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Broido, J, Temporal Logic and "Reverse Semantics" Abstract

This paper examines the relationships between certain types of linear frames and
their alleged "temporal” Logics, S4.3 and S4.3.1, and shows how abnormal these
relations are in comparison with common Modal Logics and the frame-types normally
associated with them. Inasmuch as one refuses to regard as temporal structures any
but one directional linear frames, the paper will disqualify such or other
propositional logics from being strictly "temporal”.

The paper defines plausible senses in which a Modal Logic can be said to capture a
pre-selected subset of its models. Beyond completeness, this requires that every
nominalistically acceptable model be "composed" of models of the chosen type (such
modes of composition being termed intensional unions). While the Logics T,54,S5 and
B capture the frames traditionally used to characterise them, and while S4.3
captures weakly-linear frames (but not the linear!), $S4.3.1 fails to capture any
frame type. Specifically, it captures neither its discrete-linear models, nor the set of
w-frames—albeit semantically characteristic. On the other hand, 54.3.1 captures
those entropy-maximisers [end-extensions of open-ended linear structures, with an
appended S5-cluster], in which every cut is either quasi-deterministic or modally
continuous. Quasi-Determinism means that any formula with a constant limiting
value in shrinking "immediate futures" of the cut, must be so with respect to "recent
pasts"; whereas Modal Continuity means—for a cut with an open past—that a formula
is uniformly possible in every recent past only if it so in some immediate future. It is
shown that such models can be elementarily embedded in cofinal, modally continuous,
order complete extensions.

The results are significant independently of how one explicates the idea of a Logic
“capturing" a subset of its models. In particular, no alternative explication can
salvage the alleged status of S4.3.1(or any other propositional alternative) as a Logic
of an open-ended, discrete-linear (or, at least, of o-framed) temporality, since it is
proved (Theorem 6.2.1) that every model conforming to this characterisation is
elementarily embeddable in a non-trivial entropy-maximiser, which in. general is
neither linear nor discrete. This, together with the fact that some entropy
maximising models of $4.3.1 have no elementarily equivalent linear submodel,
demonstrates why the mere completeness of a logic vis a vis a models with a certain
type of frame does not automatically make it into the Logic of that frame-type. In
particular, the above results indicate why there can be no true propositional logic of
one directional linear time!

The attempt to retain S4.3 and S4.3.1 as full-fledged temporal logics may connect
better, according to this paper, with insights into the general—not quite linear—
nature of physical time, that are suggested by considering the causal evolution of
finitely quantised scalar fields—themselves treated as cellular automata operating in
finite-dimensional state-spaces. The possible basins of attraction of such automata
must always be intensional unions of Entropy Maximisers.







TEMPORAL LOGICS AND "REVERSE SEMANTICS"
Jonathan Broido

0. Introduction.
0.1. The Idiosyncrasy of Temporal (and Spatio-Temporal) Logics. The inspiration behind
the development of Temporal Logic in the last 40 years sets it apart from most other Modal
and Intensional Logics. S4.3, for example, which both Kripke and Hintikka came to regard
as the primal logic of linear temporality, had innocently enough originated in the attempt to
codify intuitions about Diodoran modalities (e.g.,p is and will always be true); yet from the
outset the codification was constrained or even dictated by pre-conceptions about the
structure of temporality itself. This applies to most of the work done in temporal and spatio-
temporal logic, which reversed the usual direction for Intensional Logics in general: Rather
than seek a Semantics to elegantly characterise a given Logic, one looked around for a Logical Theory
that would admit of a specific, preconceived, Semantic Infrastructure.

" Leading logicians? in the late 50's and the early 60's were thus quite happy to manufacture
many different temporal and tense logics, as long as their semantics could be framed in an
ordering of one kind or another of the "possible” temporal states, and such a preoccupation
with particular underlying topologies was quite overpowering. Even the interestin

Diodoran modalities was quickly replaced by an interest in w-frames and other "discrete”
temporal structures. A propositional logic $4.3.1 (Prior's D) of such"discrete" temporality
was believed to have been realised by adding to 4.3 a single schema (such as

AD:[(L(cDLa)D o) DL(MLaD a) in §4.0 below). When its discrete linear models were
shown by Kripke (and algebraically, in [Bull, 65]) to provide it with completeness, it was
concluded—rather rashly, as we shall argue —that this must indeed be the sought for
"Diodoran" logic of discrete linear temporality. Similar completeness results seemed to have
sealed the "Logical Capture" of other temporal and spatio-temporal structures.

