.1980 0.1974 0.1972 0.1969
0.6 0.1990 0.1991 0.1992 0.1992 0.1990 0.1990 0.1988
0.7 0.1996 0.1997 0.1997 0.1997 0.1996 0.1996 0.1996
0.8 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1998
0.9 0.1999 0.2000 0.2000 0.2000 0.2000 0.1999 0.1999
1.0 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.1 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.2 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.3 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.4 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
1.5 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

tailored to the particular value of β. We find for β = 5 we need a much

smaller starting time of t̃ = 0.01 to capture the events before the steady-

state is reached. We find the starting positions as follows. The variable x̃

is plotted as a function of ũ. The trendline together with its equation is

added, and the positions of the isotherms required may be found from the

equation, for a small time. It is possible that there will be some error in

finding the starting values in this way, but example 3.3 showed that this

error should decrease with increasing time. The steady-state analytic value

for the positions of each isotherm is found as follows:

The steady state is reached when

∂

∂x̃

(

(1 + βx̃)
∂ũ

∂x̃

)

= 0

and integrating twice leads to

x̃ =
1

β

(

exp

(

(10 − ũ) ln (1 + β)

10

)

− 1

)

We show the results for isotherms 2 and 8 respectively in tables 3.9 and 3.10.

We show the analytic steady-state position at the bottom of each table. We
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Table 3.8: Percentage errors in solution for isotherm 8 in example 3.3
Time 1% 5% 10% -1% -5% -10%

0.1 1.00 5.00 10.00 1.00 5.00 10.00
0.2 0.68 2.46 4.70 0.21 1.97 4.16
0.3 0.28 1.03 1.95 0.10 0.86 1.82
0.4 0.15 0.43 0.78 0.00 0.30 0.68
0.5 0.07 0.18 0.31 0.02 0.09 0.24
0.6 0.04 0.08 0.12 0.02 0.03 0.08
0.7 0.02 0.03 0.05 0.01 0.01 0.03
0.8 0.01 0.01 0.02 0.00 0.00 0.01
0.9 0.00 0.00 0.01 0.00 0.00 0.00
1.0 0.00 0.00 0.00 0.00 0.00 0.00
1.1 0.00 0.00 0.00 0.00 0.00 0.00
1.2 0.00 0.00 0.00 0.00 0.00 0.00
1.3 0.00 0.00 0.00 0.00 0.00 0.00
1.4 0.00 0.00 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00 0.00

note that the larger the value of β the more quickly the solution settles,

which we would expect because increasing β and hence α, will increase the

thermal diffusivity so that we would expect heat to flow more rapidly. We

show the results for values of β = 0.1, β = 1 and β = 5 in figures 3.10 and

3.11 for isotherms 2 and 8 respectively.

Table 3.9: The positions of isotherm 2 for linear variation in α in example
3.4

time β = 0.1 β = 0.5 β = 1 β = 2 β = 5

0.10 0.6201 0.7175 0.6436 0.6328 0.6168
0.20 0.7448 0.7562 0.7196 0.6913 0.6297
0.30 0.7776 0.7635 0.7357 0.7007 0.6307
0.40 0.7874 0.7655 0.7395 0.7023 0.6308
0.50 0.7906 0.7660 0.7405 0.7026 0.6308
0.60 0.7917 0.7662 0.7408 0.7026 0.6308
0.70 0.7921 0.7662 0.7408 0.7027 0.6308
0.80 0.7922 0.7663 0.7408 0.7027 0.6308
0.90 0.7923 0.7663 0.7408 0.7027 0.6308
1.00 0.7923 0.7663 0.7408 0.7027 0.6308

s-state 0.7923 0.7663 0.7411 0.7041 0.6386
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Figure 3.10: The positions of isotherm 2 for linear variation in α in example
3.4
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Figure 3.11: The positions of isotherm 8 for linear variation in α in example
3.4
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Table 3.10: The positions of isotherm 8 for linear variation in α in example
3.4

time β = 0.1 β = 0.5 β = 1 β = 2 β = 5

0.10 0.1232 0.1542 0.1153 0.1029 0.0810
0.20 0.1617 0.1623 0.1382 0.1180 0.0835
0.30 0.1805 0.1669 0.1457 0.1213 0.0837
0.40 0.1881 0.1683 0.1478 0.1220 0.0837
0.50 0.1909 0.1687 0.1483 0.1221 0.0837
0.60 0.1919 0.1689 0.1485 0.1221 0.0837
0.70 0.1923 0.1689 0.1485 0.1221 0.0837
0.80 0.1924 0.1689 0.1485 0.1221 0.0837
0.90 0.1924 0.1689 0.1485 0.1221 0.0837
1.00 0.1924 0.1689 0.1485 0.1221 0.0837

s-state 0.1924 0.1689 0.1487 0.1229 0.0862

3.6 The effect of approximating the initial values

on the accuracy of the solution

Example 3.5

We use the same problem as that in example 3.4, but rather than calculating

the initial positions using α = 1 + βx̃, we use an average value for α across

the region, so that we take α = 1 + β/2. This means that we can treat α as

a constant and use the analytic solution to equation (3.20) which is

u (x, t) = uL + (uR − uL)
x

a
+

∞
∑

n=1

bn sin
(nπx

a

)

exp

(−αn2π2t

a2

)

to find the starting values at t̃ = 0.1

We show the results for isotherms 2 and 8 with the results when we

take the average value of α = 1 + βx̃ to start the problem, in table 3.11

for β = 0.1 and table 3.12 for β = 5. Again the starting times need to be

tailored to suit the particular values of β. We see that after a short time,

the solutions using the smaller value of β appear to have converged to the

steady-state value by t̃ = 1.0 while the larger value of β causes the solution

to settle more quickly, but it is not so close to the steady-state value.

This indicates that we can use this average method with confidence, and
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it is much more straightforward to find the starting values in this way, as

the analytic solution is used directly and we can therefore avoid using the

method described in example 3.4, in which we have to find temperatures

as a function of position, then use these to plot a graph of position as a

function of temperature from which we attempt to find suitable positions of

the isotherms.

Table 3.11: The positions of isotherms 2 and 8 when an average value of β
is taken to find starting values for β = 0.1 in example 3.5

Time Isotherm 2 Isotherm 8

0.1 0.6201 0.1240
0.2 0.7415 0.1605
0.3 0.7760 0.1794
0.4 0.7867 0.1874
0.5 0.7903 0.1906
0.6 0.7916 0.1918
0.7 0.7920 0.1922
0.8 0.7922 0.1924
0.9 0.7923 0.1924
1.0 0.7923 0.1924

s-state 0.7923 0.1925

Table 3.12: The positions of isotherms 2 and 8 when an average value of β
is taken to find starting values for β = 5 in example 3.5

time isotherm2 isotherm 8

0.1 0.5761 0.0749
0.2 0.6266 0.0828
0.3 0.6305 0.0836
0.4 0.6308 0.0837
0.5 0.6308 0.0837
0.6 0.6308 0.0837
0.7 0.6308 0.0837
0.8 0.6308 0.0837
0.9 0.6308 0.0837
1.0 0.6308 0.0837

s-state 0.6386 0.0862
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3.7 Summary of Chapter 3

In this chapter we have described the background to the isotherm migration

method and we have shown how to carry out the mapping of the heat equa-

tion so that position is expressed as a function of temperature and time. We

have discussed the use of the finite difference method to solve the mapped

equation and we have tested the method using simple heating examples.

We noted that difficulties may arise where we have isotherms appearing or

disappearing during heating, but we illustrated a modification with which

this may be overcome. We believe the method to be simple to operate, ro-

bust and tolerant of errors in the initial data, which we have demonstrated

using suitable examples. Using the case where the heat conductivity is not

constant we have described two methods for finding initial data when an

analytic solution in not available and we conclude that simplifying the pro-

cedure for finding the initial data as far as possible still enables accurate

solutions to be found.

3.7.1 Contribution

In general the isotherm migration method is a solution method for problems

involving phase change. We have used it in a different setting to solve

simple heat-conduction problems, identifying and attempting to overcome

any difficulties which arise. We have tested the method and found it to be

robust, tolerant of errors in initial data and we have examined cases with

non-constant heat conductivity and shown the method performs well.
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Chapter 4

The Laplace transform

isotherm migration method

for one-dimensional problems

with no phase change

The Laplace transform is a well established technique for the solution of

ordinary and partial differential equations for initial value problems. In the

context of the heat equation, using the Laplace transform removes the time

variable, leaving an ordinary differential equation in Laplace space which we

solve using the initial and boundary conditions. This solution then requires

an inverse transform to recover the solution in the usual time and space

variables.

We showed in chapter 3 that when using the isotherm migration method,

we have to consider the condition placed on the size of the time step to avoid

instability, and that this time step is necessarily very small and therefore a

large number of calculations are required for solution of the problem. We

are therefore interested in whether using the Laplace transform will enable
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us to reduce the number of calculations by allowing us to remove the time

stepping aspect. Full accounts of the Laplace transform and its applications

are to be found in Carslaw and Jaeger (1959) and Spiegel (1965). We shall

give a brief outline of the process here.

4.1 The Laplace transform definition

Given f , a function of time with value f(t) at time t, the Laplace transform

is defined as

L [f(t)] ≡ f̄(λ) =

∫ ∞

0
f(t)e−λtdt (4.1)

where f(t) is defined for t > 0, as stated by Abramovitz and Stegun (1972).

The Laplace transforms of the derivatives f ′(t), f ′′(t), ..., f (n)(t), ... are given

by the following formula (Spiegel 1965)

L
[

f (n) (t)
]

= λnf̄(s)− λn−1f(0)− λn−2f ′ (0)− ...− λf (n−2) (0)− f (n−1) (0)

(4.2)

Equation (4.1) is a Fredholm equation of the first kind. These equations

contain an integral which is the product of a kernel, which is a known func-

tion, and an unknown function which is the function we seek. Fredholm

equations are inherently ill-posed and the solution is extremely sensitive to

arbitrarily small perturbations of the system (Hansen 1992).

4.2 The inverse transform

We now need a method to perform an inverse transformation to find the

required solution. Simple cases may be solved algebraically, and inverted by

using tables, but in many situations it is impossible to arrange the transform

so that the terms in the expression correspond to the standard transforms
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available in tables. We do have an inversion formula (Spiegel 1965),

f (t) =
1

2πi

∫ γ+i∞

γ−i∞
f̄(λ)eλtdλ

an integral in the complex plane, which we would need to evaluate using

a suitable contour, the Bromwich contour. This would provide an exact

solution, but for any other than very simple cases, it is very difficult to use.

Therefore we need to consider the use of a numerical inversion method.

Rizzo and Shippy (1970) described a method for solving heat conduc-

tion boundary value problems using the Laplace transform and a method of

inversion due to Schapery (1962). They chose an arbitrary Laplace trans-

form parameter, which is required for a curve fitting process to determine a

sequence used in Schapery’s inversion method. A poor choice of parameter

resulted in unstable solutions or a badly defined curve and so their results

lacked accuracy. Piessens (1972) described a method which approximates

the transform by truncated polynomials related to the Laguerre polynomi-

als and obtained results which compared favourably with other methods

involving interpolating functions. Zakian and Littlewood (1973) described

a numerical inversion using a weighted least-squares approximation with

Legendre polynomials. The inversion formula is expressed as the sum of a

series of terms which are a combination of a polynomial in space and an

exponential in time. The total error in inversion is stated to be the sum of

roundoff and truncation errors and they found that there was an optimum

value for the number of terms taken in the series, above which the total error

begins to rise. Lachat and Combescure (1977) used a method of inversion

involving a series of Legendre polynomials which resulted in a triangular

matrix which they found was very ill-conditioned. The method was suit-

able for examples involving thermal shocks at initial time, a thermal shock

being a situation where a region initially at some temperature is subjected

to an instantaneous change of temperature on its boundary. They found

that when a second thermal shock was applied at a later time, the results
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using their inversion method were not as accurate as the results found by

the boundary integral method. They therefore suggested that the method

is limited to those problems involving shocks at initial times.

Davies and Martin (1979) tested a variety of numerical methods for

inverting the Laplace transform. They used several criteria, including the

applicability of the method to the problem, accuracy, computation time and

ease of programming and implementation. The methods they tested were

1. Methods which compute a sample and involve choosing an integral

In (t) =

∫ ∞

0
δn (t, u)f (u) du

such that In tends to f(t), the inversion integral, with increasing n.

This includes the extrapolation formula derived by Stehfest (1970),

which will be described in more detail later.

2. Expanding f(t) in exponential functions, usually by introducing exp(−t)

as a new independent variable. These methods include the use of the

Legendre polynomials, trigonometric functions, and Schapery’s (1962)

expansion

f (t) = A + bt +

N
∑

k=1

ake
−bkt

where the exponent weights bk are chosen to suit the expected form of

the function f(t). Laplace transformation yields

λF (λ) = A + bλ−1 +
N
∑

k=1

ak

(

1 + bkλ
−1
)−1

and these equations are solved for ak by substituting

λ = bk, k = 1, ...N

and also using the identities

B = lim
λ→0

λ2F (λ)
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A = −
N
∑

k=1

ak

3. Gauss quadrature, which may be used only for Laplace transforms of

a particular form.

4. Bilinear transformations, expanding the function f(t) in a series of

Laguerre functions or Jacobi polynomials.

5. Representation by Fourier series.

Their results showed that there is no simple conclusion to be drawn as to

which method is better than another, and that each method has advantages

and disadvantages, which they outline in an attempt to help make a suitable

choice for a particular problem. They say that all methods have something

to offer but because it is simple to use and in most cases provides accu-

rate results, they recommend the Stehfest method. Moridis and Reddell

(1991a, 1991b and 1991c) used the Laplace Transform with the finite differ-

ence method, the finite element method and the boundary element method

respectively to solve diffusion-type problems and the method of inversion

they used is due to Stehfest (1970). This method seems to be the method

of choice for diffusion-type problems as the procedure is stable and errors

are considerably smaller than those in other approaches. It has been used

by Zhu et al. (1994), Davies et al. (1997), Crann et al. (1998), Honnor and

Davies (2002) and Crann et al. (2005), and continues to be routinely used.

It is this method which we use in our work and so we give a description of

it in the next section.

4.3 The Stehfest numerical inversion method

The Stehfest (1970) formula is a weighted sum of transform values at a

discrete set of transform parameters.
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If f̄(λ) is the Laplace transform of f(t) then we seek a value f(T ) for

the specific time value t = T . To use the inversion algorithm, we choose a

discrete set of transform parameters

λj = j
ln 2

T
, j = 1, 2, ...,M

where M is even. The approximate numerical inversion is given by

f (T ) ≈ ln 2

T

M
∑

j=1

wjf (λj)

The weights are given by

wj = (−1)(
M
2
)+j

min(j, M
2
)

∑

k=[1

2
(1+j)]

(2k)!k
M
2

(

M
2 − k

)

!k! (k − 1)! (j − k)! (2k − j)!
(4.3)

In table 4.1 we show the numerical values for the Stehfest weights for M =

4, 6, 8, 10, 12, 14 and 16.

Table 4.1: Stehfest weights for M = 4, 6, 8, 10, 12, 14 and 16

M=4 M=6 M=8 M=10 M=12 M=14 M=16

-2 1 0.3333333 0.083333 -0.01667 0.0027778 0.00039683
26 -49 48.333333 -32.0833 16.01667 -6.4027778 2.13372957
-48 366 -906 1279 -1247 924.05 -551.016667
24 -858 5464.6667 -15623.7 27554.33 -34597.929 33500.1667

810 -14376.67 84244.17 263280.8 540321.11 -812665.111
-270 18730 -23957.5 1324139 -4398346.4 10076183.8

-11946.67 375912 -3891706 21087592 -73241383
2986.6667 -340072 7053286 -63944913 339059632

164062.5 -8005337 127597580 -1052539536
-32812.5 5552831 -170137188 2259013329

-2155507 150327467 -3399701984
359251.2 -84592162 3582450462

27478885 -2591494081
-3925555 1227049829

-342734555
42841819.4
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The value of M is chosen by the user. We see that the numerical values

of the weights become very large as M increases and this means that, un-

less high precision arithmetic is used, there will be round-off errors in the

inversion process.

Moridis and Reddell (1991a,1991b and 1991c) tested the inversion method

in three diffusion type problems using values 6 6 M 6 20, and they con-

cluded that although the accuracy of the solution increases as M increases,

the improvement for M > 6 is marginal and insufficient to justify the ad-

ditional execution time. Crann (1996) suggests that accuracy decreases for

M > 10 and Zhu et al. (1994) suggest that a value of M = 6 gives the

best accuracy. From this it seems clear that the choice of M depends on

the problem being solved and that it is not possible to state categorically

an ideal value before starting to solve the problem.

We follow the suggestion of Davies and Crann (1999) and choose a value

of M = 8 for our work, since we require a value for M which will give us

accuracy, while at the same time, not require more calculations than are

necessary.

It is worth mentioning that the Stehfest inversion method does not work

well with problems where the solution is oscillatory or if it behaves like

exp(κt) where κ > 0. This was confirmed by Crann (1996) who showed

that for an example involving the wave equation, the solution only com-

pared well for the first quarter period of the vibration, after which time

it became progressively worse and ultimately bore no resemblance to the

analytic solution.
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4.4 The Laplace transform method of solution for

linear diffusion problems

The Laplace transform is a linear operator and therefore it is applied to

linear differential equations.

The diffusion equation, equation (4.4), is not periodic and is linear, and

therefore is a suitable choice to illustrate the Laplace transform method of

solution using Stehfest inversion.

∂

∂x

(

α (x)
∂u

∂x

)

=
∂u

∂t
0 < x < l, t > 0 (4.4)

Consider equation (4.4) subject to Dirichlet boundary conditions

u (0, t) = uL (t) , u (l, t) = uR (t) , t < 0 (4.5)

and the initial condition

u (x, 0) = u0 (x) 0 < x < l (4.6)

Taking the Laplace transform we obtain from equations (4.4), (4.5) and (4.6)

d

dx

(

α (x)
dū

dx

)

= λū − u0 (x) (4.7)

together with

ū0 (0) = ūL ū (l) = ūR

This example is solved by Davies and Crann (1999), both for α constant

and α as a linear function of x. They use the finite difference method to

solve equation (4.7), and at the transform parameter they substitute λ = λj.

This leads to a tri-diagonal system to be solved to find the approximations

Ūi,j to the solutions u at the required grid points. A Gauss-Seidel approach

is employed to solve the tri-diagonal system and solutions

Ui ≈
ln 2

T

M
∑

j=1

wjŪi,j (4.8)
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are found where wj are the Stehfest weights. Davies and Crann (1999)

compare their results with the analytic solution for α constant and are able

to deduce expected behaviour for the case when α is not constant, and they

conclude that the method produces expected results and is very easy to

apply. Full details are to be found in Davies and Crann (1999) and we will

not consider the solution of linear problems further here.

4.5 The Laplace transform method of solution for

non-linear problems

We have stated that the Laplace transform method can only be applied to

linear problems. However we would like to use the method in combination

with the isotherm migration method. The transformed heat equation under

the isotherm migration mapping is non-linear but we do have a linearisation

process to overcome this which will be described in the next example.

