DIVISION OF COMPUTER SCIENCE

The Object Modeling Technique
David Levine and Carol Britton
Technical Report No.165

October 1993

CONTENTS

1. Introduction

2. The Object Modeling Technigue

2.1 The Analysis Model

1 Object Model

.2 Dynamic Model

3 Functional Model
4 Conclusion

ystem Design
2.2.1 High-level decisions
2.2.2 Common architectural styles

bject Design

2.3.1 Operations and their algorithms
2.3.2 Design optimisation

2.3.3 Implementation of Control

2.3.4 Inheritance

2.3.5 Design of associations

2.3.6 Physical packaging

2.4 Implementation

3. Background to the OMT

3.1 Original paper
3.2 Use of associations
3.3 Use of statecharts
3.4 Functional model
3.5 Conclusion
4. Responses to the OMT
4.1 Analysis
4.2 Design and implementation
4.3 The methodology as a whole

5. Conclusion

References

0050119

...0020

The Object Modeling Technigue

Section 1 : Introduction

This report examines one object oriented development method, the
Object Modeling Technique (OMT) of Rumbaugh et al [Rum91]. There
are three main sections which summarise the technique, outline
the Kkey precursors and review the literature on the OMT.
Knowledge of the basic concepts in object oriented systems,
finite state machines and software design methodologies is
assumed.

The OMT was chosen for practical use on a small case study in
order to gain understanding of the concepts and issues in object
oriented development. A personal account of using the OMT on the
case study is given in a complementary technical report titled
"An educational game of relationships : its modelling using the
OoMT".

There are several reasons why the OMT was picked from the many
object oriented methodologies that are available. These reasons
are :

(i) It is acknowledged as being one of the so called "state of
the art" methods ([Aks92] , [Wal92]).

(ii) It is well documented in [Rum91] and by regular articles by
Rumbaugh in the Journal Of Object Oriented Programming.

(iii) It covers the whole front portion of the software
development process : analysis, design and implementation.

(iv) It has formed the basis for further research ([Hay91l] ,
[Jer93]) and a number of CASE tools®.

Section 2 of the report summarises the technique described by
Rumbaugh et al [Rum91]. The summary aims to be an objective
account with no evaluation or expression of viewpoints. The
section is divided into subsections covering the four stages of
the methodology. These stages are :

(i) Analysis: This stage details the building of the analysis
model from a statement of the problem. This model [Rum91l page 5]
is a ’concise, precise abstraction of what the desired system
must do’.

(ii) System design: The target system is partitioned into
subsystems based on the analysis model and decisions are made on
the overall system architecture.

(iii) Object design: A design model is built based on the

* Select Software Tools’ C++ Designer, Cadre’s Paradigm Plus
and Advanced Concepts Center’s OMTool.

analysis model. Implementation details are added by focusing on
the data structures and algorithms needed for each class.

(iv) Implementation: The design model is translated into a
particular programming language, database, or hardware
implementation.

Section 3 examines the question "Where did the technique come
from?". It outlines the key papers, from which the technique was
developed. It is divided into subsections covering the three
kinds of model which the OMT uses to describe a system. The three
kinds of model are :

(i) The object model describing the static structure of the
objects in a system and their relationships.

(ii) The dynamic model describing the temporal behaviour of a
system and in particular its control aspect.

(iii) The functional model describing the data value
transformations in the systemn.

Section 4 looks at the responses to the OMT. Several papers have
examined object oriented methods in general and included the OMT
as one of the example methodologies ([Aks92], [Cha92], [Wal92]).
Other papers concentrate solely on the OMT ([Bru92], [Hay91l]).
The aim of this section is to detail the major strengths and
weaknesses of the OMT as seen by other authors.

Finally section 5 concludes by noting some wider issues regarding
the choice of methodology.

Section 2 : The Object Modeling Technique

This section of the report summarises the technique described by
Rumbaugh et al [Rum91]. The four stages of the methodology,
analysis, system design, object design and implementation are
outlined. The authors adopt an informal approach : " there are
no proofs or formal definitions with Greek letters™®

[Rum91 Preface page x].

