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Abstract 

Absorption, Distribution, Metabolism and Elimination (ADME) properties are important factors 

in the drug discovery pipeline. Literature ADME data are often collected in large chemical 

databases like ChEMBL, which might be an asset to improve the prediction of ADME 

properties. Pharmaceutical companies build ADME Quantitative Structure Property 

Relationships (QSPR) models using proprietary data and thus the inclusion of literature data 

might be a valuable source for the development of predictive models. The aim of this study 

was to investigate whether merging literature and proprietary data could improve the predictive 

activity of proprietary models and enlarge their applicability domain (AD).  

ADME predictive models for Caco-2 (A to B) permeability and LogD7.4 were built with data 

extracted from Evotec and ChEMBL database. Predictive models were developed for each 

property and three different training sets were used based on: proprietary compounds (Evotec 

models), literature compounds (ChEMBL models) and a merged set of proprietary and 

literature compounds (Evotec+ChEMBL models). The Random Forest (RF), Partial Least 

Squares (PLS) and Support Vector Regression (SVR) were used to develop the models. The 

performance of the models was evaluated by using two types of test sets:  a diverse test set 

(20 % compounds of available data randomly selected) and a temporal test set (data published 

after the models were built). The descriptors that used were the physiochemical descriptors, 

the structural Molecular Access System (MACCS) descriptors and the Partial equalisation of 

orbital electronegativity – van der Walls surface areas (Peoe-VSA) descriptors. The AD of the 

models was evaluated with four distance to model metrics, which were the: kNN with Euclidean 

distance, kNN with Manhattan distance, Leverage and Mahalanobis distance. 

The ability of an existing Evotec Caco-2 permeability model to assess literature compounds 

(extracted from ChEMBL) was evaluated. The literature test set was predicted with a higher 

RMSE compared to the RMSE in prediction for internal compounds. Additionally, a number of 

literature compounds was found to be outside the AD of the Evotec model, thus highlighting 

an area of improvement for proprietary Evotec models. Furthermore, the effect of the inclusion 

of literature data in the existing Caco-2 permeability and LogD7.4 Evotec proprietary models 

was evaluated. The RF algorithm was the highest performing method for the development of 

Caco-2 permeability models and the SVR for the LogD7.4 models. In addition, the leverage 

method proved to be the most appropriate for the evaluation of the models’ AD. The 

permeability model built merging literature and proprietary data (Evotec+ChEMBL model) 

predicted a literature temporal test set with an RMSE of 0.68 while the Evotec model showed 

an RMSE of 0.74. Even in the case of the Evotec temporal test set, the two models performed 

similarly and the AD of the mixed models (incorporating both literature and proprietary data) 

was enlarged. The 86.15% of the compounds in the proprietary temporal test set were within 

the AD of the Evotec+ChEMBL model, while 76.50% of the compounds of the same test set 

appeared to be within the AD of the Evotec model. Similarly, the LogD7.4 Evotec+ChEMBL 

model predicted a literature temporal test set with an RMSE of 0.77 while the Evotec model 

showed an RMSE of 0.83. Even in the case of the Evotec temporal test set, the two models 

performed similarly but the AD of the mixed models (incorporating both literature and 
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proprietary data) was enlarged. The 94.86% of the compounds in the proprietary temporal test 

set were within the AD of the Evotec+ChEMBL model, while 88.49% of the compounds of the 

same test set appeared to be within the AD of the Evotec model. 

This study demonstrated that the inclusion of public ADME data into proprietary models 

improved the performance of proprietary models and enlarged at the same time their AD. The 

methodology presented herein will be applied by Evotec computational scientists to re-build 

the Caco-2 and LogD7.4 Evotec proprietary models considering literature data as discussed in 

this thesis. 
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1 INTRODUCTION 

1.1 ADME properties in drug development process 

The pharmaceutical drug design and development process is time consuming, complex and 

characterised by high risk and cost (Wang & Urban, 2004). It has been estimated that the 

probability of success in Phase II clinical trials is only 34 % (Cumming, Davis, Muresan, 

Haeberlein, & Chen, 2013). The efficacy and ADME (Absorption, Distribution, Metabolism, 

Elimination) properties play a significant role in the drug mechanism (Thompson, 2000) and 

are considered as an integral part of the drug design process (Di & Kerns, 2016).  

A molecule should be able to exhibit both a pharmacological effect and also to have the 

appropriate ADME properties to reach the market as a drug. Or in other words, a drug should 

not only be efficacious for the target disease but also with an acceptable pharmacokinetic and 

safety profile (Davies et al., 2015). Some of these parameters include the lipophilicity, 

ionisation, solubility and molecular mass (Livingstone & Davis, 2012). For example, a highly 

lipophilic drug can be more permeable (i.e. greater absorption) (Riley, Parker, Trigg, & 

Manners, 2001), can undergo greater metabolic clearance (Patrick, 2013) and it can be better 

absorbed in the GI tract (Avdeef & Tam, 2010). In addition, lipophilicity can affect the ability of 

a drug to cross the Blood Brain Barrier (BBB) and the volume of distribution (Poulin & Theil, 

2002) because of the drug ability to bind to serum albumin (Patrick, 2013). As a result, 

parameters such as lipophilicity should be taken into account from the early stages of drug 

design in order to exclude compounds with unwanted properties. 

The total loss rate due to poor ADME properties was near 50% in 2004 (Khanna, 2012). 

Although the failure rate was reduced to 14% (Tsaioun, 2007) due to the preclinical testing, 

there is a potential to improve cost-effectiveness of the drug discovery and development by 

using predictive ADME predictive models. Therefore, it is of major significance for 

pharmaceutical industries to improve the productivity of the drug design process (Paul et al., 

2010) and reduce failure due to poor ADME properties. Computational chemistry can be a 

great asset in drug discovery process (Liao, Sitzmann, Pugliese, & Nicklaus, 2011),  as its 

application can reduce the risk and cost of the drug design process (Tan et al., 2010). A useful 

tool of the computational medicinal chemistry is the in-silico predictive ADME models. The 

great advantage of these models is the prediction of a molecule’s ADME properties (Zhang, 

Luo, Ding, & Lu, 2012) prior to chemical synthesis and in-vitro or in-vivo testing, which will save 

time and money (Zhang & Surapaneni, 2012) in preclinical testing (figure 1). Therefore, the 

number of compounds that have to be synthesised to obtain the required biochemical and 

physicochemical profile is reduced (Moroy, Martiny, Vayer, Villoutreix, & Miteva, 2012). 
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Figure 1:  Computer Aided Drug Design (CADD) in drug design and development process 

(adapted from Kore, Mutha, Antre, Oswal, & Kshirsagar, 2012). 

1.2 QSAR and QSPR modelling 

Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Property 

Relationship (QSPR) modelling are major and commonly employed computational tools in 

medicinal chemistry to help the lead optimization process in drug discovery (Cramer, 2012; 

Kore et al., 2012). QSAR is widely used to provide optimisation of the pharmacological activity, 

and QSPR can provide information about pharmacokinetic or ADME properties (Puzyn, 

Leszczynski, & Cronin, 2010). QSPR models are mathematical models, which relate the 

chemical structure of the compound to a physiochemical property and this relation can be used 

to predict ADME properties (Yee & Wei, 2012). QSPR modelling can provide exploration and 

exploitation of the relationship between the chemical structure of the compounds and their 

ADME properties (Tropsha, 2010) prior to the synthesis of a compound (Park et al., 2014). The 

introduction of QSAR/QSPR models, has raised concerns for the predictability and applicability 

of these models (Jaworska, Nikolova-Jeliazkova, & Aldenberg, 2005). Therefore, five 

principles have been established for QSAR/QSPR model validation: 1. a defined endpoint, 2. 

an unambiguous algorithm, 3. a defined domain of applicability, 4. appropriate measures of 

goodness-of-fit, robustness and predictivity and 5. a mechanistic interpretation, if possible 

(Sahigara et al., 2012). One of the most important principles is the applicability domain, which 

will be further discussed. 
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Figure 2: The steps of the QSPR development process (adapted from Cherkasov et al., 2014). 

1.3 Data collection and curation 

Figure 2 is schematically depicting the process of building a QSPR. The first step of that 

process involves the data collection and curation. This is a significant part of the QSPR 

development because the performance of the model depends on the quality of the training set 

(Yee & Wei, 2012). Literature data and databases can be considered as an increasingly 

important source for collection of compounds and these data have been used for the 

development of QSPR models (Wang, Cao, Zhu, & Yun, 2015; Wang et al., 2016). 

1.3.1 Literature data and databases for ADME data collection for QSPR modelling 

Literature data are published in journal articles (peer-reviewed or scientific) and thus it is 

usually difficult to manually search and extract information. For example, literature chemical 

structures are usually depicted as images and that is making the extraction and use of literature 

data in QSPR development difficult (Gaulton et al., 2012). Therefore, in the recent years a 

variety of publicly available databases have been developed due to the high demand for easy, 

free and open access to the literature information. As a result, the construction of QSPR 

models is greatly assisted by the development of large publicly available compound databases 

like PubChem BioAssay (Li, Cheng, Wang, & Bryant, 2010; Y. Wang et al., 2010), ChemBank 

(Seiler et al., 2008), ZINC (Irwin, Sterling, Mysinger, Bolstad, & Coleman, 2012), ochem.eu 

(online chemical database with modelling environment) (Wang et al., 2016) and ChEMBL 

(Bento et al., 2014; Gaulton et al., 2012).  

The three databases that store information for ADME assays are the PubChem BioAssay, 

ochem.eu and ChEMBL. The other databases like ZINC is used mainly for ligand discovery 

(Irwin et al., 2012) and ChemBank has been developed to guide chemists in the synthesis of 
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novel compounds and biologists to search for small molecules that catalyse a specific process 

(Seiler et al., 2008). ChEMBL is the database, which is considered as a key representative of 

the current plethora of publicly available data (which also include the majority of the information 

available in PubChem BioAssay and ochem.eu) (Papadatos & Overington, 2014; Wang et al., 

2009) and has dramatically changed the way that the drug discovery community shares and 

deposits experimental data. Moreover, CHEMBL extracts the information from the medicinal 

chemistry literature (Papadatos, Gaulton, Hersey, & Overington, 2015), mainly from 12 

prominent chemistry journals (Bender, 2010). Moreover, companies like AstraZeneca 

deposited compounds into ChEMBL (Clark et al., 2015).  

ChEMBL contains information obtained by various assays, which are divided into four 

categories: 1. Binding (B), Functional (F), Toxicity (T) and ADME (A) and additionally include 

annotations related to the relevant assays. This is a great advantage of ChEMBL, which other 

databases lack. These supplementary annotations are useful and help the data curation 

process but the level of detail of annotations is not always sufficient to truly identify the 

protocols of the ADME assays (Papadatos et al., 2015). Even when the assay conditions seem 

to be the same, a significant variability is observed between measurements by different 

laboratories (Kalliokoski et al., 2013). Therefore, ChEMBL team has set future plans to improve 

the quality and consistency of the data by including more detailed description of the assays’ 

parameters (Papadatos et al., 2015). One of the main disadvantages in ChEMBL is the quality 

and reliability of the literature sources. For example, an error in chemical structure might result 

into an erroneous descriptor calculation (Tropsha, 2010), which will ultimately affect the 

predictability of the model. Manual curation of the data downloaded from public databases can 

substantially improve the accuracy of prediction (Young, Martin, Venkatapathy, & Harten, 

2008). The error in commercial or public databases ranges from 0.1% - 3.4% (Fourches, 

Muratov, & Tropsha, 2010) and another example is that of WOMBAT (world of molecular 

bioactivity) database with an overall error rate of 8% (Young et al., 2008). Therefore, it is 

important to curate the data extracted from large chemical databases before the development 

of the models.  

1.4 Calculation of molecular descriptors 

After the first step in QSPR process, which is the data collection and curation (figure 2), the 

next step is the calculation of molecular descriptors. Molecular descriptors are a basic tool for 

cheminformatics, which is used to transform chemical information (like physiochemical 

properties) into a numerical data and they can be theoretically (derived from symbolic molecule 

representation) or experimentally derived (Puzyn, Leszczynski and Cronin, 2010). 

 

Topological descriptors are widely used for QSPR modelling and they refer to 2D molecular 

descriptors (Rajkhowa & Deka, 2014), which are based on the distances between atoms 

calculated by the number of intervening bonds (Puzyn et al., 2010) and thus considering the 

internal arrangement of compound’s atoms (Pillai, 2015). Therefore, topological descriptors 

can give numerical information about molecular size, presence of heteroatoms, multiple bonds 

(Gozalbes & Doucet, 2002) and enable for the identification of the individual atoms and the 
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bonded connections between them (Roy, Kar, & Das, 2015). The Molecular Access System or 

“MACCS keys” is considered as the best known and the prototype of key-based fingerprints 

(Chackalamannil, Rotella, & Ward, 2017). MACCS are  structural descriptors and are based 

on pattern matching of the chemical structure of a compound to a pre-defined set of structural 

fragments, (166 MACCS keys) (Wale, Watson, & Karypis, 2008). Another set of descriptors 

that can be used are the partial equalization of orbital electronegativity - van der Walls surface 

areas (Peoe-VSA) descriptors, which capture the direct electrostatic interactions (Bajorath, 

2004). For example, electrostatic interactions play a role in the metabolism and protein binding, 

because these interactions can affect the binding of a compound to the active site of the 

metabolic enzyme and the plasma proteins (Cyprotex, 2015). 

 

Other important 2D descriptors that can be used for ADME models are Polar Surface Area 

(PSA), number of hydrogen bond acceptors/donors, LogP, LogD at various pH (which can be 

either experimentally or theoretically calculated) and pKa (Hou, Li, Zhang, & Wang, 2009). For 

example, the H bonding behaviour of a compound can be useful for the description of drug 

permeability because as the number of hydrogen bonds increases, the polarity of the 

compound increases too and the lipophilicity becomes weaker. As a result the compound is 

less able to cross the cell membrane by passive diffusion (Wang et al., 2016) because 

hydrogen bonds are formed with the outer phase of the membrane. In addition, PSA is one of 

the most significant molecular descriptors in QSPR studies and is a measure of polarity of the 

compound, which indicates the presence of a dipole moment (Caron & Ermondi, 2016). PSA 

is an area of Van der Waals surface, which results from oxygen, nitrogen or hydrogen atoms 

bound to polar areas (Danielle, 2014). As a result, PSA is related to the hydrophobicity and 

polarity of a molecule and is useful in estimating the compound’s absorption, BBB permeability 

and other ADME characteristics (Kubinyi, Folkers, & Mannhold, 2008). For example, PSA 

should be low (60-70Å2) for BBB penetration and no more than 140 Å2 for cell membrane 

permeation (Pajouhesh & Lenz, 2005) and generally PSA gives excellent correlation with drug 

permeability in Caco-2 monolayers (Artursson, Palm, & Luthman, 2012). 

 

In addition to the 2D QSAR descriptors, there also the 3D descriptors for QSAR modelling (3D 

QSAR) like randic molecular profiles, geometrical descriptors etc. One of the most widely used 

3D QSAR method is the Comparative Molecular Field Analysis (CoMFA), which concerns 

mainly the electrostatic field and steric relationships between the ligand and biological target 

(Cherkasov et al., 2014). However, it is considered as a computationally intense process 

(Goodarzi & Dejaegher, 2012) and one example might be the conformational analysis to find 

the best conformer. 

1.5 Feature Selection 

A feature selection or variable selection is usually performed to choose the descriptors with 

goal to reduce the dimensionality and the redundancy of the descriptors that are chosen. 

Feature selection usually depends on two parameters. The first is the correlation and variance 

of descriptors and the second is the algorithm that is applied to the training set. Correlated 

descriptors are those which are different views of the same molecular aspect (Puzyn et al., 
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2010). Therefore, some algorithms like MLR cannot produce meaningful results with correlated 

descriptors, whereas other methods like PLS and SVR can handle sets that contain correlated 

descriptors. In addition, zero or very low variance descriptors can be removed. They do not 

carry any information because they are constant for all the chemical compounds. There are 

various methods to perform feature/variable selection and they are categorised into three 

groups:  filters, wrappers and embedded methods. The filter methods use a metric or score for 

each feature, based on a statistical measure and based on their score are excluded or included 

(Brownlee, 2016). An example of a filter method is the ReliefF, which randomly picks dataset 

points and finds their nearest neighbours. Then it assigns weight to the features/descriptors 

based on how good they can discriminate the observations from their neighbours (Eklund, 

Norinder, Boyer, & Carlsson, 2014). The wrapper methods use a learning algorithm and 

identify descriptors subsets. Models are developed and assess which descriptor combinations 

can result in a good model accuracy (Brownlee, 2016). The embedded methods incorporate 

the feature selection during the application of learning algorithm (Eklund et al., 2014). 

However, it was shown that the use of different feature selection methods did not improve the 

prediction accuracy of models developed with “state-of-the-art” algorithms (RF, ANN, SVM) 

(Eklund et al., 2014). The reason is that these algorithms can handle correlated descriptors.  

1.6 Model Building and Machine learning in QSPR model development  

One of the most significant factor in QSPR building process is the selection of an appropriate 

method. QSPR models have evolved significantly since scientists decided to utilise 

approaches from recent developments in other fields like data mining, pattern recognition, 

machine learning and artificial intelligence (Dudek, Arodz, & Gálvez, 2006; Geppert, Vogt, & 

Bajorath, 2010). Various algorithms are used to identify patterns and correlations within a 

dataset/training set, and through data mining process, a model is derived (Lavecchia, 2015). 

Each compound is considered as a vector and each molecular descriptor corresponds to 1 

dimension/variable. The resulting model relates a set of descriptors with biologically relevant 

properties like lipophilicity and other parameters, which can affect ADME properties. There are 

various types of models and they are usually divided into two broad categories: continuous 

(regression) and classification (categorical) (Dudek, Arodz, & Gálvez, 2006) (figure 3). 
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Figure 3: Summary of the QSAR or QSPR building methods (adapted from Dudek, Arodz and 

Gálvez, 2006; Danielle, 2014). 

1.6.1 Multiple Linear Regression (MLR)  

MLR is a supervised machine learning method that is able to establish a linear mathematical 

relationship between a property of the training compounds and a set of descriptors that encode 

the chemical information (Ventura, Latino, & Martins, 2013). MLR is a  commonly used method 

for constructing QSPR models (Liu & Long, 2009) and the prediction is derived as a linear 

function of all descriptors (Sethi, 2012). The following equation gives the linear relationship 

between the target value and the compounds’ features/descriptors: 

 

ݕ = ߚ + ଵݔଵߚ + ଶݔଶߚ + ⋯ +  ,                          (Equation 1)ݔߚ

where n is the number of descriptors, x1, x2, …, xn are the molecular descriptors, β1, β2, ..., 

βn are descriptors’ coefficients and β0 is the model constant 

 

Equation 1 represents a hyperplane in a space of n-dimensions. In addition, the coefficients of 

that equation are calculated with methods like the least-squares method, which minimizes the 

sum of squared residuals (Dehmer, Varmuza, & Bonchev, 2012). However, there are 

disadvantages related to MLR. For example correlated descriptors and a large descriptors to 

compounds number ratio are two factors that MLR cannot handle and result in unstable 

predictions (Dudek, Arodz & Gálvez, 2006). The underlying reason is that descriptors influence 

the calculation of the coefficients and therefore correlated descriptors could result in erroneous 

estimation. Additionally, the number of compounds should be at least five times the number of 

descriptors to reduce the possibility of erroneous coefficient calculation. 
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1.6.2 Partial Least Squares (PLS) 

PLS is a more popular method compared to MLR because it overcomes the disadvantages of 

MLR mentioned above. PLS uses similar principles with Principal Component Analysis (PCA)  

and it is suitable to overcome the issues related to the multicollinearity and the high ratio of the 

number of descriptors over the number of compounds (Dudek, Arodz & Gálvez, 2006). PLS is 

able to project the original variables (i.e. descriptors) into latent variables (LVs) and thus 

reducing the dimensionality (Xing et al., 2014). LVs do not only explain the variation in the x 

variables (descriptors) as the PCA does. They also take into account how the variation in the 

x variables corresponds to the variation of the dependent variable y (target value) (Brown, 

2015). The following equations correspond to the latent variables (LVi), which are linear 

combinations of the variables/ descriptors (xi). 

 

ݕ = ܽଵܮ ଵܸ + ܽଶܮ ଶܸ + ⋯ + ܽܮ ܸ                             (Equation 2), 

where y is the target value, α is the regression coefficient and LV are the latent variables 

in a chemical space with n descriptors/dimensions 

ܮ ଵܸ = ଵܾ.ଵݔଵ + ଵܾ.ଶݔଶ + ⋯ + ଵܾ.ݔ 

ܮ ଶܸ = ܾଶ.ଵݔଵ + ܾଶ.ଶݔଶ + ⋯ + ܾଶ.ݔ 

. 

. 

. 

ܮ ܸ = ܾ.ଵݔଵ + ܾ.ଶݔଶ + ⋯ + ܾ.ݔ                           (Equation 3), 

where LV are the latent variables, i the number of the LVs, b are the variable coefficients, 

x are the molecular descriptors and n the number of descriptors. 

 

Each LV (equation 3) is a linear combination of the x values and also their corresponding 

coefficient (b), which gives an approximation to the variation of the target value (y) (Leach & 

Gillet, 2007). This method decomposes the input matrix of descriptors into loadings and LVs 

and the later are orthogonal and are capturing the descriptor information (Sethi, 2012).  

1.6.3 Decision Trees (DTs) and Random Forest (RF) in machine learning 

Decision Trees (DTs) are algorithms that are used for both regression and classification 

models and thus they are usually referred as Classification And Regression Trees (CART) 

(Brownlee, 2016). The DTs are predictive models that map observations to target values 

(Lodhi, 2010). DTs as every machine learning algorithm has an input and output. In ADME 

predictive modelling, the aim is to develop a model that can predict the value of a target (e.g. 

permeability, lipophilicity, protein binding etc.) based on a set of input variables (descriptors) 

(Tsaioun & Kates, 2011). The input data are in the form of (x, y) = [(xଵ, xଶ, … , x), y], where n 

is the number of descriptors and y represents the target value. In a DT, there are three types 

of nodes: a root node, internal nodes, and leaf nodes. Leaf nodes are also known as terminal 

nodes. An example of how a DT works is shown in figure 4. It is an example of a classification 

problem and thus the DT classifies the compounds on target property y1 or y2. The 
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classification of the test compounds is based on the leaf/terminal node that they reach after 

going through a series of questions (Yee & Wei, 2012). For example, according to the DT 

shown in figure 4, a test compound will be assigned with the y1 if it displays a certain condition 

for molecular descriptor A. If it does not fulfil that condition, then the molecular Descriptor B is 

examined. If the molecular descriptor B has a value less than 1, then the test compound will 

be assigned with the target property y1 or if it has a value greater or equal to 1, then the test 

compound will be assigned with the target property y2. 

 

Figure 4: Schematic representation of a decision tree (adapted from Dehmer et al, 2012).  

As the example above shows, a DT works by systematically subdividing the information within 

a training data (in the root and internal nodes) based on rules and there are various algorithms 

to define these rules (Dehmer et al., 2012). One of them is the recursive binary splitting 

(Brownlee, 2016). According to that algorithm, different split points are tried and evaluated with 

a cost function. The cost function that is used for regression models is expressing the sum 

squared residuals and is the following: 

∑ ݕ) − (݊݅ݐܿ݅݀݁ݎ
ଶ

ୀଵ                                     (Equation 4), 

where i is the number of compounds and y the experimental value 

 

The output of this algorithm represents the assignment of y value of each leaf for the test set 

compounds. However, this procedure provides a greedy approach because at each step a split 

point is defined, which might be good for that specific step but not for the overall of the DT. 

This limitation of the DTs can be overcome with the use of ensembles DTs like Random Forest 

(RF). 
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RF is based on an ensemble of DTs (Mitchell, 2014; K. Roy et al., 2015), which are built by 

training data of multiple features. Ensemble is the procedure that combines the 

results/predictions from multiple predictive algorithms in order to make a more accurate 

prediction compared to each individual prediction (Brownlee, 2016), as it benefits from the 

“wisdom of crowds” effect (Mitchell, 2014). RF is an improvement of the DTs because the 

learning algorithm is limited to a random sample compared to DTs, which are searching all the 

data to identify the ideal split point based on the minimisation of the sum of the squared 

residuals. The data are partitioned into progressively increasing homogeneous group through 

the tree. As a result, each terminal node of the DTs is comprised by molecules, which exhibit 

a similar value of the ADME property evaluated (Mitchell, 2014). RF is generally a unique 

combination of prediction accuracy, model interpretability and it is able to handle missing 

values and a variety of variables (binary, continuous, categorical) (Qi, 2012). RF can be used 

to perform both classification and regression models (Bajorath et al., 2012; Oprea, 2006) and 

the choice depends on the property that is predicted. Therefore, it is increasingly used in the 

field of biological computational sciences (Yang, Yang, Zhou & Zomaya, 2010). RF is an 

algorithm used in the literature to develop ADME predictive models like lipophilicity (Rodgers, 

Davis, Tomkinson, & van de Waterbeemd, 2011; Schroeter et al, 2007;  Wang et al., 2015), 

permeability (Fredlund, Winiwarter, & Hilgendorf, 2017) and solubility (Palmer,  O’Boyle, Glen, 

& Mitchell, 2006). The main disadvantage of RF method is that its performance can be 

influenced by a small sample size and also by the number of trees selected (Dehmer et al., 

2012).  The selection of optimal parameters can be achieved through cross validation 

(Statnikov, Wang, & Aliferis, 2008).  

1.6.4 Support Vector Machines (SVM) 

The SVM is an algorithm developed by Vapnik and co-workers and it is a widely used algorithm 

in the field of data mining in cheminformatics. It can be used for both classification and 

regression problems and when it is used for continuous/regression models can be referred as 

Support Vector Regression (SVR). It is an algorithm extensively used to predict properties like 

hERG blockade (Doddareddy, Klaasse, & IJzerman, 2010; Li, Jørgensen, Oprea, & Brunak, 

2008), toxicity related properties (Mitchell, 2014), protein inhibition (Dong et al., 2009) etc. It 

has also been used to predict physiochemical properties like LogD7.4 (Schroeter et al., 2007; 

Wang et al., 2015), melting point (Hughes, Palmer, & Nigsch, 2008) and pKa (Harding & 

Wedge, 2009). For example, for a two class classifier in a 2D space, where the data are linearly 

separable, the SVM algorithm aims to find the maximum margin hyperplane that divides the 

data in  a way that all the data with target value +1 lie on the opposite site from those with 

target value -1 (Basak, Pal, & Patranabis, 2007). This hyperplane is also referred as separate 

hyperplane and the margin is the distance between the separating hyperplane and data 

samples that are closest to that hyperplane and are called support vectors (Raschka, 2015) 

(figure 5). Therefore, the SVM for a classification problem aims to identify the optimal 

hyperplane for which the margin of separation between the chemical compounds is maximised 

(Khan, 2012). If w is a normal vector to the hyperplane then the hyperplane equation can be 

written as:  
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ԦݔሬሬሬሬԦ ݓ  − ܾ = 0 (Equation 5)  

and the equations of the two parallel hyperplanes can be written as: 

ሬሬሬԦ+ݔሬሬԦ ݓ  − ܾ = 1 (Equation 6), 

ሬሬሬሬԦିݔሬሬሬሬԦ ݓ  − ܾ = −1 (Equation 7).  