Example 4.1

We consider the problem described in example 3.1, and for clarity we repeat

the description of the problem here. In addition, since we now have to

write the transformed variable with a bar above the symbol, we will drop

the use of the tilde to represent the dimensionless variable, and when we

write u, x, t, or any of these with a subscript, we mean the dimensionless

form. We consider a rod of unit length, initially at uniform temperature

u0. A constant heat source is applied so that the left-hand end of the rod is

maintained at a temperature uL, while the right-hand end is maintained at

uR. The boundary conditions for the problem are

u(0, t) = uL, u(1, t) = uR (4.9)

and the initial condition is

u(x, 0) = u0 (4.10)
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The analytic solution to this problem is given by equation (4.11)

u(x, t) = uL + (uR − uL)x +
∞
∑

n=1

bn sin(nπx) exp(−n2π2t) (4.11)

where

bn =
2

nπ
{(u0 − uL) (1 − (−1)n) + (uR − uL) (−1)n}

In this example we consider the case where uL = 10, uR = 0 and u0 = 0.

We begin with the heat equation which has undergone the isotherm

mapping process
∂x

∂t
=

(

∂x

∂u

)−2 ∂2x

∂u2
(4.12)

This is a non-linear equation and so we need a method to linearise it before

we can use the Laplace transform method to solve it. We use the direct

iteration method suggested by Zhu (1999) and Crann (2005). We put the

previous numerical result for
(

∂x

∂u

)−2

into the next iteration so that

∂x(n)

∂t
=

(

(

∂x

∂u

)−2
)(n−1)

∂2x(n)

∂u2

and then take the Laplace transform of this linear equation to get

λx̄(n) − x (t0) =

(

(

∂x

∂u

)−2
)(n−1)

∂2x̄(n)

∂u2
(4.13)

We represent the position of the isotherm with temperature ui by xi, so for

any particular isotherm, equation (4.13) becomes

λx̄
(n)
i − xi (t0) =

(

(

∂x

∂u

)−2
)

i

(n−1)
∂2x̄

(n)
i

∂u2

We use a central difference approximation with X̄i being the approximation

to x̄i,

λX̄
(n)
i − Xi (t0) =

(

(

∂X

∂u

)−2
)(n−1)

i

X̄
(n)
i+1 − 2X̄

(n)
i + X̄

(n)
i−1

h2
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where h is the difference in the value of succesive temperatures in whose

isotherms we are interested.

The algorithm to find the next position of the isotherm with temperature

ui is

X̄
(n+1)
i =

1
(

λ + 2
h2

(

(

∂X
∂u

)−2
)(n)

i

)



X
(n)
i (t0) +

(

(

∂X

∂u

)−2
)(n)

i

(

X̄
(n)
i+1 − X̄

(n)
i−1

h2

)





(4.14)

As in example 3.1, we use the analytic solutions at t = 0.1 to obtain the

starting positions for the isotherms at the required temperatures. Before

performing the Laplace transform, we obtain a numerical value for the term
(

(

∂X
∂u

)−2
)(n)

i
from the starting values. We now enter a loop to perform the

Laplace transform, using the Stehfest method. At this point we have to

choose a suitable value for the parameter T which is needed to calculate

the Stehfest values λj. Clearly this must be chosen carefully, and it cannot

be too small, otherwise the value of λj could become extremely large and

lead to inaccuracies, particularly as there is a wide variation in the range

of Stehfest weights. Crann (2005) suggests that values of T less than 0.1

should not be used, and so in this example we use T = 0.1. The next stage

is to transform the boundary conditions into Laplace space. We now use a

Gauss-Seidel solver to perform the iteration. We use equation (4.14) for each

λj, j = 1, 2, ...,M and we obtain X̄i(λj), the value of X̄i for each transform

parameter λj. We continue the iteration until agreement to an acceptable

tolerance has been reached. On achieving convergence, we perform the in-

verse transform using the Stehfest method. This inversion process takes the

form

Xi ≈
ln 2

T

M
∑

j=1

wjX̄i (λj) (4.15)

where the wj are the Stehfest weights.

Because we are using direct iteration to linearise the isotherm migration

equation, we now test for convergance of X
(n+1)
i and X

(n)
i . If the solutions
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do not agree to an acceptable tolerance, we recalculate
(

(

∂X
∂u

)−2
)(n)

and

continue the calculation, by reapplying the Laplace transform.

Table 4.2: Comparison of the results using the isotherm migration method
alone and the Laplace transform with the isotherm migration method for
isotherm 2 in example 4.1

Time IMM % Error LTIMM % Error Analytic

0.1 0.5713 0.00 0.5713 0.00 0.5713
0.2 0.7320 0.35 0.7333 0.18 0.7346
0.3 0.7788 0.02 0.7784 0.07 0.7789
0.4 0.7927 0.02 0.7919 0.08 0.7925
0.5 0.7974 0.01 0.7968 0.06 0.7973
0.6 0.7990 0.01 0.7987 0.03 0.7990
0.7 0.7997 0.00 0.7995 0.01 0.7996
0.8 0.7999 0.00 0.7999 0.00 0.7999
0.9 0.8000 0.00 0.8000 0.00 0.7999
1.0 0.8000 0.00 0.8000 0.00 0.8000
1.1 0.8000 0.00 0.8000 0.00 0.8000
1.2 0.8000 0.00 0.8000 0.00 0.8000
1.3 0.8000 0.00 0.8000 0.00 0.8000
1.4 0.8000 0.00 0.8000 0.00 0.8000
1.5 0.8000 0.00 0.8000 0.00 0.8000

In tables 4.2 and 4.3 we show the results for the isotherms with temper-

atures 2 and 8 respectively, which we obtain using the Laplace transform

isotherm migration method and the analytic solutions, and we include the

results which we obtain with the isotherm migration method in example 3.1

for comparison. We see that the Laplace transform method compares well

with the analytic solutions and is just as accurate as the isotherm migration

method alone. Figure 4.1 shows a plot of the solutions obtained using the

Laplace transform isotherm migration method (LTIMM) for isotherms with

temperatures 2 and 8, together with a plot of the analytic values for these

isotherms. We see that the Laplace transform method gives very accurate

results.

70



Table 4.3: Comparison of the results using the isotherm migration method
alone and the Laplace transform with the isotherm migration method for
isotherm 8 in example 4.1

Time IMM % Error LTIMM % Error Analytic

0.1 0.1133 0.00 0.1133 0.00 0.1133
0.2 0.1582 0.24 0.1552 1.64 0.1578
0.3 0.1823 0.09 0.1810 0.65 0.1822
0.4 0.1933 0.17 0.1923 0.37 0.1930
0.5 0.1974 0.05 0.1969 0.21 0.1973
0.6 0.1991 0.03 0.1988 0.08 0.1990
0.7 0.1997 0.01 0.1996 0.00 0.1996
0.8 0.1999 0.01 0.2000 0.05 0.1999
0.9 0.2000 0.00 0.2001 0.06 0.1999
1.0 0.2000 0.00 0.2001 0.06 0.2000
1.1 0.2000 0.00 0.2001 0.05 0.2000
1.2 0.2000 0.00 0.2001 0.04 0.2000
1.3 0.2000 0.00 0.2001 0.03 0.2000
1.4 0.2000 0.00 0.2000 0.00 0.2000
1.5 0.2000 0.00 0.2000 0.00 0.2000

4.6 The solution of non-linear boundary value prob-

lems using the Laplace transform isotherm mi-

gration method

We consider the problem

∂u

∂t
=

∂

dx

(

α(u)
∂u

∂x

)

(4.16)

which we expand as

∂u

∂t
=

dα

du

∂u

∂x

∂u

∂x
+ α (u)

∂2u

∂x2

=
dα

du

(

∂u

∂x

)2

+ α(u)
∂2u

∂x2
(4.17)

The isotherm migration mapping for this case is carried out as follows. We

write equation (4.17) as

−
(

∂x

∂t

)(

∂x

∂u

)−1

=

(

dα

du

)(

∂x

∂u

)−2

− α(u)

(

∂x

∂u

)−3 ∂2x

∂u2
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Figure 4.1: Comparison of the Laplace transform isotherm migration
method with the analytic solution for isotherms 2 and 8 in example 4.1

Multiplying through by
(

∂x

∂u

)

leads to

−∂x

∂t
=

(

dα

du

)(

∂x

∂u

)−1

− α(u)

(

∂x

∂u

)−2 ∂2x

∂u2

and hence
∂x

∂t
= α(u)

(

∂x

∂u

)−2 ∂2x

∂u2
−
(

dα

du

)(

∂x

∂u

)−1

(4.18)

After linearising the equation by using direct iteration, we are able to take

the Laplace transform of equation (4.18):

λx̄(n)−x (t0) = α (u)

(

(

∂x

∂u

)−2
)(n−1)

(

∂2x̄

∂u2

)(n−1)

− 1

λ

(

(

dα

du

)(

∂x

∂u

)−1
)(n−1)

(4.19)

Example 4.2

We take equation (4.16) and consider a rod of unit length, initially at uniform

temperature u0 = u(x, t0) with boundary conditions uL = u(0, t) and

uR = u(1, t). In this problem uL = 0 and uR = 1. We solve the problem for
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α = 1 + u. For the steady-state solution

∂u

∂t
= 0

and therefore

x =
2u + u2

3

which gives the positions of the isotherms in the steady-state.

Since we do not know an analytic solution to this problem, this will give us

some indication of the accuracy of our method.

The Laplace transform of the linearised problem is

λx̄(n)− x̃ (t0) = (1 + u)

(

(

∂x

∂u

)−2
)(n−1)

(

∂2x̄

∂u2

)(n−1)

− 1

λ

(

(

∂x

∂u

)−1
)(n−1)

Using a finite difference method as described before we have

X̄
(n+1)
i =

1

λ + 2(1+ui)
h2

(

(

∂X
∂u

)−2
)(n)

×






X (t0) + (1 + ui)

(

(

∂X

∂u

)−2
)(n)





(

X̄
(n)
i+1 − X̄

(n)
i−1

)

h2
− 1

λ

(

(

∂X

∂u

)−1
)(n)











which we iterate to convergence and we use Stehfest inversion as given by

equation (4.15).

In order to start the problem, we use an accurate finite difference method

with δx = 0.01 and δt = 0.00002 and we find the temperature at various

positions. We choose a starting time of t = 0.1 and we plot the position as

a function of temperature and we use the equation of the best fit trend line

to calculate the starting values.

In table 4.4 we show the positions of the isotherms at t = 0.1, 0.2, 0.3

and 1.5 and in table 4.5 we show that the steady-state positions are achieved

when t = 1.5. These results are shown graphically in figure 4.2. Table 4.5

shows that the method gives very accurate results.

We also wish to see how the solution is affected by introducing some

errors into the starting values, and so we use an average value of α to
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Table 4.4: The positions of the isotherms at t = 0.1, 0.2, 0.3 and 1.5 when
α = 1 + u in example 4.2

u t = 0.1 t = 0.2 t = 0.3 t = 1.5

0.0 0.0000 0.0000 0.0000 0.0000
0.2 0.2749 0.1700 0.1519 0.1467
0.4 0.4927 0.3600 0.3293 0.3200
0.6 0.6821 0.5616 0.5302 0.5199
0.8 0.8432 0.7734 0.7535 0.7466
1.0 1.0000 1.0000 1.0000 1.0000
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Figure 4.2: Position as a function of temperature, u, for times t = 0.1, 0.2, 0.3
and 1.5 when α = 1 + u in example 4.2

calculate the starting values. We have 0 6 u 6 1 so that the average value

of α is 1.5. We obtain the values for u when t = 0.1 as before, using the

finite difference method, but with α = 1.5, that is, α is constant. We see

that the isotherms in figure 4.3 show a similar trend to those in figure 4.2

and the steady-state values are reached when t = 1.5.

We show in tables 4.7 and 4.8 that altering the start values by ±1% and

±5% respectively has little effect on the steady state solution, thus indicating

that this is a robust method which is apparently not overly sensitive to

changes in the initial data. This is a useful property as we may not know

74



Table 4.5: The positions of the isotherms when the steady-state is reached
for α = 1 + u in example 4.2

u Analytic LTIMM % error

0.0 0.0000 0.0000 0.00
0.2 0.1467 0.1467 0.01
0.4 0.3200 0.3200 0.01
0.6 0.5200 0.5199 0.01
0.8 0.7467 0.7466 0.01
1.0 1.0000 1.0000 0.00

Table 4.6: The positions of the isotherms at t = 0.1, 0.2, 0.3 and 1.5 when
the average value of α is used to start the problem in example 4.2

u t = 0.1 t = 0.2 t = 0.3 t = 1.5

0.00 0.0000 0.0000 0.0000 0.0000
0.20 0.3022 0.1773 0.1534 0.1467
0.40 0.5375 0.3717 0.3321 0.3200
0.60 0.7290 0.5729 0.5331 0.5199
0.80 0.8768 0.7802 0.7554 0.7466
1.00 1.0000 1.0000 1.0000 1.0000

an exact solution to start these problems, and we may be fairly confident

that a small error in the initial data will not produce an unacceptable error

in the solution.

Table 4.7: The effect of changing the starting values, by ±1% on the steady
state solution for α = 1 + u in example 4.2

Analytic SV-1% SV+1%

0.0000 0.0000 0.0000
0.1467 0.1467 0.1467
0.3200 0.3200 0.3200
0.5200 0.5200 0.5200
0.7467 0.7466 0.7466
1.0000 1.0000 1.0000

Example 4.3

The boundary and initial conditions for this problem are the same as those

in example 4.2 that is, the uniform temperature is u0 = u(x, t0) initially and

the boundary conditions are uL = u(0, t) and uR = u(1, t). We consider the
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Figure 4.3: Position as a function of temperature, u, for times t = 0.1, 0.2, 0.3
and 1.5 when the average value of α is used to start the problem in example
4.2

Table 4.8: The effect of changing the starting values, by ±5% on the steady
state solution for α = 1 + u in example 4.2

Analytic SV-5% SV+5%

0.0000 0.0000 0.0000
0.1467 0.1467 0.1467
0.3200 0.3200 0.3200
0.5200 0.5199 0.5199
0.7467 0.7467 0.7466
1.0000 0.9999 0.9999

case when α = exp(−u).

In this example the Laplace transformed equation (4.19) is

λx̄(n) − x (t0) = e−u

(

(

∂x

∂u

)2
)(n−1)

∂2x̄(n)

∂u2
+ e−u

(

(

∂x

∂u

)−1
)(n−1)

Using a finite difference method, the algorithm is

X̄
(n+1)
i =

1

λ + 2e−ui

h2

(

(

∂X
∂u

)−2
)(n)

×






X (t0) + e−ui

(

(

∂X

∂u

)−2
)(n)(

X̄
(n)
i+1 + X̄

(n)
i−1

h2

)

+ e−ui

(

(

∂X

∂u

)−1
)(n)






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To start this problem, we use an accurate finite difference method, with

δx = 0.01 and δt = 0.000025 and we choose a lower starting time of t = 0.05

because the isotherms move rapidly. To find the starting positions of the

isotherms we plot x as a function of u at t = 0.05 but we cannot obtain

a good polynomial trendline to fit the resulting curve. We therefore use a

cubic spline interpolating function to estimate the positions of the required

isotherms. This is a piecewise continuous curve passing through each of the

temperature values found from the finite difference method, and knowing

the positions for the temperatures either side of the required isotherm, we

are able to deduce the position of the isotherm by calculating the coefficients

of the cubic polynomial.

Again, we do not know the analytic solution to this problem, but we can

find the positions of the isotherms accurately for the steady-state situation.

We have
d

dx

(

e−u du

dx

)

= 0

and we can deduce that

x =
1 − e−u

1 − e−1

when the steady-state is reached.

Table 4.9: The positions of the isotherms at t = 0.05, 0.15, 0.25 and 1.45
when α = exp(−u) in example 4.3

u t = 0.05 t = 0.15 t = 0.25 t = 1.45

0.0 0.0000 0.0000 0.0000 0.0000
0.2 0.6908 0.4879 0.3792 0.2868
0.4 0.8186 0.7073 0.6274 0.5215
0.6 0.8987 0.8389 0.7920 0.7137
0.8 0.9549 0.9303 0.9096 0.8710
1.0 1.0000 1.0000 1 .0000 1.0000

Table 4.9 shows the positions of the isotherms at t = 0.05, 0.15, 0.25 and

1.45 and the movement of the isotherms with time is shown in figure 4.4.

We also show in table 4.10 that the calculated positions for the steady state
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Figure 4.4: Position as a function of temperature, u, for times t =
0.05, 0.15, 0.25 and 1.45 when α = exp(−u) in example 4.3

Table 4.10: The positions of the isotherms when the steady state is reached
for α = exp(−u) in example 4.3

u Analytic LTIMM % error

0.0 0.0000 0.0000 0.00
0.2 0.2868 0.2868 0.01
0.4 0.5215 0.5215 0.00
0.6 0.7138 0.7137 0.01
0.8 0.8711 0.8711 0.01
1.0 1.0000 1.0000 0.00

isotherms are very close to the expected values, which confirms that this

method is likely to be useful for solving non-linear problems.

We have noted that we need some numerical values to start the calcu-

lations in the Laplace transform isotherm migration method, and we have

either used the analytic solution if one exists, or a numerical method which

might involve finding a trendline or a cubic spline approximation. This

means that it would be difficult to automate the method as the operator

needs to use one of these methods to start a problem. Automation could be

a future trend of research.
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4.7 Summary of Chapter 4

In this chapter we have shown how to use the Laplace transform together

with the isotherm migration method.

In example 4.1 we revisited the problem described in example 3.1 and

compared the results obtained in example 3.1 with those obtained using the

Laplace transform isotherm migration method.

Example 4.2 showed the use of the Laplace transform isotherm migration

method to solve a problem which was non-linear, that is where α = 1 + u,

and we looked at the effect of using an average value for α to find the starting

values and of introducing an error into the starting values. Another non-

linear problem was used to illustrate the method in example 4.3, this time

with a cubic spline interpolation to provide suitable starting values.

We concluded that the method appears to be tolerant of errors and gives

results which compare favourably with those expected.

We have shown that we have a robust numerical method and when deal-

ing with complex problems we can consider simpler problems to set up the

required starting values.

4.7.1 Contribution

The combination of the Laplace transform and the isotherm migration method

is a new idea. This new solution method was tested against the isotherm

migration method model described in chapter 3 and was found to be of sim-

ilar accuracy and tolerance to error. Further examples showed that its use

was not restricted to linear problems.

79



Chapter 5

The Laplace transform

isotherm migration method

for one-dimensional problems

with phase change

We have already discussed briefly, in chapter 2, the idea of problems involv-

ing a moving boundary on which there is a phase change, Stefan problems.

We now return to such problems and describe how they may solved using

the Laplace transform isotherm migration method.

We consider the melting of a block of ice by raising its surface to a tem-

perature above 0. We have two phases, water and ice, which are separated

by a boundary, on which melting occurs. The boundary moves across the

domain as time progresses. Solving this system mathematically requires that

the motion of the boundary is detemined and the usual heat flow equations

are solved in the water and ice. The solutions and the boundary movement

are dependent upon each other. Crank and Phahle (1973) describe a method

to solve such a problem using the isotherm migration method using finite
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differences, and we shall show how this problem can be solved using the

Laplace transform together with a Gauss Seidel iterative method.