- Despite all this, it is our contention that some of the most famous temporal propositional
logics can not be viewed as being specifically about the kinds of temporality or temporal
structures that they are alleged to capture. We claim that what they do succeed in capturing
is at times quite different, and even unspecifiable in pure topological terms. Yet, since an

'~ allusion to a "Logic of (such and such) temporality" presupposes, or at least suggests, that
one has been successful in specifically "capturing” the temporal structure invoked, our
claims here will have also challenged the underlying dogma that ordinary semantic
characterisation (consistency & completeness) automatically warrants such a "capture" in
the opposite direction—a capture of the characterising models by the characterised Logic.

0.2."Reverse Semantical Capture".2To show that a Logical Theory specifically captures a
certain favourite class of its models (which we might then choose to regard as paradigmatic),
it is clearly not enough to prove completeness with respect to this class. For there might
exist other legitimate models of the theory, not in the favourite class, which, by this very
completeness , are ineliminable by any added schemata (that is, without also eliminating
favourite models). Therefore, in claiming that a given Logic specifically capturesa certain
kind of "favoured" structure, one must somehow show, in addition to completeness with respect
to such structures, that all its other models are essentially reducible, by some standard
decompositional means, to the preferred models. Furthermore, such a reduction must be
reasonably strong, in the sense that it retains enough information about the original
reduced models.




2
Talking of The Logic of ...(such and such structures), and thereby alluding only to a proper
subset of all the conceivable models, therefore commits us—besides completeness— to a
strong reductive relationship between all legitimate models and our preferred subset. When
this is not available, we can not claim any priviledged status for our favourite models. This,
indeed, is what happens with the Logic 54.3.1: The relationship between all its models and
the subset of the discrete linear ones is so tenuous that we can no longer say that it captures
this latter subset. This is no condemnation of $4.3.1 itself; we should only take greater care
in choosing its "paradigmatic models", or what we want to regard it as a logic "of" !

In this respect things deteriorate in moving from "Classical Modal" to "Temporal” logics. 54,
S5, T, and B all capture ideally their well known standard accessibility frames : every model
outside the appointed frames can be rejected a-priori on strong conceptual grounds (e.g.,
because internally indistinguishable worlds have different accessibility ranges). However,
the choice of models standardly associated with the logic at hand is misleading for 54.3
("Logic of Linear Temporality"), and is totally ill-begotten for 54.3.1("The Logic of Discrete
Linear Temporality"). S4.3 fails to capture linear frames, although it does capture weakly
linear ones: every strongly normal model (where inaccessibility is reflected in the difference in
values of some modal formula) is in a strong sense composed (by means of what we term a
strong intensional union ) of weakly linear structures. By contrast there exist models of 54.3.1
that can not be composed—even in a much looser sense—of discrete linear structures.

The discrete linear models of $4.3.1, and in particular w-framed structures, constitute only
the odd lot out of a class otherwise made of entirely different kinds of structures, which are
neither discrete nor linear! The models in this paradigmatic class have to do with the semantic
properties of Quasi-Determinism and Modal Continuity of the cuts in their maximal linear
part—of which they may be a (non-linear) end-extension. Quasi-Determinism means that
any formula indeterminate in "arbitrarily small pasts" (that is, in any recent past) of the cut will
remain so in "arbitrarily small futures" (that is, in immediate futures) of the same cut; whereas
Modal Continuity—relevant only to cuts with non-terminating past—means that any
formula, possible in every recent past of a cut, will remain so in some immediate future.

_ Furthermore, all these paradigmatic models can be elementarily embedded in order complete
models which are modally continuous in their non-discrete cuts (THEOREM 5.3.5).