As the w vector is perpendicular to the hyperplane it is also perpendicular to the parallel 

hyperplanes and therefore the vector from the x(-) to x(+) is scalar multiple (r) of the vector w 

and the following equation can be written:  

 Ԧݔା ሬሬሬሬሬԦ= ିݔሬሬሬሬԦ + rݓ ሬሬሬሬԦ (Equation 8).  

By using equation 6 and substitute equation 8 to the x(+), the equation 9 is obtained:  

(Eq.6)
(ா.଼)
ሳልልሰ ݓ ሬሬሬሬԦ(ିݔ

ሬሬሬሬሬሬԦ + (ሬሬԦݓݎ − ܾ = 1 ⇒ 

⇒ ሬሬሬሬԦିݔሬሬሬሬԦ ݓ + ห|ݓ|หݎ
ଶ

− ܾ = 1 ⇒ 

⇒ ሬሬሬሬԦିݔሬሬሬሬԦ ݓ − ܾ + ห|ݓ|หݎ
ଶ

= 1 ⇒ 

⇒ −1 + ห|ݓ|หݎ
ଶ

= 1 ⇒ 

⇒ ห|ݓ|หݎ
ଶ

= 2 ⇒ 

⇒ ݎ = 2/ห|ݓ|ห
ଶ
 (Equation 9) 

The Margin (M) is the half of the distance between x(-) and x(+). Therefore: 

ܯ2 = ห|ݔା − ห|ିݔ = ห|ݓݎ|ห
(5.ݍܧ)
ሳልልሰ 

⇒ ห|ݓݎ|ห =
2

ห|ݓ|ห
2 ห|ݓ|ห ⇒ 

⇒ 2M =
2

ห|ݓ|ห
 (10 ݊݅ݐܽݑݍܧ)

Therefore, this margin distance should be maximised to identify the optimal hyperplane.  
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Figure 5: Schematic representation of two data classes in a 2D space by the SVM algorithm. 

The case outlined above is the simplest case, where the data are linearly separable in a 2D 

space and can be easily schematically represented. In more complicated cases, where the 

data i) are not linearly separable, ii) exist in a higher dimensional space and iii) the aim is the 

development of a regression model, there are additional strategies to follow. In the non-linearly 

separable cases, the data are projected in a higher dimension space with the aim to be able 

to linearly separate them. The kernel trick is used to map the training set data into a higher 

dimensional space with a mapping function (Φ) (Khan, 2012). There are various kernels that 

could be used and one of the most widely used is the radial basis function (rbf) kernel (ݔ)ܭ,  ((ݔ

for two samples/vectors ݔ,   of the input space (Raschka, 2015). The rbf kernel can beݔ

expressed as the inner product of the projected ݔ,   and uses the following equation to mapݔ

the data in a higher dimension: 

,ݔ)ܭ (ݔ = ݁ିఊ ௫ ∑((௫ି௫)మ)                                         (Equation 11), 

where ݔ,  . are two vectors of the input space and γ is a hyperparameterݔ

                                      

To train the data with the SVM algorithm and the rbf as a kernel, three hyperparameters (ε, γ 

and C) should be optimised. The ε parameter is affecting the number of support vectors and it 

can have a value in the range of 0-1. The larger the ε value is, the lower is the number of 

support vectors (Khan, 2012). The γ parameter is also taking values in the range of 0-1 and 

the usual default value is 0.1. If the γ increases, the influence of each data sample is also 

increased (Raschka, 2015). The C parameter is one of the most important parameter because 

it can affect both the trained and predicted data (Wang et al., 2015). The C value represents a 
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balance between the margin maximisation and the training error minimisation (Khan, 2012). If 

the C is too large then the SVM algorithm will produce an overfitted model (Brownlee, 2016) 

and if it is too small, insufficient stress is introduced on fitting the training data (Khan, 2012;  

Wang et al., 2015). A grid search is usually used to find an optimal combination for the three 

hyperparameters described above. 

1.6.5 Konstanz Information Miner (KNIME) in QSPR model building 

Literature databases have significantly increased the availability and accessibility of data 

(Schadt, Linderman, Sorenson, Lee, & Nolan, 2010) and as a result there is a high demand of 

data mining tools that respond to these needs.  KNIME is a data mining workflow framework, 

which has significantly evolved to meet the new demands of automating predictions and 

machine learning. It is a pipeline package, which provides a user friendly workspace 

(Mazanetz, Marmon, Reisser, & Morao, 2012). It uses nodes for data input and various nodes 

are interconnected to create a pipeline, where information is flowing through them (a process 

known as “visual programming”). This software offers the advantage of preparing workflows, 

which can be quickly customised to manage data and information in order to automatize tasks 

(Mazanetz et al., 2012). KNIME is used in both academia and industry and special nodes have 

been designed for the KNIME software, which can be used in chemistry, biology and in drug 

design process. For example, two cheminformatics node packages that are widely used for 

the development of ADME models are the: ChemAxon/Infocom Marvin package and the Weka 

(Waikato Environment for Knowledge Analysis). Other examples of package nodes, which are 

developed from the KNIME community contributions are: Enalos (Melagraki, Afantitis, 

Sarimveis, & Koutentis, 2009; Melagraki & Afantitis, 2013) and RD-kit, Chemical Development 

Kit (CDK) (Mazanetz et al., 2012). The KNIME software is coded in Java based on an Eclipse 

environment (Warr, 2012) and thus it is an extensible programme through plug-ins, which 

offers additional functionality (Berthold et al., 2009). KNIME also offers nodes, which are 

serving as interfaces for statistic/mathematic programmes (Matlab, R), programme languages 

(Python) and database readers (Jagla, Wiswedel, & Coppée, 2011). Finally, KNIME can be 

used in the development of ADME models because data mining and specialised KNIME nodes 

can be used for the development of predictive models. 

1.7 Model Validation  

Model validation is a very important process that should be performed after the model training. 

Model validation can be internal or external (Chackalamannil et al., 2017). An example of 

internal validation is the k-fold cross-validation, which partitions the initial dataset in k samples. 

Then a subsample is excluded and a model is built with the k-1 subsamples as training set. 

This procedure is repeated for k times and every subsample has been used once as the 

validation test set (Alpaydin, 2014). Moreover, an external validation set should also be used 

because it investigates the generalisability of the model to predict new chemicals (Puzyn et 

al., 2010). There are also measures that estimate the goodness-of-fit of the model. Two of the 

most commonly used are the Root Mean Square Error (RMSE) in prediction and the Pearson 

Correlation coefficient or the coefficient of variation in the fit to training set (R2) 
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(Chackalamannil et al., 2017). The RMSE is a useful measure as it has the same units as the 

units in the QSPR experiment and provides indication of the likely error associated with the 

model’s predictions. The RMSE (equation 12) is generally used as a statistical metric to 

establish model performance (Chai & Draxler, 2014) and the lower the values of RMSE the 

higher the accuracy of the model. The R2 (equation 13) is often used to measure model quality 

(Wermuth, 2008).  According to Wermuth (2008) the R2 can be misleading because it depends 

heavily on the variation, whereas RMSE relates directly to the experimental variability but it is 

meaningful to report both values (Alexander & Tropsha, 2015).   

ܧܵܯܴ =  ට(ை௦௩ௗିௗ௧ௗ)మ

ே
                        (Equation 12), 

where N is the number of compounds 

ܴଶ = 1 −
∑(ை௦௩ௗିௗ௧ௗ)మ

∑(ை௦௩ௗିை௦௩ௗ )మ                       (Equation 13) 

 

Another important way to validate and assess the QSPR models is the evaluation of their 

Applicability Domain (AD). A focus on methods for the AD evaluation is given in this thesis.  

1.7.1 Applicability domain (AD) 

Applicability domain is considered as one of the most important problems in the QSPR analysis 

(Tropsha, 2010). AD can establish the scope and limitations of QSPR models (Netzeva et al., 

2005) and it can estimate the range of chemical compounds whose properties can be reliably 

predicted (Jaworska et al., 2005). AD is actually estimating the confidence in predictions or in 

other words it is predicting the predictability (Dragos, Gilles, & Alexandre, 2009) and it is 

considered as a tool to avoid predictions with a large error probability. Moreover, it is generally 

accepted that the compounds that are “close” to the model’s chemical space (based on the 

training set) have higher chances to have their properties more accurately predicted than 

compounds that are “far” (Cumming et al., 2013). Therefore, the chemical space of the model 

must be defined and then asses if the compounds in the test set fit into that space. The AD is 

dependent on the descriptors that are used for the model. The descriptors are numerical 

representations of the chemical space (Todeschini & Consonni, 2009) and thus by changing 

the descriptors, the chemical space is also altered (Mathea, Klingspohn, & Baumann, 2016). 

Moreover, there is also a possibility of presence of compounds that are “far” from the model’s 

chemical space and they are called prediction outliers. These can be present in both train and 

test sets (Furusjö, Svenson, Rahmberg, & Andersson, 2006).  

1.7.1.1  Distance to model metrics 

There are various ways to establish the AD of a model and one of them is the distance to 

model metrics. These approaches calculate the distance of the test compounds from a defined 
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point within the chemical space of the training compounds (Sahigara et al., 2012). The 

distances are compared between this defined point and compared to a user-pre-defined 

threshold. Some of the most commonly used methods are the following: Euclidean, Manhattan 

and Mahalanobis distance and Leverage test. 

1.7.1.2 Mahalanobis distance 

Mahalanobis distance (MD) is measuring the distance of a given compound (i.e. a test 

compound) from the distribution of the training set compounds (equation 14). MD takes into 

account the correlation in the data since it uses the inverse of the covariance matrix of 

descriptors (Netzeva et al., 2005). Other methods like Euclidean distance and Manhattan 

distance cannot do that automatically and other pre-treatments like PCA are necessary 

(Gadaleta et al., 2016). Moreover, MD is a method that can be used to detect potential 

multivariate outliers, which are actually compounds really far from the compounds’ distribution 

and also squared MD approximately follows a chi-square distribution (Varmuza & Filzmoser, 

2016). These features can be used to set a threshold and distinguish between compounds that 

are within an acceptable distance from the model.  

(ܦܯ) ݁ܿ݊ܽݐݏ݅ܦ ݏܾ݅ℎ݈ܽܽ݊ܽܯ =  ඥ(ݔ − ݔ)ଵିܵ(ߤ −  ,(Equation 14)            ்(ߤ

where MD is the distance of an observation x from a set of descriptors with mean ߤ and S 

(covariance matrix) and T is the transpose of the matrix. 

 

1.7.1.3 Leverage  

Another distance to model metric to estimate the AD is the Leverage method, which is based 

on the concept of the extent of extrapolation (Melagraki et al., 2009). The model space is 

comprised by a k-Dimensional space of the n chemicals (rows) and k variables (columns) and 

this is the X = k x n, the descriptor matrix. The leverage method measures the distance of each 

compound from the centroid of X matrix (Netzeva et al., 2005), by manipulating the Hat matrix 

(H), which is the following: 

ܪ =  ,ଵ்ܺ                                       (Equation 15)ି(ܺ ݔ்ܺ)ܺ 

where X is the descriptor matrix and XT is the transpose matrix of X. 

 

The next step involves the calculation of the leverages (hi), which are the diagonal elements 

of the H matrix and are calculated with the following equation:  
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ℎ =  ܺ
 ,ଵ ܺ                                   (Equation 16)ି(ܺ ݔ்ܺ)்

where Xi is the descriptor row vector of the query compound and X is the descriptor matrix. 

 

The final step of the leverage method involves the estimation of the threshold, which is fixed 

at 3p/n, where p is the number of variables/descriptors plus one and n is the number of 

compounds in the training set (Gadaleta et al, 2016; Puzyn et al., 2010; Sahigara et al., 2012). 

1.7.1.4 Other Distances  

There are also other distances that are used for the estimation of AD like the Euclidean 

distance (ED) and the Manhattan distance (ManD). ED is the square root of the squared 

differences between the corresponding elements in the descriptor matrix of two compound A 

and B (equation 17). ManD, between two compounds A and B, is the sum of the absolute 

differences of their coordinates in the n-variable/descriptor space (equation 18). 

(ܦܧ)݁ܿ݊ܽݐݏ݅ܦ ݈݊ܽ݁݅ܿݑܧ =  ඥ(ݔଵ − ଵ)ଶݔ + ଶݔ) − ଶ)ଶݔ +  … + ݔ) −  ,)ଶ (Equation 17)ݔ

where ED is the distance of 2 compounds A and B with n descriptors. 

 

(ܦ݊ܽܯ) ݁ܿ݊ܽݐݏ݅ܦ ݊ܽݐݐℎܽ݊ܽܯ =  ∑ − ݊ܣ| |݊ܤ
ୀଵ                (Equation 18), 

where A and B are two compounds and n is the number of descriptors. 

 

1.7.2 k-Nearest Neighbour (kNN) 

This method is establishing the distance of a test/query compound from its nearest k 

compounds in the training set (Sahigara et al., 2012). However, this method is not a pure 

distance to model metric method because it also takes into account the structural or chemical 

similarity of the compounds (Sahigara, Ballabio, Todeschini, & Consonni, 2013). The similarity 

of the test compounds to the training compounds can be assessed by using: a) descriptors, b) 

Principal Components (PCs) and c) Extended Connectivity Fingerprints (ECFP4). The distance 

between the compounds can be computed using different distance functions. The ED and the 

ManD can be used to calculate distance between compounds with the descriptors and 

Tanimoto and Dice coefficients can be used to calculate similarity with the ECFP4 fingerprints.  
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1.7.3 Fingerprints and Similarity measures used with kNN 

Fingerprints are a popular method to evaluate chemical similarity due to their ability to translate 

the chemical complexity into a numeric string (Gadaleta et al., 2016). ECFP have been 

developed as a modified Morgan algorithm methodology (Leach & Gillet, 2007) to represent 

molecular characteristics, which are associated to their molecular activity (Rogers & Hahn, 

2010) and they can also be used for other purposes like chemical similarity. In addition, they 

exhibit several advantages like that they are rapidly calculated, they can represent a great 

number of different molecular features and they are able to reflect both the absence and the 

presence of a chemical functionality (Kovacs, 2016). 

Tanimoto (equation 19) and Dice (equation 20) coefficients are similarity measures, which 

take into account the overlapping of chemical fingerprints to quantify molecular similarity 

(Jasial, Hu, Vogt, & Bajorath, 2016). The difference between Dice and Tanimoto is that Dice 

gives twice the weight to the positive common bits and as a result emphasises more on the 

positive matches (Al-Shamri, 2014), whereas Tanimoto is really popular because in includes 

a degree of size normalisation with the denominator term (Leach & Gillet, 2007). Both give a 

range of 0-1, where 0 means no similarity and 1 means highest similarity. 

Tanimoto 

ࢀ • =  
ࢉࡺ

ࢉࡺି࢈ࡺାࢇࡺ
  (Equation 19), where  

 Na the number of bits set to “1” in 

molecule A,  

 Nb the number of bits set to “1” in 

molecule B and  

 Nc the number of bits in both A and B. 

Dice 

ࡰ  • =  
ࢉࡺ࢞

࢈ࡺାࢇࡺ
 (Equation 20), where 

 Na the number of bits set to “1” in 

molecule A,  

 Nb the number of bits set to “1” in 

molecule B and  

 Nc the number of bits in both A and B. 

 

1.8  Principal Component Analysis (PCA) 

PCA is a method used in multivariate data analysis, in which the observations are described 

by inter-correlated quantitative dependent variables (Abdi and Williams, 2010). PCA could be 

used as part of the model validation process to establish if the compounds in the test set 

occupy a similar chemical space as the training compounds. The aim of this method is to 

reduce the dimensionality of the data, to extract the important information from the data table 

and express this information as a set of new variables (Abdi & Williams, 2010). As a result, the 

data are represented with a smaller number of variables, which are the result of the reduction 

of dimensionality and are called principal components (PCs) (Ringnér & Ringner, 2008; 

Yousefinejad, Bagheri, & Moosavi-Movahedi, 2015). The concept behind the PCA is to find 

PCs (e.g. PC1, PC2, …, PCn), which are linear combinations of the original variables (Varmuza 

& Filzmoser, 2016), which in this case are the QSPR descriptors. In addition, the PCs are 

chosen in a way that the first principal component (PC1) accounts for the most of the variance 
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in the data, the PC2 for the next largest variance etc. (Miller & Miller, 2010) The PCs are 

orthogonal linear combination transforms of the original descriptors (Hemmateenejad, Miri, & 

Elyasi, 2012).  

To calculate the PCs of a matrix, which is composed by x compounds and n-descriptors (i.e. 

n-dimensional space), four simple steps should be followed. Firstly, the mean of each 

dimension is calculated and the mean is subtracted from each dimension, producing  a data 

set whose mean is zero (Smith, 2002). The second step is the calculation of the covariance 

matrix, which is formed by measuring covariance values (Equation 21) between all the 

dimensions (Fukunaga, 2013). The covariance matrix is a square matrix, from which the 

eigenvalues and eigenvectors are calculated, which can reveal information for the data (Tran, 

Vu, & Wang, 2013). The eigenvalues and eigenvectors are special features of a matrix. An 

eigenvector  x (x ϵ Rn) is a non-zero vector of a matrix A, when Ax is a scalar multiple (λ) of x: 

ݔܣ =  The scalar multiple λ is called eigenvalue of matrix A and corresponds .(Anton, 2010) ݔߣ

to x eigenvector. 

,ܼ)ݒܿ ܻ) =
∑ (ିೌ)(ିೌ)

సభ

(௫ିଵ)
                          (Equation 21), 

where z and y are 2 dimensions of the n-dimensional space and x is the number of 

compounds (i.e. sample size). 

 

An eigenvalue decomposition of the matrix is performed to obtain the eigenvalues, which 

represent the total variance explained by the corresponding eigenvector, which indicates the 

direction of the new axes (Smith, 2002). At the beginning, the compounds’ dataset is described 

with values, which cannot relate to the rest of the data, whereas the new data points (scores, 

equation 22) of PCs show how the points are related to the rest of the data. 

ݏ݁ݎܿܵ =  (Equation 22)                        ݎݐܿ݁ݒ݊݁݃݅݁ ݔ ܽݐܽ݀ ݈ܽ݊݅݃ݎ

 

1.9 Permeability  

Permeability is considered as a valuable parameter during the drug discovery process because 

it can significantly affect the ADME properties and it correlates to the velocity of a compound 

passage through a biological membrane barrier (Di & Kerns, 2016). Permeability extendedly 

affects the absorption and thus the bioavailability because a low permeable compound is not 

able to cross the cell membranes and ultimately interact with the biological target. Permeability 

also affects Distribution because it relates to the ability of the drugs to penetrate BBB and cell 

membranes. The ability or inability of a drug to permeate a biological membrane barrier 

(usually the intestinal membrane barrier) impacts on the drug’s efficacy. Therefore, a low 

permeability value results in a reduced bioavailability, which ultimately prevents the formulation 
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of orally administered drugs. This is a major limitation because the oral route is the most 

desired and is associated with high patient compliance (Wang & Hou, 2015).  

1.9.1 Structure of the cell membrane and Drug Transport  

To appreciate the drug permeability through the biological cell membranes, it is significant to 

consider the morphology and structure of the cell membrane. The main structural component 

for all biological membranes is the lipid bilayer, which is consisted of amphipathic 

phospholipids (figure 6) (Yeagle, 2011). The chemical structure of phospholipids is 

characterised by a head group and long saturated lipophilic side chains. The variations in head 

group result in different types of phospholipids like Phosphatidylcholine (PC), Phosphatidic 

acid (PA), Phosphatidylglycerol (PG), Phosphatidylethanolamine (PE) and others.  

Additionally, cell membranes also contain membrane transporters like ion channels and uptake 

or efflux transporters (Goñi, 2014).  

                                            

Figure 6: Illustration of the lipid bilayer and the structural unit of the lipid bilayer, the 

phospholipids. 

The main methods that a drug can overcome biological barriers are the passive transport and 

active transport (figure 7). The passive transport mainly refers to either passive diffusion or 

paracellular permeability because no energy is required. In transcellular passive diffusion, the 

drug cross the cell membrane driven by Brownian motion (Di & Kerns, 2016) due to the 

concentration gradient (Tsaioun & Kates, 2011). The drug moves from the aqueous phase, 

where the drug is in high concentration, into the cell. Drugs that undergo paracellular 

permeability move between the tight junction of epithelial cells (figure 7). However, this route 

is only observed for a low percentage of drugs in the intestines (less than 5%) (Di& Kerns, 

2016). Passive diffusion is believed to be the main mechanism for intestinal absorption and it 

has been reported that about 95% of the commercial drugs undergo passive diffusion 

(Mandagere & Thompson, 2002). Active transport is mediated by protein transporters present 

in the cell membrane (Kell, Dobson, & Oliver, 2011; Kell & Oliver, 2014). 

 

Polar Headgroup 

Lipophilic Tail 
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Figure 7: A simplified view of the two main permeability mechanisms. 

1.9.2 In-vitro models of cell permeability 

Permeability can be measured by various assays and is correlated to drug absorption. 

Monolayers of Caco-2 cells are used as an in-vitro model to estimate intestinal absorption of 

compound. These cells are human epithelial colorectal adenocarcinoma cancer cell lines (van 

Breemen & Li, 2005) and are extensively used (Cyprotex, 2015; Li, Volpe, Wang, Zhang, & 

Bode, 2011). The Caco-2 cells have the ability to mimic the morphology and functionality of 

the human enterocytes (Press, 2011) and since the cells are derived from colon 

adenocarcinoma, they exhibit both colonocytic and enterocytic characteristics (Volpe, 2008). 

The assay is based on the ability of Caco-2 cells to undergo spontaneous enterocyte 

differentiation in cell culture and replicate into confluent monolayers (Ehrhardt & Kim, 2008). 

When they are at the confluent state on a semi-porous membrane they start to polarise and 

form tight junctions resulting in a polarised apical (side A) and a basolateral (side B) 

membranes, which are creating an environment similar to human enterocytes (figure 9). As a 

result, they can be used as a surrogate (Thomas, Brightman, Gill, Lee, & Pufong, 2008) to 

predict permeability and transport of drugs. 

This assay provides information related to in-vivo absorption of the small amounts of tested 

compound, as well as the rate of absorption, which consequently controls bioavailability 

(Pham-The et al., 2016). The Caco-2 assay is considered to be a ‘gold standard’ in calculating 

in-vitro permeability (Caldwell, Yan, Tang, Dasgupta, & Hasting, 2009) and it is also accepted 
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by the Food Drug Administration (FDA) as the assay to aid classification of compounds 

according the Biopharmaceutics Classification System (BCS) (Ku, 2008) (figure 8). 

 

Figure 8: Biopharmaceutics Classification System (BCS)(adapted from Benet, 2013) 

 

 

Figure 9: Schematic representation of the Caco-2 permeability assay (adapted from Li, 2001). 

This assay is usually conducted in 96 well plates (Sampson et al., 2014) and the compound of 

interest is introduced to apical side (side A) and then the flux of the compound through the 

monolayer is measured. After incubation time, the amount of compound, which crossed the 

Caco-2 cells into the basolateral side (side B) is established usually with LC/MS (Liquid 

Chromatography/Mass Spectroscopy) or MS (Cyprotex, 2015). Finally, the Papp (apparent 

permeability) is calculated (equation 23) with the following formula (Volpe, 2008): 
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ܲ =
ௗெ/ௗ௧

బ × ௌ
                                           (Equation 23), 

where C0 is the initial concentration of the compound tested, S is the surface area of Caco-

2 cell membrane and dM/dt is the rate of the amount of the compound transported to side 

B. 

 

There are also other methods used to measure in-vitro permeability like the Parallel Artificial 

Membrane Permeability (PAMPA) and Mardin-Darby Canine Kidney (MDCK) assays. The 

PAMPA assay uses a an artificial lipid membrane to assess the likelihood of a drug to undergo 

passive diffusion (Avdeef & Tsinman, 2006). The MDCK assay is performed on cell lines 

derived from canine/dog kidney and this assay shows a good correlation with the Caco-2 assay 

(Cyprotex, 2015). However, the PAMPA assay can only predict passive diffusion and the cell 

lines used in MDCK assay exhibit differences in morphology between the canine and human 

cells. In addition, although Caco-2 assay is the best, it has some disadvantages. Caco-2 cells 

require a long culture period (~3 weeks) (Wang et al., 2016) and also under or overpredict the 

permeability of drugs that undergo active transport (Fredlund et al., 2017) due to the different 

expression levels of transporters in Caco-2 cell line. Therefore, pharmaceutical industries 

should develop efficient models for the in-silico prediction of permeability, which is less time 

consuming and expensive compared to the in-vitro Caco-2 assay. 

1.9.3 In-silico regression permeability models developed with Caco-2 data 

There are various regression permeability models based on Caco-2 permeability data. The 

models were developed using different training sets, descriptors and algorithms like MLR, PLS, 

ANN, Boosting, SVR and others (table 1). 
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Table 1: Regression permeability models developed with Caco-2 data reported in the literature 

during 1997-2010. 

Reference Method Number 

of 

Molecules 

Number of 

Descriptors 

AD 

Estimation? 

(Yes/No) 

(Norinder, Österberg, & Artursson, 

1997) 

PLS 17 9 No 

(Kulkarni, Han, & Hopfinger, 2002) GFA (genetic 

function 

approximation) 

38 6 No 

(Fujiwara, Yamashita, & Hashida, 

2002) 

ANN 87 5 No 

(Yamashita & Wanchana, 2002) GA-PLS 73 24 No 

(Nordqvist, Nilsson, & Lindmark, 

2004) 

PLS 51 70 No 

(Hou, Zhang, Xia, & Qiao, 2004) MLR 100 4 No 

(Guangli & Yiyu, 2006) MLR 

SVR 

100 4 No 

(Jung, Choi, Um, Kim, & Choo, 

2006) 

MLR 20 4 No 

(Fenza, Alagona, Ghio, & 

Leonardi, 2007) 

GA-ANN 41 5 No 

(Karelson, Karelson, Tamm, & 

Tulp, 2009) 

MLR 

ANN 

81 6 No 

(Paixão, Gouveia, & Morais, 2010) ANN 296 12 No 

 

Although many models reported in table 1 performed well, there are some limitations related 

to these studies, like the small size of the training set (table 1). This is an important factor in 
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predictive modelling, as a small training set (e.g. less than 100 compounds) could possibly 

lead to models which are not robust. For example, there is a high chance of producing 

overfitted models and additionally the presence of outliers could significantly affect the 

predictive activity (Tropsha, 2010). Furthermore, a model developed with a small training 

dataset would exhibit a restricted AD and thus an evaluation of the AD would be of high 

significance.  As table 1 shows, the AD of the models (i.e. how close are the training 

compounds to the training set) was not established. This is a clear disadvantage because the 

AD can be a measure that explains a good or bad prediction based on the percentage of test 

compounds that fall within the AD. In addition, a small number of descriptors was used. This 

is a potential limitation because there is a variety of chemical features, which could be 

associated with ADME properties like permeability (Tao et al., 2015). Therefore, by using only 

a small number of descriptors, this variability might not be considered. Finally, most of the 

models reported (table 1) used training sets with existing drugs except the model developed 

by Fenza et al (2007), which was developed with proprietary only compounds. Furthermore, a 

model reported in 2010 (Paixão et al., 2010) used a reasonable training set, larger than the 

previous models, with 12 descriptors and achieved an RMSE of 0.60. An improved ANN 

methodology used was based on a pruning procedure and early stop approach that prevented 

overfitting by the model, which was a major issue noticed in the previous studies that used the 

ANN algorithm. However, the AD of the models was not established.  