Following the problem described by Crank and Phahle (1973) we have a

plane sheet of ice initially occupying the region xL 6 x 6 xR, where xL = 0

and xR = a, and being melted by the application of a constant temperature,

u0, on the surface x = xL. At any time, t, the moving boundary separating

the water from the ice is at x = x0(t). The region xL 6 x 6 x0(t) consists

of water with specific heat, density and thermal conductivity denoted by c,

ρ and K respectively. The temperature of the water satisfies the heat flow

equation
∂u

∂t
= α

∂2u

∂x2
(5.1)

We take the ice to be initially at temperature 0 thoughout. At the melting

boundary, x0(t), the heat flowing per unit area from the water into the ice

in a short time, δt, is, using Fourier’s law, − (K∂u/∂x) δt. If the boundary

moves a distance δx0 in time δt, the heat required to melt the mass ρδx0 of ice

per unit area is Lρδx0 where L is the latent heat of fusion for ice. Equating

these and taking the limit as δt → 0, we see that the first condition to be

satisfied on the moving boundary is the so-called Stefan condition

Lρ
dx0

dt
= −K

∂u

∂x
(5.2)

A second condition since ice melts at 0 is

u = 0, x = x0, t > 0

This is shown diagrammatically in figure 5.1.

We make the problem dimensionless by using the variables

x̃ = x/a, t̃ = αt/a2, x̃0 = x0/a, ũ = u and s = L/c

where s is the Stefan number which is a dimensionless constant. Details of

how to calculate the Stefan number are to be found in Carslaw and Jaeger

(1959).
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Figure 5.1: Diagram showing the problem described by Crank and Phale
(1973)

We then have following the system of equations

∂ũ

∂t̃
=

∂2ũ

∂x̃2
, 0 < x̃ < x̃0, t̃ > 0, (5.3)

s
dx̃0

dt̃
= −∂ũ

∂x̃
, x̃ = x̃0, t̃ > 0 (5.4)

ũ = 0, x̃ = x̃0, t̃ > 0

ũ = ũL, x̃ = 0, t̃ > 0

ũ = 0, 0 < x̃ < 1, t̃ = 0

In chapter 3 we give details of how to perform the isotherm migration map-

ping of equation (5.3) so that we have

∂x̃

∂t̃
=

(

∂x̃

∂ũ

)−2 ∂2x̃

∂ũ2
(5.5)

We also need to apply the mapping to equation (5.4) which becomes

s
dx̃0

dt̃
= −

(

∂x̃

∂ũ

)−1

ũ = 0, t̃ > 0 (5.6)

and the other boundary conditions which become

x̃ = x̃0, ũ = 0, t̃ > 0
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x̃ = 0, ũ = ũL, t̃ > 0

As in chapter 4 for clarity, we shall drop the use of the tilde for the non-

dimensional variables and assume a dimensionless equation We now trans-

form our system of equations into Laplace space. We describe how to do this

for the mapped heat equation in chapter 4, but in addition, we now have

to consider the melting boundary, which is a boundary condition involving

derivatives, and which is non-linear. We use the method of direct iteration

described in chapter 4 to make equation (5.6) linear. So we have

s
dx0

(n)

dt
= −

(

(

∂x

∂u

)−1
)(n−1)

u = 0, t > 0 (5.7)

and we take the Laplace transform to obtain

s
(

λx̄
(n)
0 − x

(n)
0 (t0)

)

=
1

λ

(

(

∂x

∂u

)−1
)(n−1)

Hence the algorithm to calculate the position of the melting front in Laplace

space is

X0
(n) =

X0
(n) (t0)

λ
+

1

sλ2

(

(

∂X

∂u

)−1
)(n−1)

(5.8)

Equation (5.5) is rewritten under the Laplace transform as described in chap-

ter 4 and together with equation (5.8) replacing the right hand boundary

condition, is solved using a Gauss Seidel solver, as before. We now apply the

method to the problem discussed by Crank and Phahle (1973), which they

solved using an explicit finite difference method with the isotherm migration

method.

Example 5.1

We consider a block of ice, of unit thickness and initially at zero temperature

throughout. One face, xL, is maintained at a temperature of 10. The

analytic solution of this problem is given by Carslaw and Jaeger (1959). It

is
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u = u0 − u0

erf(φ)erf
(

x

2t
1
2

)

, 0 < x < x0, t > 0

u = 0, x0 < x < 1, t > 0



















(5.9)

x0 = 2φt
1

2 , (5.10)

where φ is given by

π
1

2 φerf(φ) exp
(

φ2
)

= u0/s (5.11)

and u0 is the temperature at x = 0, that is at xL. The analytic solution

provides a means of checking the accuracy of our method as well as providing

the numerical values at some small time, to start the solution to the problem.

To re-iterate the method described in chapter 4, we use a central differ-

ence approximation with X̄i being the approximation to x̄i,

λX̄
(n)
i − Xi (t0) =

(

(

∂X

∂u

)−2
)(n−1)

i

X̄
(n)
i+1 − 2X̄

(n)
i + X̄

(n)
i−1

h2

where h is the difference in the value of successive temperatures in whose

isotherms we are interested.

The algorithm to find the next position of the isotherm with temperature

ui is

X̄
(n+1)
i =

1
(

λ + 2
h2

(

(

∂X
∂u

)−2
)(n)

i

)

[

X
(n)
i (t0) +

(

(

∂X

∂u

)−2
)n

i

(

X̄
(n)
i+1 − X̄

(n)
i−1

h2

)]

(5.12)

We follow Crank and Phale (1973) and find the positions of isotherms at

intervals of 2; however we take time steps of 0.1 because of the limitation

in choice of step size required by the Stehfest inversion method described in

chapter 4.

We use the Laplace transform in two diferent ways:

In the first method (LT1), we keep the same initial value of x0 (t0) through-

out the calculation, which is the usual way of using the Laplace transform.
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However, we find that doing this causes the position of the melting front to

fall behind its true value and consequently the other isotherms are affected,

and the error becomes larger as time progresses.

In the second method (LT2), we update the initial condition of the melt-

ing boundary at each step before finding the positions of the other isotherms.

That is, we consider the previous position of the melting boundary to be

the initial value at the next step. This greatly improves the accuracy of the

solutions, which can been seen from tables (5.1) and (5.2) which show the

results for the positions of the melting front and isotherm with temperature

8 respectively.

Table 5.1: The position of the melting front calculated using the Laplace
transform without updating (LT1) and with updating (LT2)in example 5.1

Time Analytic LT1 % Error LT2 % Error

0.5 0.361 0.324 10.22 0.356 1.39
1.0 0.510 0.434 14.81 0.505 0.98
1.5 0.625 0.518 17.15 0.620 0.80
2.0 0.722 0.588 18.61 0.717 0.69
2.5 0.807 0.649 19.59 0.803 0.50
3.0 0.884 0.704 20.34 0.879 0.57
3.5 0.955 0.755 20.95 0.950 0.52
3.8 0.995 0.784 21.24 0.990 0.50

Table 5.2: The position of the isotherm with temperature u = 8 calculated
using the Laplace transform without updating (LT1) and with updating
(LT2) in example 5.1

Time Analytic LT1 % Error LT2 % Error

0.5 0.071 0.063 10.284 0.070 1.567
1.0 0.100 0.085 14.955 0.099 1.058
1.5 0.123 0.101 17.243 0.122 0.813
2.0 0.141 0.115 18.669 0.140 0.690
2.5 0.158 0.127 19.668 0.157 0.628
3.0 0.173 0.139 19.822 0.172 0.599
3.5 0.187 0.148 21.008 0.186 0.595
3.8 0.195 0.153 21.308 0.194 0.601

In figures 5.2 and 5.3 we show the graphs of the positions of the melting
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Figure 5.2: The position of the melting front calculated using the Laplace
transform without updating (LT1) and with updating (LT2) in example 5.1
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Figure 5.3: The position of isotherm with temperature u = 8 calculated
using the Laplace transform without updating (LT1) and with updating
(LT2)in example 5.1
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front and isotherm 8 respectively using methods LT1 and LT2 and we also

show the plot of the analytic solution for comparison. These figures confirm

that to achieve meaningful results it is necessary to use method LT2.

We saw in chapter 4, that we could use the Laplace transform with the

isotherm migration method in the usual way when the moving boundary

was not one on which a phase change occurred.

The difference in this problem, is that we have a phase change, and more-

over the boundary condition has a non-linear derivative term, and therefore

we have to apply direct iteration to it before we can use the Laplace trans-

form. The term
(

(

∂x

∂u

)−1
)(n−1)

in equation (5.24) is calculated from

h

x0 − x1

where h is the difference in temperatures of successive isotherms, and x0

and x1 are the positions of the freezing front and the isotherm next to it.

This numerical quantity has to be calculated at the start of each iteration

loop. We can see in equation (5.8) that in this case the initial condition

now has an iterative subscript and so it is unsurprising that it will need

updating.

On first sight we might then question whether there is any benefit in

using the isotherm migration method with the Laplace transform, as in a

sense, each time step is a new problem with a new initial condition and

we need to perform several calculations when using the Stehfest inversion

method. However we need to balance this, by remembering that when using

the finite difference method, we have to apply the stability condition to the

time step, and this means that in the early stages of the calculation, the

time step is extremely small, again resulting in many calculations.

We therefore should perform an analysis on the efficiency of each method.
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Considering the method of Crank and Phale (1973), the finite difference

method solution of the isotherm migration method, we count the number of

arithmetic operations at each time step, remembering that the time step is

itself calculated, and we find the number of operations needed to proceed

from a time of 0.1 to a time of 0.2. The time step requires three operations

and the calculation of the new position of the freezing front requires five

operations. The remaining positions of the remaining four isotherms each

require nine operations, making a total of seventeen operations at each time

step. To find the positions of the isotherms at a time of 0.2,which is the

time step needed for the Laplace transform method, takes a total of 2329

arithmetic operations. The structure of the Laplace transform isotherm mi-

gration method can be sub-divided as an outer loop of direct iteration (which

linearises the problem), a middle loop of Stehfest conversion to and inver-

sion from Laplace space, and an inner loop which is the Gauss-Seidel solver.

The Gauss-Seidel loop has eleven arithmetic operations to be processed on

4 inner isotherms, and takes forty-five passes to achieve convergence using

double precision arithmetic. This loop then, accounts for 1980 operations.

The Stehfest loop outside this, has 248 operations in setting up the eight pa-

rameters and inverting back and the Gauss-Seidel loop is within this, which

means that at this stage we have now 16,088 operations.

To find the result at a time of 0.2, seventeen iterations of the direct

iteration loop are needed for convergence, so the 16,088 operations from

the previous step are carried out seventeen times, making 273,496 together

with 612 operations to update the non-linear quantities. This means a final

total of 274,108 arithmetic operations. The Laplace transform isotherm

migration method therefore increases the number of calculations by a factor

of approximately seventeen in this example.

However, this is a relatively simple example, which can be solved us-

ing the finite difference method. More complex examples may not be so
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straightforward and might require other methods of solution. We are also

looking towards speeding up the calculation using a parallel computing en-

vironment and we will be discussing how the Laplace transform method is

ideally suited to this.

At this stage, we feel that although the Laplace transform isotherm mi-

gration method appears to be expensive in terms of numbers of calculations,

it is nevertheless a useful method for solving Stefan problems and later in

our work we shall show that the method is amenable to load sharing among

multiple processors, and this will in itself represent a time saving in calcu-

lation.

5.1 A freezing problem solved using the Laplace

transform isotherm migration method

Example 5.2

We consider a problem similar to that in Example 5.1. Whereas earlier we

obtained the solutions when a plane sheet of ice was melted by applying a

constant temperature at x = 0, we now find solutions when we have a region

of water, initially at the melting temperature and by applying a constant

temperature of uL at x = 0, we track the freezing front and the movement

of the isotherms in the solid phase.

The heat equation for this system is the same as equation (5.1) but

equation (5.2) becomes

Lρ
dx0

dt
= K

∂u

∂x
(5.13)

that is, the sign is reversed, because heat is now flowing in the opposite

direction. Therefore after applying the isotherm migration mapping we have

∂x

∂t
=

(

∂x

∂u

)−2 ∂2x

∂u2
(5.14)

s
dx̃0

dt
=

(

∂x

∂u

)−1

u = 0, t ≥ 0 (5.15)
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x = x0, u = 0, t > 0

x = 0, u = uL, t > 0

We consider the case where we have a bounded region containng water at 0.

The face at x = 0 is maintained at a temperature of −10, that is uL = −10

so that the freezing front progresses forward from x = 0 and when it reaches

x = 1 the region is completely frozen. We need to establish the correct value

for s, the Stefan number for this problem, and this is calculated from the

thermal properties of water and ice provided in Carslaw and Jaeger (1959).

As in previous examples, we need a method to find the positions of some

isotherms at a small time, t = 1.0.

An analytic solution for this case does exist and we follow the method in

Carslaw and Jaeger (1959) to derive this. As well as providing the starting

values for the problem, it also enables us to compare our results for accu-

racy. The analytic solution is based upon Neumann’s solution for a region

x > 0 initially liquid at constant temperature V with the surface at x = 0

maintained at zero for t > 0. The boundary conditions are v2 → V , as

x → ∞ and v1 = 0 when x = 0, where v2 and v1 are the temperatures of

the water and ice respectively.

To use this method for our case, we need to carry out a transformation

so that we have

v′2 = v2 + uL

and

v′1 = v1 + uL

where uL is the temperature at x = 0. We also remember that we have

non-dimensionalised our problem by writing

t̃ =
αt

a2

but we will now drop the tilde as before and we find that the position of the
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freezing front is given by

x0 = 2φt
1

2

where φ is a numerical constant given by

π
1

2 φerf(φ) exp
(

φ2
)

= −uL/s

Having found φ we may then find the solutions

v′1 = uL − uL

erf(φ)
erf

(

x

2t
1

2

)

, 0 < x < x0, t > 0

and

v′2 = 0, x0 < x < 1, t > 0

We now solve the problem with the Laplace transform isotherm migration

method as described in example 5.1, in which we update the initial conditions

after each time step. The algorithms are similar to those in the melting case,

but care must be taken with signs as the direction of heat flow is opposite

to that in the melting problem.

We compare the results obtained for the freezing front and isotherm with

temperature −8 with those obtained from the analytic solution. Table 5.3

shows the percentange error in using the Laplace transform. We see that the

results are acceptable, generally showing less than two percent error. In fig-

ure 5.4 we show the analytic solution plotted together with the solution from

the Laplace transform isotherm migration method. This illustrates that the

results using our method compare well with the analytic solution and pro-

vides further assurance that we may proceed with the Laplace transform

isotherm migration method with some confidence.
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Table 5.3: The positions of the freezing front and the isotherm with tem-
perature u = −8 for example 5.2

Freezing front Isotherm with temperature −8

Time LTIMM analytic % error LTIMM analytic % error

0.1 0.111 0.111 0.00 0.022 0.022 0.00
0.5 0.239 0.248 0.00 0.047 0.049 4.08
1.0 0.342 0.350 2.29 0.068 0.069 1.45
2.0 0.487 0.495 1.62 0.097 0.098 1.02
3.0 0.599 0.607 1.32 0.119 0.120 0.83
4.0 0.693 0.700 1.00 0.137 0.139 1.44
5.0 0.776 0.783 0.89 0.154 0.155 0.65
6.0 0.850 0.858 0.93 0.168 0.170 1.18
7.0 0.918 0.927 0.97 0.182 0.183 0.55
7.6 0.957 0.966 0.93 0.189 0.191 1.05
8.1 0.988 1.000 1.20 0.196 0.198 1.01

5.2 A Stefan problem with convective boundary

conditions

We have seen in example 3.2 that situations may occur, where the number

of isotherms cannot be decided beforehand and do not remain fixed until

the end of computations. We use a method described by Gupta and Kumar

(1988), which we adapt to include the Laplace transform and we show that

this can be used to solve some problems where the number of isotherms

varies during computation.

Gupta and Kumar consider an infinite cylinder in which a coolant is

flowing with uniform temperature throughout. Outside the cylinder there is

a liquid at its fusion temperature which freezes owing to the coolant. They

describe this process in terms of radial co-ordinates which they map to a

one-dimensional form. Because the condition on the boundary wall of the

cylinder is not of a Dirichlet type, the temperature there will be a function of

time, and so the number of isotherms will not remain the same as that chosen

in the beginning. In the case they consider, as the liquid outside the cylinder

freezes, new negative valued isotherms will be generated at the wall and will
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Figure 5.4: The position of the melting front and isotherm with temperature
u = −8 with increasing time in example 5.2

move outwards with increasing time. Shih and Tsay (1971) solved the same

problem using an analytic iteration method and Gupta and Kumar conclude

that their method provides results which are not significantly different.

We describe the problem in two-dimensions in a general case. We con-

sider a plane sheet of solid material at its fusion temperature, uf , initially

occupying the region xL 6 x 6 xR, where xL = 0 and xR = a, and with a

wall in contact with the face xL, outside which there is a steady temperature

of uv, which is greater than the fusion temperature. This means that heat

will pass through the wall and melt the material, such that the melting front

will progress from xL to xR.

The temperature at the wall at xL at any time is given by uw. The

situation may be modelled by the following equations:

∂u

∂t
= α

∂2u

∂x2
, xL < x < x0 (5.16)

K
∂u

∂x
= hc (uw − uv) , x = xL, t > 0 (5.17)
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u = uf , x = x0, t > 0 (5.18)

ρL
∂x

∂t
= K

∂u

∂x
, x = x0, t > 0 (5.19)

u = uf , xL < x < xR, t = 0 (5.20)

where u = u(x, t) denotes the temperature at any point x at any time t, hc is

the convective heat transfer coefficient, and x0 is the position of the melting

front. Equations (5.16) to (5.20)are converted to dimensionless form using

the following changes of variable:

ũ =
u − uf

uf − uv

t̃ =
αt

a2

ũw =
uw − uf

uf − uv

x̃ =
x

a

x̃0 =
x0

a

s =
L

c(uf − uv)

Bi =
hclc
K

The quantity Bi is known as the Biot number, depends on the thermal

resistance of the material at the wall, where lc is the characteristic length,

and this depends on the physical characteristics of the material outside the

wall. The system of equations is now

∂ũ

∂t̃
=

∂2ũ

∂x̃2
, 0 < x̃ < x̃0, t̃ > 0 (5.21)

∂ũ

∂x̃
= Bi(ũw + 1), x̃ = 0, t̃ > 0 (5.22)

94



ũ(x̃, t̃) = 0, x̃ = x̃0, t̃ > 0 (5.23)

s
dx̃0

dt̃
= −∂ũ

∂x̃
, x̃ = x̃0, t̃ > 0 (5.24)

ũ = 0, 0 < x̃ < 1, t̃ = 0 (5.25)

We now write equations (5.21), (5.23), (5.24) and(5.25) so that x̃ is expressed

as a function of ũ and t̃, so that we may use the isotherm migration method

to solve the problem after performing the mapping process.

Equation (5.22) is not used directly in the isotherm migration method

and so does not need to be changed. Following the usual process for the

isotherm migration mapping we see that

∂x̃

∂t̃
=

(

∂x̃

∂ũ

)−2 ∂2x̃

∂ũ2
, ũw(t̃) < ũ < 0, t̃ > 0 (5.26)

where ũw(t̃) is the temperature at x̃ = 0 at any time t̃, and

s
dx̃0

dt̃
= −

(

∂x̃

∂ũ

)−1

ũ = 0, t̃ > 0 (5.27)

in the present case.