2.1 The Analysis Model

This subsection outlines the purpose of the analysis model, its
inputs and outputs, its three constituent models (the object
model, dynamic model and functional model) and the relationships
between the three models.

The general aim of analysis with the OMT is to build a model of
the real world system starting from a problem statement. During
the analysis essential features of the application domain are
abstracted without regard to implementation. The two main
objectives are to obtain a clear understanding of the problem and
to produce a model that will form a basis for the design stage.

The initial input to the analysis stage is a problem statement.
"The problem statement should state what is to be done and not
how it is to be done" [Rum91 pl50]. It is a starting point for
understanding the problem and is revised following analysis. The
output from analysis consists of a revised problem statement and
an object model, a dynamic model and a functional model.

2.1.1 Object Model

The object model captures the static data structure of a systen
and consists of an object model diagram and a data dictionary .In
general it is the most important of the three models because as
an object oriented approach the emphasis is placed on the
identification of the objects with the fitting of procedures
around the objects.

The object model notation is descended from the entity
relationship (ER) model [Che76]. An object diagram describes the
static data structure of objects, <classes, and their
relationships to one another. The notation includes constructs
for the representation of a class and its attributes and
operations and for the representation of the relationships
between classes.

Emphasis is placed on associations. An association describes a
group of links with common structure and semantics. A link is an
instance of an association and connects two or more objects.

Qualified associations are used for greater precision (see
section 3).

Aggregation , the "is-part-of" relationship is regarded as a

special form of association with additional restrictions such as
transitivity and antisymmetry. Generalisation is the relationship
between a class (the superclass) and one or more refined
versions of it (each version being a subclass).

Some of the OMT notation is illustrated in figure 1 which is an
object diagram for an appointment system for lecturers taken from
a case study by Buchanan [Buc90].

Figure 1 : Appointment system - object diagram

Departinent %
po— chemeOiStudy

iy courss|
nama
has has
Lecturer has Course
colwea nama leetumer nama
kms
Appalntment has
day
start Ema
duretion

I

Meeting

dats
tople

TimeTabled
Seselon

In figure 1 qualified associations are used between Lecturer and
Department and Course, and between Course and SchemeOfStudy.
Appointment is an abstract class with subclasses Meeting and
TimeTabled_Session.

The OMT lays down the following series of steps for building an
object model. Iteration of the steps is a key feature of the
methodology.

* the identification of object classes.

the preparation of a data dictionary describing classes,
associations, attributes and operations.

the identification of associations.

the addition of attributes.

simplification using inheritance.

the testing of access paths by asking questions.

the grouping of classes into modules (logical subsets of
classes).

&

¥ % % % ok

2.1.2 Dynamic Model

The dynamic model describes temporal behaviour and consists of
state diagrams for each class with important dynamic behaviour
and a global event flow diagram for the system. Its most
important use is to represent the control aspect of a systemn.

Harel’s notation is used [Har87]. This is an extension of the
standard state diagram notation that includes additional
constructs that overcome problems with flat unstructured state
diagrams for complex systems (see section 3).

Operations in response to events are classified by their duration
relative to the timescales of the appllcatlon An activity is an
operation that takes time to complete and is associated with a
state. An action is an instantaneous operation associated with
an event.

The steps involved in bulldlng a dynamic model are :

* the preparation of scenarios showing sequences of events.

* the drawing of event traces for each scenario showing the
objects sending and receiving events.

* the preparation of a global event flow diagram show1ng the
events between the classes in the systemn.

* the development of state diagrams.

* the checking of consistency and completeness between the state
diagrams.

Figure 2 shows the statechart for the initial state of the
appointments system [Buc90]. The dotted line separates two
orthogonal states. The dot and arrow symbol shows the default
states "Request Department Name" and "Error Message Off". Example
of an activity and action are "do: request department name" and
"verlfy department name" respectively. "Enter(department name)"
is an event with the attribute department name and [invalid
department] and [valid department] denote conditions.

Initial screen

[R
enter(name)/
de uest vertviname)
: req Name Entered fvalid|{nams] :
name
[invelid neme}

Figure 2 : Appointment system - initial state.