The recently reported Caco-2 regression models overcame some of the limitations mentioned 

above and offered the advantage of a large training set which included data extracted from 

ChEMBL database (Wang et al., 2016) and both proprietary and ChEMBL data (Fredlund et 

al., 2017) (table 2). In addition, both models showed a good predictive ability and used a variety 

of algorithms to develop models. However, Wang et al (2016) used only one method to 

evaluate models’ AD and Fredlund et al (2017) did not evaluate or report the models’ AD. 

Furthermore, there are not models in the literature that investigate the effect of literature data 

in proprietary models in comparison to only proprietary models. The models developed by 

Fredlund et al (2017) merged proprietary with literature data and showed good results but the 

effect of merging proprietary with literature data is not reported. 
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Table 2: Regression permeability models developed with Caco-2 data reported in the literature 

during 2016-2017. 

Reference Method Number of 

Molecules 

Number of 

Descriptors 

AD 

Estimation? 

(Yes/No) 

(Wang et al., 2016) MLR 

PLS 

SVR 

Boosting 

1272 193 Yes: 

Leverage 

(Fredlund et al., 2017) PLS 

SVR 

RF 

2558 PLS, SVR: Standard 

AZ descriptor set 

RF: signature 

descriptors 

No 

 

1.10 Lipophilicity  

Lipophilicity is a property that majorly affects the ADME of a drug and correlates to other 

properties like permeability, solubility and protein binding. Lipophilicity is the ability of a 

compound to partition into a nonpolar lipid matrix against an aqueous (Di & Kerns, 2016) and 

there are two different ways of expressing and calculating lipophilicity: the partition coefficient 

(LogP) and the distribution coefficient (LogD) (Low, Blasco, & Vachaspati, 2016). LogP is the 

partition coefficient of a compound between octanol (organic layer) and buffer (aqueous layer) 

(equation 24), whereas the LogD is the distribution coefficient of a compound between octanol 

(organic layer) and buffer (aqueous layer) at a specified pH (equation 25) (Caron & Ermondi, 

2008). 

ܲ݃ܮ = ଵ݈݃ ൬
ೝೌ

ೌೠೠೞ ಹషೌ ೠೞ ೠೝೌ
൰            (Equation 24) 

ு(௫)ܦ݃ܮ = ଵ݈݃ ൬
ೝೌ

ೌೠೠೞ ಹ(ೣ)
൰                   (Equation 25), 

where C is the concentration of the compound. 
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The LogP refers to the partitioning of the neutral form only, whereas the LogD takes into 

account any acidic or basic groups that ultimately affect the distribution in octanol/water, which 

becomes pH dependent (Tetko & Bruneau, 2004). Moreover, a LogD value at pH 7.4 (LogD7.4) 

represents the LogD at physiological pH and a value of about 1-3 is the optimal for orally 

available drugs (Hartmann & Schmitt, 2004).  This range is optimal as it results in an intestinal 

absorption of a drug due to a good balance between solubility and transcellular passive 

diffusion (Di & Kerns, 2016). Generally, a drug should exhibit a balance between lipophilicity 

and hydrophilicity in order to be able to dissolve and permeate cell membrane barriers (Wang 

et al., 2015). A LogD7.4 value of 3-5 shows a good permeability but the main disadvantage is 

that the intestinal absorption and bioavailability is reduced. A LogD7.4 value greater than 5 

results in a low solubility absorption and thus bioavailability. In addition, distribution is affected 

because the compound is too lipophilic and thus it gets trapped in biological tissues (Di & 

Kerns, 2016). 

Lipophilicity can influence the possibility of a drug to be considered as drug candidate. 

Lipophilicity along with the Topological Polar Surface Area (TPSA) have an impact on 

toxicological properties of a drug (Hughes et al., 2008) and a calculated LogP<3 and TPSA>75 

increase the risk of toxicity (Lu, Jessen, Strock, & Will, 2012). The toxicity increases because 

a calculated LogP<3 and a TPSA>75 increase the likelihood of promiscuous binding to off 

target pharmacology (Hughes et al., 2008). In addition, lipophilicity can affect the non-specific 

binding to albumin and phospholipids (Valko et al., 2012), which results in reduction of the in-

vivo available concentration (Tarcsay, Nyíri, & Keserű, 2012). Furthermore, the pKa value is 

another factor that should be considered along with the lipophilicity. The pKa represents the 

pH that the drug is 50% ionised (Heshmati et al., 2013) and both lipophilicity and pKa determine 

the pharmacokinetic, pharmacological and toxicological properties of a compound (Di & Kerns, 

2016).  

The assay that is used to determine the LogD of compounds is the shake flask method, which 

is considered as the gold standard of determining the lipophilicity (Baka, Comer, & Takács-

Novák, 2008). This method measures the compound’s concentration in octanol (organic 

phase) and the aqueous phase after equilibration on both phases (Andrés et al., 2015). 

However, there are several limitations related to that method. For example, the use of octanol 

as the organic phase has several limitations (Cyprotex, 2015) because it contains a relatively 

high amount of aqueous content of about (4%) (Allerton, Smith, Kalgutkar,Amit, van de 

Waterbeemd, & Walker, 2012). As a result, octanol supports hydrogen bonding (Will, McDuffie, 

Olaharski, & Jeffy, 2016), which creates a different environment from that of the inner 

hydrocarbon core of the cell membranes. Thus octanol can overestimate the lipophilicity of 

compounds that are able to form hydrogen bonds (Allerton et al., 2012). However, octanol 

remains the most popular organic solvent for these studies in industry (Cyprotex, 2015).  

1.10.1 Theoretical lipophilicity prediction and the importance in-silico lipophilicity models 

In the past, it was extensively reported the challenge of the theoretical prediction of LogD7.4 

(Tetko & Poda, 2004). LogD7.4 was usually measured by calculating the LogP and pKa values 
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with the following equation: (ܪ) = ܲ݃ܮ − log (1 + 10(ுି)௱) , where Δi is equal to 1 or -1 

for acids and bases respectively. However, this approach can be problematic and inaccurate 

due to the accumulation of errors from LogP and pKa calculations. The next evolutionary step 

in the theoretical prediction of LogP and LogD7.4 was the development of software. Therefore, 

pharmaceutical companies tried to evaluate the possible advantage of the available software 

like ACD labs, Pallas PrologD and ALOGPS in the theoretical calculation of LogD. In a study 

(conducted in Pfizer), the LogD7.4 for two proprietary sets of compounds was predicted with 

the ACD labs and the Pallas PrologD software, which resulted in very low accuracy in 

predictions. Pfizer (Tetko & Poda, 2004) and AstraZeneca (Tetko & Bruneau, 2004) utilized “in 

house” LogD data to evaluate prediction of LogD7.4 based on a software, which predicts LogP, 

the ALOGPS. This software used the Associative Neural Network (ASNN) method, which 

allowed the user to include new data without retraining the neural network (LIBRARY mode). 

By incorporating LogD7.4 data with the LIBRARY mode, the ALOGPS proved to be similar or 

superior compared to other software. However, the improvement was observed only for local 

predictions and it was difficult to produce accurate predictions for compounds with structural 

features not covered in the training set. Therefore, the importance of developing models for 

lipophilicity prediction was evident.   

One of the initial attempts to develop lipophilicity models based on logD7.4 data and the BRNN 

(Bayesian Regularised Neural Networks) algorithm, was conducted in AstraZeneca (Bruneau 

& McElroy, 2006). A set of 8200 “in house” compounds was clustered in 5000 clusters based 

on hierarchical clustering process and one compound from each cluster was selected to form 

the training set and the rest of the compounds used as “ex-cluster validation test set”. In 

addition, a global validation test set comprised by 16325 compounds was obtained from the 

AstraZeneca database for “global validation”. The advantage was that the model was 

developed with a consistent and large proprietary dataset. Model seemed to perform well for 

both test sets with an RMSE in prediction of 0.54 and 0.63. In addition, the AD of the models 

was established by using the Mahalanobis distance and the compounds were binned in 4 bins 

by increasing distance. The results showed a trend of increasing RMSE as the MD was 

increasing. However, the models were developed with only proprietary compounds.  

Moreover, there are LogD7.4 models (table 3) developed by AstraZeneca (Rodgers et al., 2011) 

and Bayer Schering Pharma AG (Schroeter et al., 2007) with proprietary compounds and other 

models developed with data extracted from the literature (Wang et al., 2015). The models could 

derive accurate predictions with various machine learning algorithms. However, none of these 

studies focus on the inclusion of literature data in the proprietary models to investigate the use 

of literature and opensource data in the realistic ADME evaluation in the drug discovery 

pipeline. 
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Table 3: Regression lipophilicity models developed with logD7.4 data reported in the literature. 

Reference Method Number of 

Molecules 

Number of 

Descriptors 

AD 

Estimation? 

(Yes/No) 

(Bruneau & 

McElroy, 2006) 

1. BRNN 5000 122 Yes 

Mahalanodis 

Distance 

(Schroeter et al., 

2007) 

1. Gaussian Process 

2. Linear ridge 

regression 

3. SVR 

4. RF 

14556 Dragon 

descriptors 

(1664) 

Yes 

Mahalanodis 

Distance 

(Rodgers et al., 

2011) 

1. RF 

2. PLS 

Number of 

molecules 

varied as the 

models were 

updated over 

a period of 3 

years 

In-house 

descriptor 

set 

(topological, 

geometrical 

and 

electronic) 

Yes 

Mahalanodis 

Distance 

(Wang et al, 2015) 1. SVR 

2. PLS 

1130 121 Yes 

Leverage 

 

 

  



Page 42 of 148 
 

1.11 Research Hypothesis and Aims 

Pharmaceutical companies develop their ADME predictive models based on proprietary data. 

Therefore, these compounds are often novel and are not present in the literature. Thus, it is 

expected that literature data will introduce chemical diversity to the Evotec training space. This 

assumption is also based on a work conducted in AstraZeneca and Bayer Pharma AG, which 

concluded that data extracted form ChEMBL can introduce chemical diversity in proprietary 

databases (Kogej, Blomberg, Greasley, & Mundt, 2013). The results indicated a low molecular 

similarity between compounds extracted from ChEMBL database and two proprietary 

screening collections. In addition, various permeability and LogD7.4 models are described in 

the introduction in sections 1.9.3 and 1.10.1, and were developed with either proprietary or 

literature data. However, none of these studies focussed on the inclusion of literature data in 

the proprietary models. Only a permeability model was developed in AstraZeneca including 

both proprietary and public available data (Fredlund et al, 2017) but the effect of the public 

data on the models performance and applicability domain was not reported.  

Therefore, the aim of the present work is to evaluate the effects of the introduction of public 

data into the training set. In other words, it will be investigated whether literature compounds 

can be merged with proprietary data and consequently improve the ADME predictions of 

proprietary models. The objective is to build in-silico predictive ADME models by using internal 

and public data (i.e. literature data) and establish if the literature data can improve the 

performance of proprietary model and enlarge their AD. The objectives of that work are 

addressed in the three following parts: 

1. The first objective is to evaluate the ability of the existing Evotec permeability model to 

predict the permeability of literature compounds. In addition, the applicability domain of 

the existing Evotec permeability models is evaluated with four distance to model 

metrics, by calculating the distance of the test compounds (compounds downloaded 

from ChEMBL) from the Evotec training set.  

2. The second objective is to evaluate performance of Caco-2 A-to-B permeability models 

developed using three different algorithms and three different training sets: literature 

data, proprietary data and merged proprietary and literature data. Additionally, the AD 

of the models is evaluated to establish if the literature data could enlarge the AD of the 

models developed with proprietary data.  

3. The third objective is to evaluate performance and AD of LogD7.4 models using the 

same approach applied in the second objective. 
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2 MATERIALS AND METHODS 

2.1 Software Framework 

The data mining tool, Konstanz Information Miner (KMIME), an opensource data analysis 

platform, was used in automation of model development (KNIME, 2016). All the work was 

carried out within the KNIME 3.0 using proprietary and freely available KNIME nodes. 

Statistical work was carried out using the R statistical language through the R-Snippet node 

interface in KNIME and the software application R studio (www.rstudio.com), which is an 

opensource Integrated Development Environment (IDE) for R. The ChemAxon/Infocom 

(www.chemaxon.com) RDKit and Analytics nodes were also used. The ChemAxon KNIME 

nodes were used during the descriptor calculation for conversion of the Simplified Molecular 

Input Line Entry System (SMILES) into 2D structures, their standardisation and calculation of 

molecular descriptors. The RDkit was used to calculate the Peoe-VSA descriptors. The 

Waikato Environment for Knowledge Analysis (WEKA) data mining package nodes for KNIME, 

developed by the University of Waikato, was used for the implementation of the Support Vector 

Regression algorithm through the LibSVM node. Tibco Spotfire (www.spotfire.tibco.com) and 

Microsoft Excel was used for additional analysis and to generate plots and graphs. 

2.2 Methods used for the evaluation of existing Evotec Caco-2 A to B permeability 

model with literature data 

The existing Evotec Caco-2 A to B permeability model was evaluated with a test set. The test 

set included Caco-2 A to B permeability data extracted from the ChEMBL database. The 

predicted values of the ChEMBL test set (obtained with the existing Evotec model) were 

compared with the experimental values and the quality indicators (RMSE and R2) were 

calculated. Four different distance to model metrics were applied to assess how close are the 

literature compounds to the proprietary training set. Figure 10 shows a schematic summary of 

the methodology. 

 

Figure 10: Schematic summary of the work and the methods used for the evaluation of the 

existing Evotec Caco-2 A to B permeability model. 
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2.2.1 Literature data curation 

 

 

Figure 11: Schematic representation of the literature data filtering process for the compounds 

downloaded from ChEMBL. The arrow indicates the flow of the process. 

Public compounds with Caco-2 A to B permeability data obtained from ChEMBL database. A 

set of 9473 compounds with Caco-2 assay information have been downloaded from ChEMBL 

(https://www.ebi.ac.uk/chembl/) v.21. A filtering process was applied to improve the quality and 

reliability of data (figure 11). A similar filtering process has been described in the literature for 

the development of Caco-2 QSPR models with compounds downloaded from ChEMBL (Wang 

et al., 2016).The first step of the filtering process was to keep compounds with information only 

related to Caco-2 A to B permeability and compounds with MW lower  than 750, as the aim is 

to perform the work described on similar compounds to the Evotec data set. As a result, 2670 

compounds were retained. Moreover, only compounds with exact values were included and 

those molecules with non-descriptive or missing values were removed. Compounds with 

missing units have been removed. It is worth mentioning that measurement units are not 

consistent in ChEMBL and thus all experimental data were manually converted to a reference 

unit of 10-6 cm/s and then the Log10 of that value was calculated and used. Finally, where there 

were two or more entries of the same molecules, the permeability value mean and the standard 

deviation were calculated. When the standard deviation was more than one the compounds 

were excluded to minimise the error that could arise from a chance selection of one of the 

values.  
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2.2.2 Standardisation and Molecular descriptors calculation  

After the selection and curation of the chemical compounds, the molecular descriptors were 

calculated. The Advanced MolConverter from Chemaxon/Infocom node was used to convert 

the SMILES structures into chemical structures in “Marvin document” (mrv) file format and a 

“Standardizer” node was applied to convert the molecules representation into a standard form 

(figure 13). The standardisation is essential because chemical compounds might appear in 

different forms depending on the source that they are obtained form. The presence of 

tautomers or resonance might be a potential problem in the representations and thus 

standardisation is required. For example, the amino group might be represented in two different 

forms: the charged (NH3
+) or the neutral (NH2) form (figure 12). Standardisation process 

ensures consistency in the way that chemical structures are represented prior to the descriptor 

calculation. The “Standardizer” KNIME node was configured by selecting the four following 

actions: “strip salts”, “neutralize”, “tautomerize” and “aromatize” (ChemAxon, 2016b). The “strip 

salt” removes predefined fragments from multi-fragment molecules (regarded as salts). The 

“neutralize” action neutralises the compounds with hydrogen manipulation on ionisable groups. 

The “tautomerize” action creates a canonical tautomer form of the molecule and the 

“aromatize” performs aromatisation based on the general Daylight type aromatisation.  

Figure 12: An example of different forms that a chemical can be represented 2016a) 

The dominant protonation state of a molecule at pH equal to 7.4 was predicted using the “Major 

microspecies” ChemAxon node in KNIME. Three sets of descriptors have been used on this 

work: general physiochemical descriptors, MACCS keys and Peoe-VSA (figure 13). The 

general physiochemical descriptors have been calculated within KNIME using 

Infocom/Chemaxon KNIME nodes. The physiochemical descriptors are the following: chiral 

centre count, rotatable bond count, stereo double bond count, aliphatic/aromatic ring count, 

fsp3 (fraction of sp3 hybridized carbons), H bond Donor/Acceptor, PSA, LogP, LogD, 

molecular weight (MW), pKa, electric state, heavy atom count, formal charge, negative/positive 

ionisable groups and not carbon Heavy Atom (HA) count. The “Topology Analysis” ChemAxon 

node was used to calculate the: chiral centre count, rotatable bond count, stereo double bond 

count, aliphatic ring count, aromatic ring count and fsp3. The “Chemical Terms” ChemAxon 

node was used to calculate the heavy atom count, the formal charge, the not carbon HA count, 
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the negative and positive ionisable groups. The “Java Snippet (Simple)” node was used to 

determine the electric state (acid, base or zwitterion) based on the formal charge and the 

positive/negative ionisable groups. The code used for the configuration of the “Java Snippet 

(Simple)” node can be found in Appendix, table S1. The “Elemental Analysis” ChemAxon node 

was used to calculate the MW. The rest of the physiochemical descriptors were calculated by 

the homonymous ChemAxon nodes as shown in figure 13. The “MACCS keys” node by CCG 

(Chemical Computing Group) was used to calculate 166 substructure compound descriptors, 

which account for the frequency of occurrence of 166 chemical features. Finally, the Peoe-

VSA descriptors have been calculated using “RD-kit descriptor Calculation” KNIME node.  
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a)  

b)  

c)  

d)  

Figure 13: KNIME workflow for the calculation of descriptors: a) overall descriptor calculation workflow, b) 

physiochemical descriptors, c) MACCS keys and d)  Peoe-VSA. 
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2.2.3 Prediction of Caco-2 permeability of compounds downloaded from ChEMBL by Evotec 

existing model 

The existing Evotec permeability model was written in an R model node and this node was 

used along with an R predictor node. The R predictor node gave the predicted value of 

permeability for the ChEMBL compounds. The existing Evotec Caco-2 model uses continuous 

Random Forest as QSPR algorithm (Appendix, table S2) with 500 trees. In addition, the 

apparent Caco-2 permeability values were modelled in their logarithmic form (LogPapp). 

2.2.4 Model Performance 

For performance statistics, the Pearson Correlation coefficient (R2) and the Root Mean Square 

Error (RMSE) were reported. The RMSE was calculated with the “RMSE calculator” node 

(KNIME community node) and the R2 was calculated by the “2D/3D Scatterplot” node (KNIME 

community nodes). 

2.2.5 Metrics to establish the Applicability Domain 

The evaluation of how close are the compounds in the descriptor and chemical space and also 

what percentage of test compounds are within the AD of the model was carried out using PCA 

and distance to model metrics. For the evaluation of AD two terms were used to refer to the 

space that the distance to model metrics were applied. The first term was the descriptor space 

and referred to the calculation of kNN with Euclidean distance, kNN with Manhattan distance, 

Mahalanobis distance and leverage with the descriptors and PCs. The second term was the 

chemical space and referred to the calculation of kNN with Tanimoto and kNN with Dice with 

the ECFP4 fingerprints. Moreover, the PCA was used to identify if the proprietary training set 

compounds occupied a similar space as the literature test set compounds. The distance to 

model metrics were used to estimate the amount of test set compounds within the AD of the 

proprietary model. 

2.2.5.1 Principal Component Analysis and Stopping Rule 

The PCA was conducted with the KNIME and the R Snippet, which allows execution of an R 

script from within KNIME. The data were auto-scaled. The “princomp” function from the R 

“stats” package was used (Appendix, table S2). The descriptors with zero variance were 

excluded prior the PC calculation because the “princomp” function in R cannot handle constant 

(i.e. zero variance) descriptors. The PCs for the Evotec compounds were first established and 

they were loaded into the R learner node in order to use the same loading matrix for the 

calculation of the PCs for the CHEMBL compounds. Thus, an R predictor node was used to 

calculate the PCs for CHEMBL compounds. The results were concatenated, visualised and 

further analysed with the Scatter Plot (JFree Chart) node in kNIME.  

An essential task, within a PCA analysis, is the identification of the significant number of 

principal components. This would minimize the dimensionality of the dataset and maximize the 

information retained. The average random method (Avg-R) (Peres-Neto, Jackson, & Somers, 
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2005) was used. Among a set of 20 tested methods, the Avg-R was particularly efficient in 

dealing with correlated descriptors. This method for identifying the number of significant 

principal components consisted of the following steps: 1. randomising the values within 

variables in the data matrix with R snippet (Appendix, table S2), 2. conducting a PCA in the 

reshuffled data matrix, 3. calculating the eigenvalues 4. repeating the steps1-3 for 1000 times 

and 5. Calculating the average eigenvalues. If an observed eigenvalue of a PC is greater than 

the average eigenvalue, that PC is considered as significant (non-trivial). 

2.2.5.2 Evaluation of AD with Distance to model metrics 

The distances between the test compounds (literature compounds downloaded from ChEMBL) 

and the training compounds (Evotec compounds) were considered on two different spaces: 1. 

descriptors (figure 14) space and 2. chemical space (figure 15). In the descriptor space the 

distances that were used were the Mahalanobis distance, Leverage and kNN with Euclidean 

and Manhattan. The descriptors were standardised with the “Normalizer” node by choosing 

the “Z-score normalisation” setting. Moreover, the distance measurements were performed 

with the PCs in the descriptor space.  

In the descriptor space, Mahalanobis distance was calculated with the R Snippet node in 

KNIME. The “Mahalanobis distance” function in R from the “stats” package was used 

(Appendix, table S2). This function returns/calculates the squared Mahalanobis distance. That 

distance was used for the evaluation of AD and will be simply referred as Mahalanobis 

distance. The function of Mahalanobis distance cannot handle highly correlated descriptors 

and descriptors with zero variance because it requires the matrix of the descriptors and 

compounds to be inverted. As a result, descriptors with correlation greater than 0.85 and 

descriptors with zero variance were filtered out. A correlation filter KNIME node, which worked 

in iterations, was used to filter out correlated descriptors. In the first iteration, it identified the 

descriptor with the most correlations and it kept that descriptor and filtered out the correlated 

descriptors. Then it continued the iterations until there were no correlated descriptors. The 

leverage method was conducted using the “Domain Leverage” KNIME node developed by the 

Novamechanics (Melagraki et al., 2009; Melagraki & Afantitis, 2013) and in this case the zero 

variance descriptors were also excluded. The kNN with Euclidean and Manhattan distance 

functions were calculated. The “Similarity search” node by Analytics was used in KNIME for 

the calculation of the k Nearest Neighbours. For the calculation of the kNN only the descriptors 

with zero variance were filtered out. In the chemical space, the ECFP4 topological fingerprints 

(256 bits) were generated from the chemical structure (SMILES) of the compounds with the 

“ECFP/FCFP” ChemAxon/Infocom KNIME node. Then, the kNN method was used with 

Tanimoto and Dice coefficients. The “Similarity search” node by Analytics was used in KNIME 

for the calculation of the k Nearest Neighbours. Different values for the number of Nearest 

Neighbours (k) were evaluated (k = 1, 3, 5, 10, 20 and 30) and the average distance of each k 

was calculated. The average distances were compared by calculating correlation coefficient 

for pairs of average distances for different k values. The values of correlation coefficients and 

the computational time needed to obtain the Nearest Neighbour (NNs) were used to select the 

k for further AD evaluations. 
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Figure 14: Screenshot of the workflow that was created for the PCA and the estimation of the 

AD with the four different distance to model metrics in the descriptor space. 

 

 

Figure 15: Overview of the workflow that was created for the PCA and the estimation of the 

AD with the four different distance to model metrics in the chemical space. 

2.2.5.3 Distance to model metrics and thresholds 

Distance thresholds were applied in the training sets to identify the test set compounds that 

are within and outside the AD of the Evotec proprietary models. The threshold that was applied 

for the leverage method is described in section 1.7.1.3. The AD threshold for the k-NN with 

Euclidean/Manhattan distance was calculated based on the compounds comprising the 

training set. The kNN distance for each of the training compound was calculated and the 5% 

of the most remote compounds of the training set were considered to be far from the model 

and false positives (Mathea et al., 2016). Therefore, the compounds were considered by 

increasing kNN distance and the threshold was applied at the compound representing the 95% 
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of the compounds with the smallest distance. The Mahalanobis distance method is explained 

in 1.7.1.2. However, there isn’t a specific literature threshold for the Mahalanobis distance and 

therefore the following steps were conducted to establish the threshold: 1. estimation of the 

squared MD of the training set (Evotec compounds), 2. the threshold was set at the 99th 

quantile based on the training set squared Mahalanobis distance, 3. each ChEMBL compound 

was added one by one in the Evotec training set and the squared MD was established. The 

ChEMBL compounds that showed a value greater than the threshold, were considered not to 

be within the AD of the model. The 99th quantile was calculated in R with the quantile function 

“qchisq” and the degree of freedom was equal to the number of descriptors or PCs used. 

Therefore, the 99th quantile was set as the threshold. 

2.2.6 Statistical Analysis 

The statistical tests Mann-Whitney and Kruskall-Wallis were conducted with the homonymous 

nodes in KNIME. 

2.3 Overview of methods used for the Development of in-silico predictive models 

This methodology part refers to the development of in-silico Caco-2 A to B permeability and 

LogD7.4 predictive models. The objective was to establish if the literature data can be 

incorporated into the Evotec proprietary models and answer the two following questions: 1. 

Can literature data improve the performance of proprietary models?  and 2. Can literature data 

enlarge their AD? To provide answer to these two questions a procedure was followed and it 

is shown in figure 16.  

Three types of training sets were used for model development. The first one was the ChEMBL 

training set (C) with public ADME data extracted from the literature, the second was the Evotec 

set (E) developed with Evotec proprietary compounds and the third one was the merging of 

the two previous training sets (E+C). The descriptors were calculated as mentioned in the 

method section 2.2.2 and then three different machine learning algorithms were applied to 

each training set: Random Forest (RF), Partial Least Squares (PLS) and Support Vector 

Regression (SVR) with a radial basis function (rbf) kernel. In this study, the term SVR was 

used instead of SVM because all the models developed were regression/continuous models. 