We now consider how to manage the additional isotherms which will

be generated due to convection across the wall at x̃ = 0. Suppose that

at any time t̃ = t̃n = nδt̃, where δt̃ is the time step, there is a total of

(i + 1) isotherms in the region
[

ũw(t̃), 0
]

. This implies that ũ
(n)
w > ũi,

where ũ
(n)
w = ũw(t̃n). The temperature of an isotherm is determined as

ũi = ũ0 − iδũ, i = 0, 1, 2...(ũ0 = 0), where δũ is the temperature step. If

we denote the position of an isotherm ũi at a time t̃n by X
(n)
i then we may

compute the approximate positions, the X values at time level (n + 1) for

the isotherms ũi, i = 0, 1, ...(i − 1) using a finite difference method with the

Laplace transform. The last isotherm, ũi, is treated differently. We use a
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Figure 5.5: Diagram showing the approximate positions of the isotherms in
the case when there is convection across the wall at x̃ = 0

finite difference approximation with unequal intervals, as shown in figure 5.5

and we have, writing θ = ũi − ũ
(n)
w ,

∂X

∂ũ
=

θ2Xi−1 − (θ2 − δũ2)Xi

δũθ(θ + δũ)
(5.28)

and
∂2X

∂ũ2
=

2 [θXi−1 − (θ + δũ)Xi]

δũθ(θ + δũ)
(5.29)

and these can be used in equation (5.26) directly. We now have the position

of the isotherm with temperature ũi, and we use this to see whether any

new isotherms have appeared. Following the suggestion of Gupta and Kumar

(1988), we assume that the behaviour of the temperature is smooth in the

region near the fixed boundary, and we fit a quadratic curve, which passes

through the X values at the last two isotherms at temperatures ũi and ũi−1,

which can be written as

ũ = aX2 + bX + c (5.30)

where the coefficients a, b and c are to be determined. When X = 0 then

c = ũw and from equation (5.22)

Bi(ũw + 1) = 2aX + b
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so that when X = 0

b = Bi(ũw + 1)

Eliminating ũw gives

c =
b

Bi
− 1

which we substitute into equation (5.30) and we then have just a and b

unknown. We find that

a =
(BiXi + 1) (1 + ũi−1) − (1 + ũi) (BiXi−1 + 1)

(BiXi + 1) X2
i−1 − X2

i (BiXi−1 + 1)

b =
BiX2

i (1 + ũi−1) − (1 + ũi) BiX2
i−1

(BiXi−1 + 1)X2
i − X2

i−1 (BiXi + 1)

c can then be found using b and hence the temperature at the wall, ũw is

easily determined.

Before proceeding to the next time level we examine whether the new

temperature at the fixed boundary exceeds the temperature of the nearest

isotherm by an amount δũ or not. In the case ũ
(n+1)
w > ũi + δũ, we look for

the largest integer NI which satisfies

ũ(n+1)
w > ũi + NIδũ

We introduce NI additional isotherms so that the number of isotherms

at t̃ = t̃n+1 becomes (i + NI + 1) and at time level n + 1, we compute the

movement of (j + NI + 1) isotherms. The X co-ordinate of these additional

isotherms can be fixed from equation (5.30) by substituting the values for

ũ, a, b and c and finding the roots of the resulting quadratic equation in X.

Example 5.3

We solve the problem described in example 4.1, but with a convective bound-

ary condition at x̃ = 0 and with uv = 10. We do not have an analytic solution

to this problem and so we look at expected trends to evaluate the method.

We also need some values to start the problem and we begin by assuming

that the wall temperature, ũw, has a value of 5 initially and the positions
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of the isotherms are calculated as if the wall temperature is fixed. We have

seen in previous work that the isotherm migration method is fairly tolerant

of errors in the initial conditions, so that starting the calculation in this way

should be acceptable.

We need a value for Bi, the Biot number, the ratio of the heat transfer

coefficient, hc, to the thermal conductivity, K. This depends on the physical

properties of the materials used, the thickness of the wall, and the material

outside the wall. A large Biot number implies heat transfer is faster on

the surface than inside the material. Using typical values for water from

Carslaw and Jaeger (1959) we use a value of 5.0 for the Biot number in this

example.

Table 5.4: The evolution of the isotherms in Example 5.3

isotherm

time 0 1 2 3 4 5 6 7 8

0.1 0.161 0.128 0.096 0.063 0.036 0
0.3 0.225 0.180 0.134 0.089 0.045 0.003
0.6 0.310 0.258 0.205 0.154 0.102 0.051 0.001
1.4 0.490 0.419 0.348 0.277 0.208 0.138 0.070 0.001
3.5 0.822 0.717 0.612 0.508 0.406 0.304 0.202 0.101 0.000
3.8 0.863 0.763 0.665 0.568 0.472 0.377 0.282 0.188 0.094
4.9 1.000 0.885 0.772 0.660 0.548 0.438 0.328 0.218 0.109

In table 5.4, we show how the isotherms are generated with increasing

time. In this example they appear slowly, and we do not find a new one with

every time step. The ice bar takes a time of 4.9 to be completely melted

and at this point the wall has reached a temperature of 8.7.

Figure 5.6 shows a comparison of how the melting front progresses in

the case when the wall is held at a steady temperature and when there is

convection of heat across the wall. We see that when the temperature is

steady, the ice takes a time of 3.8 to melt, whereas where there is convection

a time of 4.9 is needed. This is what we would expect from the physical
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Figure 5.6: Comparison of the position of the melting front for the cases
when the wall temperature is held steady and when there is convection
across the wall, Bi = 5, in example 5.3

situation.

Example 5.4

We consider the same problem as in example 5.3, but in this case Bi = 50.

This means that the heat transfer is increased and so we expect heating to

be more rapid and that the new isotherms will appear more quickly and the

melting front will propagate more quickly.

We see that when the conductivity is increased, the isotherms are gen-

erated much more quickly, with three appearing in the first time step. This

is shown in table 5.5. When the time reaches 0.4, we already have all the

isotherms and when the ice bar is completely melted, the temperature at

the wall is 9.8, so that the case quickly becomes similar to the case when the

wall has a steady temperature. We would therefore expect the movement

of the melting front to be similar to that in the steady temperature case

and we see this in figure 5.7, where the two paths almost coincide, and the

bar is completely melted in a time of 3.9, compared with 3.8 in the steady
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Table 5.5: The evolution of the isotherms in Example 5.4

isotherm

time 0 1 2 3 4 5 6 7 8 9

0.1 0.161 0.128 0.096 0.063 0.036
0.2 0.196 0.156 0.117 0.078 0.039 0.025 0.014 0.004
0.3 0.240 0.209 0.178 0.148 0.118 0.089 0.059 0.029 0.010
0.4 0.282 0.249 0.217 0.186 0.154 0.123 0.092 0.061 0.031 0.004
1.0 0.479 0.430 0.380 0.332 0.284 0.236 0.188 0.141 0.094 0.047
1.5 0.598 0.536 0.475 0.414 0.354 0.294 0.235 0.176 0.117 0.059
2.0 0.697 0.625 0.553 0.483 0.412 0.343 0.274 0.205 0.137 0.068
2.5 0.784 0.703 0.622 0.543 0.464 0.386 0.308 0.231 0.154 0.077
3.0 0.862 0.773 0.684 0.597 0.510 0.424 0.339 0.254 0.169 0.084
3.5 0.934 0.837 0.741 0.647 0.553 0.459 0.367 0.275 0.183 0.091
3.9 0.988 0.885 0.784 0.684 0.584 0.486 0.388 0.291 0.193 0.097

situation.

We conclude that this method for dealing with isotherms which are gen-

erated or disappear during a melting or freezing problem appears to give

satisfactory results for cases where we have a convective condition on the

boundary. It is simple to operate and works well with the Laplace transform

isotherm method.

5.3 Summary of Chapter 5.

We have introduced the idea of a moving boundary problem where there is

a phase change involved across the moving boundary.

We have shown how to perform the isotherm mapping on the set of

equations which describe this system and how the Laplace transform may

be applied to the mapped system.

In example 5.1 we described a melting problem and solved it using the

Laplace transform in the usual way (LT1) and we showed that this gave

unsatisfactory numerical results and we then described a different way of

using the Laplace transform (LT2), in which the initial values are updated
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Figure 5.7: Comparison of the position of the melting front for the cases
when the wall temperature is held steady and when there is convection
across the wall, Bi = 50, in example 5.4

at each time step and we showed that this gave acceptable results.We gave

some explanation as to why (LT2) produces better results.

We described the reverse problem, a freezing problem and have used the

Laplace transform isotherm migration method to solve it in example 5.2.

We conclude that the Laplace transform migration method is a useful

method for solving Stefan problems in one dimension.

Examples 5.3 and 5.4 described a modification to the method which

allows us to deal with problems having a convective boundary condition

where isotherms may either be generated or disappear. We concluded that

this method was suitable for dealing with these cases, was simple to operate

and could be easily used with the Laplace transform isotherm migration

method.

5.3.1 Contribution

The Laplace transform isotherm migration method was tested to assess its

usefulness in solving problems involving phase change, including examples
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with a convective boundary condition. Results were compared with those

obtained from the isotherm migration method and we concluded that the

method provides an acceptable alternative for solving phase change problems

in one dimension.

The use of LT2, in which we update the intial values at each time step,

is a novel modification to the usual Laplace transform method.
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Chapter 6

The Laplace transform

isotherm migration method

for two-dimensional

problems with phase change

In this work, we extend the one-dimensional freezing problem discussed in

example 5.2 in chapter 5, to a two-dimensional problem, using a method

described by Crank and Gupta (1975). For clarity, in our work in two

dimensions, we shall take the variables x, y, t to be the dimensionless form

of the variables, rather than using a tilde superscript. In the first instance,

we keep the problem deliberately simple, because we want to examine the

limitations of the method and see whether it might be suitable to use with

the Laplace transform, to solve more complex problems.
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Figure 6.1: Diagram to show a square region of water, insulated on two
parallel sides, in example 6.1

6.1 The freezing problem in two-dimensions.

Example 6.1

We previously considered a problem in which we had a region of water at

temperature 0 extending from x = 0 to x = 1 and we applied a constant

temperature to the boundary at x = 0 and evaluated the time for the freezing

front to cross the region and reach the boundary x = 1. We also noted the

movement of the isotherms, and were able to assess the accuracy of the

methods we used, the finite difference method and the Laplace transform

with a Gauss-Seidel solver, a standard method for solving a tri-diagonal

system of equations.

We now consider the case in which we have a square region of water,

which is insulated on two of its parallel boundaries. This is shown in figure

6.1. Because of symmetry, lines perpendicular to the x-axis will have the

same temperature along their length, and so these are the isotherms. The

freezing front, which is perpendicular to the x-axis, will propagate from

x = 0 to x = 1. The boundary and initial conditions are
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∂u
∂y

= 0 y = 0 0 6 x 6 1 t > 0

∂u
∂y

= 0 y = 1 0 6 x 6 1 t > 0

u = −10 x = 0 0 6 y 6 1 t > 0

u = 0 0 < x < 1 0 < y < 1 t = 0

Because the position of an isotherm varies with respect to the x co-ordinate,

and the temperature with respect to the y co-ordinate is constant, this two-

dimensional problem is essentially a one-dimensional problem.

6.2 The mapping of the equations in two dimen-

sions

Although previously we have used (x̃, ỹ) to represent the non-dimensional

form of the cartesian co-ordinates, for clarity, we shall drop the tilde and

when using (x, y), we mean the non-dimensional form of the variables. The

usual heat conduction equation in two dimensions using non-dimensional

space and time co-ordinates is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(6.1)

As the temperature is constant along an isotherm we have

du =

(

∂u

∂x

)

y,t

dx +

(

∂u

∂t

)

x,y

dt = 0

so that
(

∂x

∂t

)

u,y

= −
(

∂u

∂t

)

x,y

/

(

∂u

∂x

)

y,t

= −
(

∂u

∂t

)

x,y

(

∂x

∂u

)

y,t

(6.2)

We substitute equation (6.2) into equation(6.1) and drop the suffices to

get
∂x

∂t
= −

(

∂2u

∂x2
+

∂2u

∂y2

)(

∂x

∂u

)

(6.3)

We know that

∂2u

∂x2
=

∂

∂x

(

∂x

∂u

)−1

= −∂2x

∂u2

(

∂x

∂u

)−3

105



which when substituted into equation (6.3) gives us

∂x

∂t
= −

{

∂2u

∂y2
− ∂2x

∂u2

(

∂x

∂u

)−3
}

(

∂x

∂u

)

(6.4)

In this way we have expressed x as a function of u, y and t.

We now choose a u-y grid such that ui = u0 + iδu, i = 1, 2, ..., N and

yj = y0 + jδx, j = 1, 2, ...,M . The net rate at which heat becomes

available at the interface is given by

Ksol
∂usol

∂n
− Kliq

∂uliq

∂n

where uliq and usol are the temperatures in the liquid and solid phases

respectively and Kliq and Ksol are the corresponding thermal conductivities.

When the interface moves a distance dx, a quantity of heat Lρdx per unit

area is liberated and must be removed by conduction. For heat balance this

requires

Ksol
∂usol

∂n
− Kliq

∂uliq

∂n
= Lρ

dx

dt
(6.5)

where L is the latent heat of fusion and ρ is the density.

Crank and Gupta (1975) say that Patel (1968) showed that equation

(6.5) can be written in a more convenient form, the revised equation being

∂x

∂t
=

1

s

{

1 +

(

∂x

∂y

)2
}{

Ksol

(

∂x

∂usol

)−1

− Kliq

(

∂x

∂uliq

)−1
}

(6.6)

where s is the Stefan number. He did this by using a function, f(x, y, t) = 0,

to describe the solid/liquid interface and evaluating ∂x
∂t

for points on this

interface. On the interface, equation (6.6) replaces equation (6.4) which

holds at all other points.

We are able to use the shorter form of equation (6.6)

∂x

∂t
=

1

s

{

1 +

(

∂x

∂y

)2
}

(

∂x

∂usol

)−1

Ksol (6.7)

because the liquid phase is always at the uniform temperature u = 0 and

consequently there is no temperature gradient in the liquid phase. For con-

venience, we now drop the subscript and write u rather than usol.
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6.3 The finite difference form

We evaluate the numerical solution on a u, y-grid, choosing δu and δy such

that

ui = u0 + iδu, i = 1, 2, ..., N (u0 = −10, uN = 0)

where δu = 2 and

yj = y0 + jδy, j = 1, 2, ...,M (y0 = 0, yM = 1)

where δy = 2. We need to calculate the approximate values Xi,j, of the

positions of the isotherms xi,j, on this grid for successive values of δt.

We calculate the new position of the freezing front first, this being the

isotherm with temperature uN . We represent equation (6.7) by the finite

difference form

X
(n+1)
N,j − X

(n)
N,j

δt
=

1

s







1 +





X
(n)
N,j − X

(n)
N,j−1

δy





2




δu

X
(n)
N,j − X

(n)
N−1,j

(6.8)

which gives us x
(n+1)
N,j for j = 1, 2, ...,M . We use backward difference for

(

∂x
∂u

)−1
because at the interface we need to refer back to the previous

isotherm as there are no forward isotherms in the liquid phase so that a

central difference is not appropriate here.

The positions of the remaining isotherms are found from equation (6.4)

which may be simplified to

∂x

∂t
= −

(

∂x

∂u

)

∂2u

∂y2
+

∂2x

∂u2

(

∂x

∂u

)−2

(6.9)

and in finite difference form is represented by

X
(n+1)
i,j − X

(n)
i,j

δt
= −

(

X
(n)
i,j − X

(n)
i−1,j

δu

)

∂2U

∂y2
+

X
(n)
i−1,j − 2X

(n)
i,j + X

(n)
i+1,j

(

X
(n)
i,j − X

(n)
i−1,j

)2

To remain consistent we use a backward difference for the term ∂x
∂u

.
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In addition, we have a term ∂2u
∂x2 and we deal with this by interpolating

or extrapolating linearly the values of u corresponding to xi,j at yj−1and

yj+1. The formulae we use are for u at yj−1

U =
Ui+1 (Xi,j−1 − Xi,j) − Ui (Xi+1,j−1 − Xi,j)

Xi,j−1 − Xi+1,j−1

and for u at yj+1

U =
Ui−1 (Xi,j+1 − Xi,j) − Ui (Xi−1,j+1 − Xi,j)

Xi,j+1 − Xi−1,j+1

and we can then apply a central difference formula to find a value for ∂2U
∂y2

at the grid point we are interested in. This applies to the general case, but

in this instance ∂u
∂y

= 0 and therefore ∂2U
∂y2 = 0 and so we do not have to

include this step.

In the general case, ∂u
∂x

is undefined on y = 0 and y = 1, and we need

another method to find the values on these boundaries. We overcome this

difficulty by considering the problem in the x, y-plane. We use the fact that

the flux is zero on these boundaries and use the two neighbouring points

on the isotherm to fit a quadratic equation which cuts the boundaries. In

practice, for the case we are considering, the fitted curve is linear, since the

isotherms are perpendicular to the x-axis.

As before, we need some values to start the problem, and we use the

analytic solutions found at t = 0.1 for the one-dimensional problem, re-

membering that the isotherms are parallel to the y-axis, so for a particular

isotherm, the x co-ordinate is the same for all values of y. Furthermore, we

need to decide on a time-step and we recall that in the one-dimensional case

we used the condition

δt <
(Xi−1 − Xi+1)

2

8

The results of a variety of tests suggest that for this problem, to avoid

instability, we need to set the step-size as

δt =
(Xi−1 − Xi+1)

2

40

108



Results

We see from table 6.1 that the method gives results very close to the ana-

lytic solutions, with errors less than one percent, and for the isotherm with

temperature −8, the absolute values are so small, that the errors appear

to be magnified although in fact they agree to 10−3. This is confirmed by

figure 6.2 which shows that the calculated values are extremely close to the

analytic solutions. This suggests that the method is suitable for solving

simple two-dimensional problems.

Furthermore, the example may be solved in a symmetrical situation,

where the boundaries on x = 0 and x = 1 are insulated and the bound-

ary y = 0 is held at −10, and this gives the same results; the freezing

front reaches y = 1 in a time of 8.1 and the intermediate values for all the

isotherms are essentially the same as before.

Table 6.1: The positions of the freezing front and isotherm with temperature
u = −8 in example 6.1

Freezing front Isotherm −8

Time IMM Analytic % Error IMM Analytic % Error

0.1 0.111 0.111 0.00 0.022 0.022 0.00
0.5 0.248 0.248 0.00 0.049 0.049 0.00
1.0 0.351 0.350 0.29 0.070 0.069 0.81
2.0 0.497 0.495 0.40 0.098 0.098 0.00
3.0 0.609 0.607 0.33 0.121 0.120 0.83
4.0 0.703 0.700 0.43 0.139 0.139 0.00
5.0 0.786 0.783 0.38 0.156 0.155 0.65
6.0 0.861 0.858 0.35 0.170 0.170 0.00
7.0 0.930 0.927 0.32 0.184 0.183 0.55
7.6 0.968 0.966 0.26 0.192 0.191 0.42
8.1 1.000 1.000 0.00 0.198 0.197 0.51

6.4 The solution using the Laplace transform

Example 6.2

We now solve the problem using the Laplace transform, and we use Ste-
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Figure 6.2: The position of the melting front and isotherm with temperature
u = −8 with increasing time in example 6.1

hfest’s numerical method to map to the Laplace space and invert, together

with a Gauss-Seidel solver. Since both equations (6.7) and (6.9) are time

dependent, we first need to find the corresponding expressions in Laplace

space.