2.1.3 Functional Model

The functional model describes data value transformations and
consists of data flow diagrams (DFD’s) and constraints. The OMT’s
use of DFD’s follows closely the approach of traditional
methodologies such as Yourdon [You89] including the use of
control concepts with the addition of a new construct, a hollow
arrow, representing a data flow that results in a data store. A
constraint shows the relationship between two objects at the same
time or between values of the same object at different times.

Building a functional model involves :

* the identification of input and output values.

* the preparation data flow diagrams .

* the description of each function (bottom level processes in the
DFD) .

* the identification of constraints.

* the specification of optimisation criteria.

2.1.4 Conclusion

Each model focuses on a particular aspect. The relationship
between the models is summarised in table 1 overleaf. Although
for most systems the object model is the most important, the
balance of importance varies according to the kind of
application. For example, the dynamic model is important for
interactive systems whereas the functional model is the main
model for systems such as compilers.

o o> > e G o e e s G oS

*SMOTJ ®3lep pue SaI103s

T9POK
sessanoad ayz jo asusnbas elep ‘siojoe 8yl Jo TeuoT3oung
TOI3uod 3yl SMoUs x 9IN30NI3S BY} SMOUS x |03 BATIETSY

*uo T12PORN
*SOTITATIOC | p@jexado ST pue aje3s oTueuiQg
pue suoT3loe 8Y3 SaUTIIP «x sabueys j3eym SMOUS ¢ 03 2AT3eTaY

ToPOoN
juejxodut y3zts 3oelqo 309lqo
*suoTijexado 8yl sauTIop x yoes Jo saje3ls a8yl SMOUS x 03 aAT3eRTIS8Yy

T12pou TeuoTjoung

*(seT3TAT3OR)
8jels yoesa Y3lTM pojeTdosse

pue (suoT3oe) sjusae
uo suorjerado 3yl sSMOUs x

*aAnoTARYsq OTueuip

——— o > o ——— — - — —— o~ —

Topow oTweuig

Tepon 309Lqo

(6c1d [Teuny] woiy peydepe) -sTepou ay3 ussomiaq drysuotjeray

T ®TqeL

Following the initial construction of the three models,
operations from the dynamic and functional models are added to
the object model. The overall analysis model is refined by
removing inconsistencies and.by‘testlng'us1ng scenarios including
error conditions. The final model is verified with the client and
used to revise the problem statement.

2.2 System Design

Design in the OMT is split into a high level stage called system
design and a more detailed stage called object design.

The OMT’s treatment of system de31gn is aimed at projects with
up to ten developers. System design gives an overall strategy for
constructlng the software system. The strategy is produced by
answering a set of high level decisions. The decisions that must
be made (our italics) are listed below. The high level structure
formed by making the decisions is called the system architecture.

2.2.1 High-level decisions

division into subsystems.

Division into subsystems is the first step in system design. A
subsystem is a package of classes that are interrelated and have
a small well defined interface. The internal implementation is
not visible to other subsystems enabling object design and
implementation to be divided between more than one developer.

A system can be divided into both vertical partitions and
horizontal layers. Partitions are ideally independent subsystens.
A layer either uses the services of the layer 1mmed1ate1y below
(forming a closed architecture) or can use services from any of
the layers below (forming an open architecture).

The relationship between two dependent subsystems is either that
of a client-supplier in which the supplier does not know about
the client interfaces or a peer-to-peer relationship in which
there is mutual knowledge of the interfaces. Client-supplier
relationships are simpler and therefore more desirable.

identification of concurrency.

The dynamic model is used to identify concurrent and mutually
exclusive obijects.

allocation of concurrent subsystems to hardware units.

Performance needs are used to determine the hardware units to be
used.

* management of data stores.

A decision is made on the form of permanent data storage. The two

main choices are between the use of a DBMS and the use of files.
handling of global resources.

Global resources such as processors, disk space and logical names
are identified. Guardian objects are used to control access to
these resources.

implementing control

Choices about implementing both external and internal control
flows are made.