The paradigmatic models of $4.3.1 use two different types of frames: (A) Linear structures
without end ; and (B) Strucutres in which a linear part is followed by a single final mutual
accessibilty cluster (of cardinality=1). A structure of either type will become an 54.3.1 model if
and only if every cut in it is quasi-deterministic or modally continuous. Either type suffices, by
itself, for completeness, and neither suggests the other on pure topological grounds. The
differences between the above frame-types are therefore "invisible" to first order intensional
logic. This blindness is nonetheless significant from a logical point of view, and is
highlighted by the fact (THEOREM 6.2.1) that every A type structure can be elementarily embedded
in an end-extension structure of type B—a fact correlated with the syntactic meta-theorem
S5|—a iff S4]— MLa. On the other hand, a type B model is not always elementarily
equivalent to some linear submodel. Ironically, then, it is shown that S4.3.1—the alleged
logic of discrete temporality—can be characterised altogether without its discrete linear
models, and even more informatively at that! Furthermore, the paradigmatic non-linear B-
type models may begat a new "temporal” significance in the context of causal-deterministic
structures that explain the “eventual” destruction of linear temporality! (§7.2 below).
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0.3. Styles of Semantics and Reverse Semantic Reflection. In the case of Modal and
Intensional logics, in general, one needs to avoid the creation of unfavoured or
philosophically spurious models merely as an accident of wasteful semantic styles—where the
relation between framing and basic semantic valuation is too loose! It is trivial to create
some S4 models that are not transitive, or S4.3 models that branch "toward the future"—
simply by replicating the same valuations at certain nominally different positions of the
accessibility-frame. The usual response to this problem consists, again, in nothing more
than showing that we do not need such wasteful models in order to achieve completeness.
Philosophically, however, we believe that a more rigorous response should trimline a-priori
the notion of a model and demand that framing-relations between possible worlds should be
reflected in the relations between and the properties of the valuations of formulae within these worlds.

Making the convenient separation between frames and models, and regarding the "reverse
semantical” direction as one which attempts to elicit a logic from a class of structures, the
complete enterprise of "reverse semantics" can be represented by the diagram :

frames- --->semantic structures (candidate-models)---->logic . This seems to us to require
that the framing assumptions should be reflected in the added semantic component of the
structures—i.e., in their valuation schemes—while the structures themselves are reflected in
the logic, in the sense that they characterise it while allowing us to "reconstruct” even those
models whose structure does not fit the chosen frames.

"Reverse semantical” reflection and a somewhat more nominalistic style of semantics
therefore go hand in hand. This can be expressed in various "reverse reflection” principles
which spell out how different aspects of the framing infra-structure are to be explicated by
features of the valuation schemes. The following are few examples, used in the present
paper [where Wy, Ry , Vv stand for the set of possible cases (“worlds”), the “accessibility”
relation, and the wvaluation-function, respectively, in a "model" M]:

(i) Model-Normality Any two semantically equivalent cases, w, w' [i.e., where

(Va)(Vy(o,w)=Vp(a,w")] are interchangeable in any accessibility context. (This allows
a projection into semantical-equivalence-classes without loss of information ).

(ii) Strong-Model-Normality .3 If in a model M, all the possible cases in W1 CW) are
accessible to wg, whereas wy is not, then there must be a formula true everywhere in
W1, but false in wy. This principle is equivalent to

<wo,w1>& Ry — BV Mm(LB,wo)=1& Vy(B,w1)=0 )which, for Logics containing S4,
is equivalent to <wg,w1>ERM <> VR(VM(LE,wo)=1— VMm(LB,w1)=1)
(iii) Modal Continuity in Linear Models .4 If Ry is a Linear ordering of Wy, then the

supremum (infimum) of any subset W;CW); —if it exists— should retain any
Possibility (Necessity) true everywhere in W1. This is equivalent to

If, in a linear Model, w is the first (last) case in which LB (M) is true, then w
can not be a right-(left-) accumulation point.