For each algorithm, an optimisation process was performed. In addition, a model assessment 

was performed with temporal and diverse test sets.  The RMSE in prediction and the R2 were 

also calculated to measure the model performance. Finally, the AD of the models was 

established with four different methods, which were outlined in sections 2.2.5.2, 2.2.5.3: a) MD, 

b) Leverage, c) k-NN/ED and d) k-NN/ManhD. 
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Figure 16: Overview of the methodology process followed for the development of in-silico 

Caco-2 A to B permeability and LogD7.4 predictive models. 
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2.3.1 Literature data curation for the development of in-silico Caco-2 permeability and 

LogD7.4 models 

 

Figure 17: Schematic representation of the literature data filtering process for the compounds 

downloaded from ChEMBL for the development of in-silico Caco-2 permeability and LogD7.4 

models. The arrow indicates the flow of the process. 

The same literature data curation was applied as the literature filtering process detailed in 

section 2.2.1 with only one difference. The difference was that for the Caco-2 permeability 

models, the analytical method (used in the experimental procedure) was considered. In 

Evotec, the Liquid Chromatography/Liquid Chromatography-Mass Spectrometry (LC/LC-MS) 

is used to analyse the compounds’ Caco-2 permeability, whereas in the literature various 

methods have been reported like: HPLC, UV etc. The majority of the literature sources did not 

mention the analytical method used. Therefore, all the papers were manually inspected and 

the data obtained with a different analytical method were excluded. Different analytical 

methods could give different results and thus, a cross validation of analytical method is 

necessary to ensure the optimal conditions to accurately reproduce an analytical measurement 

in different laboratories (Chau, Rixe, McLeod, & Figg, 2008). 

For the development of the LogD7.4 models, 4083 compounds with LogD7.4 information were 

downloaded from ChEMBL v. 22. Data were first curated based on the article description 

provided by ChEMBL. The compounds measured in a pH other than 7.4 and with a solvent 

other than octanol were excluded. The rest of the filtering process was identical to the process 

described above and a general workflow of filtering is shown in figure 17. The literature data 
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that were used as temporal tests set for the model assessment were also downloaded from 

ChEMBL and the same procedure was applied. 

2.3.2 Selection of training and test sets 

Three different types of training sets were used to develop models and more details about the 

source and number of compounds are shown in tables 4-7. The first type of training set was 

developed with only literature compounds downloaded from the ChEMBL database (“ChEMBL 

training set”) and the models developed with that training set are the “ChEMBL models”.  The 

second type was developed with only Evotec proprietary compounds extracted from the Evotec 

database (“Evotec training set”) and the models developed with that training set are the “Evotec 

models”. Finally, the third type was developed with merged proprietary Evotec and literature 

compounds (“Evotec+ChEMBL training set”) and the models developed with that training set 

are the “Evotec+ChEMBL models”.  

In addition, a temporal and a diverse test set were used to evaluate the goodness of the 

models. The temporal test set included compounds added to Evotec and ChEMBL databases 

after the initial training sets were created. The diverse test set was formed by randomly 

selecting 20% of compounds from the merged initial and temporal datasets. The rest 80% of 

the merged compounds were used as the training set to build the models.   
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Table 4: Training and Temporal test sets used in development of the in-silico permeability 

models. 

Training set Details Number of compounds 

Evotec Compounds until the 31/08/2016 2075 

ChEMBL Compounds downloaded from ChEMBL v21 (8/08/2016) 1628 

Evotec+ChEMBL Compounds were merged 3703 

Test set Details Number of compounds 

Evotec temporal Compounds from 1/09/2016 until 18/01/2017 166 

ChEMBL temporal Compounds downloaded from ChEMBL v22 (18/01/2017) 92 

Evotec+ChEMBL 

temporal 

Evotec temporal and ChEMBL temporal test sets were 

merged 
258 

 

Table 5: Training and Diverse test sets used in development of the in-silico permeability 

models. 

Training set Details Number of compounds 

Evotec 
80% of the Evotec training set (randomly selected) until 

18/01/2017 
1660 

ChEMBL 
80% of the ChEMBL training set (randomly selected) 

from ChEMBL v22 (18/01/2017) 
1302 

Evotec+ChEMBL Compounds were merged 2962 

Test set Details Number of compounds 

Evotec diverse 
20% of the Evotec training set (randomly selected) until 

18/01/2017 
415 

ChEMBL diverse 
20% of the ChEMBL training set (randomly selected) 

from ChEMBL v22 (18/01/2017) 
326 

Evotec+ChEMBL 

temporal 

Evotec temporal and ChEMBL temporal test sets were 

merged 
741 
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Table 6: Training and Temporal test sets used in development of the in-silico LogD7.4 models. 

Training set Details Number of compounds 

Evotec Compounds until the 31/12/2016 8400 

ChEMBL Compounds downloaded from ChEMBL v22 (2/05/2017) 1209 

Evotec+ChEMBL Compounds were merged 9609 

Test set Details Number of compounds 

Evotec temporal Compounds from 1/01/2017 until 2/05/2017 895 

ChEMBL temporal Compounds downloaded from ChEMBL v23 (19/05/2017) 86 

Evotec+ChEMBL 

temporal 
Compounds were merged 981 

 

Table 7: Training and Diverse test sets used in development of the in-silico LogD7.4 models. 

Training set Details Number of compounds 

Evotec 
80% of the Evotec training set (randomly selected) until 

2/05/2017 
7436 

ChEMBL 
80% of the ChEMBL training set (randomly selected) 

from ChEMBL v23 (19/05/2017) 
1036 

Evotec+ChEMBL Compounds were merged 8472 

Test set Details Number of compounds 

Evotec diverse 
20% of the Evotec training set (randomly selected) until 

2/05/2017 
1859 

ChEMBL diverse 
20% of the ChEMBL training set (randomly selected) 

from ChEMBL v23 (19/05/2017) 
259 

Evotec+ChEMBL 

diverse 
Compounds were merged 2118 
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2.3.2.1 Subsequent model assessment for Caco-2 permeability models 

In a subsequent model assessment of the Caco-2 permeability models, the permeability data 

in the temporal test sets were merged with the training test sets and used, all together, to 

develop an updated model (M2). Two new temporal test sets were generated including the 

latest proprietary permeability data (Evotec compounds synthesised four months after the 

compounds in the training set) and the freshly published public permeability data from ChEMBL 

version 23. These new temporal test sets were referred as “New Evotec temporal test set” and 

“New ChEMBL temporal test sets” and represented the compounds published in the literature 

and synthesised in Evotec four months after the initial models (M1). The new temporal test 

sets were used to assess both the initial models (M1) and the new models (M2).  

Table 8: Training and temporal test sets new temporal test sets used in the subsequent models 

assessment for the in-silico permeability models. 

Training set 

(M1) 

Details Number of compounds 

Evotec  Compounds until the 31/08/2016 2075 

ChEMBL Compounds downloaded from ChEMBL v21 

(8/08/2016) 

1628 

Evotec+ChEMBL  Compounds were merged 3703 

Training set 

(M2) 

Details Number of compounds 

Evotec  Compounds until the 31/12/2016 2241 

ChEMBL Compounds downloaded from ChEMBL v22 
(18/01/2017) 

1720 

Evotec+ChEMBL  Compounds were merged 3961 

New temporal 

Test sets 

Details Number of compounds 

Evotec temporal Compounds from 19/01/2017 until 20/05/2017 245 

ChEMBL 

temporal 

Compounds downloaded from ChEMBL v23 
(19/05/2017)  

115 
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2.3.3 Standardisation of Molecular descriptors 

A molecular descriptor standardisation process was applied as described in method section 

2.2.2, using the “Normalizer” and the “Normalizer (Apply)” node in KNIME. The “Normalizer” 

node was used for the training set and the “Normalizer (Apply)” node for the test set 

compounds in order to “Standardise” them in the same range as the training set. In this way, 

each descriptor’s values had a mean of 0 and standard deviation of 1. For example, for a 

dataset with m-rows and if each row contains n- different descriptors/variables, the x row for 

the ith descriptor will be standardised with the following equation:  

(ݔ)݀݁ݏ݅݀ݎܽ݀݊ܽݐܵ =
௫ି௫ೌ

௦௧ௗ(௫)
                        (Equation 26), 

where xi is the value of the ith descriptor in row x, the xmean is the mean of the x row values 

and std(x) is the standard deviation of the values in x row. 

The std (x) and the xmean were calculated with the following equations: 

(ݔ)݀ݐݏ = ට ଵ

ିଵ
∑ ݔ) − )ଶݔ

ୀଵ                    (Equation 27), 

where std(x) is the standard deviation of the values in x row, the n is the number of the 

descriptors, xi is the value of the ith descriptor in row x and the xmean is the mean of the x 

row values. 

and 

ݔ =  
ଵ


∑ ݔ


ୀଵ                                (Equation 28), 

where the xi is the value of the ith descriptor in row x, xmean is the mean of the x row values 

and n is the number of the descriptors. 

 

2.3.4 Algorithms and their parameter optimisation for model building 

In this study, three algorithms were used in model building: Random Forest (RF), Partial Least 

Squares (PLS) and Support Vector Regression (SVR).  

2.3.4.1 Random Forest (RF) parameter selection 

Random forest is based on an ensemble of decision trees (Mitchell, 2014; K. Roy et al., 2015), 

which are built by training data of multiple feature. The Caco-2 permeability and LogD7.4 

predictions, which were continuous variables, were provided as the average of the predictions 

of all the trees. Therefore, the key parameter was the number of trees (ntree). A series of 5-
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fold cross-validations was performed with different number of trees (10, 20, 50, 100, 500 & 

1000). It was found that 500 provided an optimal setting with a good balance between 

computational time and the error in the prediction. The work was performed with the 

“RandomForest” R package in the “R Learner” and “R predictor” node in KNIME and the 

“randomForest” function used to develop the model. The 200 descriptors described in section 

2.2.2 were used because RF can handle both correlated and low variance descriptors.  

2.3.4.2 Partial Least Squares (PLS) parameter selection 

PLS is another algorithm that was used for the model development and is able to project the 

original variables (i.e. descriptors) into latent variables and thus reducing the dimensionality 

(Xing et al., 2014). This method decomposes the input matrix of descriptors into loadings and 

scores, and the latter are orthogonal and are capturing the descriptor information (Sethi, 2012). 

In this case, it was essential to choose the appropriate number of components. The dataset 

was shuffled 100 times and 100 PLS models were developed and assessed with a 5-fold cross 

validation and with maximum of 40 components. Then the mean RMSE was calculated for 

each component and the highest performing model was the one with the lowest mean RMSE. 

Then the fewest number of components that were still less than one standard error away with 

95% confidence from the overall best model were chosen for the model building. The work 

was performed in the R learner and R predictor node with the PLS package. Descriptors were 

standardised with the “Normalizer” node for training set and the “Normalizer (Apply)” node for 

the test set. The option “Z normalisation” was applied.  

2.3.4.3 Support Vector Regression (SVR) parameter selection 

SVR originates from the Vapnik’s structural Risk Minimisation principle for statistical theory. In 

this case, the radial basis function (rbf) was used as a kernel and there were three parameters 

to optimise: 1. epsilon (ε), 2. cost (C) and 3. gamma (γ). The goals was to tune these 

parameters so that the model could accurately predict the new data.  The optimisation was 

performed with an exhaustive grid search and a 5-fold cross validation, using the tune function 

in the e1071 in R, to identify the optimal area and then perform a narrower grid search in that 

area. The grid search looks at different parameters’ values and returns the best parameters to 

train the dataset (Chang & Lin, 2011). In addition, a 10-fold cross validation is usually used but 

in this case a 5-fold was selected due to the computation time. A training set of about 2000 

compounds and 170 descriptors needed about 4-5 days to train, whereas a set of about 10,000 

compounds more than 2 weeks. The search was carried out in the following ranges: 1. ε values 

from 0 to 1, 2. C values from 1- 1500 and 3. γ values from 0 to 1. After the calculation of those 

three parameters with the tune function from the e1071 R package, the LibSVM weka node 

was used in KNIME to train the models (Chang & Lin, 2011). 
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2.3.5 Estimation of the AD of the in-silico Caco-2 permeability and LogD7.4 models with 

distance to model metrics  

Mahalanobis Distance, Leverage, kNN with Euclidean and kNN with Manhattan were used in 

the descriptor space to calculate how close are the “ChEMBL temporal test set compounds” 

and “Evotec temporal test set compounds” from the training set of “ChEMBL models”, “Evotec 

models” and Evotec+ChEMBL models”. Therefore, the same methodology and thresholds 

were also applied in this part of the work as described in method sections 2.2.5.2, 2.2.5.3 

The only difference is that in this part of the work the distance of 2 different test sets from 3 

different training sets was calculated (figure 18) and for that reason the KNIME workflow was 

amended to perform these calculations. A screenshot of the workflow is shown in the Appendix 

(figure S1-S4). 

 

Figure 18: Schematic representation of the distances of the test set compounds from the 

training sets. The arrows indicate the distances that were calculated.  
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3 RESULTS AND DISCUSSION 

3.1 Evaluation of existing Evotec Caco-2 A to B permeability model with opensource 

data 

3.1.1 Model Assessment 

The goal of this part of the work was to evaluate the performance of the existing Evotec 

proprietary Caco-2 permeability model on a dataset of 1770 literature compounds. This gives 

an indication of how well the proprietary model can predict literature compounds. The existing 

Caco-2 permeability model that was evaluated has been developed with Evotec proprietary 

compounds as the training set. The opensource test compounds (with experimental Caco2 

permeability measurements) were extracted from the ChEMBL database. The ChEMBL 

compounds were first curated as described in method section 2.3.1. The Evotec permeability 

model estimates the apparent A to B Caco-2 permeability expressed as 10-6 cm/s; however, 

for the statistical computation a Log10 of that permeability was used.  The R2 and RMSE in 

prediction of the ChEMBL compounds were equal to 0.22 and 0.704 respectively.  In addition, 

the RMSE of the Evotec training set was equal to 0.2 and the RMSE of a temporal Evotec set 

(assessed by the same model in the company in July 2016) was 0.42. As a result, the existing 

Evotec Caco-2 permeability model is not accurately predicting the A to B permeability of the 

ChEMBL compounds (figure 19) as accurately as it can predict the proprietary compounds. 

 

 

 

Figure 19: Experimental values for Caco-2 permeability of ChEMBL compounds vs the 

predicted Caco-2 permeability obtained with Evotec Caco-2 model.  
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A similar research was conducted by AstraZeneca (Bruneau, 2001), where they evaluated the 

existing proprietary solubility model with a temporal AstraZeneca solubility test set and a 

literature test set. The results of that study also suggested that the literature test set was not 

predicted as accurately as the proprietary temporal test set. The literature test set RMSE was 

1.88 and the RMSE of the proprietary temporal test set was 0.78. However, these results 

cannot be directly compared to the Evotec results as they refer to a different model, different 

ADME property, different compounds in training and test sets. In another study, a literature 

test set and a proprietary test set were used to evaluate the model performance of a LogD7.4 

proprietary model of Bayer Shering Pharma AG (Schroeter et al., 2007). Results indicated that 

the model was better in predicting proprietary test set (RMSE=0.41) compared to the literature 

test set (RMSE= 0.66). The results from these two studies based on a solubility and a LogD7.4 

predictive model gave the same overall conclusion about the less accurate prediction of 

literature compounds compared to proprietary temporal test sets from proprietary models. A 

possible reason can be that the chemical space of the literature test set may be different from 

the proprietary chemical space of the training set. Therefore, a PCA analysis was conducted 

to compare the descriptor space covered by the public compounds from ChEMBL with that 

covered by the proprietary Evotec compounds used in the model building and training. 

3.1.2 Principal Component Analysis 

PCA has been previously used to identify the overlap of the molecular data in the descriptor 

space (Gavaghan, Arnby, & Blomberg, 2007),  and has also been used to investigate if the 

distribution of training and test set are balanced and representative of the chemical domain 

(Roy, Kovarich, & Gramatica, 2011). Therefore, 2-dimensional PCA (2DPCA) was used to 

project the ChEMBL compounds into the molecular descriptors space of training compounds 

(Evotec compounds) in order to establish their similarity.  
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Figure 20: Principal component plot of Principal Component 1 vs Principal Component 2 for 

Evotec (blue) and ChEMBL (red) compounds. Figures in brackets indicate the percentage of 

variance explained by the corresponding PC. 

The PC score plot of two sets of compounds appear to be closely related in the descriptor 

space (figure 20), because a significant number of CHEMBL compounds is projected on to the 

space covered by the Evotec compounds. However, the first two PCs visualised in this plot 

only account for 22.03% of the variance. Therefore, a 2D PCA analysis would be insufficient 

to answer the question about similarity of the two sets of compounds. Thus, the evaluation of 

different distance to model methods were used to estimate the “distance” of each compound 

in the test set from the training set. The PCA alone was not able to give specific results for 

each test compound but it gave an overall picture of the distribution of the two sets. Thus, PCA 

has been used in the literature along with other methods to establish the AD. Some examples 

are the use of PCA with kNN (Kaneko & Funatsu, 2014), Hotelling-T test (Venkatapathy & 

Wang, 2013) and Mahalanobis distance (De Maesschalck, Jouan-Rimbaud, & Massart, 2000). 

In more detail, a number of PCs were used instead of the descriptors. 

PCA is also combined with methods (like Mahalanobis distance) that require the matrix to be 

inverted and cannot handle correlated descriptors or descriptors with zero variance. The 

multicollinearity and zero variance issues can be overcome by using PCs instead of descriptors 

(De Maesschalck et al., 2000; Jaworska et al., 2005). However, the problem is how many PCs 

are significant and should be used. In that case, a stopping rule should be applied, which will 

reduce the information loss (underestimation) and the noise inclusion (overestimation).  It was 

identified that one of the most efficient stopping rule was the average random (Avg-R),  
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particularly efficient in dealing with correlated descriptors (Peres-Neto et al., 2005). It was 

found that for the Evotec compounds the first Avg eigenvalue higher than the eigenvalue is the 

28th (figure 21). Therefore, the first 27 PCs were retained for subsequent analysis. 

 

 

Figure 21: Scree plot of the eigenvalues from the Evotec compounds PCA (blue) and the 

eigenvalues obtained from the Avg-R on Evotec compounds PCA (orange). 

3.1.3 Evaluation of distance to model metrics 

PCA as a single method was not an efficient method to estimate the AD and other methods 

applied. Different distance to model metrics were evaluated for their ability to correlate the 

distance of the test compounds from the training set with the accuracy of the prediction. A 

distance to model metric, which shows such correlation, could in theory be used as a method 

to provide a confidence interval for a prediction. The distances between the test compounds 

(ChEMBL compounds) and the training compounds (Evotec compounds) were considered on 

two different spaces: 1. descriptors space and 2. chemical space. In the descriptor space, the 

distance to model metrics that were used are the kNN with Euclidean distance, kNN with 

Manhattan distance, Mahalanobis distance and Leverage. The distance measurements were 

performed with the standardised descriptors and the first 27 PCs. In the chemical space, the 

kNN method was used with Tanimoto and Dice coefficients. In that case, the ECFP4 

fingerprints were used to calculate the Dice and Tanimoto coefficients. Moreover, for the kNN 

method, for both descriptor and chemical space different values for number of nearest 

neighbours (k) were evaluated (1, 3, 5, 10, 20 and 30) and the average distance for each k 

was calculated. By altering the k when computing the average distance in descriptor and 

chemical space has only a minimal effect on the overall value and this is shown in correlation 

tables that can be found in appendix (tables S3-S8). Therefore, the k=5 was used as the 
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number of nearest neighbours to consider, as it provided a good compromise between 

execution time and robustness. The same k selection process was conducted in another study 

(Weaver & Gleeson, 2008), where the k=5 was a good compromise. Table 9 summarises the 

distance to model metrics used. For all the methods shown in table 9, the compounds were: 

a) binned by distance and b) binned by squared residuals for further data analysis. 

Table 9: Summary of the Distance to model metrics. 

Distance to model metrics 

Descriptors 

space 

 

Mahalanobis 

Distance 

Leverage kNN 

Euclidean Manhattan 

Descriptors PCs Descriptors PCs Descriptors PCs Descriptors PCs 

Chemical 

space 

(ECFP4 

fingerprints) 

kNN 

Tanimoto Dice 

 

3.1.3.1 Bin compounds by distance 

The distance to model metrics were used to evaluate the presence of a relationship between 

the error in the predictions (RMSE) and the calculated distance to model. Compounds in the 

test set were binned in 5 equally populated bins with increasing distance, and for every bin the 

average error in the prediction was calculated as RMSE. It was observed that there was a 

trend between the RMSE and the distance, especially for the first 3-4 bins (figures 22, 23). 

This trend indicated that as the distance of the test compounds from the training set increases, 

the RMSE in prediction increases too. Interestingly, this trend was observed for all the 

combinations of metrics/methods used (figures 22, 23). If this scenario is genuine all the 

distance metrics investigated could possibly be used to estimate the distance of a compound 

to the model (or better to the training compounds) and consequently an estimation of the 

expected error in the prediction could be argued. To better understand this a statistical analysis 

has been carried out. 
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a)  b)  

c)  d)  

Figure 22: RMSE in prediction of the binned a) Euclidean distance to 5NNs, b) Manhattan 

distance to 5NNs, c) Leverages and d) Mahalanobis Distance for CHEMBL compounds 

calculated with the descriptors. 
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a)  b)  

c)  d)   

Figure 23: RMSE in prediction of the binned a) Euclidean distance to 5NNs, b) Manhattan 

distance to 5NNs, c) Leverages and d) Mahalanobis Distance for CHEMBL compounds 

calculated with the first 27 PCs. 
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Two different statistical tests, the Mann-Whitney test and the Kruskal-Wallis test, which is an 

extension of Mann-Whitney when more than 2 means are compared, were employed to 

determine if there is a statistically significant difference between the equally populated bins. 

The Kruskal-Wallis test has also been used for a similar statistical analysis by Weaver and 

Gleeson (2008), where they were comparing the binned distance of 5 equally populated bins 

with their RMSE. The authors of that work established a statistically significant overall 

difference between the 5 bins. Similarly, the results of Kruskal-Wallis showed that there is a 

statistically significant difference, whereas Mann-Whitney test did not show statistically 

significant difference between all the bins (table 10). The possible reason why Mann Whitney 

test did not always show a statistically significant difference is that compounds that are 

assigned in two subsequent bins might be in a similar distance from the model. However, it is 

not necessary that there should always be a significant difference because that depends on 

the compounds in the test set. For example, if the compounds in the test set are close, there 

will not be a significant trend between the RMSE and the distance and vice versa. As a result, 

the presence of a trend in the data depends on the compounds used as a test set. In that case, 

there is a weak (qualitative) trend. According to Davis and Ward (2014)  the distance to model 

measures usually produce a weak relationship to error in prediction and as a result this is 

limiting the confidence that can be extracted from the statistic. In addition, a similar trend was 

observed in  the AD investigation of LogD7.4 models (Schroeter et al., 2007), where the error 

in prediction increased as the distance of the compounds in the equally populated bins 

increased. However, a statistical analysis has not been conducted to identify if the difference 

in the error in prediction within bins is statistically significant. Furthermore, in another study the 

AD of lipophilicity (LogD7.4) models was evaluated (Bruneau & McElroy, 2006). A trend was 

observed between the error in prediction and the Mahalanobis distance of the test compounds 

from the training set. The trend indicated that as the distance of the test compounds increases, 

the error in prediction increases as well. Therefore, the findings form this study and the 

literature indicate that there is always a relation between the distance of the compounds and 

the error in the prediction. 

Table 10 showed that there was not much difference in RMSE between bin 4 and 5 for most 

of the methods/distances as the last bin, in most of the cases, showed a lower RMSE than the 

previous bin (figures 22, 23). This unexpected behaviour could be explained considering that 

compounds in bin 4 and 5 are largely far from the model thus making the prediction unreliable. 

This translates into random fluctuation of the prediction error thus clearing the trend observed 

at smaller distances. Another possible reason is that the model could possibly extrapolate 

correctly outside the domain (Jaworska et al., 2005) and thus a smaller RMSE could be 

observed in bins 4 and 5. 
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Table 10: Statistical analysis of the RMSE of the bins (data are binned by distance). 

Mann-Whitney Test Kruskal-Wallis Test 

Method Bin1_Bin2 Bin2_Bin3 Bin3_Bin4 Bin4_Bin5 Bin 1 – Bin 5 

Euclidean/ 

Descriptors 
p<0.05 p>0.05 p<0.05 p>0.05 p<0.05 

Euclidean/ 

PCs 
p<0.05 p<0.05 p<0.05 p>0.05 p<0.05 

Manhattan/ 

Descriptors 
p<0.05 p>0.05 p<0.05 p>0.05 p<0.05 

Manhattan/ 

PCs 
p>0.05 p<0.05 p<0.05 p>0.05 p<0.05 

Leverage/ 

Descriptors 
p>0.05 p<0.05 p>0.05 p>0.05 p<0.05 

Leverage/ 

PCs 
p<0.05 p>0.05 p>0.05 p>0.05 p<0.05 

Mahalanobis/ 

Descriptors 
p<0.05 p>0.05 p>0.05 p>0.05 p<0.05 

Mahalanobis 

PCs 
p>0.05 p>0.05 p<0.05 p>0.05 p<0.05 

 

3.1.3.2 Bin compounds by squared residuals 

To further asses the AD, the test compounds were binned in 5 equally populated bins by 

increasing squared residuals and the average distance of each bin was calculated and is 

shown in figures 24, 25. The bar charts did not show any trend between the distance and the 

prediction error. In addition, as it has been conducted previously a Mann Whitney test was 

applied to evaluate if there is a statistically significant difference between the bins. The figures 

24, 25 indicated the absence of a trend between bins 1-4 and this was confirmed by the Mann-

Whitney test (table 11). The only significant difference in the average distance was observed 

and confirmed by the Mann Whitney test between bin 4 and bin 5. This is an indication that 

compounds with the larger RMSE, which are allocated in bin 5, seem to have the greatest 

distance from the model. This trend between bin 4 and bin 5 is something that it was expected. 

However, the absence of trend between bin 1 and bin 4 can have two possible interpretations. 
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One possible explanation could be that a molecule might be permeable due to a property that 

the model cannot consider and consequently the model cannot produce accurate predictions 

for these compounds. The second reason is that the compounds, which are far from the 

chemical space of the model might not be assigned with reliable predictions.  

a)  b)  

c)  d)  

Figure 24: Average a) Euclidean distance to 5NNs, b) Manhattan distance to 5NNs, 

Leverages and d) Mahalanobis Distance of the binned squared residuals for CHEMBL 

compounds calculated with the descriptors. 
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a)  b)  

c)  d)  

Figure 25: Average a) Euclidean distance to 5NNs, b) Manhattan distance to 5NNs, 

Leverages and d) Mahalanobis Distance of the binned squared residuals for CHEMBL 

compounds calculated with the 27 first PCs. 
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Table 11: Statistical analysis of the average distance of the bins (data are binned by squared 

residuals). 