"External control is the flow of externally-visible events among
the objects in the system [Rum91l p207]." Procedure-driven, event
driven and concurrent systems are three kinds of control for
external events. Event driven systems should be used in
preference to procedure driven systems.

"Internal control is the flow of control within a process
[Rum91 p208]." A process may be split into several tasks. They
are generated by objects as part of the implementation algorithm,
so their response patterns are predictable. Most internal
operations can therefore be thought of as procedure calls, in
which the caller issues a request and waits for a response.

handling of boundary conditions.

Decisions are made on initialisation, termination and failure
(unplanned termination).

setting of trade-off priorities.

Trade-off priorities for incompatible goals such as frequency of
disk accesses and execution speed are made. These are used to
guide the design process.

2.2.2 Common architectural styles

In addition to making the high level decisions above, the authors
identify a number of common architectural frameworks that can be
used to guide the design. These include interactive interfaces,
dynamic simulation, real-time systems and transaction managers.
Most applications are a hybrid of these common frameworks.

2.3 Object Design

During Object Design ([Rum91] Chapter 10) full definitions for
the classes, associations and operations are added to the
analysis models . Object Design is analogous to the detailed?
design stage in a traditional lifecycle.

The product of Object Design is a Design Document which is a
revision of the Analysis Document. It includes an extensive
revision of both the object diagrams and class descriptions of
the Object Model . The Functional Model is also revised and kept
current. Additions to the Dynamic Model are made if a procedure-
driven approach is chosen. Although the Design Document uses the
same names and follows on from the Analysis Document it is
advisable to keep the two documents separate in order to retain
the user’s view of the system.

Object Design is broken down into a series of steps whose
importance is dependent on the nature of the subsystem being
examined. The steps concern operations and their algorithms,
optimisation, control, inheritance, associations, object
representation and physical packaging.

2.3.1 Operations and their algorithms

Combining the three analysis models to obtain operations on
classes is one of the end stages of the analysis. For simple
operations such as accessing the value of a variable the
specification in the functional model is sufficient for
implementation. For complex operations algorithms and data
structures are chosen. This can involve the use of class
libraries and the introduction of internal implementation classes
that were not part of the analysis model and do not affect the
functionality of the system.

2.3.2 Design optimisation

The importance of the trade-off between efficiency achieved by
design optimisation and clarity is a decision which will have
been made during System Design. Associations paths are analysed
to determine frequent inefficient operations for which indexes
can be added. Saving derived data in order to avoid recomputation
involves another trade-off between the cost in execution time and
the addition of extra code for updating the derived data.

2.3.3 Implementation of Control

Three approaches are described in system design for
implementation of the control aspect of the system as represented
by the dynamic model. This aspect is only relevant for those

2

Rumbaugh states that object design is analogous to the
preliminary design phase [Rum91 page 227]. Our understanding is
that preliminary design more accurately describes system design.

10

subsystems with important dynamic behaviour such as the user
interface. For the procedure-driven option pseudocode is written
showing the flow of control. For the event-driven system a state
machine class with the state diagram represented as a table can
be used.

2.3.4 Inheritance

Increasing the amount of inheritance entails examining the
classes and operations in order to abstract out common behaviour
into superclasses. Operations that are taken into a superclass
must have the same signature and semantics and may need to be
adjusted to enable the "abstracting out" to be done.

Any subclass should be a form of its superclass. "Inheritance of
implementation" is a technique in which an existing class is used
as the superclass for a subclass for which not all the operations
in the superclass are semantically appropriate. Delegation and
not inheritance is recommended for such cases.

2.3.5 Design of associations

The analysis of association traversal is the first step in their
design. ,

When the traversal is just one direction it is easiest to
implement as a buried pointer with the pointer belng added to
just one of the classes. The term buried pointer is appropriate
because the pointers are additional attributes which are
implementation constructs and are not visible in the Analysis
Model. Dictionary objects, which are available in class
libraries, can be used for the implementation of qualified
associations.

The weakness of assuming one way traversal is that if the
requirements change then the associations may become two-way.
Pointers may be added to both classes or an 1ndependent
association class may be introduced consisting of a set of pairs
of pointers.

2.3.6 Physical packaging

Guidelines are given on information hiding, the coherence of
entities and the construction of modules.