Equation (6.7) is non-linear and so we use direct iteration as before to

make it linear before applying the Laplace transform.

Therefore

(

∂x

∂t

)(n)

=
1

s







1 +

(

(

∂x

∂y

)2
)(n−1)







(

(

∂x

∂y

)−1
)(n−1)

(6.10)

where

(

(

∂x
∂y

)2
)(n−1)

and

(

(

∂x
∂y

)−1
)(n−1)

are the numerical values calcu-

lated at the previous pass. In this way, the right-hand side of equation (6.10)

is a numerical constant.

Under the Laplace transform this becomes

λx̄(n) (λ) − x0
(n) (t0) =

1

sλ







1 +

(

(

∂x

∂y

)2
)(n−1)







(

(

∂x

∂y

)−1
)(n−1)
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where t0 is the initial time at which we start the problem. That is

x̄(n) (λ) =
x

(n)
0 (t0)

λ
+

1

sλ2







1 +

(

(

∂x

∂y

)2
)(n−1)







(

(

∂x

∂y

)−1
)(n−1)

(6.11)

In a similar manner equation (6.9), under the Laplace transform becomes

x̄(n) (λ) − x
(n)
0 (t0) = − 1

λ

(

∂x

∂u

)(n−1)(∂2u

∂y2

)(n−1)

+
∂2x̄

∂u2

(

(

∂x

∂u

)−2
)(n−1)

(6.12)

We write ∂2x̄
∂u2 as

X̄i+1 − 2X̄i + X̄i−1

(δu)2

where X̄i is the approximation to x̄i, the position of the isotherm with

temperature ui.

Then equation (6.12) may be expressed as

X̄
(n)
i =







1

λ + 2
∂u2

(

(

∂x
∂u

)−2
)(n−1)







×






x0 −
1

λ

(

∂x

∂u

)(n−1)(∂2u

∂y2

)(n−1)

+

(

X̄i+1 + X̄i−1

∂u2

)

(

(

∂x

∂u

)−2
)(n−1)







We need to find the numerical values of the terms
(

∂x
∂u

)(n−1)
,
(

∂2u
∂y2

)(n−1)

and
(

(

∂x
∂u

)−2
)(n−1)

before entering the Stehfest loop.

To calculate the second of these terms, we need to map back into x,y-space,

and perform an interpolation.

We use the same formulae for interpolation as in example 6.1.

Results

We show the results in table 6.2 and figure 6.3. We see that using the

Laplace transform gives solutions very close to those obtained using both

the analytic and finite difference methods. This is useful, because we noted

that in using the finite difference method, we need to take very small time

steps because of problems with stability, and in using the Laplace transform
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we do not have this constraint and can progress in larger steps. However,

when using the Stehfest numerical method, it must be remembered that

several calculations are involved in converting to Laplace space and then

inverting, and we discussed in chapter 5 how using the Laplace transform

with Stehfest inversion increased the number of calculations by a factor of 17

approximately, in the one-dimensional case. In this case, a counter inserted

into the code shows that the isotherm migration method with the finite

difference method requires 1,827,402 operations compared with 6,765,658

operations for the Laplace transform isotherm migration method. Although

the number of operations in the second method is greater by a factor of

approximately 3.7, this is significantly lower than in the one-dimensional

case. This is likely to be due to the need for a much smaller time step

needed for stability in the finite difference method, than was needed in the

one-dimensional case. We hope that we shall be able to demonstrate that

we can take advantage of a parallel environment to speed up the calculation

with the Laplace transform isotherm migration method.

Table 6.2: The positions of the freezing front and isotherm with temperature
u = −8 in example 6.2

Freezing front Isotherm −8

Time FDM LTIMM Analytic FDM LTIMM Analytic

0.1 0.111 0.111 0.111 0.022 0.022 0.022
0.5 0.248 0.240 0.248 0.049 0.047 0.049
1 0.351 0.342 0.350 0.070 0.068 0.069
2 0.497 0.488 0.495 0.098 0.097 0.098
3 0.609 0.599 0.607 0.121 0.119 0.120
4 0.703 0.693 0.700 0.139 0.137 0.139
5 0.786 0.776 0.783 0.156 0.154 0.155
6 0.861 0.850 0.858 0.170 0.168 0.170
7 0.930 0.918 0.927 0.184 0.182 0.183

7.6 0.968 0.957 0.966 0.192 0.190 0.191
8.1 1.000 0.988 1.000 0.198 0.196 0.197

112



0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

t

x

Freezing front

Isotherm −8

IMM
LTIMM
Analytic

Figure 6.3: The position of the melting front and isotherm with temperature
u = −8 with increasing time in example 6.2

6.5 The freezing problem when y = f(x, u, t)

Finally we ensure that there is no bias in our example, by re-writing the

equations in examples 6.1 and 6.2 so that y = f(x, u, t) and recalculating.

We find that the numerical results are precisely the same with x and y

interchanged. We do not list the results here as they are identical to those

obtained in examples 6.1 and 6.2 but with x and y interchanged.

6.6 Summary of Chapter 6

In example 6.1 we have taken the one-dimensional freezing problem de-

scribed in chapter 5 and used it to solve a simple two-dimensional problem,

showing how to carry out an isotherm migration mapping in two dimen-

sions. This results in an expression in which one of the space co-ordinates

is a function of the other space co-ordinate, temperature and time.

We have seen that this method increases in complexity as it involves a

degree of interpolation, both at the fixed boundaries and for a new term
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arising in the finite difference approximation.

We have shown that to avoid instability in this finite difference method,

it is necessary to make the time-steps very much smaller than in the one-

dimensional case. We have demonstrated that the isotherm migration method

gives a good approximation to the analytical solution with the modifications

described and we have tested the method further, by looking at a symmet-

rical problem using the other space co-ordinate. We have not presented

the numerical solution as it is precisely the same as that with the space

co-ordinates interchanged.

In example 6.2 we have solved the problem described in example 6.1,

using the Laplace transform isotherm migration method and we noted that

the method gives very good results and that it allows larger time-steps to

be taken. Although the method still requires more calculations than the

isotherm migration method, for the two-dimensional case the increase in

number is significantly lower than for the one-dimensional case.

6.6.1 Contribution

We have demonstrated that the Laplace transform isotherm migration method

performs well in simple two-dimensional problems with phase change and

the results compare favourably with those obtained from the analytic so-

lution and the isotherm migration method. Although the method becomes

more complex we have addressed these issues so that accurate results were

obtained.
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Chapter 7

The Laplace transform

isotherm migration method

for a two-dimensional

solidification problem in a

prism

In Chapter 6, we considered the method of Crank and Gupta (1975) in which

they showed how to effect an isotherm mapping for the two-dimensional heat

equation and we solved a simple two-dimensional freezing problem with

it. In their work Crank and Gupta (1975) used it to solve a problem of

solidification of a square prism of fluid initially at constant temperature

throughout.

We now solve this problem first without and then with the use of the

Laplace transform. We begin by revisiting the mapping process and we

make y the dependent variable, as did Crank and Gupta (1975), so that we

may have some basis for comparison of our results.
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We consider some of the difficulties which could be encountered and how

we may overcome these.

7.1 The mapping of the equations

We refer to chapter 6 and equations (6.1), (6.2), (6.3) and (6.4) for the

usual way of writing the heat conduction equation in two dimensions in

non-dimensional form. In order to use equation (6.4) to solve a problem we

work on a u,x-grid and attempt to find a value of y for each grid-point at the

required time. Equation (6.4) may be solved using a finite difference scheme

and we shall describe later how to do this. However, we will not be able to

use this method to solve every problem and there are some difficulties which

we need to be aware of before choosing an example.

We consider the following situation for a square prism with boundary

conditions

u = 0, y = 0, 0 6 x 6 1, t > 0,

u = 1, y = 1, 0 6 x 6 1, t > 0,

u = y2, x = 0, 0 6 y 6 1, t > 0,

u = y, x = 1, 0 6 y 6 1, t > 0,

and initial condition

u =
1

2
(x + y) , 0 < x < 1, 0 < y < 1, t = 0

described by Crank and Gupta (1975). To solve this, we would choose a

u,x-grid such that ui = u0 + iδu, i = 1, 2, ..., N and xj = x0 + jδx,

j = 1, 2, ...,M .

The first of the boundary conditions implies that y = 0 for all points xj

on the u0 grid line, and the secondary boundary condition that y = 1 for

all points on the xj on the uN grid line for all t > 0. The third condition

states that y = u
1

2

i for all points on the x = x0 = 0 grid line for all t > 0

and the final boundary condition means that y = ui for all points on the
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grid line x = xM = 1 for all t > 0. From the initial condition when t = 0

we can deduce that yi,j = 2ui − xj at all the internal grid points, (ui, xj).

We also note that u0 + rδu is the isotherm on which the temperature is ur

in the x,y-plane.

We are now able to proceed with evaluating numerically the solutions to

this problem using a finite difference method. However we shall not develop

the solution fully, we shall use the ideas to illustrate difficulties which may be

encountered. We notice that in this case the boundary and initial conditions

are such that y is a single-valued function of u and x, which means that there

is only one value of y for each point on the u,x-grid. However if the third

boundary condition had been

u = 0, x = 0, 0 6 y 6 1, t > 0

then y would be multi-valued for x = 0, u = 0 on the u,x-grid and could

take any value in the range 0 6 y 6 1. This is not to say that we cannot

overcome this, and we may be able to use interpolation or extrapolation

procedures using other points on the grid.

We also know, that no isotherms other than u = 0 exist at t = 0 and

this means that no values of y will be available at any internal grid points at

t = 0. We have to find a method for generating starting values at some small

time. Since we do not have any analytical solution available we shall use a

method involving approximate methods of boundary layer theory, which we

shall describe later.

Although the temperature u is always a single-valued function in the

x,y-plane, we have seen in the one-dimensional case that when u is an in-

dependent variable, multi-valued functions arise in certain situations, as in

example 3.2, the case of a rod with the boundaries held at constant temper-

atures, we saw that it was possible that two different points in the region

could have the same temperature, and this situation could equally arise in a

square region initially at zero temperature with the boundaries held at con-
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Figure 7.1: Diagram showing an isotherm which does not exist at all x grid
points

stant non-zero temperatures. Furthermore, there may be situations where

an isotherm does not exist at a given u, x-grid point.

Figure 7.1 shows a possible isotherm position. We can see that this

isotherm does not cross the gridlines x = 0.8 and x = 0.9 at this particular

time, and therefore we would be unable to find a y-value for points on the

u, x-grid where x = 0.8 and x = 0.9.

It may be possible to resolve these difficulties using the symmetry of the

problem, if it exists.

We have already shown in chapter 6, how to formulate the boundary

condition on the solid-liquid interface from

Ksol
∂usol

∂n
− Kliq

∂uliq

∂n
= Lρ

dx

dt
(7.1)

with the y-dependence given by

∂y

∂t
=

1

s

{

1 +

(

∂y

∂x

)2
}{

Ksol

(

∂y

∂usol

)−1

− Kliq

(

∂y

∂uliq

)−1
}

(7.2)

where s is the Stefan constant which depends on the thermal properties of

the material.
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7.2 Solidification of a square prism of fluid

Example 7.1

We consider the problem described by Crank and Gupta (1975) of an in-

finitely long prism initially filled with a fluid at the fusion temperature

u = 1. In the present example the temperature on the surface of the liquid

is subsequently maintained constant at u = 0 below the fusion temperature

so that solidification occurs from the surface inwards. We assume that the

prism extends between −1 6 x 6 1 and −1 6 y 6 1. In all of our previous

examples, we have used water as the material being frozen or melted and

therefore a fusion temperature of zero, but we choose the fusion tempera-

ture in this example to be u = 1 because we wish to compare our results

with those of Crank and Gupta (1975). Following their model we use the

non-dimensional form of the heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(7.3)

and the boundary conditions are u = 0 on all four sides and on the solidifi-

cation front

u = 1, uF (x, y, t) = 0, t > 0 (7.4)

where uF (x, y, t) = 0 is the contour on the freezing front. This is analo-

gous to the parameter x̃0 which we used for the moving boundary in one

dimension.

Initially we have uF (x, y, 0) = 0, t = 0 because solidification has not

yet started.

We are able to simplify equation (7.1) to

∂u

∂n
= −s

dx

dt
, uF (x, y, t) = 0 (7.5)

where n is the outward normal to uF (x, y, t) = 0, the direction of heat flow

being in the direction normal to the interface contour. This simplification
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may be made, because the liquid phase is always at the uniform temperature

u = 1 and consequently there is no temperature gradient in the liquid phase.

We are therefore able to use the shorter form of equation (7.2)

∂y

∂t
=

1

s

{

1 +

(

∂y

∂x

)2
}

(

∂y

∂u

)−1

(7.6)

This example has symmetry about the axes and so we need only to

consider one quadrant of the prism enclosed by the axes and x = 1 and

y = 1 and we know that inside the region across the axes the flux will be

zero so that we have further boundary conditions

∂u

∂x
= 0, x = 0

and
∂u

∂y
= 0, y = 0

together with
∂y

∂x
= 0, x = 0

by symmetry.

7.3 The finite difference form.

We evaluate the numerical solution on a u,x-grid, choosing δu and δx such

that

ui = u0 + iδu, i = 1, 2, ..., N (u0 = 0, uN = 1)

and

xj = x0 + jδx, j = 1, 2, ...,M (x0 = 0, xM = 1)

We need to calculate the values of y on this grid for successive values of δt.

We represent equation (7.6) by the finite difference form

Y
(n+1)
N,j − Y

(n)
N,j

δt
=

1

s







1 +





Y
(n)
N,j − Y

(n)
N,j−1

δy





2




δu

Y
(n)
N,j − Y

(n)
N−1,j

(7.7)
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which is our previous equation (6.8) with X replaced by Y which gives us

Y
(n+1)
N,j for j = 1, 2, ...,M . We use the backward difference for

(

∂y
∂u

)−1

because at the interface we need to refer back to the previous isotherm.

We now consider equation (6.4), in which x and y have been inter-

changed, which may be simplified to

∂y

∂t
= −

(

∂y

∂u

)

∂2u

∂x2
+

∂2y

∂u2

(

∂y

∂u

)−2

(7.8)

and is represented by

Y
(n+1)
i,j − Y

(n)
i,j

δt
= −

(

Y
(n)
i,j − Y

(n)
i−1,j

δu

)

∂2u

∂x2
+

Y
(n)
i−1,j − 2Y

(n)
i,j + Y

(n)
i+1,j

(

Y
(n)
i,j − Y

(n)
i−1,j

)2

To remain consistent we use a backward difference for the term ∂y
∂u

.

In addition, we have a term ∂2u
∂x2 and we deal with this by interpolating

or extrapolating linearly the values of u corresponding to yi,j at xj−1and

xj+1. The formulae we use are for u at xj−1

U =
Ui+1 (Yi,j−1 − Yi,j) − Ui (Yi+1,j−1 − Yi,j)

Yi,j−1 − Yi+1,j−1
(7.9)

and for u at xj+1

U =
Ui−1 (Yi,j+1 − Yi,j) − Ui (Yi−1,j+1 − Yi,j)

Yi,j+1 − Yi−1,j+1
(7.10)

and we can then apply a central difference formula to find a value for ∂2u
∂x2

at the grid point we are interested in.

We now encounter some of the difficulties discussed in section 7.1. On

the y-axis equation (7.8) breaks down for the following reason. We know

that
∂y

∂x
= 0

and
∂u

∂x
= 0

But
∂y

∂x
=

∂y

∂u

∂u

∂x

121



so that
∂y

∂u

is not determined.

We therefore fit a quadratic function through the points (x1, y1) and

(x2, y2), remembering that ∂y
∂x

= 0 on the y-axis, allowing us to calculate

the intercept on the y-axis, which is the position where the isotherm crosses

the axis. Another symmetry of the problem is the diagonal y = x so we

need only consider those points for which y > x. Figure 7.2 shows a possible

situation of a typical isotherm at times t and t+δt. For the position y = kδt

we can see that as the isotherm passes through the line y = x it will cut

the grid line at xr+1. We know that the solidification front moves along the

direction normal to the front as described in equation (7.1). We also know

that the line y = x is an axis of symmetry and therefore we follow the work

of Crank and Gupta (1975) and find the point R by fitting a circle, centred

on y = x, and passing through the points P and Q. We need to know when

this method will be appropriate, so we need to know whether the isotherm

will cut the grid line at xr+1 at the next step. This will happen if the y

value of the point Q is greater than x + δx and we can see that this step

will be appropriate when this condition is met. On the other hand, if the

condition is not met, then we have the situation shown in figure 7.2 for the

isotherm at (k + 1)δt where W is less than x + δx and that after passing

through the line y = x, the isotherm will not cut the grid line at xr+1 grid

line. In this case, we use the circle centred on the line y = x and passing

through the points S and T to find the point W on the grid line at xr. By

choosing the condition y > x + δx we ensure that the circle fitted through

the two neighbouring points will cut the next grid line parallel to the y-axis

because of the symmetry about the diagonal y = x.

Using the symmetry of this problem will ensure that we avoid having

double-valued functions as well as reducing the number of calculations to
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Figure 7.2: Diagram showing possible positions of an isotherm at times t
and t + δt

be performed. However extra calculations are needed for the fitting of the

quadratic and circle on the axes and the line y = x respectively.

7.4 Starting values for the problem

As we have seen previously, we need to find some values for the positions

of the isotherms a short time after t = 0 in order to start the problem. We

use the one-parameter method of Poots (1962), as suggested by Crank and

Gupta (1975).

Poots solved the problem of the two-dimensional solidification of a liq-

uid in a prism using approximate integral methods for solving boundary-

layer equations in fluid dynamics. The method, which we follow, is the

Kármán-Polhausen method, which reduces the problem of finding the two-

dimensional solidification front to the numerical integration of an ordinary

first-order differential equation. As we have previously stated, the contour

of the solidification front is represented by uF (x, y, t) = 0. At t = 0, the

position of the solidification front is at the edges of the prism, and so uF is
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satisfied if
(

x2 − 1
) (

y2 − 1
)

= 0

From observations of the freezing of a liquid in a prism, after a small time,

the freezing front takes the shape of a square having round corners, and near

the end of solidification period, the shape becomes circular, that is of the

form

x2 + y2 − f(t) = 0

At the end of solidification, the front lies on the axes x = 0 or y = 0.

Therefore it is reasonable to assume the shape of the solidification front

satisfies
(

x2 − 1
) (

y2 − 1
)

− ε (t) = 0 (7.11)

where ε = 0 for t = 0 and ε = 1 at the time of complete solidification.

The heat balance equation is found by integrating both sides of equa-

tion (7.3) over the solidified phase bounded by the edge of the prism and

the moving boundary contour. Using Green’s theorem and the divergence

theorem, an integral is then obtained which is used to find the value ε(t).