Mann-Whitney Test 

Method Bin1_Bin2 Bin2_Bin3 Bin3_Bin4 Bin4_Bin5 

kNN/ Euclidean  p = 0.838 p = 0.750 p = 0.924 p <0.001 

kNN/ Euclidean PCs p = 0.481 p = 0.387 p = 0.387 p <0.001 

kNN/ Manhattan  p = 0.422 p = 0.700 p = 0.043 p <0.001 

kNN/ Manhattan PCs p = 0.843 p = 0.414 p = 0.094 p <0.001 

Leverage p = 0.838 p = 0.750 p = 0.924 p <0.001 

Leverage PCs p = 0.992 p = 0.353 p = 0.277 p <0.001 

Mahalanobis p = 0.869 p = 0.738 p = 0.841 p <0.001 

Mahalanobis PCs p = 0.992 p = 0.353 p = 0.277 p <0.001 

 

3.1.3.3 Group compounds based on distance threshold 

In addition, thresholds were applied on the distance of test set compounds from the training 

compounds. All the methods showed to categorise the compounds in two groups (table 12). 

The one group included the compounds that were within the AD and the other group the 

compounds that were outside. These two groups illustrated a trend indicating that the RMSE 

for chemicals outside the AD is larger than that for chemicals within the AD. These two groups 

also showed a statistically significant different RMSE between the compounds inside and 

outside the AD. This is in line with a study, where a trend was observed between the 

compounds inside and outside the AD when different distance to model metrics used with both 

descriptors and PCs (Jaworska et al., 2005). This is an indication that these methods can 

distinguish between well predicted and less accurately predicted compounds. 

Moreover, the k-NN algorithm was used with two different distance functions, the Euclidean 

and the Manhattan in both descriptor and PCs space. The results obtained from these methods 

seemed to allocate a different number of compounds within the AD. A possible explanation for 

that will be the different way that Euclidean and Manhattan distance weight differences. The 

Manhattan deals with the small and large differences of each variable alike, whereas the 

Euclidean distance penalises those differences by squaring them (Mathea et al., 2016). In 

addition, the advantage of the kNN method and leverage over Mahalanobis distance was that 
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they calculated distances based on 174 descriptors compared to the 126 and as a result the 

information loss due to correlated descriptors was minimised.  

Furthermore, from table 12, it is evident that each method produced different results regarding 

the percentage of the compounds within and outside the AD. This is something that was also 

observed by other studies, where different distance to model metrics were used. These studies 

also suggested that the results derived with different AD approaches might vary even for the 

same set of compounds (Jaworska et al., 2005; Sahigara et al., 2012). As a consequence, as  

Sahigara et al. (2012) concluded, none of these methods can be used on its own and it is 

preferable to use all the possible strategies/methods to evaluate the AD.  

Table 12: The table depicts the percentage of the compounds and the RMSE for the 

compounds inside and outside of the AD. The Mann Whitney results and the number of 

descriptors or PCs used are also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

Within AD Outside AD ΔRMSE 

 

Mann 

Whitney 

test. 

Number of 

descriptors 

/PCs % RMSE % RMSE 

kNN/ 

Euclidean  
32.60 0.56 67.40 0.76 0.20 p<0.05 

174 

descriptors 

kNN/ 

Euclidean PCs 
38.64 0.59 61.36 0.77 0.18 p<0.05 27 PCs 

kNN/ 

Manhattan  
19.04 0.53 80.96 0.74 0.21 p<0.05 

174 

descriptors 

kNN/ 

Manhattan 

PCs 

35.71 0.59 64.29 0.76 0.17 p<0.05 27 PCs 

Leverage  47.40 0.66 52.60 0.74 0.08 p<0.05 
126 

descriptors 

Leverage PCs 91.30 0.70 8.70 0.77 0.07 p<0.05 27 PCs 

Mahalanobis  7.23 0.52 92.77 0.72 0.20 p<0.05 
126 

descriptors 

Mahalanobis 

PCs 
77.51 0.68 22.49 0.78 0.10 p<0.05 27 PCs 
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Overall, the results produced with distance to model metrics in the descriptor space indicated 

that there will always be an uncertainty associated with any methods for assessing the AD of 

QSPR models (Netzeva et al., 2005). Therefore, there were compounds with high RMSE which 

had a lower distance to model and the vice versa. There are 2 possible explanations about 

that: The first one is the “unexpected deviation from the model”. This is happening when a 

prediction is considered within the AD of the model but it is still unreliable because the 

compound might have an additional property not accounted by the model. The second reason 

is that the set of ChEMBL compounds is a heterogeneous set derived from more than 300 

articles and thus the experimental Caco-2 protocols may vary from the proprietary protocol and 

ultimately the RMSE value is affected.  

3.1.3.4 kNN with Tanimoto and Dice 

After the evaluation of the distance of test set compounds from the model in descriptor space, 

the distance in the fingerprint space was also evaluated. The idea of estimating the AD in the 

fingerprint space has been also considered as important in similar studies, which are trying to 

establish the AD of QSPR models (Gadaleta et al., 2016; Weaver & Gleeson, 2008). In this 

part of the study, the test compounds were binned in 5 equally populated bins by increasing 

similarity. The RMSE in prediction was reported for each bin as shown in figure 26. 

a  b  

Figure 26: RMSE in prediction of the binned similarity to 5NNs for CHEMBL compounds calculated 

with: a) Tanimoto and b) Dice coefficients in ECFP4 fingerprint space. 

 

The kNN method in ECFP4 fingerprint space by using the Tanimoto and Dice similarity show 

no correlation between the chemical similarity and the RMSE in the prediction. A possible 

explanation about this result is that Caco-2 permeability is a property greatly influenced by the 

physiochemical properties of the compounds (Artursson et al., 2012). Different functional 

groups, which are dissimilar, might show similar physiochemical properties. This is an 

interesting finding, which can be compared with other ADME models, which depend on the 

chemical structure of the compounds. There are ADME models, which depend on chemical 
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structure because examine protein interactions like the CYP-mediated metabolism or active 

transport (Testa & Turski, 2006) and there are models like membrane permeability which focus 

on the physiochemical characteristics. For example, in a study conducted by Weaver and 

Gleeson (2008) the kNN along with Tanimoto coefficient were used to establish the AD in the 

fingerprint space for a CYP450 3A4 inhibition model. The results suggested that there is a 

relationship with the prediction error. As a result, it would be interesting to use that distance to 

model metric in the ECFP4 fingerprint space in models, which aim to predict properties like 

metabolism or induction/inhibition of metabolic enzymes.  

3.1.4 Conclusion 

The PCA and AD results indicated that there were compounds which were within the chemical 

space of the Evotec compounds and there were some compounds, which were dissimilar. 

Compounds that have been predicted within the AD is not an indication that the prediction is 

correct but that the specific model was correctly applied for those compounds. The same 

implies for the compounds outside the AD and it means that there is an increased uncertainty 

with the prediction and model might or might not extrapolate a correct prediction. The AD 

estimation showed a weak trend between the error in the predictions (RMSE) and the 

calculated distance to model. The RMSE in predictions increased as the distance increased 

and this trend was observed, when the compounds were binned by increasing distance but not 

when binned by squared residuals. However, the results obtained from the application of a 

threshold, showed that a different percentage of compounds is considered within the AD based 

on the method used. Therefore, more than one of distance to model metrics should be 

considered in the estimation of AD. The distance to model metrics were able to give an 

indication of how far or close are the compounds from the training set but also other factors 

like the model ability to predict and the reliability of the compounds’ source should also be 

taken into consideration.   

For the next parts of this work, which focus on the development of in-silico LogD7.4 and 

permeability models, the AD of the models will only be evaluated in descriptor space since 

LogD7.4 and permeability are two properties dependent mainly on the physiochemical 

properties. In addition, the descriptors were preferred over the PCs and the reason was that 

for the Leverage, kNN with Euclidean and kNN with Manhattan only the descriptors with zero 

variance were excluded and therefore there was no information loss since zero variance 

descriptors were constant for all the chemical compounds. With the calculation of PCs and the 

selection of a number of them, it was definite that a percentage of the information was lost. 

The reason that all the distance to model metrics will be used is that none of them proved to 

be better than the other and there are suggestions in the literature to always use more than 

one distance to model metrics. 
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3.2 Evaluation of Caco-2 in-silico permeability models 

The objective of this part was the development of QSPR models to predict Caco-2 A to B 

apparent permeability. Three types of models were built with different training sets, which 

included: i. literature, ii. proprietary and iii. merged proprietary and literature data. By 

comparing the performance and AD of the models, it was investigated if the merged models 

(Evotec+ChEMBL) could outperform the models developed with proprietary compounds 

(Evotec). Additionally, four distance to model metrics were applied to estimate the AD of the 

models and establish if the addition of literature data in proprietary models could enlarge the 

AD of proprietary models.  

3.2.1 Models developed with literature data (ChEMBL models) 

The first models reported herein were developed using only public data extracted from the 

ChEMBL database. These models are referred as “ChEMBL models” and were based on a set 

of 1628 compounds with Caco-2 permeability data extracted from ChEMBL and processed as 

describe in the methods section 2.3.1. Three different modelling algorithms were applied to 

build the QSPR models: random forest (RF), partial least square (PLS) and support vector 

regression (SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 1628 compounds were used to build the QSPR models and a “temporal” test set 

was derived subsequently, including new Caco-2 permeability data made available in a new 

version of ChEMBL. The temporal test set included 92 compounds. In the second case, the 

1628 compounds were merged with the 92 compounds of the temporal test set and the diverse 

test set was built including 20% of the total number of compounds randomly selected, while 

the remaining 80% of the compounds have been used to build and train the model. The first 

testing strategy, also known as temporal test set may be more challenging and may be a better 

representation of a real drug discovery situation, when the Caco-2 permeability of new 

compounds will have to be predicted with an existing model. The RMSE of the predictions and 

the R2 of the predicted versus experimental values were calculated for the test sets and used 

to evaluate the goodness of the model. Based on these metrics a better model will show a 

higher R2 and a lower value of the RMSE for the prediction of compounds in the test set.  
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Table 13: RMSE in prediction and R2 of ChEMBL diverse test set and ChEMBL temporal test 

set obtained with the ChEMBL model by using three different machine learning methods (RF, 

PLS &SVR). The red colour indicates the model that produced the lower RMSE in each testing 

strategy. 

Model/Training 

set 

ChEMBL diverse 

test set 

ChEMBL temporal 

test set 

RF PLS SVR RF PLS SVR 

ChEMBL RMSE 0.54 0.64 0.53 0.69 0.78 0.63 

R2 0.60 0.40 0.58 0.46 0.15 0.43 

 

The results of the model assessment indicated that in both test sets (temporal or diverse), the 

nonlinear machine learning algorithms, RF and SVR, provided better performing predictive 

QSPR models than PLS (table 13). A possible explanation lies is the fact that there may be 

nonlinear relationships between Caco-2 permeability and the descriptors used. For example, 

MLR and SVR were compared for their ability to develop Caco-2 permeability models and the 

SVR performed better than MLR, due to the possible existence of non-linear relationships 

between Caco-2 permeability and descriptors (Karelson et al., 2009).  Moreover, SVR and 

Boosting algorithms were able to provide more predictive Caco-2 permeability models 

(constructed with CHEMBL data) compared to MLR and PLS (Wang et al., 2016). Cao and co-

workers concluded that permeability, and in general ADME properties, are complex chemical 

systems not treatable or possible to be explained by mean of linear methods like PLS and MLR 

(Cao, Liang, Xu, Hu, & Zhang, 2011). The performance of RF and SVR was similar when 

assessed with the ChEMBL diverse test set. However, in the case of the ChEMBL temporal 

test set, the SVR algorithm performed slightly better. The SVR showed an RMSE of 0.63, 

whereas the RF showed an RMSE of 0.69. Both test sets were predicted with a high error in 

prediction and therefore the reliability of prediction by ChEMBL models is questionable and the 

results of prediction should be used with caution. 

In general, RF and SVR are two popular methods and are probably considered as two of the 

best performing and more frequently used algorithms in cheminformatics (Mitchell, 2014). 

Moreover, there are many factors that can affect the performance of an algorithm like i) the 

size and distribution of compounds in chemical space, ii) the possible linearity of the chemical 

problem examined and iii) the nature of descriptors (Mitchell, 2014). The drawback of the SVR 

compared to the RF was that SVR was very time consuming due to the procedure needed to 

optimise the hyperparameters (C, ε and γ). On the other hand, RF required a minimal 

optimisation time. These algorithms also performed similarly in the development of regression 

models for the prediction of melting point and additionally outperformed other algorithms like 

kNN and PLS (Hughes et al., 2008).  
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Figure 27: Experimental versus predicted Caco-2 permeability of compounds in the ChEMBL 

diverse test set obtained with the ChEMBL model developed with the SVR algorithm. Caco-2 

permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid line represents the 

line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the         

y=x±1 and the y=x±0.5 respectively. 

 

Figure 28: Experimental versus predicted Caco-2 permeability of compounds in the ChEMBL 

temporal test set obtained with the ChEMBL model developed with SVR algorithm. Caco-2 

permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid line represents the 
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line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the         

y=x±1 and the y=x±0.5 respectively. 

When the SVR ChEMBL model was applied on the literature diverse and temporal test sets 

the R2 was equal to 0.58 and 0.43 respectively and the RMSE equal to 0.53 and 0.63 

respectively (figures 27, 28). Therefore, the compounds in the diverse test set showed a better 

correlation between the experimental and predicted values and a lower RMSE in prediction 

compared to the temporal test set. However, R2 should be considered cautiously because its 

value may be increased by addition of data in a narrow range of values. The diverse test set 

included a greater number of compounds compared to the temporal test set and thus the higher 

R2 value might not indicating better model performance. The red and dark blue dashed lines 

enclose the compounds with predicted Caco-2 permeability within ±1 and ±0.5 log units 

respectively from the experimental values. These lines were used as a barrier to identify 

compounds with high and too high predicted values compared to experimental values 

(Schroeter et al., 2007). For the diverse test set, the 93.70% and the 84% of the predicted 

Caco-2 permeability values were within ±1 and ±0.5 log units respectively from the 

experimental values. For the temporal test set, the 89.13% and the 77.09% of the predicted 

Caco-2 permeability values were within ±1 and ±0.5 log units from the experimental values. 

Therefore, a smaller percentage of temporal test set compounds had prediction values from 

the experimental values within ±1 and ±0.5 log units. The reason might be that the compounds 

in temporal test set were novel or far from the model’s chemical space and the model produced 

predictions with a higher error in prediction. Therefore, the compounds in the temporal test 

sets might not have been represented with compounds in the training set as it might have 

happened with the compounds in the diverse test set, which were randomly selected from the 

initial dataset.   

3.2.2 Models developed with proprietary data (Evotec models) 

The second models reported herein were developed using only proprietary data extracted from 

the Evotec database. These models are referred as “Evotec models” and were based on a set 

of 2075 compounds with Caco-2 permeability data. Three different modelling algorithms were 

applied to build the QSPR models: random forest (RF), partial least square (PLS) and 

supporting vector regression (SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 2075 compounds were used to build the QSPR model and a temporal test set 

was derived subsequently, when new compounds were added in the Evotec database with 

Caco2 permeability data. The temporal test set included 166 compounds. In the second case, 

the 2075 compounds were merged with the 166 compounds of the temporal test set and the 

diverse test set was built including 20% of the total number of compounds randomly selected, 

while the remaining 80% of the compounds have been part of the training set used to build the 

model.  
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Table 14: RMSE in prediction and R2 of Evotec diverse test set and Evotec temporal test set 

obtained with the Evotec model by using three different machine learning methods (RF, PLS 

&SVR). The red colour indicates the model that produced the lower RMSE in each testing 

strategy. 

Model/Training 

set 

Evotec diverse 

test set 

Evotec temporal 

test set 

RF PLS SVR RF PLS SVR 

Evotec RMSE 0.36 0.43 0.37 0.57 0.60 0.57 

R2 0.75 0.64 0.73 0.44 0.45 0.49 

 

The results of the Evotec model assessment indicated that in both test sets (temporal or 

diverse), the RF and SVR algorithms provided better performing predictive QSPR models than 

PLS (table 14) as observed with the model assessment results of the ChEMBL models (section 

3.2.1).  In the case of the diverse test set, the RF and SVR models provided similar RMSE 

values equal to 0.36 and 0.37 respectively. In the case of the temporal test set, the 

performance of RF and SVR was identical (RMSE = 0.57).  The Evotec model predicted the 

diverse test set with a low error in prediction but in the case of the temporal test set the reliability 

of prediction by Evotec models is questionable and the results of prediction should be used 

with caution. 

 

Figure 29: Experimental versus predicted Caco-2 permeability of compounds in the Evotec 

diverse test set obtained with the Evotec model developed with RF algorithm. Caco-2 

permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid line represents the 
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line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the y=x±1 

and the y=x±0.5 respectively. 

  

Figure 30: Experimental versus predicted Caco-2 permeability of compounds in the Evotec 

temporal test set obtained with the Evotec model developed with RF algorithm. Caco-2 

permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid line represents the 

line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the y=x±1 

and the y=x±0.5 respectively. 

When the RF ChEMBL model was applied on the proprietary diverse and temporal test sets 

the R2 was equal to 0.75 and 0.44 and the RMSE equal to 0.36 and 0.57 respectively (figures 

29, 30). Therefore, the compounds in the diverse test set showed a better correlation between 

the experimental and predicted values and a lower RMSE in prediction compared to the 

temporal test set. However, R2 should be considered cautiously because its value may be 

increased by addition of data in a narrow range of values. The diverse test set included a 

greater number of compounds compared to the temporal test set and thus the higher R2 value 

might not indicating better model performance. The red and dark blue dashed lines enclosed 

the compounds with predicted Caco-2 permeability within ±1 and ±0.5 log units respectively 

from the experimental values. For the diverse test set, the 98.44% and the 93.10% of the 

predicted Caco-2 permeability values were within ±1 and ±0.5 log units respectively from the 

experimental values. For the temporal test set, the 91.57% and the 81.33% of the predicted 

Caco-2 permeability values were within ±1 and ±0.5 log units from the experimental values. 

Therefore, a smaller percentage of temporal test set compounds had prediction values from 

the experimental values within ±1 and ±0.5 log units. The reason might be that the compounds 

in temporal test set were novel or far from the model’s chemical space and the model produced 

predictions with a higher error in prediction. Therefore, the compounds in the temporal test 

sets might not have been represented with compounds in the training set as it might have 

happened with the compounds in the diverse test set, which were randomly selected from the 

initial dataset. 
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3.2.3 Models developed with merged proprietary and literature data (Evotec+ChEMBL 

models) 

The third group of models reported herein have been developed using both Evotec proprietary 

and literature data extracted from the ChEMBL database. These models are referred as 

“Evotec+ChEMBL models”. The training sets from the two previous models were merged, thus 

resulting in 3703 compounds. Three different modelling algorithms were applied to build the 

QSPR models: random forest (RF), partial least square (PLS) and support vector regression 

(SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 3703 compounds were used to build the QSPR model and the test set (temporal) 

has been derived by merging the two previous (Evotec and ChEMBL) temporal test sets 

resulting in 258 compounds. In the second case, the 3703 compounds were merged with the 

258 compounds of the temporal test set and the diverse test set was built including 20% of the 

total number of compounds randomly selected, while the remaining 80% of the compounds 

have been part of the training set used to build the model.  

Table 15: RMSE in prediction and R2 of Evotec+ChEMBL diverse test set and 

Evotec+ChEMBL temporal test set obtained with the Evotec+ChEMBL model by using three 

different machine learning methods (RF, PLS &SVR). The red colour indicates the model that 

produced the lower RMSE in each testing strategy. 

Model/Training 

set 

Evotec+ChEMBL 

diverse test set 

Evotec+ChEMBL 

temporal test set 

RF PLS SVR RF PLS SVR 

Evotec+

ChEMBL 

RMSE 0.45 0.65 0.44 0.63 0.85 0.62 

R2 0.66 0.33 0.66 0.36 0.07 0.39 

 

The results of the model assessment (table 15) indicated that in both test sets (temporal or 

diverse), the RF and SVR algorithms provided more predictive QSPR models than PLS and 

this was also observed with the ChEMBL and Evotec models (sections 3.2.1, 3.2.2). Both SVR 

and RF algorithms performed similarly on the diverse and temporal test sets. For the diverse 

test set, the SVR produced an RMSE of 0.44 against an RMSE of 0.45 obtained with the RF 

model. For the temporal test set the SVR produced an RMSE of 0.62 against an RMSE of 0.63 

obtained with the RF model. The Evotec+ChEMBL model predicted the diverse test set with a 

low error in prediction but in the case of the temporal test set the reliability of prediction by 

Evotec+ChEMBL models is questionable and the results of prediction should be used with 

caution. 
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Figure 31: Experimental versus predicted Caco-2 permeability of compounds in the 

Evotec+ChEMBL diverse test set obtained with the Evotec+ChEMBL model developed with 

RF algorithm. Caco-2 permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid 

line represents the line of best fit in the form of y=b+ax. The red and dark blue dashed lines 

represent the y=x±1 and the y=x±0.5 respectively. 

 

 

Figure 32: Experimental versus predicted Caco-2 permeability of compounds in the 

Evotec+ChEMBL temporal test set obtained with the Evotec+ChEMBL model developed with 

RF algorithm. Caco-2 permeability is reported as Log10 (A->B Papp[10-6 cm/s]). The black solid 

line represents the line of best fit in the form of y=b+ax. The red and dark blue dashed lines 

represent the y=x±1 and the y=x±0.5 respectively. 
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When the RF ChEMBL model was applied on the diverse and temporal test sets the R2 was 

equal to 0.66 and 0.36 and the RMSE equal to 0.45 and 0.63 respectively (figures 31, 32). 

Therefore, the compounds in the diverse test set showed a better correlation between the 

experimental and predicted values and a lower RMSE in prediction compared to the temporal 

test set. However, R2 should be considered cautiously because its value may be increased by 

addition of data in a narrow range of values. The diverse test set included a greater number of 

compounds compared to the temporal test set and thus the higher R2 value might not indicating 

better model performance. The red and dark blue dashed lines enclosed the compounds with 

predicted Caco-2 permeability within ±1 and ±0.5 log units respectively from the experimental 

values. For the diverse test set, the 95.71% and the 88.40% of the predicted Caco-2 

permeability values were within ±1 and ±0.5 log units respectively from the experimental 

values. For the temporal test set, the 86.05% and the 75.58% of the predicted Caco-2 

permeability values were within ±1 and ±0.5 log units from the experimental values. Therefore, 

a smaller percentage of temporal test set compounds had prediction values from the 

experimental values within ±1 and ±0.5 log units. The reason might be that the compounds in 

temporal test set were novel or far from the model’s chemical space and the model produced 

predictions with a higher error in prediction. Therefore, the compounds in the temporal test 

sets might not have been represented with compounds in the training set as it might have 

happened with the compounds in the diverse test set, which were randomly selected from the 

initial dataset. 

3.2.4  Comparison of Caco-2 permeability models with models reported in the literature 

The goal of this part of the work was to compare the models developed in the present study in 

sections 3.2.1-3.2.3 (i.e. ChEMBL, Evotec and Evotec+ChEMBL models) with models reported 

in the literature. Several regression permeability models have been reported and various 

limitations have been discussed in the introduction (section 1.9.3) regarding the training set 

size, the type of algorithms (linear vs nonlinear) and type of test sets (temporal vs diverse) 

used.  

The permeability models reported in sections 3.2.1-3.2.3, were compared with the two most 

recent regression permeability models, published by Wang et al (2016) and Fredlund et al 

(2017), and reported in table 16. These two models were chosen as they exhibited two main 

similarities with the models developed in the present study. The first similarity is that they used 

a larger training set compared to other models in the literature outlined in section 1.9.3. The 

second is that the models’ training sets incorporated literature data (Wang et al, 2016) and 

both literature and proprietary data (Fredlund et al, 2017) similarly to the models reported in 

the present study.  
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Table 16: The two most recent regression permeability models developed with caco-2 data. 
 

Reference Method Number 

of 

Molecules 

Number of 

Descriptors 

Model 

Performance 

AD 

Estimation? 

(Wang et al, 

2016) 

MLR 

PLS 

SVR 

Boosting 

1272 193 RMSE=0.31 Yes: 

Leverage 

(Fredlund et al, 

2017) 

PLS 

SVR 

RF 

 2558 PLS, SVR:AZ 

descriptor set 

RF: signature 

descriptors 

RMSE=0.45 No 

 

The Caco-2 models developed by Wang et al (2016) showed several similarities with the 

ChEMBL models developed in the present study.  Wang et al (2016) used Caco-2 permeability 

data from ChEMBL and a very similar filtering process was applied to ensure less experimental 

variability. The main difference in the filtering process was that in the present study the 

analytical method used during the Caco-2 assay had been taken into consideration. Therefore, 

compounds that during the Caco-2 assay, were analysed with a method different than LC/LC-

MS were excluded.  Different analytical methods could give different results and thus a cross 

validation of analytical method is necessary to ensure the optimal conditions to accurately 

reproduce an analytical measurement in different laboratories (Chau et al., 2008).  

A training set of 1272 literature compounds was partitioned in a training set of 1017 compounds 

(80%) and a diverse test set of 255 compounds (20%) based on the joint x – y distances 

(SPXY) method to ensure that the test sets could map the measured region of the input 

variable space. However, this splitting might not represent a realistic drug design process. In 

pharmaceutical companies, ADME models are used to predict a variety of compounds, which 

might be chemically novel or physiochemically different from the training set compounds. By 

comparing the RMSE in prediction on the test sets for the models developed in the present 

study (ChEMBL, Evotec and Evotec+ChEMBL) and the model reported by Wang et al (2016), 

it seemed that their model performed better by showing a lower RMSE in prediction and a 

higher R2 (Table 17).  However, a direct comparison of the RMSE and R2 would not be 

accurate, as different training and test sets were used. 
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Table 17: RMSE in prediction and R2 of: literature ChEMBL model by Wang et al (2016), 

ChEMBL model, Evotec models and Evotec+ChEMBL model on their diverse test sets.  The 

red colour indicates the highest performing modelling algorithm for each model. 

 Method RMSE R2  

Literature ChEMBL 

model by Wang et al 

(2016) 

MLR 0.36 0.75 

PLS 0.36 0.75 

SVR 0.32 0.80 

Boosting 0.31 0.81 

ChEMBL model 

(developed in the 

present study) 

PLS 0.64 0.45 

RF 0.54 0.42 

SVR 0.53 0.59 

Evotec model 

(developed in the 

present study) 

PLS 0.43 0.64 

RF 0.36 0.75 

SVR 0.37 0.73 

Evotec+ChEMBL 

model (developed 

in present study) 

PLS 0.65 0.40 

RF 0.45 0.74 

SVR 0.44 0.73 

 

To make a direct comparison, the methodology developed in the present study, was applied 

on Wang et al (2016) training set and then the models derived, were assessed with the Wang 

et al (2016) diverse test set and the two external validation test sets. Therefore, the training 

compounds of Wang et al (2016) were trained by using the set of descriptors and algorithms 

used in the present study.  The two external validation test sets included 298 compounds with 

Caco-2 permeability data and 220 compounds with MDCK permeability data obtained from 

ChEMBL and other literature sources. The two best performing algorithms were applied: 1. RF 

and 2. SVR and the results of the RMSE in prediction are shown in the table 18.  
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Table 18: RMSE in prediction of Boosting model developed by Wang et al (2016) and of the 

new model, developed with Wang et al (2016) training and test sets and the present study’s 

methodology. The red colour indicates the highest performing model.  