At the design stage information hiding involves separating the
interfaces of the classes into public and private domains and
limiting the scope of the methods.

Entities such as classes and methods should have a single major
theme. A method’s theme should focus either on making decisions
(policy theme) or on the execution of an algorithm
(implementation theme). This increases the possibility of
reusability as methods containing an implementation theme are
less likely to be application dependent.

11

In the OMT, modules are logical constructs for grouping classes
and their associations. Modules should be cohesive with inter-
module coupling minimised.

2.4 Implementation

The crucial decisions about 1mplementatlon are made during the
design stages. This subsection gives a brief outline of the final
part of the OMT which contains a set of wide ranging guidelines
for implementing the design to achieve goals such as
maintainability and extensibility. These guidelines cover object
oriented programming style and the features provided by C++,

Eiffel and Smalltalk for implementing classes, creating objects,
calling operatlons and handling inheritance and associations.
The mapping to non object oriented languages C, Ada and Fortran
is covered as well as the design and implementation of relational
databases from the object model.

12

Section 3 : Background to the OMT

The section will draw out the most significant features of the
primary sources for the OMT.

The three models which are the basis of the methodology have
independent origins. The object model is introduced in the
original paper on the OMT by Loomis et al [Loo87] while its
emphasis on associations originates from [Rum87]. The dynamic
model uses Harel’s extension of the state diagram notation
[Har87], [Har88]. The functional model uses traditional data flow
diagrams (e.g. [You89]).

3.1 Original paper

The original paper on the OMT [Loo87] is titled "An Object
Modeling Technique for Conceptual Design". Conceptual design
refers to high-level design without any internal detail.

The product of the technique is the object model only, consisting
of a diagram, descriptions of method behaviour and class
definitions.

The three types of relationships, generalisation aggregation and
association are identified. However in conflict with [Rum917],
"there is direct interchangeability between associations and
attributes [Loo87]". Qualified relationships are introduced to
reduce the multiplicity for many to one or many to many
relationships.

The technique’s starting point is the production of a problem
statement by a discussion with subject experts . Classes are
identified followed by relationships and their cardinalities. The
model is then reviewed with subject experts before listing
methods and checking their access paths. Attributes are then
listed and relationships are collapsed. Finally the model is
again reviewed with subject experts. Feedback and iteration of
the steps is a key feature of the technique.

Its extension of the entity relationship model [Che76] and the
emphasis on relationships, places the origins of the OMT in the
"database camp”.

3.2 Use of associations

The ideas on associations are detailed in [Rum87] where the term
relation used is synonymous with the term association. The key
arguments are that associations should have the same semantic
importance as generalisation and secondly that object oriented
languages should support the association (relation) construct.
The author argues that for large systems associations are more
important than generalisation because they are more likely to
affect the partitioning of the system. The object-relation model
is introduced (the term object-relation model is dropped in
[Rum91]) which combines class hierarchy and methods with

13

associations taken from semantic data modeling. Unlike the
relational data model, objects can appear directly in
associations.

Objections to the use of associations because of the violation
of information hiding are anticipated. Two classes in a binary
association "know" about one another. For example the update of
an association element affects more than one class. It is argued
that information hiding in separate classes hides semantic
information if the classes are in an association relationship.
The information is shared among several classes. The use of
associations as both a logical and implementation construct means
that the computer world can better model the real world.

The use of qualified associations, which are used at the analy51s
stage, is introduced. Qualified associations often arise when
names are used as qualifiers on a set of objects. The example
below illustrates this idea which according to [Rum93c] is unique
to the OMT.

Example : use of qualified associations.

A department has many lecturers with an individual lecturer being
assigned to just one department (figure 3).

Figure 3

Lecturer

Department name

The names (including initials) of the lecturers are used to
distinguish among the set of lecturers for a particular
department. Each set of names is local to a department. A name
qualifies a department to identify a unique lecturer. There is
a one-one association between a (department, name) pair and a
lecturer (figure 4).