To satisfy both the boundary conditions and equation (7.11), we assume the

form

u =

(

x2 − 1
) (

y2 − 1
)

ε
(7.12)

for the temperature distribution in the solidified phase. This expression

is substituted into the heat balance integral and the resulting first order

differential equation is solved, leading to an expression

t =

∫ ε

0

{

3

8
sA0 (ε) + A1 (ε)

}

dε (7.13)

where

A0 = −ε
dI0

dε

and

A1 =
1

24

(

4 − 3I1

ε

)
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Poots (1962) defines a function

R (x, ε) =

{

1 − ε − x2

1 − x2

}

and says that the required integrals are then

I0 =

∫

√
(1−ε)

0
R

1

2 dx

and

I1 =

∫

√
(1−ε)

0

(

2 − 2x2 + ε
)

R
1

2 dx

which must be expressed as standard elliptic functions of the first and second

kind.

Poots provides tables with values of A0(ε) and A1(ε) for values of ε from

0 to 1.0 in steps of 0.4, and so for a particular value of ε we can find the

time t from equation (7.13) and the shape of the contour of each isotherm

of temperature u at that time, from equation (7.12).

In order that we may compare our results with Crank and Gupta, we

follow their suggestion and use a starting value of t = 0.0461 and ε = 0.32

to find the positions of the isotherms and mesh sizes δu = δx = 0.1, while s

has a value 1.561, and the time step is δt = 0.0001 remembering that taking

larger time steps may cause instability.

Table 7.1: Values of the y co-ordinate on the solid-liquid interface for fixed
values of x at various times

t 0 0.1 0.2 0.3 0.4 0.5 0.6

0.05 0.8121 0.8102 0.8044 0.7937 0.7761 0.7474 0.6902
0.10 0.6950 0.6936 0.6892 0.6809 0.6657 0.6367 0.5571
0.15 0.6124 0.6108 0.6061 0.5966 0.5774 0.5156
0.20 0.5438 0.5418 0.5358 0.5230 0.4743
0.25 0.4828 0.4800 0.4715 0.4521 0.3830
0.30 0.4263 0.4223 0.4102 0.3598
0.35 0.3725 0.3665 0.3485 0.2790
0.40 0.3291 0.3109 0.2565
0.45 0.2885 0.2529 0.1753
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Table 7.2: Values of the y co-ordinate on the solid-liquid interface for fixed
values of x at various times quoted by Crank and Gupta for comparison

t 0 0.1 0.2 0.3 0.4 0.5 0.6

0.050 0.8125 0.8106 0.8048 0.7940 0.7764 0.7476 0.6904
0.100 0.6979 0.6965 0.6821 0.6836 0.6683 0.6392 0.5606
0.150 0.6157 0.6141 0.6095 0.6000 0.5810 0.5201
0.200 0.5473 0.5453 0.5394 0.5268 0.4789
0.250 0.4865 0.4838 0.4755 0.4567 0.3894
0.300 0.4302 0.4263 0.4146 0.3654
0.350 0.3766 0.3708 0.3534 0.2859
0.400 0.3337 0.3158 0.2623
0.450 0.2816 0.2585 0.1893
0.495 0.2376 0.2056 0.1097

We show the values found for y on the solid/liquid interface for fixed

values of x at various times in table 7.1 and we show the results found

by Crank and Gupta in table 7.2 for comparison. We note they are very

similar. Because there is symmetry about the line y = x, only the values

of y above the diagonal are tabulated. The computations are stopped at

t = 0.45 because after this, there are only two values of y left corresponding

to the grid points in the x direction on the solid-liquid interface and so we

cannot proceed any further with this method.

Figure 7.4, shows the contours of the interface at several different times

and the diagram shows how the freezing front is similar to a square with

rounded corners at the smaller times and as solidification progresses, it be-

comes more circular in shape. Figure 7.4 shows the final positions of all the

isotherms at t = 0.45. Our results are comparable with those of Crank and

Gupta (1975) and since we do not have an analytic solution, we have no

other means of comparing our solutions to the example.
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Figure 7.3: Diagram showing the positions of the interface at various times.
The dotted line shows the position at t = 0.0461 obtained from the Poots
one-parameter method
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Figure 7.4: Diagram showing the final positions of the isotherms at t = 0.45
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7.5 The Laplace transform isotherm migration method

Example 7.2

We now solve example 7.1, using the Laplace transform method. We notice

that the transformed heat equation, equation (7.8), and the equation used

to calculate the position of the freezing front, equation (7.6), are non-linear,

and we use direct iteration, as we have previously described, to linearise

them.

We write equation (7.8) as

(

∂y

∂t

)(n)

= −
(

∂y

∂u

)(n−1)(∂2u

∂x2

)(n−1)

+

(

(

∂y

∂u

)−2
)(n−1)(

∂2y

∂u2

)(n)

(7.14)

where the expressions with superscript (n − 1) are the numerical results

for those terms calculated at the previous step. We continue the iterative

process until a satisfactory convergence is achieved.

We take the Laplace transform of equation (7.14) to get

λȳ(n) − y (t0) = − 1

λ

(

∂y

∂u

)(n−1)(∂2u

∂x2

)(n−1)

+

(

(

∂y

∂u

)−2
)(n−1)

(

∂2ȳ

∂u2

)(n)

where t0 is the chosen time at which to start the calculation. This equation

leads to

ȳ(n) =
y (t0)

λ
− 1

λ2

(

∂y

∂u

)(n−1)(∂2u

∂x2

)(n−1)

+
1

λ

(

(

∂y

∂u

)−2
)(n−1)

(

∂2ȳ

∂u2

)(n)

(7.15)

Similarly, we write equation (7.6) as

(

∂y

∂t

)(n)

=
1

s







1 +

(

(

∂y

∂x

)2
)(n−1)







(

(

∂y

∂u

)−1
)(n−1)

Taking the Laplace transform of this gives

λȳ(n) − y (t0) =
1

λ

1

s







1 +

(

(

∂y

∂x

)2
)(n−1)







(

(

∂y

∂u

)−1
)(n−1)
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so that we have

ȳ(n) =
y (t0)

λ
+

1

λ2

1

s







1 +

(

(

∂y

∂x

)2
)(n−1)







(

(

∂y

∂u

)−1
)(n−1)

(7.16)

As before, we use a Gauss Seidel solver to solve equations (7.15) and (7.16).

The process is similar to that using the finite difference method, but

we note the following modifications. We calculate all the non-linear terms

before entering Laplace space. This includes the calculation of ∂2u
∂x2 which

has to be done in x, y-space. As before, we calculate the values on the y-

axis by fitting a quadratic function and we fit the circle to the line y = x in

x, y-space. Clearly this cannot be done within the Laplace space and so we

have to use Stehfest inversion at each stage to be able to fit these points.

We notice that our trial problem has only a total time span of 0.45, and

we know problems can arise if we use very small values of T in the Stehfest

method, because of the term λj = j ln 2
T

. However, using a value of T = 0.1

in this problem means we are taking a first step equivalent to about one

quarter of the total time and that such a large step might cause difficulties.

Indeed we find this to be the case; the process breaks down with this value

of T and this is probably because when t = 0.1 some of the isotherms have

moved a significant distance and may no longer exist at the larger values

of the x grid-points. By trying different values of T we find we are able to

obtain results with a value of T of 0.03.

A further problem arises in calculating the interpolation for ∂2u
∂x2 . We

find that in certain circumstances equation (7.10) does not return a value

because both yi,j+1 and yi−1,j+1 are undefined, as the isotherm involved

does not cut the xj+1 gridline. This difficulty does not appear to arise

in the finite difference method because the time steps are much smaller

and this means that the isotherms are progressing more slowly than in the

Laplace transform isotherm migration method, in which the time steps are

necessarily larger. Clearly there exists some temperature value here but our
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Figure 7.5: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.0761 in example 7.2

method of interpolation cannot be used. When this arises, we make a guess

at the value, using the result found for equation (7.9). We write

u (xj+1) = u (xj) − ω (u (xj−1) − u (xj))

where

1 6 ω 6 2

and investigate the solutions with a variety of values of ω. We find that a

value ω = 1.0 gives solutions which are of the order expected. Higher values

of ω give the same results, so provided ω is positive, other values could be

used, but there is no need for this.

7.5.1 Results

We show the results obtained for three isotherms at three different times.

Considering figures 7.5, 7.6 and 7.7, which show the positions of isotherms

with temperatures 0.1, 0.5 and the freezing front after a small elapsed time

of 0.0761, we see that the positions of all three are similar to those obtained
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Figure 7.6: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.0761 in example 7.2
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Figure 7.7: Diagram showing the position of the freezing front with temper-
ature u = 1 at time t = 0.0761 in example 7.2
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Figure 7.8: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.1661 in example 7.2
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Figure 7.9: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.1661 in example 7.2
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Figure 7.10: Diagram showing the position of the freezing front with tem-
perature u = 1 at time t = 0.1661 in example 7.2
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Figure 7.11: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.3461 in example 7.2
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Figure 7.12: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.3461 in example 7.2
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Figure 7.13: Diagram showing the position of the freezing front with tem-
perature u = 1 at time t = 0.3461 in example 7.2
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Table 7.3: Values of the y co-ordinate on the solid-liquid interface for fixed
values of x at various times calculated using the Laplace transform in ex-
ample 7.2

t 0 0.1 0.2 0.3 0.4 0.5 0.6

0.076 0.7569 0.7552 0.7503 0.7410 0.7254 0.6990 0.6369
0.106 0.7016 0.7002 0.6959 0.6878 0.6739 0.6495 0.5767
0.136 0.6539 0.6526 0.6488 0.6415 0.6288 0.6057
0.196 0.5727 0.5716 0.5684 0.5621 0.5509
0.256 0.5036 0.5027 0.4998 0.4943 0.4454
0.286 0.4723 0.4714 0.4687 0.4633 0.4064
0.346 0.4143 0.4135 0.4110 0.4061
0.376 0.3873 0.3865 0.3841 0.3350
0.406 0.3614 0.3606 0.3583 0.3016
0.436 0.3364 0.3357 0.3335
0.466 0.3124 0.3116 0.3095
0.496 0.2873 0.2884 0.2426
0.526 0.2806 0.2653 0.2028

using the the finite difference method with the greatest difference being

around the axis of symmetry y = x.

Considering figures 7.8, 7.9 and 7.10, which show the positions of the

same isotherms at a time of 0.1661, we see the same pattern for isotherms at

temperatures 0.1 and 0.5, and the freezing front still follows the same shape,

but we see a lag beginning to develop. The isotherm positions calculated

using the Laplace transform appear to be moving more slowly than those

calculated using the finite difference method. Although we are updating the

initial values at each time step as described in chapter 5, it appears that

the constraints on the size of the time step mean we are forced to use values

which do not relate closely enough to those at the new time we are interested

in.

Finally looking at figures 7.11, 7.12 and 7.13 which show the positions

of the isotherms at a time of 0.3461, that is close to the time where we can

no longer continue the calculations, we see that the position of isotherm

with temperature 0.1 is still fairly close to that obtained using the finite
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difference method, while the positions of isotherm with temperature 0.5 and

the freezing front are lagging behind and they seem to be retaining the shape

of a square with rounded corners rather than becoming circular. We also

present table 7.5, which shows that there is indeed a time lag, and that we

can continue calculations up to a time of t = 0.526.

7.6 A re-calculation of the problem using a time-

step of 0.001

Example 7.3

We know that when using the Stehfest numerical inversion method we must

take care not to use a value of T which is too small. Crann (2005) suggests

that the lower limit for T should be 0.1. This is because calculation of the

Stehfest parameters and the inversion involves division by T , which could

lead to very large numbers if T is numerically small. This in turn may cause

errors, as the Stehfest weights used in the inversion have a very wide range

as shown in table 4.1. However the optimum value of T is subjective and

very much depends on the circumstances of the individual problem. In order

to improve our results, we wish to take a smaller value of T , which will allow

solutions at intermediate times. In this section we show the results when

the example is re-calculated using a time of T = 0.001.

Figures 7.14, 7.15, and 7.16 should be compared with figures 7.5, 7.6 and

7.7, figures 7.17, 7.18 and 7.19 with 7.8, 7.9 and 7.10 and figures 7.20, 7.21

and 7.22 with figures 7.11, 7.12 and 7.13.

In all cases there is a noticeable improvement, in that the curves more

closely follow those obtained using the finite difference method. Table 7.6

shows the values of the y co-ordinate on the solid-liquid interface for fixed

values of x at various times using the Laplace transform isotherm migration

method. This table should be compared with table 7.5, and we see that
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Figure 7.14: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.0761 using a time-step of 0.001 in example 7.3
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Figure 7.15: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.0761 using a time-step of 0.001 in example 7.3
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Figure 7.16: Diagram showing the position of the freezing front with tem-
perature u = 1 at time t = 0.0761 using a time-step of 0.001 in example
7.3
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Figure 7.17: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.1661 using a time-step of 0.001 in example 7.3
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Figure 7.18: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.16614 using a time-step of 0.001 in example 7.3
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Figure 7.19: Diagram showing the position of the freezing front with tem-
perature u = 1 at time t = 0.1661 using a time-step of 0.001 in example
7.3
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Figure 7.20: Diagram showing the position of the isotherm with temperature
u = 0.1 at time t = 0.3461 using a time-step of 0.001 in example 7.3
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Figure 7.21: Diagram showing the position of the isotherm with temperature
u = 0.5 at time t = 0.3461 using a time-step of 0.001 in example 7.3
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Figure 7.22: Diagram showing the position of the freezing front with tem-
perature u = 1 at time t = 0.3461 using a time-step of 0.001 in example
7.3

although there is still some lag in the movement of the freezing front, it is

not as marked as that found when a time step of 0.03 was used.

We have also attempted to use a finer mesh, by doubling the number of

x grid-points and/or doubling the number of isotherms. We found that this

gave less accurate results. Using a small mesh with a time step of 0.03, we

find that almost immediately we have a run-time error during the calculation

of the position of the circle on y = x.

We conclude that the Laplace transform isotherm migration method is

useful for calculating the positions of the isotherms at small times. The

results show that where we have an isotherm moving relatively slowly, for

example, in this case isotherm with temperature 0.1, the calculated position

seems to be acceptable at all times, but where the isotherms are moving

more rapidly, discrepancies soon arise, and in the case of the freezing front

this is the most marked. The greatest discrepancies in the results appear

close to the y = x symmetry line and this may be due to inaccurancies in

the curve-fitting process across this line. We believe that, because the total
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Table 7.4: Values of the y co-ordinate on the solid-liquid interface for fixed
values of x at various times calculated using the Laplace transform and a
time step of 0.001 in example 7.3

t 0 0.1 0.2 0.3 0.4 0.5 0.6

0.05 0.8120 0.8101 0.8043 0.7936 0.7759 0.7472 0.6899
0.10 0.6948 0.6935 0.6897 0.6822 0.6693 0.6460 0.5727
0.15 0.6104 0.6094 0.6063 0.6002 0.5891 0.5354
0.20 0.5409 0.5400 0.5373 0.5320 0.5221
0.25 0.4805 0.4797 0.4772 0.4724 0.4185
0.30 0.4263 0.4263 0.4234 0.4189
0.35 0.3769 0.3762 0.3741 0.3226
0.40 0.3312 0.3305 0.3286
0.45 0.3074 0.2875 0.2274
0.500 0.3133 0.2350 0.1388
0.526 0.2758 0.2068 0.1082

time for solving this problem problem is 0.45, the time step we are restricted

to taking, means that the values used in the iteration loop are too remote

from the true values, but as discussed previously, we are limited in choosing

the time step, by the Stehfest numerical method.

It may also be that the model of a square with rounded corners may not

be the best shape for the freezing front. Crank and Crowley (1978) describe

a method to solve the same problem, using a cylindrical co-ordinate system

using an orthogonal grid instead of a u, x-grid together with a locally one-

dimensional isotherm migration method form of the radial heat equation,

and this may represent the shape of the freezing front more accurately.

We know that heat flow is normal to the isotherms everywhere, and this

method maintains an orthogonal grid system of isotherms and flow lines,

and geometry allows for the changing shape and orientation of the grid

system. However, we note that we would still need to deal with the points

on the y-axis and the line y = x in a geometrical manner, by fitting circles to

pass through these lines. Other difficulties are also present in this method,

and Crank and Crowley say that if the points on a given isotherm move

too close together while calculating the local co-ordinates, they must be
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respaced using a given algorithm.

We see that while the Laplace transform isotherm migration method is

simple to use and gives good results in one dimension, the two dimensional

case requires a different geometrical approach to account for cases where

the isotherms may not exist or where there is not a unique solution to the

problem. The method becomes longer and more complicated because we

have to invert from Laplace space to perform the geometrical curve fitting

at the axes of symmetry, before being able to continue in Laplace space.

7.7 Summary of Chapter 7.

We have discussed the general isotherm mapping in two dimensions and

described the manner in which it is different from the one-dimensional case,

and considered properties of the mapping which might cause difficulties in

solving the two dimensional case and ways in which we might overcome this.

We have solved the problem discussed by Crank and Gupta (1975) and

given details of the method proposed by Poots (1962) to find the starting

values and the solution to the problem has been repeated using the Laplace

transform isotherm migration method, a new method, and a comparison has

been made with the results from the finite difference method.

The problem exhibits instability and we have attempted to overcome

this.

We showed that it is possible under certain circumstances to use a fairly

small time-step in the Stehfest inversion method.

7.7.1 Contribution

The Laplace transform isotherm migration method has been applied to the

example of solidification in a prism and it was apparent that this problem

posed many difficulties. It particular, the need to choose a Laplace time
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parameter which was not too small meant that positions of isotherms moving

rapidly were not able to be accurately predicted. However we were able to

demonstrate that the method is useful for isotherms moving slowly and

there may be other problems in which solidification is slower which would

be amenable to solution by this method.

We were also able to demonstrate that it is possible to use a small value

for the Laplace time parameter in appropriate circumstances and that our

results were improved in doing this.
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Chapter 8

The use of multiple

processors to solve diffusion

problems using the Laplace

transform isotherm

migration method

8.1 Background

Traditionally software has been written for serial computation. This means

that it is designed to run on a single computer with a single Central Pro-

cessing Unit (CPU), the problem is broken down into a discrete set of single

instructions which are executed one after another with only one instruction

being executed at any moment in time. As time has evolved, problem solv-

ing has become increasingly sophisticated and complex, so that this model

may well be considered to be inefficient. Walker and Houstis (2005) wrote

in an editorial ‘... not only are problems becoming more complex in terms
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of their expression and formulation, the techniques and resources needed to

solve them are also becoming increasingly complex.’ It was in response to

this need that parallel computing was developed, although this happened

more than twenty years before the remarks of Walker and Houstis (2005).

In the simplest sense, parallel computing is the simultaneous use of multiple

computer resources to solve a computational problem. This means that the

problem is run using multiple CPUs, it may be broken into discrete parts

that can be solved concurrently and each part is further broken down to a

series of instructions which are executed simultaneously on different CPUs.

In doing this we share the workload and the results then become available

much more quickly.

In the early days, the ability to do this was limited to high-performance

computers (supercomputers) which were huge, expensive and located in com-

puter centres, thereby limiting their use to a few people. Today the low cost

of personal computers means that it is possible for everyone to own his own

facility, and by networking these together and logging in to other comput-

ers and sharing resources much greater problem-solving capacity is available

than by the use of a single processor.