 Method RMSE 

Literature 

ChEMBL diverse 

test set by Wang 

et al (2016) 

Caco-2 external 

Validation test 

set by Wang et 

al (2016) 

MDCK  external 

validation test 

set  by Wang et 

al (2016) 

Literature ChEMBL  

by Wang et al (2016) 

Boosting 0.31 0.36 0.38 

Literature ChEMBL 

model by Wang et al 

(2016) developed with 

present study’s 

methodology 

RF 0.34 0.33 0.41 

SVR 0.37 0.39 0.44 

 

Table 18 shows that the methodology (algorithms) developed in the present study, when 

applied to the literature training and test sets provided comparable results. In more detail, RF 

results were very similar to the Boosting method as they are two similar algorithms that work 

by creating an ensemble of decision trees. However, the model developed with Wang et al 

(2016) training set and the present study’s methodology performed better when evaluated 

external Caco-2 data. Therefore, a possible reason that the ChEMBL, Evotec and 

Evotec+ChEMBL models showed a higher RMSE in prediction (table 17) was due to the 

different partitioning of compounds in training and diverse test sets. In theory, a test set, which 

is representative of the training set can give a good model performance but at the same time 

could be unrealistic or very optimistic (Cherkasov et al, 2014). Therefore, in the present study 

temporal test sets and diverse test sets based on the random partition of the initial dataset 

were used. On the other hand, Wang et al (2016) used the joint x – y distances (SPXY) method 

to ensure that the test sets could map the measured region of the input variable space 

completely. Both random partitioning and the joint x – y distances (SPXY) partitioning offers 

advantages and disadvantages. The advantage of the random partitioning is that the 

compounds are “unknown” to the model (Martin et al., 2012). As a result, a random selection 

of a diverse test set gives an indication of the “realistic predictive power” of an ADME model.  

From another perspective, one could argue that the test should be reasonably similar and 

representative to the compounds of the training set. However, this approach could yield an 

“optimistic estimate” of the model performance (Cherkasov et al., 2014). In addition, it is 

important to take into account other parameters like the setting under which an ADME 

predictive model is used. For example, the use of a representative test set with optimistic model 
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assessment results might not be appropriate for a drug discovery project in a pharmaceutical 

company. The reason is that the newly synthesised proprietary compounds might or might not 

be similar to the model’s training set. Therefore, a randomly selected diverse test set mimics 

that situation and potentially the results are more realistic.  

 In addition, Wang et al (2016) used only one distance to model metric to evaluate the AD of 

the models, whereas in the present study four different distance to model metrics compared. 

This comes in agreement with findings in the literature, which suggest to always use more than 

one distance to model metric for the AD evaluation (Sahigara et al, 2012). 

The second model reported in table 16 is a regression permeability model by AstraZeneca 

(Fredlund et al., 2017). AstraZeneca model was developed with both proprietary and literature 

data and the training set of the model included 2558 compounds. The model performance was 

assessed with a diverse test set. The compounds in the diverse test set were randomly 

selected from the initial dataset and the model predicted the compounds with an RMSE equal 

to 0.45. This RMSE was comparable with the RMSE in prediction of the Evotec+ChEMBL 

model (RMSE=0.44). Both the AstraZeneca and the Evotec+ChEMBL models combined 

proprietary and opensource data in their training set and a reasonable error in prediction was 

observed. However, the AstraZeneca models had not been compared with models developed 

only with proprietary compounds. This comparison could indicate whether the literature data 

have a positive or negative impact on the proprietary models. This is an important point 

because there is a debate about the reliability of data in chemical databases and therefore it 

is interesting to investigate if their effect in proprietary models could possibly balance their 

experimental uncertainty. This is something investigated in the present study in section 3.2.5. 

Furthermore, the reliability of a model’s prediction depends on two important factors. The first 

one is the methodology (algorithm and descriptors) and the second is the AD evaluation, which 

is something not reported for the AstraZeneca model. Fredlund et al (2017) monitored the 

performance of the model over a period of two years and the model was improved. Therefore, 

it would have been interesting to evaluate if the improvement in model performance relates 

with the possible enlargement of the AD and also to establish the effect of literature compounds 

on the models’ AD. Therefore, the present study investigated these points regarding the AD in 

section 3.2.7. 

3.2.5 The effect of merging proprietary and literature data in the development of Caco-2 

permeability models 

The three models (“ChEMBL”, “Evotec” and “Evotec+ChEMBL” models), which were 

developed and described in sections 3.2.1-3.2.3, were used to evaluate the effect of the 

introduction of literature compounds in the proprietary models by testing both Evotec and 

Evotec+ChEMBL models on the same test sets. The test sets that were used were the Evotec 

and ChEMBL temporal and diverse test sets, which were also outlined in sections 3.2.1-3.2.3. 

The three models were trained with three different algorithms (RF, PLS and SVR) and were 

tested on the same diverse and temporal test sets and the results are outlined in tables 19 and 

20 respectively.  



Page 89 of 148 
 

The Evotec and Evotec+ChEMBL models predicted the permeability of Evotec diverse test set 

(table 19) with a low RMSE equal to 0.36 and 0.37 respectively (based on the RF predictions). 

However, in all the other cases, the models predicted the diverse and temporal test sets with 

a larger error in prediction. Therefore, the reliability of predictions is questionable and the 

results of prediction should be used with caution. 

There are various reasons, which can negatively affect the performance of the models. One 

reason could be the problems related to the data heterogeneity (Cherkasov et al., 2014). The 

data extracted from ChEMBL database were used to build models (ChEMBL models) and were 

also merged with Evotec data to build models (Evote+ChEMBL models). The ChEMBL data 

are in-vitro ADME data, which are obtained from different sources of the medicinal chemistry 

literature. Therefore, inter-laboratory and/or protocol variability might have affected the models’ 

performance. In addition, another challenge during the QSPR development is the introduction 

of errors during the descriptors’ calculation (Cherkasov et al., 2014). There are some 

descriptors that can be accurately calculated (MW, atom count etc.) and some other which 

cannot. For example, LogP and LogD are usually calculated with a software (ChemAxon, ACD 

labs etc.) and thus errors might be introduced. Moreover, another factor that might have 

affected the model performance is the width of the AD. In general, if the test compounds are 

“far” from the models’ training space, the models’ predictions might exhibit a larger error in 

prediction. For example, the Evotec temporal test set compounds were extracted from the 

Evotec database. These compounds are novel and are synthesised for various drug discovery 

projects. Therefore, these compounds might have been novel and thus far from the AD of the 

models. Another reason that the models showed a high RMSE is the process of model 

validation, which exhibited both advantages and disadvantages. The advantage was that both 

internal (diverse) and external (temporal) test sets were used to assess the models’ 

performance. However, the compounds in the internal/diverse validation test set were 

randomly selected from the initial dataset. Therefore, the test compounds were not strategically 

selected to be representative of the training set. Finally, another aspect that can negatively 

affect the model performance is the failure of the model to encounter for properties that might 

be important for the property investigated. For example, an important factor that could affect 

ADME properties is the presence of enantiomers. Appropriate descriptors should be used in 

the model building in order to make the model able to encounter for the effect of the 

enantiomers on the target value. In this study, only the number of chiral centres was 

considered. Therefore, there are aspects related to enantiomers, which were not considered. 

For example, other important features are the position of the enantiomers on the molecule and 

the handedness of a molecule’s chiral centres (Bajorath, 2004). Thus, 3D descriptors could 

have been calculated to reflect these feature, which might be important. 
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Table 19: Table shows the model performance of “ChEMBL”, “Evotec” and “Evotec+ChEMBL” 

models. The RMSE in prediction and R2 of Evotec and ChEMBL diverse test sets are reported. 

Results obtained by applying the RF, PLS and SVR algorithms. The red colour indicates the 

highest performing model between the Evotec and Evotec+ChEMBL models. 

Number of 

compounds 

Model/Training 

set 

Evotec diverse test set ChEMBL diverse test set 

RF PLS SVR RF PLS SVR 

1376 ChEMBL 

RMSE 0.58 0.65 0.61 0.54 0.64 0.53 

R2 0.34 0.23 0.35 0.60 0.40 0.58 

1792 Evotec 

RMSE 0.36 0.43 0.37 0.72 1.13 0.75 

R2 0.75 0.64 0.73 0.24 0.10 0.22 

3168 
Evotec+

ChEMBL 

RMSE 0.37 0.57 0.36 0.55 0.66 0.52 

R2 0.74 0.40 0.74 0.57 0.37 0.59 

 

Table 20: Table shows the model performance of “ChEMBL”, “Evotec” and “Evotec+ChEMBL” 

models. The RMSE in prediction and R2 of Evotec and ChEMBL temporal test sets are reported 

Results obtained by applying the RF, PLS and SVR algorithms. The red colour indicates the 

highest performing model between the Evotec and Evotec+ChEMBL models. 

Number of 

compounds 

Model/Training 

set 

Evotec temporal test set ChEMBL temporal test set 

RF PLS SVR RF PLS SVR 

1628 ChEMBL 

RMSE 0.60 0.72 0.71 0.69 0.78 0.63 

R2 0.45 0.21 0.23 0.46 0.15 0.43 

2075 Evotec 

RMSE 0.57 0.60 0.57 0.85 1.74 0.74 

R2 0.44 0.45 0.45 0.31 0.19 0.37 

3703 
Evotec+

ChEMBL 

RMSE 0.55 0.76 0.58 0.74 0.84 0.68 

R2 0.52 0.19 0.36 0.40 0.20 0.46 
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According to tables 19 and 20, the two best performing algorithms were the RF and SVR. The 

better performance of these methods over linear methods has also been observed in the 

literature by studies investigating permeability (Wang et al, 2016), lipophilicity (Wang et al, 

2015; Rodgers et al, 2011) and plasma protein binding (Rodgers et al, 2011).  

When the proprietary diverse test set used to assess the models, the Evotec+ChEMBL model 

(trained with the SVR algorithm) showed a similar error in prediction (RMSE = 0.36) with 

respect to the Evotec model (RMSE=0.37) (table 19). The Evotec+ChEMBL model also 

showed a similar relationship between the experimental and predicted values (R2=0.74) 

compared to the Evotec model (R2=0.73).  However, the same result was not observed with 

the SVR and PLS algorithm. When the literature test set used to assess the models, the 

Evotec+ChEMBL model could better predict the Caco-2 permeability compared to the Evotec 

model. The Evotec+ChEMBL models provided a large improvement in the prediction of 

literature compounds by showing a lower RMSE in predictions and a higher R2 (i.e. improved 

relationship between the experimental and predicted values) for all the algorithm tested.  

Similar results and observations obtained with the temporal test sets (table 20). Evotec 

temporal test set was predicted similarly (i.e. with a similar error in prediction) by the Evotec 

and Evotec+CHEMBL models. However, when the ChEMBL temporal test set used to assess 

the models, the Evotec+ChEMBL model could better predict the Caco-2 permeability 

compared to the Evotec model.  The Evotec+ChEMBL models showed a lower RMSE in 

predictions and a higher R2 (i.e. improved relationship between the experimental and predicted 

values) for all the algorithm tested. These results indicated that the literature data could 

improve the prediction of newly synthesised compounds especially when the compounds are 

chemically novel. Temporal compounds extracted from literature (ChEMBL temporal test set) 

could theoretically mimic novel proprietary chemotypes and series from completely new 

projects or novel chemical matter in existing projects. Therefore, compounds extracted from 

literature can enhance the predictive ability of the proprietary models when they assess newly 

synthesised and chemically diverse compounds.  

Although ChEMBL data might be considered as less experimentally reliable compared to 

proprietary data, they improved the performance of proprietary models. ChEMBL data can 

possibly introduce chemical diversity to the proprietary databases. AstraZeneca and Bayer 

Pharma AG conducted a study, which concluded that data extracted from ChEMBL can 

introduce chemical diversity in proprietary databases. Firstly, the two companies compared the 

chemical similarity of their screening collections and secondly, they compared the similarity of 

their screening collections with the ChEMBL database. The similarity of the two proprietary 

screening databases was calculated by using 2D molecular fingerprints in combination with a 

Nearest Neighbour (NN) approach and Tanimoto index (as a measure of molecular similarity) 

(Kogej et al, 2013). The outcome of that analysis was that there is a low overlap between the 

compound collections of these pharmaceutical companies in terms of molecular similarity. In 

addition, they identified the molecular similarity of the ChEMBL compounds with these 2 

databases, which in total included about 3.7 million compounds. The number of ChEMBL 

compounds at the time was only 600K. The current ChEMBL version 23 contains about 2 
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million of compounds, which shows a great improvement in data reposition in that chemical 

database. More than the 80% of the compounds in ChEMBL database had their NN with a 

Tanimoto index less than 0.7. This result indicated that even in big proprietary screening 

databases, there is an unexplored chemical space. Therefore, ChEMBL compounds could be 

an asset in industry and academia to expand the chemical space and diversity of screening 

databases and subsequently proprietary ADME models. Therefore, this gives a possible 

explanation why the Evotec+ChEMBL models and ChEMBL models were better in predicting 

literature temporal compounds compared to proprietary Evotec models. It has also been 

reported that AstraZeneca develops permeability Caco-2 models, which incorporate both in 

house and literature data extracted from CHEMBL (Fredlund et al, 2017). 

Furthermore, it is also evident from the results (table 19, 20), that the Evotec models were 

better in predicting Evotec temporal or Evotec diverse test set compounds compared to 

ChEMBL models. The same applies for the ChEMBL models; they can better predict ChEMBL 

temporal or diverse test set compounds compared to Evotec models. This was expected 

especially for Evotec models and Evotec test sets because compounds that are part of the 

training set and test sets might have been synthesised for the same project.  

However, it is interesting to notice how the Evotec model predicted the ChEMBL compounds 

and how the ChEMBL model predicted the Evotec compounds. The RMSE in prediction, that 

obtained from both temporal and diverse test sets, indicates that the ChEMBL models can 

predict the Evotec test compounds more accurately than the Evotec model can predict the 

ChEMBL test compounds. This is an interesting point because it was expected that Evotec 

models could possibly be better in predicting the ChEMBL compounds due to the more 

experimentally reliable Caco-2 measurements. In contrast, ChEMBL were mainly compounds 

extracted from the literature and it was difficult to ensure the same and accurate experimental 

conditions due to the inter-laboratory and assay variability. Therefore, an explanation might be 

given with the investigation of the AD of the models. ChEMBL models might: 1. exhibit a greater 

chemical diversity, 2. cover a larger chemical space and consequently 3. exhibit a larger 

applicability domain compared to Evotec models. This was investigated in section 3.2.7. 

In conclusion, the merging of the compounds from different sources (proprietary and literature) 

was beneficial despite the debate regarding the merging of biological data from different 

sources and especially from large chemical databases. The mixing of data from different 

sources could be dangerous as the data are generated with different experimental protocols. 

Therefore, there is an increasing risk to introduce errors and noise in the training set. For 

example, the training sets should include data, which ideally are measured based on a single 

protocol and by the same laboratory. (Cronin & Schultz, 2003). In addition, data with high 

experimental uncertainty like literature compounds could negatively influence the model 

performance (Wenlock and Carlsson, 2014). However, the results and the performance of the 

merged models (Evotec+ChEMBL) seemed to balance the experimental uncertainty of the 

data. The Evotec+ChEMBL models exhibited a similar performance with the Evotec models in 

the prediction of proprietary test sets and showed a significant improvement for the prediction 

of literature test sets.  
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3.2.6 Subsequent model assessment of the Caco-2 permeability models 

In a subsequent model assessment, the permeability data in the temporal test sets were 

merged with the training test sets and used, all together, to develop an updated model. Two 

new temporal test sets were generated including the latest proprietary permeability data 

(Evotec compounds synthesised four months after the compounds in the training set) and the 

freshly published public permeability data from ChEMBL version 23. These new temporal test 

sets are referred as “New Evotec temporal test set” and “New ChEMBL temporal test sets”.  

The new temporal test sets had been used to assess both the initial models (M1) reported in 

the sections 3.2.1-3.2.3 and the new models introduced in this section (M2). In this analysis, 

only the RF algorithm was applied to build the QSPR models due to its performance (as 

discussed in the previous sections) and to its computational inexpensiveness.  

Table 21: Table shows the model performance of the “initial” (M1) and “new” (M2) “ChEMBL”, 

“Evotec” and “Evotec+ChEMBL” models. The RMSE in prediction of the “new” Evotec and 

ChEMBL temporal test sets is reported. Results obtained by applying the RF algorithm and the 

red colour indicates the highest performing model between Evotec and Evotec+ChEMBL 

models. 

Number of 
compounds 

 

Model/Training 
set 

 

New Evotec temporal 
test set 

New ChEMBL temporal 
test set 

M1 M2 M1 M2 

M1:1628 

M2: 1720 
ChEMBL 0.67 0.66 0.47 0.48 

M1:2075 

M2: 2241 
Evotec 0.47 0.42 0.67 0.68 

M1:3703 

M2:3961 
Evotec+ChEMBL 0.45 0.40 0.66 0.63 

 

The new temporal test sets were predicted with a lower RMSE in prediction (i.e. better 

predicted) with the Evotec + ChEMBL model compared to Evotec model. In addition, the RMSE 

in prediction obtained with the new model (M2) was lower than that of M1. The new temporal 

test sets were predicted with higher accuracy by the merged (Evotec+ChEMBL model) 

compared to the Evotec model. This is an indication of the robustness of the method and that 

the addition of the ChEMBL compounds in the proprietary Evotec models is beneficial.  
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3.2.7 Applicability Domain estimation of the in-silico Caco-2 permeability models  

Determining the AD for a QSPR model is important to estimate the reliability of a prediction of 

an external compound. If the compound lies within the AD of the QSPR model used to predict 

a property, this prediction can be taken, otherwise the prediction should be either discarded or 

given a low reliability flag.  

The AD of the models was estimated with the four distance to model metrics: 1. k-NN with 

Euclidean distance, 2. k-NN with Manhattan distance, 3. Leverage and 4. Mahalanobis 

distance. The distance to model metrics calculated the distance of the test compounds from 

the training set in the descriptors’ space (i.e. the multi-dimensional space defined by the 

descriptors of the compounds used to train the model) and a threshold was applied. Above 

that threshold, compounds were considered to be outside the AD.  

The goal of this section was twofold. Firstly, the AD of the Evotec+ChEMBL model was 

compared with the AD of the Evotec model. Secondly, once an AD distance threshold had 

been determined, the goal was to check whether test set compounds within the AD were 

predicted more accurately than compounds outside the AD. To do that, compounds in the test 

set were partitioned in two groups; within the AD, and outside the AD. If compounds within the 

AD show an RMSE in the prediction smaller than compounds outside the AD, the particular 

distance metric is able to clearly define an AD for the model. In addition, a Mann Whitney test 

was used to establish the presence of a statistically significant difference in the RMSE of the 

compounds inside and outside of the AD.  To achieve both objectives, for every model 

(“ChEMBL model”, “Evotec model” and “Evotec+ChEMBL”), the portion of compounds within 

and outside the AD was calculated by using all the four distance metrics mentioned above. 

The distance of compounds in the two temporal test sets (“Evotec temporal test set” and 

“ChEMBL temporal test set”) was calculated from the training compounds of the three different 

models (“ChEMBL model”, “Evotec model” and “Evotec+ChEMBL” model) and the percentage 

of the test compounds within the AD of the models was calculated. Results are reported in 

table 22.  
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From table 22, it can be observed that, in most cases, the RMSE in prediction of the 

compounds within the AD was lower than the RMSE of the compounds outside the AD. This 

evidence provided confidence for using these distance metrics and threshold determination 

method as a reliable protocol for defining the AD of the models. Similar studies are in 

agreement with these findings (Jaworska et al., 2005; Sahigara et al., 2012) as they have 

employed, the same distance metrics and reached similar conclusions.  

In addition, table 22 indicated that a greater percentage of Evotec temporal test compounds 

and ChEMBL temporal test compounds were within the Evotec+Chembl model’s AD compared 

to the Evotec proprietary model. Therefore, all the four distance to model metrics demonstrated 

that the AD of the Evotec models was enlarged with the inclusion of compounds extracted from 

the literature. This indicated that the literature compounds can introduce chemical diversity and 

cover unexplored areas of the chemical space (Kogej et al, 2013). In addition, based on the 

work performed in present study, the 50-90% (depending the distance to model metric 

considered) of the compounds extracted from ChEMBL were outside the AD of the existing 

Evotec model. Therefore, by merging the proprietary Evotec compounds with the compounds 

extracted from ChEMBL database, it was expected to introduce chemical diversity in the 

training set. In addition, a greater percentage of Evotec temporal compounds was within the 

AD of the ChEMBL models than the percentage of ChEMBL temporal compounds within the 

AD of the Evotec model. This observation explained the results obtained from the evaluation 

of model performance in section 3.2.5, where the ChEMBL model was better at predicting 

Evotec temporal compounds compared to Evotec model in predicting ChEMBL temporal 

compounds. Therefore, literature compounds offer chemical diversity and this is a clear 

positive impact for the proprietary chemical space.  

There were also cases in which the compounds outside the AD showed an RMSE lower than 

the compounds inside. This may be an indication that being within the AD, although important 

to consider a prediction reliable, may not be sufficient for a lower RMSE in the prediction 

(Gadaleta et al., 2016). One reason might be the presence of activity cliffs within the chemical 

space. There might be chemical areas, where the permeability of the compounds change due 

to the presence of a particular functional group. Therefore, that means that a compound 

exhibits a property not encountered by the model (Netzeva et al., 2005). For example, passive 

transcellular permeability is considered to be the major permeability route for the compounds 

but compounds can also be transferred through carrier mediated transport. Therefore, if a 

compound has a chemical structure, which enables the binding with a membrane transporter 

could theoretically be permeable. Another possible explanation might be the presence of areas 

with a lack of chemical coverage (i.e. due to data scarcity) (Aniceto, Freitas, Bender, & 

Ghafourian, 2016). As a result, there is a possibility a model not to be able to make accurate 

predictions due to the inadequate chemical space coverage. Moreover, another possible 

explanation for a lower error in prediction in compounds outside the AD is that the model could 

possibly extrapolate correctly outside its domain (Jaworska et al., 2005). In a study, where 

permeability models have been developed with Caco-2 data extracted from the literature, the 

leverage method was used as the metric to establish AD (Wang et al, 2016). In that case, there 

were compounds with low leverage and a larger error in prediction and vice versa. The reason 
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of that phenomenon is at the way that the threshold is set. A threshold has a value, which 

simply excludes training compounds in the extremities. That means that the AD evaluation only 

considers the interpolation and not the possible extrapolation. Therefore, there might be 

compounds in the test sets that are close to that outliers and thus they can predicted with a 

lower error in prediction than expected. However, there is not a definite answer and all the 

arguments mentioned above could provide a possible explanation.  

Furthermore, each distance to model metric produced different results (Jaworska et al., 2005; 

Gadaleta et al., 2016; Sahigara et al., 2012).  This depends on: the different way that each 

method measures distance, the threshold definition and the descriptors used in each method 

(e.g. Mahalanobis distance cannot handle correlated descriptors).  In addition, another 

difference is that the Euclidean distance assumes a normal distribution compared to other 

(Jaworska et al., 2005; Gadaleta et al., 2016) and that might be a potential disadvantage. 

Therefore, the results obtained from the evaluation of AD with the distance to model metrics 

should be carefully examined.  The fact that each method gave a different result regarding the 

percentage of the compounds inside and outside of the AD and also regarding the error in 

prediction for the compounds inside and outside of the AD, results in a confusion about which 

method is the most appropriate to use. For that issue, there are reports, which suggest to 

always using more than one distance to model metric for the assessment of AD (Sahigara et 

al., 2012). The reason is that none of the existing methods can be considered as the universally 

the most appropriate because each method has its own advantages and disadvantages.  

Therefore, a statistical analysis used to understand which method is more reliable in each 

case. In the literature, there are no statistical comparisons, which can distinguish between a 

statistically significant difference between the RMSE in prediction for compounds in and out of 

AD. For that reason, the non-parametric Mann Whitney test was applied. The results showed 

that only the Leverage method could produce a statistically significant difference in the RMSE 

for the compounds inside and outside of the AD. For the other three methods, there was not 

always a statistically significant difference. Therefore, the Leverage method could be 

considered as the most effective method for these models. Leverage is a method used in the 

literature for the estimation of the AD of permeability models (Wang et al, 2016), LogD7.4 

models (Wang et al, 2015).  

In conclusion, in this case, leverage was considered as the best performing method for two 

reasons. The first reason was that it was able to categorise the test compounds inside and 

outside of the AD with a lower and higher RMSE in prediction respectively. The second reason 

was the presence of a statistically significant difference in all the measurements. However, if 

a compound is outside the AD, it is not definite that the prediction is erroneous but it provides 

an AD “warning” (Gupta, Adams, & Berry, 2016). 
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3.3 Evaluation of in-silico LogD7.4 models. 

The objective of this part was the development of QSPR models to predict logD7.4. Three types 

of models were built with different training sets, which included: i) literature, ii) proprietary and 

iii) merged proprietary and literature data. By comparing the performance and AD of the 

models, it was investigated if the merged models (Evotec+ChEMBL) could outperform the 

models developed with proprietary compounds (Evotec). Additionally, four distance to model 

metrics were applied to estimate the AD of the models and establish if the addition of literature 

data in proprietary models could enlarge the AD of proprietary models. 

3.3.1 Models developed with literature data (ChEMBL models) 

The first models reported herein were developed using only public data extracted from the 

ChEMBL database. These models are referred as “ChEMBL models” and were based on a set 

of 1209 compounds with distribution coefficient at pH=7.4 (LogD7.4) data extracted from 

ChEMBL and processed as described in the methods section 2.3.1. Three different modelling 

algorithms have been applied to build the QSPR models: random forest (RF), partial least 

square (PLS) and support vector regression (SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 1209 compounds were used to build the QSPR models and a “temporal” test set 

was derived subsequently, including new LogD7.4 data made available in a new version of 

ChEMBL. The temporal test set included 86 compounds. In the second case, the 1209 

compounds were merged with the 86 compounds of the temporal test set and the diverse test 

set was built including 20% of the total number of compounds randomly selected, while the 

remaining 80% of the compounds were used to build and train the model. The first testing 

strategy, also known as temporal test set, may be more challenging and may be a better 

representation of a real drug discovery situation. It provides an estimation of the model 

performance in a “real-life” situation, when lipophilicity of new compounds will have to be 

predicted with an existing model. The RMSE of the predictions and the R2 of the predicted 

versus experimental values were calculated for the test sets and used to evaluate the 

goodness of the model. Based on that metric a better model will show a higher R2 and a lower 

value of the RMSE for the prediction of compounds in the test set. 
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Table 23: RMSE in prediction and R2 of ChEMBL diverse test set and ChEMBL temporal test 

set obtained with the ChEMBL model by using three different machine learning methods (RF, 

PLS &SVR). The red colour indicates the model that produced the lower RMSE in each testing 

strategy. 