Figure 4

DepamnentWEl— ‘Lecturer

14

Rumbaugh argues that it is better to use qualified associations
to represent names rather than to assume unique names. This use
makes a system modelled using qualified associations more
resistant to change. Also, by reducing the many multiplicity to
a qualified one multlpllCltY navigation through the object model
is facilitated. At the design stage qualified associations can
be represented by lookup tables. "The selector values in the
lookup table are the qualifiers and the target values are the
objects in the other class." [Rum93c].

3.3 Use of statecharts

Statecharts are one of a series of specification techniques used
to specify behavioural requirements [Dav88], [Dav90]. The
behavioural requirements for a particular piece of software are
concerned with the descrlptlon of the interfaces between the
software and its environment. The primary reason for the use of
specification techniques is to overcome the inherent ambiguities
of natural language descriptions [Dav90].

The motivation for statecharts arose from the problems with
describing large and complex reactive systems. Reactive systems
such as operating systems are event driven, reacting continually
to external and internal stimuli. The tradltlonal state diagram
notation used to define a finite state machine is unsuitable for
these type of systems for a number of reasons [Har88] :

* Because of the flat nature of the notation, the number of
states grows exponentially as a function of the number of
independent attributes affecting control. Also there is no
support for nesting diagrams.

* An event which causes the same transition from a large number
of states, is represented by an arrow for each state. This can
result in spaghetti like diagrams.

* The notation does not support concurrency.

Harel’s statechart notation solves these problems by providing
a number of extensions. The basic extensions are described below.
Figure 5 shows a conditional transition from state A to state B.

When event g occurs in state A, provided condition ¢ is true, the
system transfers to state B.

- s

Figure 5 - conditional transition

15

The superstate extension is illustrated by figure 6. When the
system is the superstate D , then it is in either state A OR
state B (exclusive OR). Event f in state D, causes the transition
to state C. State D is a superstate because the arrow f captures
a common property of states A and B.

Figure 6 - superstate extension

The notation for supporting concurrency and default states is
shown 1in figure 7. State Y is in states A AND D. This
orthogonality is denoted by the dashed line. The dot and arrow
symbol is used to denote default states. In figure 7 the initial
states are B and G. ' ‘

Y
(A :D ™\
i
B |
|
|
|
f g |
(c :
:
1
I
N i

Figure 7 - orthogonal states

16

In addition to the basic features above, use is made by the OMT
of the concepts of actions and activities. Actions and activities
give statecharts the ability to model the generation of events.
An action is an event that is an instantaneous occurrence. These
are expressed by the label ".../s" attached to a transition where
s denotes an action. For example, in figure 8 the event n in
state F generates the action g. This can affect the behaviour of
an orthogonal part of the statechart. If the system is also in
state E then the transition from state E to state B will also
occur. This is a simple broadcast mechanism.

Figure 8 - actions and activities

In contrast to an action "an activity always takes a nonzero
amount of time" [Har87] p256. An activity X is associated with
the two actions start(X), stop(X) and the condition active(X).
Rumbaugh uses a different notation do: X associated with a state
(see figure 8) which encompasses the condition active(X), the
action start(X), carried out on entering the state, and the
action stop(X) carried out on leaving the state.

3.4 Functional model

The functional model uses traditional data flow diagrams with the
addition of control flows e.g. [You89]. The only new notation is
the use of a hollow triangle at the end of a data flow. This
indicates the generation of an object for use by another
operation.

17

3.5 Conclusion

The OMT is the first object oriented methodology to combine the
three views of a system represented by the object, dynamic and
functional models. It provides a notation and detailed guidelines
for the construction of the analysis models and for their
elaboration during system and object design.

18

Section 4 : Responses to the OMT

This section examines the responses to the OMT by noting the
strengths and weaknesses of the methodology that are identified
in the 1literature. The responses are concentrated on the
analysis, the most important of the phases. Design,
implementation and the methodology as a whole are brlefly
covered. Our own responses to the OMT are detailed in the
complimentary technical report "An educational game of
relationships : its modelling using the OMT".