The first computers were developed in the 1940s and the mathematician

von Neumann (1945) wrote a report describing a general purpose stored-

program computing machine (the EDVAC). At the simplest level, the mem-

ory is used to store both program and data instructions and a CPU gets

instructions and/or data from memory, decodes the instructions and then

performs them sequentially. This system has the disadvantage that it can

lead to a ‘bottleneck’, which seriously limits the effective processing speed

when the CPU is continuously forced to wait for vital data to be transferred

to or from memory. Although this has been overcome to some extent by

new developments it is still recognised that a sequential mode of operation

is not necessarily the most efficient.
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In considering parallel computing methods, we have a number of differ-

ent options which are available, and these are very clearly described by the

taxonomy attributed to Flynn (1972), and we show these in figure 8.1.

The four classifications defined by Flynn are based upon the number of

concurrent instructions (or control) and data streams available in the archi-

tecture:

1. Single Instruction, Single Data stream (SISD)

This is a sequential computer which exploits no parallelism in either

the instruction or data streams. Examples of SISD architecture are

the traditional uniprocessor machines like PCs or old mainframes.

2. Multiple Instruction, Single Data stream (MISD)

This is unusual due to the fact that multiple instruction streams gen-

erally require multiple data streams to be effective. However, this

type is used for example on aeroplanes, which need to have several

backup systems in case one fails. Some theoretical computer archi-

tectures have also been proposed which make use of MISD, but none

have entered mass production.

3. Single Instruction, Multiple Data streams (SIMD)

This is a computer which uses multiple data streams with a single

instruction stream to perform operations which may be naturally par-

allelised. One drawback is that because the processors are executing

instructions simultaneously, some processors may be idle for long pe-

riods of time.

4. Multiple Instruction, Multiple Data streams (MIMD)

This is a system where multiple autonomous processors simultaneously

execute different instructions on different data. Distributed systems

are generally recognized to be MIMD architectures, either exploiting

a single shared memory space or a distributed memory space. In this
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Figure 8.1: Diagram showing Flynn’s Taxonomy where PU represents a
processing unit

system, there is no global clock and the processors will not synchro-

nise with each other unless specifically programmed to do so (Pacheco

1997).

It is the MIMD system which is used by most of the world’s known pow-

erful computers according the TOP500 website. The TOP500 project was

started in 1993 to provide a reliable basis for tracking and detecting trends

in high-performance computing. Twice a year, a list of the sites operating

the 500 most powerful computer systems is assembled and released. The list

contains a variety of information including the system specifications and its

major application areas.

The MIMD is usually divided into two groups: shared memory and dis-

tributed memory. Shared memory refers to a block of memory that can be

accessed by several different processors and is relatively easy to program

since all processors share a single view of data and the communication be-

tween processors can be as fast as memory accesses to a same location. This

is shown diagramatically in figure 8.2.
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The issue with shared memory systems is that many CPUs need fast

access to memory and will likely cache memory, a cache being a temporary

storage area where frequently accessed data can be stored for rapid access.

This has two complications:

CPU-to-memory connection becomes a bottleneck and cache coherence. When-

ever one cache is updated with information that may be used by other pro-

cessors, the change needs to be reflected to the other processors, otherwise

some processors will be working with old data. Such coherence protocols

can, when they work well, provide extremely high performance access to

shared information between multiple processors. On the other hand they

can sometimes become overloaded and become a bottleneck to performance.

These systems are subdivided into Uniform Memory Access (UMA) and

Non-Uniform Memory Access (NUMA). The UMA system is most com-

monly represented by Symmetric Multiprocessor (SMP) machines, which

have identical processors and equal access and access times to memory.

These are sometimes called CC-UMA - Cache Coherent UMA. Cache co-

herence is accomplished at the hardware level. The NUMA system is often

made by physically linking two or more SMPs which may have direct ac-

cess to each other’s memory. Not all processors have equal access time to

all memories and memory access across link is slower. If cache coherency

is maintained, then this may also be called CC-NUMA - Cache Coherent

NUMA

A distributed memory shown in figure 8.3, refers to a multiple-processor

computer system in which each processor has its own private memory. This

requires computational tasks to be distributed to the different processors for

processing, after which the data must be reassembled. Memory addresses in

one processor do not map to another processor. Because each processor has

its own local memory, it operates independently and changes made to its

local memory have no effect on the memory of other processors. Hence, the
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Figure 8.2: Diagram showing a shared memory system

concept of cache coherency does not apply. When a processor needs access

to data in another processor, it is usually the task of the programmer to

explicitly define how and when data is communicated. Synchronization be-

tween tasks is likewise the programmer’s responsibility. Distributed memory

systems fall into two classes:

The first of these is the Massively Parallel Processor (MPP) class, where

the network and infrastructure are ‘tightly coupled and specialised’ for use

in a parallel computer. These systems may contain many thousands of

processors according to Mattson et al. (2004), but they are very expensive.

The second class is the cluster class. They are cost effective being com-

posed of off-the-shelf computers being connected by off-the-shelf networks

and are being used as a cost effective alternative to MPP.

We also have hybrid systems which are a combination of shared and

distributed memory systems. The shared memory component is usually a

cache coherent SMP machine. Processors on a given SMP can address that

machine’s memory as global. The distributed memory component is the

networking of multiple SMPs which know only about their own memory,
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Figure 8.3: Diagram showing a distributed memory system

not the memory on another SMP. Therefore, network communications are

required to move data from one SMP to another. These systems are being

used increasingly.

8.1.1 Parallel Programming Models

Because of the variety of possible parallel architectures available, there is

no one model which is suitable for every case. Therefore an appropriate

programming method has to be selected which is most suitable to the re-

quirements of the system. There are two recognised parallel programming

models.

The first is a directives-based parallel programming language. High Per-

formance Fortran (HPF) is one example, but OpenMP is the most widely

used. Directives, which appear as comments in the serial code, tell the

processor how to distribute the data and work across the processors. This

method is for implementation on shared memory architectures.

The second method is Message Passing Interface (MPI), in which mes-

sages are passed to send and receive data between processes and each process
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has its own local variables. It can be used on either shared or distributed

memory architectures.

Each method has advantages and disadvantages. OpenMP is easier to

program and debug than MPI and the directives can be added incrementally

so that the program is gradually parallelised while it can still run as a serial

code. The serial code statements usually do not need modification and code

is easier to understand and maybe more easily maintained, but OpenM can

be run only in shared memory computers and requires a compiler that sup-

ports OpenMP. It is mostly used for loop parallelisation. On the other hand

MPI runs on either shared or distributed memory architectures and can be

used on a wider range of problems than OpenMP. Each process has its own

local variables. Probably of most importance, distributed memory comput-

ers are less expensive than large shared memory computers. However, it

requires more programming changes to go from a serial to a parallel version,

can be harder to debug and its performance is limited by the communication

network between the nodes.

8.1.2 MPI

For our work we have access to a cluster of Unix machines at Greenwich

University, which is a distributed memory system and implements MPI as

the programming model.

MPI was designed by a broad group of parallel computer users, ven-

dors, and software writers and the standardisation process began with the

Workshop on Standards for Message Passing in a Distributed Memory En-

vironment, in April 1992, in Williamsburg, Virginia, (Walker 1992). MPI 1

followed from 1993-1995 meetings; MPI 2 from a 1997 forum. Gropp, Lusk

and Skjellum (1994) were among those at the forefront of development. The

MPI standard defines a set of library routines that are called from within

programs written in sequential language such as C, C++ or Fortran. There
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are several MPI implementations available, but the two most commonly

used are Local Area Multicomputer (LAM)/MPI and MPICH. These can

be downloaded and implemented free of charge. For our work we use NT-

MPICH in conjunction with Compaq Visual Fortran. The MPI interface

consists of nearly two hundred functions but in general most codes use only

a small subset of the functions. Full details of using MPI, together with

examples of how to employ the pre-defined functions in MPI are given by

Pacheco (1997).

8.1.3 Designing Parallel Programs

When developing a parallel program, if we are starting from a sequential

code, the first step is to consider whether it is suitable to run in parallel. We

need to look for blocks of code which are being repeatedly run sequentially,

especially where the progress is being held up by the need to wait until a

particular set of data has been processed before being able to proceed.

One of the first steps in designing a parallel program is to break the

problem into discrete “chunks” of work that can be distributed to multiple

tasks. This is known as decomposition or partitioning.

There are two ways to partition computational work among parallel

tasks: domain decomposition and functional decomposition. In domain

decomposition the data associated with a problem is decomposed. Each

parallel task then works on a portion of the data. An example of this is

in solving a differential equation using the Laplace transform. We might

require the solution at several different times and these could be grouped so

that each processor calculates the solution for a set of times simultaneously.

Davies and Crann (2007) describe this process. In functional decomposition

the focus is on the computation to be performed rather than on the data

manipulated by the computation. The problem is decomposed according to

the work that must be done, as a collection of independent computational
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tasks that can be executed concurrently. Ideally the data required for the

tasks should not be dependent on much data from other tasks, as commu-

nication between processors will slow the calculation down. Andrade et al.

(2002) provide an example of a process involving functional decomposition.

8.1.4 Communication

The issue of communication is important when designing parallel programs,

because whenever communciation between processors is needed, the run-

ning time for the program will be slower. Therefore we need to minimise

the amount of communication between processors so that the speed of per-

formance is not compromised. Some problems can be decomposed and ex-

ecuted in parallel with virtually no need for tasks to share data. These

types of problems are often called embarrassingly parallel because they are

so straight-forward. Very little inter-task communication is required. How-

ever, most programs do need message passing between processors to some

degree and communications frequently require some type of synchronization

between tasks, which can result in tasks spending time ‘waiting’ instead of

doing work.

8.1.5 Measuring performance

Having designed our parallel program, we then would like to measure the

increase in speed compared with using a sequential program. In our work,

we use the parameter speed-up, which is the ratio of the sequential runtime to

the parallel runtime. If t1 is the time to run the program on one processor

and tp is the time for the last of the p processors to complete, then the

speed-up Sp is given by

Sp =
t1
tp

(8.1)

For values of p > 1 usually 0 < Sp < p. If Sp = p then the program

is said to have linear speed-up. This is rare, because the overhead from
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communication in the program adds extra time to the computation which

does not occur in a sequential code.

8.2 Application to the Laplace transform isotherm

migration method

8.2.1 An earlier problem

The implementation of the Laplace transform in time on a distributed mem-

ory architecture has been discussed previously by Davies et al. (1997). They

applied the Laplace transform to the diffusion problem, thereby reducing the

problem to a modified Helmholz equation in the transform space which they

solved in a parallel environment using five different methods. The method

was illustrated by solving the two-dimensional heat conduction problem

∇2u =
1

α

∂u

∂t
− 1 < x < 1, −1 < y < 1 (8.2)

subject to the boundary conditions

u (−1, y, t) = u (x,−1, t) = u (1, y, t) = u (x, 1, t) = 1

and the initial condition

u (x, y, 0) = 0

The numerical Laplace transform method was used to solve the problem with

a value of M = 6 for the number of transform parameters, as suggested by

Crann (1966) and Moridis and Reddell (1991c).

The solution methods were:

1. The finite difference method (FDM) which has been described in chap-

ter 2, and in which a uniform grid on the square region was defined

and the usual five-point formula for the Laplacian (Smith, 1978) was

used to define a Gauss-Seidel formulation.
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2. The finite element method (FEM) also previously mentioned in chap-

ter 2.

3. The boundary element method (BEM) using 68 linear elements with

eight-point Gauss quadrature to develop the system matrices. The

singular integrals were managed using Telles’s transformation method

(Telles 1987 and Telles and Oliveira 1994).

4. The method of fundamental solutions (MFS) which has been referred

to in chapter 2 and its solution requires a knowledge of the fundamental

solution for the modified Helmholz equation which is given by

u∗ =
1

2π
K0

(
√

λ

α
R

)

where K0 is the modified Bessell function of the second kind, and R

is the distance between a fixed source point and a variable field point.

The modified Helmholz equation has the form

∇2u − γ2u = f

and under the Laplace transform the heat equation becomes

∇2ū =
1

α
(ū − λu0 (x))

and so has the form of a modified Helmholtz equation. Referring to

equation (2.19) in chapter 2, we now have a similar expression to solve

with a new fundamental solution, this being effected as described in

chapter 2.

5. Kansa’s multiquadric method (KMM) which has some similarity to

the method of fundamental solutions in that it involves interpolation

with points outside the bounded region on which the equation is to be

solved, but these points are on a grid system, rather than on a circle

surrounding the region.
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Figure 8.4: Speed-up for the method of fundamental solutions.

These problems were solved on a network of processors comprising four T800

transputers and the solution was sought at eight time values:

t = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20.

Table 8.1: cpu times for the five different methods.
No of proc’s FDM FEM BEM MFS KMM

1 2537 2617 923 92.3 73.6
2 1269 1309 464 46.2 36.9
4 634 654 233 23.2 18.8

Table 8.2.1 shows the computing times for the five different methods.

Clearly, the finite difference and finite element methods require a much

greater cpu time, but in this instance, this was not under scrutiny, merely

the speed-up of the individual methods. Figure 8.4 shows the speed-up for

the method of fundamental solutions, a typical example since it was found

that in each case the speed-up was indistinguishable from any of the others;

they all exhibit almost linear speed-up.

For our work, we use the University of Greenwich parallel system, which

comprises three DEC4100 servers with eighteen single alpha processors.
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8.2.2 The options for parallel implementation of the Laplace

transform isotherm migration method

In using the numerical Laplace transform method there are choices to be

made in the division of work among the processors. Throughout our work

we have used eight Stehfest weights for our Laplace inversion and we could

construct the code so that the weights are divided between the different

processors, and look at the speed-up this produces.

We could also approach the problem by evaluating the solution at 16

different times, which will be shared among the processors, as in the work

of Davies et al. (1997), Crann et al. (1998) and Crann et al. (2007).

We have shown in chapter 5, that for problems involving phase change

we implement the Laplace transform method in a different way, so that the

initial condition is updated for each time value. This means that we cannot

proceed in the manner of Davies et al. (1997) for such problems, because

the initial condition at each stage requires knowledge of the positions of the

isotherms at the previous time and so for such problems we take the first

approach.

Example 8.1

We refer to example 4.1. In this example we solve the problem of a bar of

unit length, initially at zero degrees, and from time t0 the temperature of

the boundary at x = 0 is held at a value of 10. This is a one-dimensional

problem with no phase change, and we use the isotherm migration method

together with the Laplace transform to solve it. Because we are interested in

measuring time differences which might be quite small, we increase the num-

ber of isotherms to 21, that is, we take them at intervals of 0.5 rather than

2, to get a more accurate picture of any time differences in the calculation.

We solve the problem for 16 times from t = 0.2 to t = 1.7 in increments

of 0.1, remembering that we start the calculation at a small time, t = 0.1.

We use the UNIX clock to measure the time for each processor to finish its
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work. Because the calculation involves a Gauss-Seidel iterative procedure,

we cannot say that the processors have identical workloads as some calcu-

lations require more iterations to converge than others, and so we take the

end point of the calculation to be when the last processor has completed its

task. We also eliminate the necessity of each processor having to write its

results to the output screen, to avoid the possibilty of a processor having to

wait to write, which would introduce inaccuracies into the timing.

We use the processors to perform the calculation in the Laplace space

subroutine in the program. As we use a Stehfest inversion with 8 parame-

ters, we compare the speed-up using 1,2 4 or 8 processors. When using 1

one processor, all eight sets of Stehfest parameters, are used by this proces-

sor, that is, in effect the sequential case. When using two processors, we

allocate four Stehfest parameters each to the two processors, and these two

processors pass their results to the main processor to continue the calcula-

tion. The case using four processors means each now has two sets of Stehfest

parameters and with eight processors, one set of Stehfest parameters. At

the end of the calculation for each time, the main processor must broadcast

the new positions of the isotherms to the other processors, as these become

the new initial conditions for the next time step. With this method, just

a small part of the overall calculation is being performed in parallel, and

there is considerable message passing between the processors, and that the

processors are not being used in an efficient way as they will be idle while

the main processor collates the results, but this seems to be unavoidable for

this manner of working.

We show the results in figure 8.8 and table 8.2. We see that there is

an initial speed-up when using two processors, but this is less marked for

four processors and the speed-up falls back when using eight processors. Al-

though at first sight this might seem unexpected, we remember that much of

the calculation is being done in a sequential manner and that the more pro-
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Figure 8.5: Speed-up for the Laplace transform isotherm migration method
in one dimension allocating Stehfest values to varying numbers of processors
using 21 isotherms in example 8.1

cessors in use, the more message passing involved, which would contribute

to a time delay.

Table 8.2: Speed-up when allocating Stehfest parameters to varying numbers
of processors with 21 isotherms in example 8.1

p Sp

1 1.00
2 1.72
4 2.28
8 2.08

Example 8.2

We now repeat example 8.1, but increase the number of isotherms and grid

points to 41 each.

We see that increasing the number of calculations leads to an improve-

ment in speed-up and that increasing the number of processors reduces the

calculation time. This is because the time used for message passing is small

compared with the time spent on calculation. We conclude that while there

is some benefit in using multiple processors for a simple problem where only
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Table 8.3: Speed-up when allocating Stehfest parameters to varying numbers
of processors and 41 isotherms in example 8.2

p Sp

1 1.00
2 1.71
4 2.71
8 4.14
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Figure 8.6: Speed-up for the Laplace transform isotherm migration method
in one dimension allocating Stehfest values to varying numbers of processors
and 41 isotherms in example 8.2

a small part of it can be properly calculated in parallel, the method is very

effective when the problem is complex and requires many calculations to be

carried out in a partially parallel way.

Example 8.3

Since we have used a problem with no phase change in examples 8.1 and

8.2, this would be amenable to solution using the method of Davies et al.

(1997), that is, the sharing of the time values in which we are interested,

rather than the Stehfest parameters. For completeness, we carry this out in

this example, bearing in mind that we shall not be able to do the same for

problems with phase change. The number of isotherms is the same as that
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Figure 8.7: Speed-up for the Laplace transform isotherm migration method
in one dimension with no phase change with 21 isotherms in example 8.3

in example 8.1. Because the processors are shared with other users and may

be running several codes we find slight variations in the times for the last

processor to finish its work each time we run the code. To get a reasonable

estimate of calculation time we run each set of results ten times and take

an average value. Our results are shown in table 8.4 and figure 8.7.

Table 8.4: Speed-up for the Laplace transform isotherm migration method
in one dimension with no phase change in example 8.3

p Sp

1 1.00
2 1.83
4 3.00
8 5.31
16 9.94

We see from figure 8.7 that between 2 to 16 processors there is a re-

lationship between speed-up and the number of processors, although it is

not linear according to our definition. When two processors are used rather

than one, the time taken is not exactly halved. This may be due to the two

processors each having to access data before starting their work, which does
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not occur when only one process is used. This is a “small problem” with few

unknowns and so interprocessor communications may be relatively impor-

tant. Nevertheless, we conclude that when several processors are available,

this method could well be efficient in saving time in calculation.

8.3 A Stefan problem in one dimension.

Example 8.4

We now consider a Stefan problem and use example 5.1 discussed in chapter

5. We saw that for Stefan problems we need to update the initial values at

each time step, before finding the new positions of the isotherms. For this

reason we cannot use a total parallel implementation as in example 8.3, by

allocating specific time values to specific processors since each the calculation

at each time will depend upon the positions of the isotherms found at the

previous time step. However, we can make use of having several processors

available, by sharing the work done in Laplace space as in examples 8.1 and

8.2. We therefore, allocate to each processor particular values of λ and the

Stehfest weights, and after convergence in the Gauss-Seidel procedure has

been achieved, the results are passed to one processor, which sums them

and tests for convergance of the non-linear loop. We use 21 isotherms in

this calculation.