Model/Training 

set 

ChEMBL diverse 

test set 

ChEMBL temporal 

test set 

RF PLS SVR RF PLS SVR 

ChEMBL 

RMSE 1.01 1.34 0.94 0.84 1.09 0.77 

R2 0.79 0.65 0.82 0.72 0.58 0.71 

 

The results of the model assessment indicated that in both test sets (temporal or diverse), the 

RF and SVR algorithms provided better performing predictive LogD7.4 models than PLS (table 

23). This is an observation also reported in the literature. For example, LogD7.4 predictive 

models have been developed with data extracted from ChEMBL database and the LogD7.4 of 

the diverse test set was better predicted with the SVR algorithm compared to the PLS (Wang 

et al, 2015). There should be a nonlinear relationship between the target value (LogD7.4) and 

the descriptors. In addition, proprietary LogD7.4 models were developed with various algorithms 

(linear ridge regression, Gaussian process, SVR and RF) in Bayer Shering Pharma AG. 

Among the methods used, the linear ridge regression, which is a linear machine learning 

method as PLS, performed the worst (Schroeter et al., 2007) and the SVR algorithm performed 

better than RF. In addition, Schroeter and co-workers (2007) used literature temporal test sets 

to assess the performance of the proprietary LogD7.4 models and the SVR algorithm produced 

the best results. Finally, LogD7.4 models developed with RF and PLS algorithms (Rodgers et 

al., 2011) in AstraZeneca and the RF was more predictive than PLS.  

The SVR algorithm performed better compared to the RF algorithm in both diverse and 

temporal test sets. In the case of the ChEMBL diverse test set, the SVR algorithm performed 

slightly better, by showing an RMSE of 0.94 compared to the RF which showed an RMSE 

equal to 1.01. In the case of the ChEMBL temporal test set, the SVR algorithm performed 

better, by showing an RMSE of 0.77 compared to RF that showed an RMSE of 0.84. In 

addition, the SVR predicted values with a higher correlation (R2) with the experimental values 

for both test sets compared to RF. Both test sets were predicted with a high error in prediction 

and therefore the reliability of prediction by ChEMBL models is questionable and the results of 

prediction should be used with caution. 
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Figure 33:  Experimental versus predicted logD7.4 values of compounds in the ChEMBL diverse 

test set obtained with the ChEMBL model developed with the SVR algorithm. LogD7.4 

lipophilicity is reported as Log10 D. The black solid line represents the line of best fit in the form 

of y=b+ax. The red and dark blue dashed lines represent the y=x±1 and the y=x±0.5 

respectively. 

 

Figure 34: Experimental versus predicted logD7.4 values of compounds in the ChEMBL 

temporal test set obtained with the ChEMBL model developed with the SVR algorithm. LogD7.4 

lipophilicity is reported as Log10 D. The black solid line represents the line of best fit in the form 

of y=b+ax. The red and dark blue dashed lines represent the y=x±1 and the y=x±0.5 

respectively. 
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When the SVR ChEMBL model was applied on the literature diverse and temporal test sets 

the R2 was equal to 0.82 and 0.71 respectively and the RMSE equal to 0.94 and 0.77 

respectively (figures 33, 34). Thus, the compounds in the temporal test set showed a better 

correlation between the experimental and predicted values and a lower RMSE in prediction 

compared to the diverse test set. However, R2 should be considered cautiously because its 

value increases with the addition of data the wider range of the data present in the test sets. 

The diverse test set contained a greater number of compounds with a wider value range and 

thus the R2 value could have been affected. The red and dark blue dashed lines enclosed the 

compounds with predicted LogD7.4 values within ±1 and ±0.5 log units respectively from the 

experimental values. For the diverse test set, the 82.63% and the 69.88% of the predicted 

LogD7.4 values were within ±1 and ±0.5 log units from the experimental values respectively. 

For the temporal test set, the 80.23% and the 69.77% of the predicted LogD7.4 values were 

within ±1 and ±0.5 log units from the experimental values. Therefore, approximately the same 

percentage of predicted values is found to be within ±1 and ±0.5 log units from the 

experimental values for both temporal and diverse test sets. 

The RMSE in prediction for the temporal test set was lower than the RMSE of the diverse test 

set. The temporal test set was expected to be more challenging to predict compared to the 

diverse. The diverse set instead was part of the initial dataset and there was a possibility that 

the diverse test sets contained data similar to those present in the training set. A possible 

reason that the diverse test set was predicted with a higher RMSE is that the compounds that 

were randomly selected were not representative of the training set. There are rational division 

methods, like the Kennard-Stone, that can be used to partition the initial dataset into a training 

and a representative test set. A well representative test set can give a better result because 

the test compounds are represented in the training set. However, there are advantages and 

disadvantages in both approaches. The advantage of randomly splitting the compounds in 

training and test set is that the compounds might or might not be representative of the training 

set. As a result, a random selection of a diverse test set gives an indication of the “realistic 

predictive power” of an ADME model.  From another perspective, one could argue that the test 

should be reasonably similar and representative to the compounds of the training set. 

However, this approach could yield an “optimistic estimate” of the model performance 

(Cherkasov et al., 2014). This optimistic estimate was observed by a study in which different 

rational methods and the random method were evaluated (Martin et al., 2012). The results of 

this study indicated that the rational division methods can result in better statistical results but 

there are cases where the predictive power of both rational and random division are 

comparable. In addition, in a pharmaceutical company’s drug design process, the use of a 

representative test set with optimistic model assessment results might not be appropriate. The 

reason is that the newly synthesised proprietary compounds might or might not be similar to 

the model’s training set. Therefore, a randomly selected diverse test set mimics that situation 

and potentially the results are more realistic.  
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3.3.2 Models developed with proprietary data (Evotec models) 

The second models reported herein were developed using only proprietary data extracted from 

the Evotec database. These models are referred as “Evotec models” in this and the following 

section and are based on a set of 8400 compounds with distribution coefficient at pH=7.4 

(logD7.4) data. Three different modelling algorithms were applied to build the QSPR models: 

random forest (RF), partial least square (PLS) and support vector regression (SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 8400 compounds were used to build the QSPR models and the test set (temporal) 

were derived subsequently, when new compounds were added in the Evotec database with 

logD7.4 lipophilicity data. The temporal test set included 895 compounds. In the second case, 

the 8400 compounds were merged with the 895 compounds of the temporal test set and the 

diverse test set was built including 20% of the total number of compounds randomly selected, 

while the remaining 80% of the compounds have been used to build and train the model.  

Table 24: RMSE in prediction and R2 of Evotec diverse test set and Evotec temporal test set 

obtained with the Evotec model by using three different machine learning methods (RF, PLS 

&SVR). The red colour indicates the model that produced the lower RMSE in each testing 

strategy. 

Model/Training 

set 

Evotec diverse 

test set 

Evotec temporal 

test set 

RF PLS SVR RF PLS SVR 

Evotec 

RMSE 0.60 0.63 0.49 0.62 0.68 0.53 

R2 0.77 0.72 0.84 0.66 0.55 0.72 

 

The results of the model assessment indicated that in both test sets (temporal or diverse), the 

RF and SVR algorithms provided better performing predictive LogD7.4 models than PLS (table 

24). This is an observation also reported in the literature and has discussed in section 3.3.1. 

The SVR algorithm performed better compared to the RF algorithm in both diverse and 

temporal test sets with an RMSE of 0.53 and 0.49 respectively. In addition, the correlation 

between experimental and predicted LogD7.4 values was higher when the SVR applied for both 

diverse (R2=0.84) and temporal (R2=0.72) test sets compared to RF. Both test sets were 

predicted with a high error in prediction and therefore the reliability of prediction by Evotec 

models is questionable and the results of prediction should be used with caution. 
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Figure 35: Experimental versus predicted logD7.4 values of compounds in the Evotec diverse 

test set obtained with the Evotec model developed with the SVR algorithm. LogD7.4 lipophilicity 

is reported as Log10 D. The black solid line represents the line of best fit in the form of y=b+ax. 

The red and dark blue dashed lines represent the y=x±1 and the y=x±0.5 respectively. 

 

Figure 36: Experimental versus predicted logD7.4 values of compounds in the Evotec temporal 

test set obtained with the Evotec model developed with the SVR algorithm. LogD7.4 lipophilicity 

is reported as Log10 D. The black solid line represents the line of best fit in the form of y=b+ax. 

The red and dark blue dashed lines represent the y=x±1 and the y=x±0.5 respectively. 

 

 



Page 104 of 148 
 

When the SVR Evotec model was applied on the literature diverse and temporal test sets the 

R2 was equal to 0.84 and 0.72 and the RMSE equal to 0.49 and 0.53 respectively (figures 35, 

36). The compounds in the diverse test set (figure 35) showed a better correlation between the 

experimental and predicted LogD7.4 values (R2=0.84) and a lower error in prediction 

(RMSE=0.49) compared to the temporal test set (R2=0.72, RMSE=0.53). However, R2 should 

be considered cautiously because its value may be increased by addition of data in a narrow 

range of values. The diverse test set included a greater number of compounds compared to 

the temporal test set and thus the higher R2 value might not indicating better model 

performance. The red and dark blue dashed lines enclosed the compounds with predicted 

LogD7.4 values within ±1 and ±0.5 log units respectively from the experimental values. For the 

diverse test set, the 95.37% and the 89.13% of the predicted LogD7.4 values were within ±1 

and ±0.5 log units from the experimental values. For the temporal test set, the 94.30% and the 

83.35% of the predicted LogD7.4 values were within ±1 and ±0.5 log units from the experimental 

values. Therefore, a smaller percentage of temporal test set compounds had prediction values 

within 1 and 0.5 log units from the experimental values compared to the diverse test set. The 

reason might be that the compounds in temporal test set were novel or far from the model’s 

chemical space and the model produced predictions with a higher error in prediction. 

Therefore, the compounds in the temporal test sets might not have been represented with 

compounds in the training set as it might have happened with the compounds in the diverse 

test set, which were randomly selected from the initial dataset.    

3.3.3 Models developed with proprietary and literature data (Evotec+ChEMBL models) 

The third models reported herein were developed using both Evotec proprietary and literature 

data extracted from the ChEMBL database. These models are referred as “Evotec+ChEMBL 

models” and were based on the previous training sets that were used in the ChEMBL and 

Evotec models previously. The two previous training sets were merged resulting in 9609 

compounds in total. Three different modelling algorithms were applied to build the QSPR 

models: random forest (RF), partial least square (PLS) and supporting vector regression 

(SVR).  

Two different strategies were used to define and evaluate the goodness of a model. In one 

case, all the 9609 compounds have been used to build the QSPR models and the test set 

(temporal) was derived by merging the two previous (Evotec and ChEMBL) temporal test sets 

resulting in 981 compounds. In the second case, the 9609 compounds were merged with the 

981 compounds of the temporal test set and the diverse test set was built including 20% of the 

total number of compounds randomly selected, while the remaining 80% of the compounds 

have been part of the training set used to build the model.  
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Table 25: RMSE in prediction and R2 of Evotec+ChEMBL diverse test set and 

Evotec+ChEMBL temporal test set using different machine learning methods (RF, PLS 

&SVR). The red colour indicates the model that produced the lower RMSE in each testing 

strategy. 

 

Model/Training 

set 

Evotec+ChEMBL 

diverse test set 

Evotec+ChEMBL 

temporal test set 

RF PLS SVR RF PLS SVR 

Evotec+

ChEMBL 

RMSE 0.62 0.78 0.55 0.58 0.69 0.58 

R2 0.81 0.70 0.84 0.71 0.59 0.71 

 

The results of the model assessment indicated that for both test sets (temporal or diverse), the 

RF and SVR algorithms provided better performing predictive LogD7.4 models than PLS (table 

25). This is an observation also reported in the literature and has discussed in section 3.3.1 

and 3.3.2. In the case of diverse test set, the SVR algorithm performed better (RMSE=0.55) 

compared to the RF (RMSE=0.62). In addition, the correlation between experimental and 

predicted LogD7.4 values of the diverse test set, was higher when the SVR (R2=0.84) applied, 

compared to RF (R2=0.84). In the case of the temporal test set, the two algorithms (RF and 

SVR) performed identically (RMSE=0.58, R2=0.71). Both test sets were predicted with a high 

error in prediction and therefore the reliability of prediction by Evotec+ChEMBL models is 

questionable and the results of prediction should be used with caution. 
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Figure 37: Experimental versus predicted logD7.4 lipophilicity of compounds in the 

Evotec+ChEMBL diverse test set obtained with the Evotec+ChEMBL model developed with 

the SVR algorithm. LogD7.4 lipophilicity is reported as Log10 D. The black solid line represents 

the line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the 

y=x±1 and the y=x±0.5 respectively. 

 

Figure 38: Experimental versus predicted LogD7.4 lipophilicity of compounds in the 

Evotec+ChEMBL temporal test set obtained with the Evotec+ChEMBL model developed with 

the SVR algorithm. LogD7.4 lipophilicity is reported as Log10 D. The black solid line represents 

the line of best fit in the form of y=b+ax. The red and dark blue dashed lines represent the 

y=x±1 and the y=x±0.5 respectively. 

Although RF and SVR performed identically for the temporal test set, the performance of 

models for the two different test sets was compared to the overall best performing algorithm, 
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which is SVR. The SVR was the best performing algorithm for the diverse test set and one of 

the two identically best performing algorithms for the temporal test set. When the SVR 

Evotec+ChEMBL model was applied on the diverse and temporal test sets the R2 was equal 

to 0.84 and 0.71 and the RMSE equal to 0.55 and 0.58 respectively (figures 37, 38). Therefore, 

the compounds in the diverse test set showed a better correlation between the experimental 

and predicted values and a lower RMSE in prediction compared to the temporal test set. 

However, R2 should be considered cautiously because its value may be increased by addition 

of data in a narrow range of values. The diverse test set included a greater number of 

compounds compared to the temporal test set and thus the higher R2 value might not indicating 

better model performance. The red and dark blue dashed lines represent the compounds with 

predicted LogD7.4 within ±1 and ±0.5 log units respectively from the experimental values. For 

the diverse test set, the 93.96% and the 87.77% of the predicted LogD7.4 values were within 

±1 and ±0.5 log units respectively from the experimental values. For the temporal test set, the 

91.44% and the 80.73% of the predicted LogD7.4 values were within ±1 and ±0.5 log units from 

the experimental values. Therefore, a smaller percentage of temporal test set compounds had 

prediction values from the experimental values within ±1 and ±0.5 log units. The reason might 

be that the compounds in temporal test set were novel or far from the model’s chemical space 

and the model produced predictions with a higher error in prediction. Therefore, the 

compounds in the temporal test sets might not have been represented with compounds in the 

training set as it might have happened with the compounds in the diverse test set, which were 

randomly selected from the initial dataset.    

3.3.4  Comparison of LogD7.4 models with models reported in the literature 

The goal of this part of the work was to compare the models developed in the present study in 

sections 3.3.1-3.3.3 (i.e. ChEMBL, Evotec and Evotec+ChEMBL models) with models reported 

in the literature.  Being LogD7.4 a widely used parameter for pre-evaluation of compounds in 

drug discovery, predictive LogD7.4 models have been published in the literature and are 

reported in table 26. These models developed with proprietary data in pharmaceutical 

companies (Bruneau & McElroy, 2006; Rodgers et al., 2011; Schroeter et al., 2007) and with 

data extracted from the literature (Wang et al., 2015). 
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Table 26: Regression lipophilicity models developed with logD7.4 data reported in the 

literature. 

Reference Method Number of 

Molecules 

Number of 

Descriptors 

AD 

Estimation? 

(Yes/No) 

(Bruneau & 

McElroy, 

2006) 

1. BRNN 5000 122 Yes 

Mahalanodis 

Distance 

(Schroeter 

et al., 2007) 

1. Gaussian 

Process 

2. Linear ridge 

regression 

3. SVR 

4. RF 

14556 Dragon descriptors 

(1664) 

Yes 

Mahalanodis 

Distance 

(Rodgers et 

al., 2011) 

1. SVR 

2. PLS 

Number of 

molecules varied 

as the models were 

updated over a 

period of 3 years 

In-house 

descriptor set 

(topological, 

geometrical and 

electronic) 

Yes 

Mahalanodis 

Distance 

(Wang et al, 

2015) 

3. RF 

4. PLS 

1130 121 Yes 

Leverage 

 

One of the initial attempts to develop lipophilicity models based on logD7.4 data and the BRNN 

(Bayesian Regularised Neural Networks) algorithm, was conducted in AstraZeneca (Bruneau 

& McElroy, 2006). In this study a set of 8200 of AstraZeneca “in house” compounds was 

clustered based on hierarchical clustering process. After clustering, 5000 clusters were 

generated and one compound from each cluster was selected to form the training set; the rest 

of the compounds had been used as “ex-cluster validation” test set. In addition, a “global 

validation” test set, comprised by 16325 compounds, was obtained from the AstraZeneca 

database. The advantage was that the model was developed with a consistent and large 

proprietary dataset. Model seemed to perform well for both test sets with an RMSE in prediction 

of 0.54 (“ex-cluster validation”) and 0.63 (“global validation”). The proprietary Evotec model 

developed in this study performed slightly better in predicting temporal test set compounds 

(RMSE=0.49). The Evotec+ChEMBL performed similarly with AstraZeneca models by 

predicting temporal test set compounds with an RMSE equal to 0.58. However, the 

AstraZeneca models were developed only with proprietary compounds and it will be interesting 
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to investigate how data extracted from the literature could affect the performance and AD of 

the proprietary models.  

In Bayer Schering Pharma AG (Schroeter et al., 2007), LogD7.4 models were developed using 

four different algorithms: Gaussian Process (GA), 2. Linear Ridge Regression (LRR), 3.SVR 

and 4. RF. The training set, identical for all the four models, included 14556 proprietary 

compounds. The models were then assessed with a literature temporal test set and proprietary 

temporal test set. The literature temporal test set was better predicted by the GA and SVR 

models, with an RMSE of 0.66 and 0.71 respectively. The Evotec model predicted the literature 

temporal test set with an RMSE equal to 0.83 (result obtained with SVR algorithm). On the 

other hand, when Schroeter et al (2007) assessed the proprietary temporal test set, they 

obtained an RMSE equal to 0.81 and 0.82 for the SVR and GA method respectively. The 

Evotec and Evotec+ChEMBL models were better in predicting proprietary temporal test set 

compounds with an RMSE of 0.53 and 0.58 respectively (result obtained with SVR algorithm). 

Moreover, the ChEMBL model obtained an RMSE equal to 0.77 which is very similar to that 

obtained by Schroeter et al (2007). 

Furthermore, two LogD7.4 models developed with RF and PLS algorithms (Rodgers et al., 

2011) in AstraZeneca. These models were constantly updated and assessed, on a monthly 

basis, when new data became available over a period of 3 years. The initial model contained 

AstraZeneca proprietary compounds in the training set and this model, when trained with the 

RF algorithm, predicted the 1st temporal test set and the last temporal test set with an RMSE 

of 0.53 and 0.67. A final model was obtained after the 3 years of constant update and 

evaluation. This final model was able to predict the final temporal test set with an RMSE of 

0.57. The Evotec model was able to predict the Evotec temporal test set with an RMSE of 0.53, 

thus indicating that the predictive activity of the proprietary model in the present study (Rodgers 

et al., 2011) is very similar and slightly better.  

Finally, Wang et al (2015) developed LogD7.4 models using data obtained from ChEMBL and 

ochem.eu database, resulting in a training set of 1130 compounds. These compounds were 

partitioned into training set (80% of compounds) and diverse test set (20% of compounds) with 

the Kennard-Stone method. This algorithm works by selecting the compounds so that they are 

divided evenly throughout the descriptor space of the original set of compounds (Martin et al., 

2012). This rational method of splitting the compounds ensured that the test set was 

representative of the training set. The algorithms that used in that study were the RF and SVR. 

The models trained with SVR and PLS resulted in an RMSE in prediction of 0.56 and 0.69 

respectively. The Evotec and Evotec+ChEMBL models were better in predicting proprietary 

compounds with an RMSE equal to 0.49 and 0.55 respectively. However, the models 

developed by Wang et al (2015) were better performing than the ChEMBL models reported in 

the present study.  A direct comparison of the RMSE and R2 would be not accurate, as different 

training and test sets were used.  

In order to make a direct comparison, the methodology developed in the present study, was 

applied on Wang et al (2015) training set and then the models derived, were assessed with 
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the Wang et al (2015) diverse test set.  Therefore, the training compounds of Wang et al (2015) 

were trained by using the set of descriptors and algorithms used in the present study.  The two 

best performing algorithms were applied: RF and SVR, and the results of the RMSE in 

prediction are shown in table 27.  

Table 27: Model assessment results of SVR models developed by Wang et al (2015) and of 

the new models developed with Wang et al (2015) training and test set and the present study’s 

methodology.  

 Method Literature ChEMBL diverse test set by 

Wang et al (2015) 

RMSE R2 

Literature ChEMBL by Wang et al (2015) SVR 0.56 0.89 

Literature ChEMBL model by Wang et al 

(2015) developed with present study’s 

methodology 

SVR 0.55 0.90 

RF 0.62 0.87 

 

Table 27 shows that the methodology (algorithms) developed in the present study, when 

applied to the literature training and test sets of Wang et al (2015) provided comparable results. 

The RMSE and R2 of the two models (table 27) developed with the SVR algorithm were almost 

identical. The RMSE in prediction of the models reported in table 27 was smaller than the 

RMSE in prediction of the ChEMBL model reported in section 3.3.1. A possible explanation is 

that Wang et al (2015) used a representative test set, which was obtained from the initial 

compound dataset with the Kennard-Stone algorithm. A test set, which is representative of the 

training set can give a good model performance but at the same time could be unrealistic. 

In addition, there are various available commercial software that can be used for the theoretical 

calculation of LogD7.4 like the ChemAxon software. ChemAxon was used to calculate the 

LogD7.4 of the Evotec and ChEMBL diverse and temporal test sets, which were used in the 

present study. The root mean square error (RMSE) of the predictions and the R2 of the 

predicted versus experimental have been calculated for the test sets and are used to evaluate 

the goodness of the ChemAxon software (table 28). In addition, the LogD7.4 predictions of the 

ChEMBL and Evotec temporal and diverse test sets obtained by the Evotec, ChEMBL and 

Evotec+ChEMBL, are reported in table 28.  
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Table 28: RMSE in prediction and R2 of ChEMBL and Evotec diverse test sets and ChEMBL 

and Evotec temporal test set. Results obtained by using the ChemAxon software, and the 

ChEMBL, Evotec and Evotec+Chembl models developed with the SVR algorithm. 

Test sets 
ChEMBL diverse 

test set 

Evotec diverse 

test set 

ChEMBL temporal 

test set 

Evotec temporal 

test set 

Model ChemAxon 

RMSE 1.42 1.14 1.01 0.86 

R2 0.61 0.43 0.66 0.52 

Model ChEMBL model 

RMSE 0.94 1.14 0.77 0.89 

R2 0.82 0.36 0.71 0.51 

Model Evotec model 

RMSE 1.64 0.49 0.83 0.53 

R2 0.63 0.84 0.66 0.72 

Model Evotec+ChEMBL model 

RMSE 0.95 0.47 0.77 0.56 

R2 0.82 0.85 0.72 0.70 

 

The diverse and temporal test sets were better predicted by the models developed in the 

present study compared to the ChemAxon. The RMSE in prediction for the ChEMBL diverse 

test set and the ChEMBL temporal test set was 1.42 and 1.01 respectively when the 

ChemAxon software used. When the ChEMBL model used, the RMSE in prediction for the 

ChEMBL diverse test set and the ChEMBL temporal test set decreased to 0.94 and 0.77 

respectively. Similarly, the correlation between the experimental and predicted values was 

higher for both ChEMBL diverse and temporal test sets, when the ChEMBL model used. The 

RMSE in prediction for the Evotec diverse test set and Evotec temporal test set was 1.14 and 

0.86 respectively when the ChemAxon software used. When the Evotec+ChEMBl model used 

the RMSE for the Evotec diverse test set and Evotec temporal test set was 0.47 and 0.56 

respectively. These results indicated that the Chemaxon software cannot predict LogD7.4 as 
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accurately as the models developed in the present study. Moreover, another disadvantage of 

the ChemAxon is that it does not provide a measure to estimate the AD of the training set and 

thus the distance of the test set compounds from it. In the present study, the AD of the models 

was investigated (section 3.3.6). 

Moreover, Chemaxon is a software that predicts the LogD7.4 with fragment based methods and 

thus the predictions rely on the quality of the fragments in a large extend (Wang et al, 2015). 

In the study conducted by Wang et al (2015), the performance of the LogD7.4 models developed 

with ChEMBL data was compared with the Chemaxon and Discovery studio software. The 

results indicated that the model developed with the SVR algorithm was better predicting the 

LogD7.4 of the compounds in the test set. Two possible explanations, as outlined by Wang et 

al (2015), are: the advantage of chemical diversity that a literature test set offers and the fact 

that the calculation of LogD by ChemAxon is based on the pka and LogP values.  

However, none of the studies outlined above investigated the effect of literature data in the 

proprietary models. Therefore, the effect of the literature data in the model performance of 

proprietary models and in the applicability domain is outlined in sections 3.3.5 and 3.3.6 

respectively. 

3.3.5 The effect of merging proprietary and literature data in the development of LogD7.4 

models 

The three models (“ChEMBL”, “Evotec” and “Evotec+ChEMBL” models), which were 

developed and described in sections 3.3.1-3.3.3, were used to evaluate the effect of the 

introduction of literature compounds in the proprietary models by testing both Evotec and 

Evotec+ChEMBL models on the same test sets.  The test sets that were used are the Evotec 

and ChEMBL temporal and diverse test sets, which have been also outlined in sections 3.3.1-

3.3.3 The three models were trained with three different algorithms (RF, PLS and SVR) and 

were tested on the same diverse and temporal test sets and the results are outlined in tables 

29 and 30 respectively.  

The models predicted the diverse and temporal test sets with a large error in prediction (tables 

29, 30) and as a result the reliability of predictions is questionable and the results of prediction 

should be used with caution. There are various reasons, which can negatively affect the 

performance of the models and have been outlined in section 3.2.5. 
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Table 29: Table shows the model performance of “ChEMBL”, “Evotec” and “Evotec+ChEMBL” 

models. The RMSE in prediction and R2 of Evotec and ChEMBL diverse test sets are reported. 

Results obtained by applying the RF, PLS and SVR algorithms. The red colour indicates the 

highest performing model between the Evotec and Evotec+ChEMBL models. 

Number of 

compounds 

Model/Training 

set 

Evotec diverse test set ChEMBL diverse test set 

RF PLS SVR RF PLS SVR 

1036 ChEMBL 

RMSE 1.09 1.54 1.14 1.01 1.34 0.94 

R2 0.44 0.22 0.36 0.79 0.65 0.82 

7436 Evotec 

RMSE 0.60 0.63 0.49 1.56 1.43 1.34 

R2 0.77 0.72 0.84 0.59 0.57 0.63 

8472 
Evotec+

ChEMBL 

RMSE 0.53 0.69 0.47 1.15 1.22 0.95 

R2 0.81 0.68 0.85 0.76 0.70 0.82 

 

Table 30: Table shows the model performance of “ChEMBL”, “Evotec” and “Evotec+ChEMBL” 

models. The RMSE in prediction and R2 of Evotec and ChEMBL temporal test sets are 

reported. Results obtained by applying the RF, PLS and SVR algorithms. The red colour 

indicates the highest performing model between the Evotec and Evotec+ChEMBL models. 