4.1 Analysis

In the object model [Wal92] supports the OMT’s assertion about
the importance of associations and welcomes the explicit approach
to qualifications and constraints. [Cha92] notes the treatment
of attributes as pure data values, a direct consequence of the
OMT’s use of associations. [Bru92] writes in the context of the
use of the OMT for a large group project in an undergraduate
course. The object diagrams were a particularly good vehicle for
communication throughout the analysis and design stages of the
project.

[Aks92 p345] focusing on obstacles to object orlented.development
notes that separation into subsystems is left 1late in the
methodology. This can result in an excess number of objects being
considered making the analysis unmanageable . (These problems are
not isolated to the OMT and early separation brings in problems
with loss of commonality between classes).

In the dynamic model [Cha92] notes the use of nested state
diagrams and the classification of operations into actions and
activities. [Wal92] feels that the relationship between the
object model and the dynamic model is carefully thought out. In
particular he notes the thought given to the relationship between
the state diagrams of a superclass and its subclasses. State
diagrams of a superclass are inherited by a its subclasses.
[Aks92] also records that the OMT alone, addresses this issue of
generalisation of state specifications.

[Mon92] distinguishes micro from macro level structure in the use
of the dynamic model. The macro layer deals with a system s
control and is at a higher level of abstraction than the micro
layer dealing with an object’s control. The OMT’s dynamic model
only deals with micro level states and transitions and neglects
higher level interaction between objects. This is also pointed
out by [Jer93] in their work on building a new methodology partly
based on the OMT. [Hay91]® which only considers analysis, is
another paper criticising the weakness of the OMT on object
interaction. The paper points out that the lack of communication
primitives means that overall system behaviour cannot be deduced

3 Both [Hay91] and [Jer93] are produced by the same
research team at Hewlett Packard.

19

from the behaviour of individual objects.

The use of the dynamic model in modelling the user interface is
seen as a problem by [Mon92] because its approach is too low
level. Identification of interface classes is a related activity
that is neglected in the OMT.

The functional model with its use of data flow diagrams is seen
as the least successful part of the methodology [Wal92]. [Hay91l]
emphasises the use of natural language for defining basic
concepts in the functional and dynamic models. This use "makes
it impossible to check that the dynamic model is consistent with
the functional model." [Hay91l pl75]

4.2 Design and implementation

The treatment of system decomposition is a weakness noted by
[Jer93] and implied by [Aks92]. [Arn91] infers that the OMT is
weak on design compared to other the four methods evaluated
(Booch, Buhr, HOOD and Wirfs-Brock).

Rumbaugh 1is noted as being strong on its discussion of
implementation issues by [Arn91].

4.3 The methodology as a whole

[Arn91] notes that the process is well defined with useful
heuristics to guide development. The iteration between processes
(the seamless transition) is one of three features noted by
[Bru92] necessary to support the successful completion of a
student project. (the strength of its notation and the
availability of a CASE tool are the other two features). The
method’s ease of use and learning is another strongpoint.

[Wal92] and [Arn91] note the weakness of the OMT in its failure
to address the reuse of both software and design components. The
OMT assumes greenfield development. Taking a wider view of the
methodology [Wal92] points out that there is almost a total
neglect of issues such as testing, quality and the management of
the software engineering process. In fairness [Rum91] only claims
to cover the front portion of the software development process.
[Mon92] refers to the different levels of granularity between the
three analysis models. The object and dynamic models are at a
micro level (see above) whereas the functional model is at a
macro level. These different 1levels make it difficult to
integrate the models.

20

Section 5 : Conclusion

A reading of the literature ranks the OMT as being one of the
leading "first generation®" object oriented methodologies. Its
status is also vindicated by the availability of CASE tools by
several companies and the production of training courses (e.g.
by QA Training Limited). In addition a revised version of the OMT
is to be published in 1994 and this version will hopefully
address the problems raised in the literature. This support and
revision should strengthen the OMT’s position in the market
place.

The number of methodologies being developed continues to grow.
This profusion has caused confusion in the industry and moves
towards a common base model have been made by the Object
Management’s Group special interest group on analysis and
design. This work on a common base model has been attacked in a
letter [Mel93] by some of the leading exponents of object
oriented methodologies, including Rumbaugh. They argue that the
change 1in methodologies is currently so rapid that any
standardisation of methods will discourage innovation and prevent
maturation. "We need to deploy many large systems with many
different methods and maintain them for several years to
establish effectiveness. This will yield a base model for
standardisation"

If the authors of the letter are correct then the OMT may well
provide many of the elements of the base model of the year 2000.