Table 8.5: Speed-up for the Laplace transform isotherm migration method
in one dimension for a Stefan problem in example 8.4

p Sp

1 1.00
2 1.60
4 2.28
8 2.91

We tabulate the results for this example in table 8.5 and plot these in

figure 8.8. The trend appears to be that speed-up increases as the number
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Figure 8.8: Speed-up for the Laplace transform isotherm migration method
in one dimension for a Stefan problem in example 8.4

of processors increases, but it is not linear according to our definition. The

time spent passing data between processors is reflected in the rate of increase

of speed-up.

8.4 A Stefan problem in two dimensions

Example 8.5

We refer to example 7.3, the solidification of a square prism of liquid. We

have already described how to solve the problem using the Laplace transform

isotherm migration method and that a time step of t = 0.001 gives results

which are to be similar to those using the finite difference method. As in

example 8.4, because we have a Stefan condition, we need to use the Laplace

transform method in a different way, by updating the initial conditions at

each step. We cannot use each processor to evaluate a set of solutions at a

number of times independently of the other processors, since the solutions

at any time are needed as the initial conditions for the solution at the next

time value.
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Therefore, as in examples 8.1 and 8.2, we distribute the Stehfest pa-

rameters evenly between one, two, four or eight processors. We have seen

in chapter 7 that the solution to the problem requires a significant amount

of geometrical computation and the work in Laplace space is a very small

portion in comparison to the overall work. We use the value Sp given by

equation (8.1) as a measure of speed-up.

From the results shown in table 8.6 and figure 8.9 we see a reasonable

speed-up when using two processors rather than running the program se-

quentially on one processor. Using more processors shows an improvement

in speed-up, but the time saved becomes less. Clearly as more processors

are involved, there is more message passing, and the nature of this problem,

with its non-linearity and the need to fit curves at the lines of symmetry

means that much of the work has to be done in a sequential way. Therefore

because it is not a ‘true’ parallel problem, in the sense that all the processors

carry out exactly the same tasks, we might expect the speed-up not to be

exactly linear.

Table 8.6: Speed-up shown by using multiple processors to calculate the
time to freeze a square prism of liquid in example 8.5

p Sp

1 1.00
2 1.48
4 1.69
8 1.99

8.5 Conclusions regarding the Laplace transform

isotherm migration method solution in a par-

allel environment

We have considered several examples in which we have used the Laplace

transform isotherm migration method in a parallel environment as a tool to
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Figure 8.9: Speed-up for the Laplace transform isotherm migration method
for a two-dimensional Stefan problem in example 8.5

solve both one-dimensional and two-dimensional problems. Our results in-

dicate that there is always some benefit to be gained in a multiple-processor

method.

In cases where there is no phase change, the problem may be solved inde-

pendently at required times by several processors and although speed-up is

demonstrated, the relationship between speed-up and number of processors

in not linear. Provided the problem is of such complexity that the time spent

on calculations far outweighs the time spent on message passing, speed-up

is improved.

8.6 Summary of Chapter 8

This chapter begins with a discussion of how parallel computing was devel-

oped in response to both the advance in hardware technology and the need

for more complex problems to be solved.

Flynn’s taxonomy (Flynn 1972) describes the four classifications of sys-

tems of computing, and it is the multiple instruction, multiple data model
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upon which we focus. We mention the advantages and disadvantages of the

different parallel programming models, but conclude that MPI is accessible

to more users than Open MP and HPF, because it is suitable for use by an

individual with a PC and access to a remote cluster.

We present new work, solving five different examples with the Laplace

transform isotherm migration method in a parallel environment, showing

that there are choices of how the work may be shared among the processors

available and that the use of multiple processors always results in some

time saving, although how much depends upon the relative times spent on

calculation and message passing. In problems with phase change, our choice

of work-sharing by the processors is limited by the constraints of needing to

update the initial conditions at each time step.

8.6.1 Contribution

We have solved several examples with the Laplace transform isotherm migra-

tion method in a parallel environment and we have shown that for problems

where no phase change is involved there are different models for division of

work, but when phase change is involved, the choice of how to share the

workload is limited.

We have shown that benefit in the form of speed-up is achieved in a par-

allel environment but is dependent on the amount of time spent on message

passing compared with the time spent on calculations.

We had hoped to demonstrate that our new method would be suitable

for a parallel implementation and we have shown this to be the case.
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Chapter 9

Conclusions and future work

9.1 Summary of thesis

In the final chapter an assessment is made as to whether the objectives

described in chapter 1 have been achieved and the contribution this work

has made towards the chosen topic is evaluated. Further work which might

be implemented is also suggested.

Chapter 2 provided a derivation of the heat equation and showed that

there are many methods to choose from to find its solution, each having its

own merits but with a suitability depending on the particular problem.

The first aim was to examine the isotherm migration method described

by Crank and Phahle (1973), a method appearing less frequently in recent

years, to see its advantages and disadvantages when applied to simple prob-

lems. This would help in realising the limitations of the method.

The method was applied to the solution of conduction problems in one

dimension at first, this in itself being a new application, since we have only

found references to its use as a tool for solving problems involving phase

change, that is, cases involving melting or freezing. It was noticed that

in carrying out the isotherm migration mapping, the linear heat equation

is exchanged for a non-linear equation. Furthermore, in considering the
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heating of a rod at zero degrees, no isotherms other than that having a

temperature of zero degrees exist at the initial time so that a method to

generate the positions of some isotherms a short while after the initial time

is needed. This presents no difficulty if an analytic solution is available

for the problem, but could lead to inaccuracies if an alternative numerical

method were to be used which might introduce some error. It was noted that

when using the isotherm migration method with a finite difference solver,

there is a constraint on the size of the time step, and this means that initially

only very small times steps may be taken, although as the solution proceeds

these are allowed to increase.

Example 3.2 showed a difficulty when considering the heating of a rod

where each end was held at a constant temperature as some of the isotherms

existed for only a finite time before disappearing. In addition, some isotherms

did not have a unique position.

Problem: Isotherms may be transient and have non-unique positions.

Decision: Consider the example as two simpler cases. The isotherm migra-

tion method equation is non-linear and the solutions to the two cases may

not be added directly, but the results may be used to produce a plot of each

in x, t-space and since the heat equation is linear these two functions may

be added together.

Problem: Positions for the isotherms after a small time are needed to start

the isotherm migration method and a numerical method may introduce er-

rors at the initial stage, which may then increase during the solution.

Decision: The effect of errors in the initial data should be considered and

this was carried out in example 3.3 by introducing known errors into the

analytic starting values and evaluating the outcome

It was found that the isotherm migration method was quite tolerant of

errors, tending to the correct solution in the long term. This supported the

belief that the method was robust.
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The method was tested in examples where α, the thermal diffusivity,

was not constant, and it was found that although there were no analytic

solutions, the results followed the expected trends.

The Laplace transform was then applied to the isotherm migration method

and examples were solved in one dimension. This was new work and led to

other decisions to be made and problems to overcome.

Problem: A method for inverting the Laplace transform is required.

Decision: Use the Stehfest numerical inversion process which has been

shown by Crann (2005) to be a reliable and easy method to operate. A

choice of the number of Stehfest parameters needs to be made, and follow-

ing the suggestion of Davies and Crann (1998), M = 8, where M is the

number of Stehfest parameters, is taken as this is believed to give accuracy

without performing more calculations than necessary.

Problem: The mapped isotherm migration equation is non-linear and the

Laplace transform may only be applied to linear equations.

Decision: Use the direct iteration method suggested by Crann (2005), sub-

stituting the numerical values for the non-linear terms obtained at the pre-

vious time step. Iterations are then performed until the required accuracy

is achieved.

The results obtained for the solution to simple heating examples using

the Laplace transform isotherm migration method are compared with those

using the isotherm migration method alone, and it may be seen that both

methods produced the same accuracy. It is possible to take larger time

steps with the Laplace transform isotherm migration method than with the

isotherm migration method, but this has to be weighed against the increased

number of calculations needed for the Stefhest numerical inversion method.

The Laplace transform isotherm migration method was then used to

solve one-dimensional problems with phase change, so-called Stefan prob-

lems, and it was found that because the position of the moving boundary was
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described by an equation involving a time derivative, the Laplace transform

could not be applied in the normal way, that is keeping the initial condition

the same throughout calculation, as a lag developed in the movement of the

boundary of the phase change.

Problem: If the initial condition is fixed in the Laplace transform expres-

sion throughout the calculation which is the usual manner of proceeding,

the positions of the isotherms fall behind their true values and this becomes

more marked with increasing time. This is due to the derivative term in the

equation at the moving boundary.

Decision: Updating the initial condition at every time required overcomes

this problem.

The results using this modification compared well with the analytic so-

lution.

At this stage an analysis was performed on the number of calculations

required for the Laplace transform isotherm migration method compared

with the isotherm migration method and it was found that the former in-

creased the number of calculations by approximately a factor of seventeen.

However, this was not interpreted as meaning that our method lacked ef-

ficiency as the intention was to show later on that the method would be

amenable to solution in a parallel computing environment.

The method was shown to be useful in solving a phase change problem

with convective boundary conditions. In this case there is a need to deal with

isotherms which appear during the process of the problem and the model of

Gupta and Kumar (1988) was followed in which the new temperature of the

wall at which convection is taking place is estimated at each chosen time

and it is decided whether any new isotherms have been introduced. These

are incorporated at the next step. A value for the Biot number was required

and since this can take a wide range of values, it seemed logical to take

the value suggested by Gupta and Kumar (1988) for our first example. The
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results in example 5.3 showed the expected trend and example 5.4 confirmed

that the method was appropriate.

The next stage of the work was to examine the solution of two-dimensional

problems, in the first instance following the method of Crank and Gupta

(1975), involving an example where a square region of water is frozen by

keeping one face at a temperature below the fusion temperature. A de-

scription is provided of how to carry out the isotherm migration mapping

in two dimensions and the differences arising from this mapping to the one-

dimensional case are noted. A new second derivative term appears in this

mapping and, in general, this requires some form of interpolation in its eval-

uation. It was also noted that some form of quadratic curve fitting would be

necessary to position the isotherms on the boundaries and this indicated that

the two-dimensional case had complexities which might not have previously

been envisaged. It was found that to avoid instability in this example the

isotherm migration method required a time step some five times smaller for

its solution using the finite difference method than in the one-dimensional

case and this made the Laplace transform isotherm migration method in-

creasingly attractive, since it would need less intermediate time solutions,

and so the difference in the number of calculations between the methods

might not be so great. The Laplace transform isotherm migration method

performed well in terms of accuracy of numerical solutions and the plan was

to set this in a parallel computing environment later.

Following on from this, a problem solved by Crank and Gupta (1975)

was considered, in which they tracked the movement of isotherms when a

prism of liquid is solidified. Their method employed the isotherm migration

method with a finite difference method. A review of their work showed some

of the limitations and difficulties of the method. The first problem is that

following the two-dimensional mapping the resulting isotherm equation may

not be single-valued. Furthermore, some isotherms may not exist at all the
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grid points. An example, described by Crank and Gupta (1975), shows how

these difficulties may be overcome by making use of the symmetry of the

prism, so that a region bounded by x = 0, y = 1 and the line y = x is used.

Because the isotherms move along a normal, the contour of the isotherm

crossing the line y = x is completed by fitting a circle whose centre lies

on y = x. At the axis x = 0 the relevant equations are undefined and it

was necessary to resort to curve fitting again, this time with a quadratic

function. As suggested by Crank and Gupta (1975), Poot’s (1962) one-

parameter method was chosen to find the necessary starting values. This

method presented no difficulties, was quite easy to follow and we were able

to produce similar numerical results to Crank and Gupta (1975).

The new work used the Laplace transform isotherm migration method

to solve the solidification process in a prism. There was a problem with

the evaluation of the interpolation for the second derivative term, which oc-

curred because in certain circumstances the values needed were undefined as

the isotherms required were not on the gridlines involved in that calculation.

This had not been a difficulty when using Crank and Gupta’s method and

so it appears to be linked to the need to take Stehfest time values of T = 0.1,

in equation (4.8), in keeping with the requirements for the Stehfest inversion

method, but this was a large step relative to the total time for freezing.

Problem: If T = 0.1 is chosen in equation (4.8) the process breaks down,

which is probably due to the fact that some of the isotherms have moved

a significant distance and may no longer exist at the grid points needed for

the calculation.

Decision: Although it has been suggested by Crann (2005), that in general,

values of T less than 0.1 may give unreliable results, it is necessary to try

such values in this case.

It was found that a value of T = 0.03 gave reasonable results while

using a finer mesh failed to provide any improvement. It was decided to
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try a very small time value of T = 0.001 and the solutions were improved,

indicating that taking a very small time value might be preferable, but since

the Stehfest parameter involves division by T , the choice is limited.

It appears that while the Laplace transform isotherm migration method

performs well in one dimension, its value may be limited in the two-dimensional

setting.

The last piece of work was to put the Laplace transform isotherm mi-

gration method into a parallel environment, using multiple processors to

evaluate the solution. We saw that in the Laplace transform isotherm mi-

gration method, for problems with no phase change, the division of work

could be such that either the required times could be shared among the

processors, or the calculations in the Stehfest loop could be divided giving

each processor a set of parameters and weights and having one processor

collocate their results. Speed-up was demonstrated in both cases, but in

the second method, the efficiency was not so great due to more time spent

message passing. Using a finer mesh confirmed that when the time spent on

calculations was relatively large compared to the time spent message pass-

ing, greater efficiency is achieved.

Problem: There is a choice to make as to how to divide the work among

the available processors: share the times at which solutions are required or

share the calculations performed within Laplace space.

Decision: Where possible choose the option with the least amount of mes-

sage passing, in this case share the times.

When solving problems with phase change, the sharing of the Stehfest

calculations is the only suitable way of dividing the work, since the initial

values must be updated at each stage. We were able to show speed-up

in both the one and two-dimensional cases, leading us to conclude that

it is worthwhile to solve these problems using a message passing interface

on multiple processors; the adjustments needed to the code are relatively
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simple.

9.2 Research objectives

Our objectives described in chapter 1 may be summarised as follows:

1. To look at the isotherm migration method to establish its advantages

and disadvantages.

2. To develop the method further by the use of the Laplace transform

method and to test this method by solving problems in one dimension

which did not involve phase change.

3. To extend the use of Laplace transform isotherm migration method by

solving phase change problems both in one and two dimensions.

4. To examine the performance of the Laplace transform isotherm mi-

gration method in a parallel environment to find out whether there

was a suitable and sensible way of division of work and to establish

whether there was any benefit to be gained from the use of a parallel

environment.

In the following subsections we consider each objective and demonstrate

that it has been properly addressed.

9.2.1 To look at the isotherm migration method to establish

its advantages and disadvantages

Although it is usual to see the isotherm migration method used for problems

involving phase change, in chapter 3 we considered it as a tool for solving

problems in which there is no phase change. We examined a variety of

examples, among which we identified a difficulty in cases where isotherms

may not have a unique position or may disappear and how to overcome this,
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the effect of introducing errors into the initial data and the case when α,

the thermal diffusivity is not constant, and we concluded that the method

was simple to operate, robust and tolerant of errors.

9.2.2 To develop the method further by the use of the Laplace

transform method and to test this method by solving

problems in one dimension which did not involve phase

change

We applied the Laplace transform to the isotherm migration method in

chapter 4 and solved several examples including cases where α, the ther-

mal diffusivity, is non-linear and found the method produced acceptable

results whose accuracy compared well with those using the isotherm migra-

tion method in the usual way.

9.2.3 To extend the use of Laplace transform isotherm mi-

gration method by solving phase change problems both

in one and two dimensions

It is shown in chapter 5, that due to the derivative term in the equation

describing the position of the melting front, the Laplace transform method

needed to be modified. The initial values must be updated at each stage.

With this detail in place, the Laplace transform isotherm migration method

performed as well as the isotherm migration method, although it does require

a greater number of calculations and we also showed that it could be used

to solve examples with convective boundary conditions. Chapters 6 and 7

showed how the method may be adapted to solve problems in two dimensions

and it was here that many problems were encountered and attempts were

made to overcome these. To a large extent, this was possible and other

examples with a longer total freezing time may not exhibit the instabilities

apparent in the chosen problem. Certainly, even without the use of the
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Laplace transform, new complexities showed up in the two-dimensional case

and this may indicate why the method is less frequently used now.

9.2.4 To examine the performance of the Laplace transform

isotherm migration method in a parallel environment

to find out whether there was a suitable and sensible

way of division of work and to establish whether there

was any benefit to be gained from the use of a parallel

environment

In chapter 8 we considered several examples, both with and without phase

change, and demonstrated that it is possible to use the Laplace transform

isotherm migration method in a parallel environment. In the case of prob-

lems with phase change the way of dividing the work is restricted due to the

need for updating at each stage, but we were still able to show speed-up in

all cases and concluded that there is benefit in using a parallel environment

and that the benefit is increased whenever time spent on message passing is

small compared with that spent on calculation.

9.3 Published work

We list here our publications and briefly highlight the content referring to

the relevant section.

1. Davies A J, Mushtaq J, Radford L E and Crann D (1997) The nu-
merical Laplace transform solution method on a distributed memory
architecture, Applications of High Performance Computing V, 245-
254, Computational Mechanics Publications.
Paper on the parallel implementation of the Laplace transform method
with five different solvers.
Subsection 8.2.1

2. Davies A J and Radford L E (2001), A method for solving diffusion-
type problems using separation of variables with the finite difference
method, Int. J. Math. Educ. Sci. Technol., 32, 449-456.
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Paper on a solution of the heat equation.
Subsection 2.2.7

9.4 Future research work

We feel that our objectives set out in chapter 1 have been met, but on the

way, we encountered several difficulties and we address these in our ideas

for future work.

1. The example of the Stefan problem with a time-dependant Neumann

condition described by Kutluay and Esen (2004) could be solved using

the Laplace transform isotherm migration method. This should not be

difficult as it is an extension to our work in one dimension and should

require the time dependent boundary condition to be included in the

Laplace transform.

2. An alternative to fitting a circle across the line y = x in the solution

of the freezing in a prism could be the fitting of a parabola. Provided

the isotherms move in a normal direction any suitable curve could be

chosen. In this example, for small times, the freezing front has the

shape of a square with rounded corners, the shape tending towards

a circle as freezing approaches completion. Therefore it would seem

reasonable to compare the solutions found using a parabola.

3. A disadvantage in the two-dimensional case is the necessity to invert

from Laplace space in order to perform the curve fitting at x = 0 and

y = x. It is difficult to see how this could be overcome, as we found no

way around this. It would seem that it would be necessary to begin

the problem afresh to see if it could be solved.

4. There may be a better grid system. Crank and Crowley (1979) de-

scribed a solution method for the isotherm migration method along
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orthogonal flow lines. To implement this, the isotherm migration equa-

tions are reformulated in cylindrical polar co-ordinates. The isotherms

themselves are divided into segments and using a local co-ordinate

system, the local centre and radius of curvature of each isotherm seg-

ment is recalculated at each time interval, so that the motion of each

isotherm along the normal to itself may be found. This method still

depends on geometry and so if our method were used, would still in-

volve reverting to geometric space to calculate the local co-ordinates.

However the effort might be worthwhile if it gave improved accuracy

in solutions.
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