Number of 

compounds 

Model/Training 

set 

Evotec temporal test set ChEMBL temporal test set 

RF PLS SVR RF PLS SVR 

1209 ChEMBL 

RMSE 0.84 1.30 0.89 0.84 1.09 0.77 

R2 0.58 0.34 0.51 0.72 0.58 0.71 

8400 Evotec 

RMSE 0.62 0.68 0.53 0.97 0.92 0.83 

R2 0.66 0.55 0.72 0.54 0.58 0.66 

9609 
Evotec+

ChEMBL 

RMSE 0.58 0.68 0.56 0.86 0.78 0.77 

R2 0.68 0.56 0.70 0.64 0.69 0.72 
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When the proprietary diverse test set used to assess the models (table 29), the 

Evotec+ChEMBL model (trained with the RF and SVR algorithm) showed an improvement in 

the predictions with respect to the Evotec model. The Evotec+ChEMBL model predicted better 

the proprietary diverse test set with an RMSE equal to 0.53 and 0.47 (when the RF and SVR 

algorithm used) compared to the Evotec model, which showed and RMSE equal to 0.60 and 

0.49. In addition, the Evotec+ChEMBL models showed a better correlation of experimental 

with predicted values compared to the Evotec model. However, the same result was not 

observed with the PLS algorithm. When the literature diverse test set used to assess the 

models, the Evotec+ChEMBL model could better predict the LogD7.4 compared to the Evotec 

model. The Evotec+ChEMBL models showed a lower RMSE in predictions and a higher R2 

(i.e. improved relationship between the experimental and predicted values) for all the algorithm 

tested.  This indicated that the Evotec+ChEMBL model can provide a large improvement in 

the predictions for the literature diverse test set; this evidence has been found for all the 

algorithms tested.  

Similar results and observations obtained with the temporal test sets (table 30). The 

Evotec+ChEMBL model predicted better the proprietary temporal test set with an RMSE equal 

to 0.58 when the RF used compared to the Evotec model which showed an RMSE equal to 

0.62.  However, the same result was not observed with the SVR and PLS algorithm. When the 

ChEMBL temporal test set used to assess the models, the Evotec+ChEMBL model could 

better predict the LodD7.4 compared to the Evotec model.  The Evotec+ChEMBL models 

showed a lower RMSE in predictions and a higher R2 (i.e. improved relationship between the 

experimental and predicted values) for all the algorithm tested. 

Temporal compounds extracted from literature (ChEMBL temporal test set) could theoretically 

mimic novel proprietary chemotypes and series from completely new projects or novel 

chemical matter in existing projects. These results provided an indication that the compounds 

extracted from literature can enhance the predictive ability of the proprietary models when they 

assess newly synthesised and chemically diverse compounds.  

The merging of the compounds from different sources (proprietary and literature) seemed to 

be beneficial. The results and the performance of the merged model (Evotec+ChEMBL 

models) balanced the experimental uncertainty of the data. The Evotec +ChEMBL models 

exhibited a similar performance with the Evotec models in the prediction of proprietary temporal 

test sets and showed a significant improvement for the prediction of literature test compounds. 

Similar results observed with the development and evaluation of Caco-2 permeability models. 

This provides a confidence in the conclusion that the literature data can have a positive effect 

on the performance of proprietary ADME models. 
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3.3.6 Applicability Domain estimation of the in-silico LogD7.4 models 

Determining the AD for a QSPR model is important to estimate the reliability of a prediction of 

an external compound. If the compound lies within the AD of the QSPR model used to predict 

a property, this prediction can be taken, otherwise the prediction should be either discarded or 

given a low reliability flag.  

The AD of the models was estimated with four distance to model metrics, which were the: 1. 

k-NN with Euclidean, 2. k-NN with Manhattan, 3. Leverage and 4. Mahalanobis distance. The 

distance to model metrics calculated the distance of the test compounds from the training set 

in the descriptors’ space (i.e. the multi-dimensional space defined by the descriptors of the 

compounds used to train the model) and a threshold was applied. Above that threshold, 

compounds were considered to be outside the AD. 

The goal of this section was twofold. Firstly, the AD of the Evotec+ChEMBL model was 

compared with the AD of the Evotec model. Secondly, once an AD distance threshold had 

been determined, the goal was to check whether test set compounds within the AD are actually 

predicted more accurately than compounds outside the AD. To do that, compounds in the test 

set were partitioned in two groups; within the AD, and outside the AD. If compounds within the 

AD show an RMSE in the prediction smaller than compounds outside the AD, the particular 

distance metric is able to clearly define an AD for the model. In addition, a Mann Whitney test 

was used to establish the presence of a statistically significant difference in the RMSE of the 

compounds inside and outside of the AD.  To achieve both objectives, for every model 

(“ChEMBL model”, “Evotec model” and “Evotec+ChEMBL”) the portion of compounds within 

and outside the AD was calculated by using all the four distance metrics mentioned above. 

The distance of compounds in the two temporal test sets (“Evotec temporal test set” and 

“ChEMBL temporal test set”) was calculated from the training compounds of the three different 

models (“ChEMBL model”, “Evotec model” and “Evotec+ChEMBL” model) and the percentage 

of the test compounds within the AD of the models was calculated. Results are reported in 

table 31.  
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From table 31, it can be observed that, in most cases, the RMSE in prediction of the 

compounds within the AD was lower than the RMSE of the compounds outside the AD. This 

evidence, provided confidence for using these distance metrics and threshold determination 

method as a reliable protocol for defining the AD of the models. Similar studies are in 

agreement with these findings; (Jaworska et al., 2005; Sahigara et al., 2012) as they employed 

in their work, the same distance metrics and reached the same conclusions. Moreover, this 

phenomenon was observed in studies, where the AD of lipophilicity models was investigated. 

In more detail, in two different studies, one conducted with AstraZeneca proprietary 

compounds (Rodgers et al., 2011) and another conducted with Bayer Schering Pharma data 

(Schroeter et al., 2007), the distance of test compounds from the training set was evaluated 

with the Mahalanobis Distance. The test compounds with low Mahalanobis distance were 

closer to the model space and had a lower RMSE in prediction.  

In addition, table 31 indicated that a greater percentage of Evotec temporal test compounds 

and ChEMBL temporal test compounds were within the Evotec+Chembl model’s AD compared 

to the Evotec proprietary model. Therefore, all the four distance to model metrics demonstrated 

that the AD of the Evotec models was enlarged with the inclusion of compounds extracted from 

the literature. This  indicated that the literature compounds can introduce chemical diversity 

and cover unexplored areas of the chemical space (Kogej et al., 2013).  

However, there are cases, where the compounds outside the AD showed an RMSE lower than 

the compounds inside the AD. This phenomenon has been discussed in the present study in 

section 3.2.7, where various possible explanations were outlined. The same phenomenon was 

also observed in a study, where LogD7.4 models have been developed with data extracted from 

the literature and the leverage method was used as the only metric to establish AD. In that 

case, there were compounds with low leverage that had a larger error in prediction and vice 

versa (Wang et al., 2016). The main reason of that phenomenon lied at the way that the 

threshold was defined. Generally, a threshold has a value, which simply excludes training 

compounds in the extremities. That means that the AD evaluation only considers the 

interpolation and not the possible extrapolation. Therefore, there might have been compounds 

in the test sets that were close to that outliers and thus they were predicted with a lower error 

in prediction than expected.   

In addition, the AD of a LogD7.4 model was evaluated over a period of 3 years (Rodgers et al., 

2011). The LogD7.4 models developed with RF and PLS and the training set was updated 

monthly. The Mahalanobis distance has been reported as the average Mahalanobis Distance 

of each test compounds to its 3-nearest neighbour in the training set. The final temporal test 

set was examined with the initial model and with the final model (updated over a period of three 

years). The test compounds predicted by the initial model with an RMSE of 0.67 and the 

average Mahalanobis Distance of the test compounds was 3.35. On the other hand, the final 

model produced an RMSE of 0.57 and the test compounds showed an average Mahalanobis 

Distance of 2.43. As a result, the inclusion of new proprietary compounds improved the model 

performance and enlarged its AD. This was also observed in the present study with the 



Page 118 of 148 
 

inclusion of the literature data into the proprietary models. Therefore, the addition of new 

compounds could be beneficial for the AD and the performance of the models. 

Another interesting finding regarding the distance to model metrics is that each distance to 

model metric produce different results. This was observed in the evaluation of the AD of the 

permeability models in section 3.2.7. The reason is possibly based on the fact that each 

distance to model metric calculated the distance of the test compounds differently. 

A statistical analysis used to understand which method is more reliable and the non-parametric 

Mann Whitney test was applied. The Leverage method could produce a statistically significant 

difference in the RMSE for the compounds inside and outside of the AD. For the other three 

methods, there was not always a statistically significant difference. Therefore, the Leverage 

method could be considered as the most effective method for these models. Leverage is a 

method extensively used in the literature for the estimation of the AD of permeability models 

(Wang et al, 2016), LogD7.4 models (Wang et al, 2015).  

In conclusion, in this case, leverage was considered as the best performing method for two 

reasons. The first reason was that it was able to categorise the test compounds in and out of 

the domain with a lower and higher RMSE in prediction. The second reason was the presence 

of a statistically significant difference in all the measurements. However, if a compound is 

outside the AD, it is not definite that the prediction is erroneous but it provides an AD “warning” 

(Gupta et al., 2016). 
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4 CONCLUSION AND FUTURE WORK 

The aim of this section is to summarise the overall conclusions of this study and to provide an 

overview of future work ideas that could be implemented in the development of ADME 

predictive models. 

4.1 Conclusions 

To address the effect of the inclusion of literature data in proprietary ADME QSPR models, 

new ADME models were built to include public data in their training set. Current models in 

Evotec make use of only proprietary data in the development of their ADME predictive models. 

There are also other companies like AstraZeneca, which have incorporated public data in their 

Caco-2 permeability models but the effect of the public data on the models was not 

investigated. Therefore, the aim of this study was to investigate whether the merging of 

literature and proprietary data could improve the predictive activity of proprietary models and 

enlarge their applicability domain. In order to achieve this aim, three specific objectives were 

devised to perform this study. 

The first objective was to evaluate the ability of the existing Evotec Caco2 permeability model 

to predict the permeability of literature compounds and to investigate different distance to 

model metrics for the evaluation of the AD. A large dataset of Caco-2 permeability data was 

downloaded from the ChEMBL database to perform this task. The initial results showed that 

the literature/ChEMBL test set was predicted with a higher RMSE compared to the RMSE in 

prediction for the internal compounds. In addition, the AD of the existing Evotec permeability 

models was evaluated with four distance to model metrics: kNN with Euclidean distance, kNN 

with Manhattan distance, Leverage and Mahalanobis distance. The distance of the test 

compounds (compounds downloaded from ChEMBL) from the Evotec training set was 

calculated in both descriptor and chemical (fingerprint) space. The test compounds were 

binned in five equally populated bins, by increasing distance, and the RMSE of each bin was 

calculated. A weak trend was observed between distance and the RMSE of the predictions; 

the RMSE was increasing as the distance was increasing. The same trend was not observed 

when the distance between test and training compounds was evaluated in the chemical space. 

A possible explanation for that could rely in the fact that caco-2 permeability is a property 

greatly influenced by the physiochemical properties of the compounds rather than form its 

structure; different functional groups might show similar physiochemical properties thus 

translating in a similar contribution to the overall Caco2 permeability of the molecule. Since the 

first approach produced a weak trend between the distance of the compounds and the RMSE, 

a second approach was used. The goal of the second approach was to understand whether a 

distance threshold could be applied to distinguish between compounds within and outside the 

AD with a difference in their RMSE. The Mann Whitney test was also applied to identify if the 

difference in the RMSE of the compounds within and outside the AD is statistically significant. 

The compounds within the AD had a lower RMSE than the compounds outside the AD and 

that difference was statistically significant. A significant amount of literature compounds has 

been found to be outside the AD of the Evotec model, thus highlighting an area for the 
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improvement of proprietary Evotec models and providing a rationale for an effort aimed at 

incorporating public data into the proprietary Evotec model to produced improved ADME 

models. 

The second objective was to develop new Caco-2 permeability models (referred as 

Evotec+ChEMBL models), which incorporate both proprietary and literature data and to 

evaluate their performance and AD compared to proprietary only Evotec models. In total three 

models were built based on three different training sets: Evotec proprietary compounds, 

literature compounds (downloaded from ChEMBL) and a merged set of Evotec proprietary and 

literature (Evotec+ChEMBL) compounds. Three different methods were used for developing 

QSPR models: Partial Least Squares (PLS), Random Forest (RF) and Support Vector 

Regression (SVR) with a radial basis function (rbf) kernel. The performance of the models was 

evaluated by using two types of test sets:  a diverse test set (20 % compounds of available 

data randomly selected) and a temporal test set (data published after the models were build). 

In addition, four distance to model metrics used to assess the AD of the all built models by 

estimating the distance of test set compounds from the training set using: k-NN (k-Nearest 

Neighbour) with Euclidean distance (ED), k-NN with Manhattan distance (ManhD), Leverage 

and Mahalanobis distance (MD). The results suggested that the RF was the method of choice 

for developing permeability models for two reasons. The first reason was that RF is easy-

implemented and is very time effective and the second was that it was able to provide a low 

error in the prediction of the test compounds.  

A comparison of the Evotec+ChEMBL model with the existing Evotec Caco-2 showed that the 

inclusion of public data could be highly beneficial and could improve both the model 

performance and enlarged its applicability domain. The permeability model built merging 

literature and proprietary data predicted a temporal literature test set with an RMSE of 0.68 

while the Evotec model showed an RMSE of 0.74. Similarly, the same model predicted an 

Evotec proprietary temporal test set with an RMSE of 0.55 while the Evotec model shower and 

RMSE of 0.57. Even in the case of the Evotec temporal test set, the two models performed 

similarly but the AD of the mixed models (incorporating both literature and proprietary data) 

was enlarged. The 86.15% of the compounds in the test set were within the AD of the mixed 

model, while 76.50% of the compounds of the same test set appeared to be within the AD of 

the Evotec model. 

Subsequently the same protocol was applied for the third objective, which was to develop new 

LogD7.4 models (referred as Evotec+ChEMBL models), which incorporated both proprietary 

and literature data and to evaluate their model performance and AD compared to proprietary 

only Evotec models. The same algorithms, distance metrics and test set strategy, used in the 

case of the Caco-2 permeability model, were applied. A comparison of the Evotec+ChEMBL 

model with the existing Evotec LogD7.4 showed that the inclusion of public data could be 

beneficial and could improve both the model performance and enlarge its applicability domain. 

The SVR was the best performing algorithm for the lipophilicity models by providing the lowest 

error in prediction for the most of the cases. The SVR LogD7.4 model built merging literature 

and proprietary data predicted a temporal literature test set with an RMSE of 0.77 while the 
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Evotec model showed an RMSE of 0.83. However, the new model predicted an Evotec 

proprietary temporal test set with an RMSE of 0.56 while the Evotec model shower and RMSE 

of 0.53. In that case, the RMSE in prediction is very similar. Even in the case of the Evotec 

temporal test set, the two models performed similarly but the AD of the mixed models 

(incorporating both literature and proprietary data) was enlarged. The 94.86% of the 

compounds in the test set fell within the applicability domain of the mixed model, while 88.49% 

of the compounds of the same test set appeared to be within the applicability domain of the 

Evotec model.   

In conclusion, the aim of this study, which focused on investigating the effect of the introduction 

of public data into the proprietary ADME models, has been achieved. The inclusion of public 

data into proprietary data improved the performance of proprietary models and enlarged, at 

the same time, their AD. These observations underline the importance of the inclusion of public 

data in the proprietary ADME models and thus the methodology presented herein will be 

applied by Evotec computational scientists to re-build the proprietary Caco-2 and LogD7.4 

Evotec models. Additionally, in this study, three modelling algorithms (RF, PLS and SVR) have 

been used for model building and each method gave different results. The RF algorithm was 

the highest performing algorithm for the development of Caco-2 permeability. However, the 

SVR algorithm provided the best LogD7.4 models. In Evotec, the existing method to train 

proprietary LogD7.4 models, is the RF but the SVR lowered the RMSE in predictions up to 0.1 

log units lower than the RF model, in the prediction of Evotec temporal test set compounds. 

This difference in the RMSE is not negligible and highlights the fact the different algorithms 

need to be assessed to find an optimal modelling approach for a particular data-set. Moreover, 

four distance to model metrics were assessed in the evaluation of the AD. In most of the cases 

the metrics used, could identify compounds inside and outside the AD with a smaller RMSE 

for the compounds inside. However, there were some cases were the RMSE for the 

compounds inside the AD was higher than the compounds outside and several reasons could 

be responsible for that and have been outlined. All the methods performed differently and only 

the Leverage method was able to distinguish between compounds inside and outside the AD 

with a statistically significant difference in the RMSE of the predictions. Therefore, in this study, 

the Leverage proved to be the most appropriate method but it is always good to use more than 

one metric to evaluate the AD of the model.  

In conclusion, this study demonstrates that the inclusion of public data into proprietary data 

can improve the performance of proprietary models and enlarge at the same time their 

applicability domain. The work and methodology presented herein is of great value also for 

Evotec. Concepts and methods of this work will be implemented at Evotec by computational 

scientists for future ADME model building. These are: i) the inclusion of ChEMBL compounds 

in the proprietary training sets, ii) the addition of the SVR as an algorithm to build ADME models 

and iii) the implementation of a procedure for the evaluation of the AD. In the light of this 

actions, the recommendations for future work are outlined in the following section. 
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4.2 Future work 

The inclusion of public data in the Evotec Caco-2 permeability and LogD7.4 models was 

beneficial in terms of models performance and AD and thus it will be interesting to include 

public data in other ADME models. Two important ADME models during drug discovery 

pipeline are the microsomal stability and plasma protein binding. The plasma protein binding 

influences the distribution of a compound into the body’s tissues. A drug with a high plasma 

protein binding value exhibits a decreased amount of free compound available to reach the 

biological target and also a slower metabolism. Therefore, plasma protein binding is a property 

that affects all the ADME properties and a good predictive model can benefit pharmaceutical 

companies. In the same aspect, the microsomal stability is equally important because can be 

used for the evaluation of the hepatic metabolism. Metabolism is the primary cause of failure 

or success of a compound (Ulenberg, Belka, Król, & Herold, 2015) as it affects their clearance 

(CL), half-life (t1/2) and oral bioavailability (Di, Keefer, Scott, Strelevitz, & Chang, 2012).  These 

parameters in turn, influence the concentration of the drug within the plasma and tissues of the 

body and consequently   affect the efficacy and the toxicology of the drug (Cyprotex, 2015). In 

addition, metabolism is a difficult parameter to predict as it is influenced by the binding of the 

compounds with the metabolic enzyme. Therefore, public data could potentially improve the 

performance and AD of two important and challenging to develop ADME models. 

Additionally, in this study, three modelling algorithms (RF, PLS and SVR) have been used for 

model building and each method gave different results. Therefore, it is important to assess 

different number of algorithms to find the most appropriate for each case. For example, the 

SVR proved to be better for the development of LogD7.4 models compared to the RF. By taking 

into consideration that there are several good modelling algorithms, other could also be applied 

for the model building. Two interesting suggestions are the Bayesian Regularised Neural 

Networks (BRNN) and Boosting algorithm. The BRNN has been used for the development of 

LogD7.4 models in AstraZeneca (Rodgers et al, 2011) and the boosting for caco-2 permeability 

models (Wang et al, 2015). In both cases, these algorithms were producing accurate 

predictions and it will be interesting to investigate their use with the model developed in Evotec. 

Moreover, at Evotec, models are updated on a monthly basis. In this study, only a subsequent 

analysis was performed for the Caco- 2 permeability model with a proprietary temporal test 

(including compounds tested four months after the compounds in the training set) and a 

literature test set containing compounds from the new ChEMBL version. Results showed that 

the updated Evotec+ChEMBL model was better in predicting new temporal and literature 

temporal test sets compared to Evotec model and also was better than the initial 

Evotec+ChEMBL model. Therefore, it will be beneficial to regularly update the models with 

public data (when a new ChEMBL version is available) and proprietary data (monthly) and 

assess their performance and applicability domain. In addition, in terms of incorporating new 

public compounds from ChEMBL into the Evotec models an efficient and time effective method 

should be developed as the data curation of the compounds is very time consuming. For that 

reason, the data curation process was performed with a KNIME workflow and this workflow 
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can be used in the future, to filter the compounds extracted from ChEMBL database for the 

caco-2 permeability and LogD7.4 lipophilicity models.  

In the present study, temporal test sets and diverse test sets by randomly selecting the 

compounds were used. It will be interesting to add another strategy of selecting the compounds 

based on a rational method of splitting the initial dataset into training and test set. Some 

examples of rational portioning in training and test set are the Kennard Stone algorithm and 

the sphere exclusion method. These methods can ensure that the compounds in the test set 

are representative of the compounds in the training set. However, this approach might not be 

representative of a realistic drug discovery case scenario, but it is interesting to evaluate how 

the model can perform with a test set, which is representative of the training set. Finally, it will 

be also interesting to evaluate the presence of outliers and how these outliers affect the 

models’ predictions.  
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6 Appendix 

Table S1: Java code used to calculate electric state with the “Java Snippet (simple)” node in 

KNIME. 

KNIME node Java code 

Java Snippet 

(simple) 

String state="na"; 

if (($neg_ionazible_groups$ == 0) && ($pos_ionazible_groups$ == 0)) 

{state = "neutral";} 

else if ($neg_ionazible_groups$ == 1 && $pos_ionazible_groups$ == 0) 

{state = "acid";} 

else if ($neg_ionazible_groups$ > 1  && $pos_ionazible_groups$ == 0) 

{state = "acid";} 

else if ($neg_ionazible_groups$ == 0 && $pos_ionazible_groups$ == 1) 

{state = "base";} 

else if ($neg_ionazible_groups$ == 0 && $pos_ionazible_groups$ > 1) 

{state = "base";} 

else if ($neg_ionazible_groups$ == $pos_ionazible_groups$ && 

$pos_ionazible_groups$ >= 1) {state = "zwitterion";} 

else if ($formal charge$ >= 1) {state = "base";} 

else if ($formal charge$ <= -1) {state = "acid";} 

else if ($formal charge$ == 0) {state = "zwitterion";} 

return state; 
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Table S2: list of R code that has been used. 

Task R-Code R-Package 

Continuous 

Random 

Forest (RF) 

R-Learner 

library(randomForest) 

knime.model <- 

randomForest(Y ~ ., 

ntree=500, data = 

knime.in) 

 

R-Predictor 

library(randomForest) 

levels(knime.in$electric_state) <- 

c("acid", "base", "neutral", 

"zwitterion") 

prediction <- 

as.data.frame(predict(knime.mod

el, knime.in)) 

colnames(prediction) <- 

"prediction" 

knime.out <- 

as.data.frame(cbind(knime.in, 

prediction)) 

 

#knime.out <- 

as.data.frame(cbind(knime.in, 

predict(knime.model, knime.in))) 

 

randomForest 

Partial 

Least 

Squares 

(PLS) 

model_rmsep <- c() 

numSamples <- 100 

for (i in 

1:numSamples) 

{model <- plsr(Y ~ ., 

data=knime.in, 

validation="CV", 

ncomp=40) 

levels(knime.in$electric_state) <- 

c("acid", "base", "neutral", 

"zwitterion") 

knime.out <- knime.in 

knime.out$prediction <- 

predict(knime.model, ncomp = x, 

newdata=knime.in) 

Note: where x is the number of 

significant components defined 

pls 
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current_rmsep <- 

RMSEP(model)$val[2,

,]   

 model_rmsep <- 

cbind(model_rmsep, 

current_rmsep) 

} 

model_rmsep 

rmsep_mean <- 

rowMeans(model_rms

ep) 

rmsep_sem <- 

apply(model_rmsep, 

1, 

sd)/sqrt(numSamples) 

rmsep_mean 

min(rmsep_mean) 

highest_performing_m

odel <- 

which(rmsep_mean 

== min(rmsep_mean)) 

highest_performing_m

odel 

z_values <- 

(rmsep_mean-

rmsep_mean[[highest

_performing_model]])/

sqrt(rmsep_sem^2+rm

sep_sem[[highest_perf

orming_model]]^2) 

z_values 

minimal_model_comp

onent_count <- 

by the learner and used to train 

the model. 
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min(which(z_values<=

qnorm(.95)))-1 

minimal_model_comp

onent_count 

newmod <- plsr(Y ~ ., 

data=knime.in, 

validation="CV", 

ncomp=minimal_mode

l_component_count) 

summary(newmod) 

knime.model <- plsr(Y 

~ ., data=knime.in, 

validation="CV", 

ncomp=minimal_mode

l_component_count) 

Support 

Vector 

Regression 

(SVR) 

model<- svm(Y~ ., data=data, kernel=’radial’) 

tc<-tune.control(cross="5") 

tuneResult<tune(svm, Y~ ., data=newdata, 

ranges=list(epsilon=seq(0,1, by=0.05), 

cost=list(1,2,5,10,15,20,25,30,40,50,60,70,80,90,100,125,

150,175,200,250,300, 

400,500,750,1000,1250,1500,1800), 

gamma=list(0.0001,0.0002,0.0004,0.0006, 

0.0008,0.001,0.002,0.004,0.006,0.008,0.01,0.02,0.04,0.06

,0.08,0.1,0.2,0.4,0.6, 

0.8,1.0), tunecontrol=tc, best.model=TRUE) 

e1071 

Principal 

Component 

Analysis 

(PCA) 

knime.out <- knime.in 

arc.pca1 <-princomp(knime.in, cor=TRUE, scores=TRUE) 

summary (arc.pca1) 

print(arc.pca1) 

 



Page 142 of 148 
 

arc.pca1$scores 

loadings(arc.pca1) 

knime.out <- data.frame(arc.pca1$scores) 

 

knime.model <-princomp(knime.in, cor=TRUE, 

scores=TRUE) 

Mahalanobi

s Distance 

(MD) 

knime.out <- knime.in 

colMeans (knime.in) 

Sx<-cov(knime.in) 

D2<-

mahalanobis(knime.in,colMeans(knime.in),cov(knime.in)) 

mean(D2) 

D2 

knime.out<-data.frame(D2) 

stats 
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Table S3: Correlation of the Average Distance bins for the Euclidean distance. Distance was 

calculated with the descriptors. 

 

Table S4: Correlation of the Average Distance bins for the Euclidean distance. Distance was 

calculated with the first 27 Principal Components.

 

Table S5: Correlation of the Average distance bins for the Manhattan distance.  Distance 

was calculated with the descriptors. 

 

Table S6: Correlation of the Average Distance bins for the Manhattan distance. Distance was 

calculated with the first 27 Principal Components.

 

Table S7: Correlation of the Average Distance bins for the  Tanimoto coefficient in chemical 

space.
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Table S8: Correlation of the Average Distance bins for the Dice coefficient in chemical space.
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Figure S2: Screenshot of the metanode created to calculate the Applicability Domain of the models 

with the kNN with Euclidean and Manhattan distance function. 



Page 147 of 148 
 

 

Figure S3: Screenshot of the metanode created to calculate the Applicability Domain of the models 

with the leverage method. 
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Figure S4: Screenshot of the metanode created to calculate the Applicability Domain of the models 

with the Mahalanobis Distance. 

 

 

 

 

 

 

 