* those methodologies published between 1988 and 1991.

21

References

[Aks92] Mehmet Aksit & Lodewijk Bergmans ,
"Obstacles in Object-Oriented Software Development",
OOPSLA, 341-358, 1992

[Arn91] P.Arnold, S.Bodoff, D.Coleman, H.Gilchrist, F.Hayes,
"An evaluatlon of Five Object Oriented Development Methods",
Hewlett-Packard Report HPL-91-51, June 1991

[Bru92] B. Bruegge, J.Blythe, J.Jackson and J.Shufelt ,
" Object-Oriented System Modeling with omMT",
OOPSLA, 359-376, 1992

[Buc90] M.Buchanan, "Phantom of the Object",
M.Sc Thesis , Hatfield Polytechnic, 1990

[Cha92] D. de Champeaux, P.Faure, "A comparative study of
object-oriented analysis methods", JOOP, Vol 5, Issue 1,
21-33, March/April 1992

[Che76] P.P.S Chen, "The Entity-Relationship model - towards a
unified view of data"
ACM Transactions on Database Systems 1, 1(March 1976)

[Dav88] Alan M. Davis, "A comparison of techniques for the
specification of external system behavior",
Communications of ACM 31,9 (Sep. 1988), 1098-1115

[Dav90] Alan M. Davis, "Software Requirements Analysis and
Specification”, Prentice- Hall , 1990

[Har87] David Harel,
"Statecharts : a visual formalism for complex systems",
Science of Computer Programming
8, (1987), 231-274

[Har88] David Harel, "On visual formalisms",
Communications of ACM 31,5 (May 1988),514-530

[Jer93] P.Jeremaes, D.Coleman, "Fusion: A second generation
object-oriented analysis and design method",
IEE Colloquium on Object-Oriented Development, January 1993

[Hay91] F.Hayes, D.Coleman, "Coherent models for object oriented
analysis", OOPSLA , 171-183 ,1991

[Loo87] M.Loomis ,A.Shah and J.Rumbaugh,"An Object modeling
technique for conceptual design",
Proceedings of ECOOP Paris, France

Lecture Notes in Computer Science, 276 Springer-Verlag, New
York 1987

22

[Mel93] S.J.Mellor, S.Sclaer, G.Booch, J.Rumbaugh, J.Salmons,
T.Babitsky, S.Adams, R.J.Wirfs-Brock,
"Premature methods standardisation considered harmful",
Open Letter to the Industry , JOOP July/August 1993

[Mon92] D.E.Monarchi and G.I.Puhr, " A Research Typology for
Object Oriented Analysis and Design."
Communications of ACM, 35,9 (September 1992), 35-47

[Rum87] J.Rumbaugh, "Relations as semantic constructs in an
object-oriented language",
OOPSLA’ 87 as ACM SIGPLAN 22, 12 (Dec. 1987), 466-481

[Rum91] J.Rumbaugh, M.Blaha, W. Premerlani, F.Eddy, W.Lorenson
"Object-Oriented Modeling and Design", Prentice Hall 1991

[Wal92] I.J.Walker, "Requirements of an object-oriented design
method",
Software Engineering Journal, March 1992, 102- 113

[You89] E.Yourdon, "Modern structured analysis",
Prentice Hall 1989

Articles in the Journal of Object Oriented Programming by
J.Rumbaugh covering key concepts in the OMT.

Associations
[Rum92a] Horsing around with associations, Feb 1992

Object identity
[Rum92b] A national identity crisis, Oct 1992

Inheritance
[Rum93a] "Disinherited! Examples of misuse of inheritance",
Feb 1993

The dynamic model
[Rum93b] "Controlling code - How to implement dynamic models",
May 1993

Qualified associations
[Rum93c] "What’s in a name - A qualified answer", Jul/Aug 1993

23