The results of this paper show, however, that even a sufficiently nominalistic style of
semantics—in which the model's framing features are reflected in valuation schemes and
relations between them— does not solve by itself all the problems of unwanted models.
While for some Modal Logics mere adherence to the above reflection principles ensures that
only desirable models are left, for other Logics—such as 54.3—it can only guarantee that a
(nearly) desirable type of models is "captured", in the sense indicated above and
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made precise below (§1.2). In still other cases a logic—such as S4.3.1——may fail to capture a

prescribed class of models (e.g., based on finite linear and w-frames) that characterises it.
Thus the Temporal Logics 54.3 and S4.3.1 illustrate, respectively, a non-trivial partial
success and a complete failure of a meaningful reverse semantical enterprise.

1. Intensional Unions and the Notion of Capturing.

The success in capturing (by a theory) of certain privileged Models should depend on the
amount of "information” about any acceptable model, in general, that can be retrieved, by
means of an agreed mode of "composition", from the knowledge of these privileged models.
Such compositional modes are entitled here Intensional unions and are defined non-
constructively below. We will have strong, regular and weak intensional unions, corresponding
to diminishing degrees of "information retrievability".

1.1. Basic Definitions. We normally understand the term sub-model in the loosest sense:

M' is a sub-model of a given modal-model M=<Wy, Ry, V>, iff We CWy, Ry CRy, and
VM agrees with Vyr on VARXWy, where VAR is the set of propositional variables.

Let R be any binary relation on W (i.e, RCEWxXW). R“S=4; {y | (SX{y}) "\R=e}.

For weW define

[wloR=(w}; [WlniiR= [W]R UR“[WIR ; [w]R= U([w]aR | n<w)=the R-closure of {w}.
Given two such binary relations R, R" CWXW, say that R'is exact for Rat weW iff
for every n<w, [w]K=[w]R.

A model M' mimics Mat wEWy NWyp iff V(o w)=Vir (o, w), for every a.
Notice that
Lemma 1.1.1. Any submodel M' of M, whose accessibility-relation R'is exact for Ry at every

w'EW]R = [w]RM must mimic M at any such world. (Proof by Induction on Modal depth).

A sub-model M' of M is a casewise elementary submodel iff it mimics M in every world of its
OWN.

For any wEW); define MIW as the sub-model obtained by the restriction of the possible
cases to [w]Ru. (so called the submodel generated by w). The following are elementary
consequences:

Lemmal.1.2. The accessibility relation of M|w , (RN [w] RX[w]R), is exact for Ry anywhere in
[wiR;

Lemma 1.1.3. M|w isa casewise elementary submodel of M. (This is Theorem 5.6 in [Hughes
and Cresswell, 84]: A Companion To Modal Logic).

M|y also inherits from M any nice reverse semantical reflection features (such as strong
normality or modal continuity). '

1.2. Intensional Unions. M is a regular Intensional Union of a set S of Modal models iff

(1) Every member of S is a sub-model of M; QWp=UWp | M'ES); and
(3) For every wEW), (AM'ES)(Ryy is exact for Ryp at w). [Note: (3) entails Ryj=U{Rp [ M'ES }]
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Mis a strong Intensional Union of a set S of Modal models iff, in addition to being a regular
intensional union of S, every member of S is a case-wise elementary submodel of M.

Note: Any model M is such a union of its generated submodels {le I weM]}. (Lemma 2.1. 4 below).

M is a weak Intensional Union of a set S of Modal models iff
(1) Every member of S is a submodel of M; and

(2) (VWEW YAM'ES)(M' mimics M at w).

1.3. Capturing. We are ready now to define the concept of "capturing:

A Logic L captures (regularly, strongly,weakly) a class C of semantic structures iff
(1) Cis an ordinary semantic characteristic of L (i.e., L is consistent and complete with
respect to C); and

(2) Every strongly normal model of L is an intensional union (regular, strong, weak)f;)f a
subset of C.

For the sake of terminological completeness we might add to these "capturing" terms
a special term for the case where every strongly normal model of the Logic L is itself
in a characteristic class C. In such a case we can say that L captures ideally C.

Say now that a Logic captures (in any of the above senses) the frames defined by a property
of the accessibility relation, whenever it captures (in this sense) the class of all modal
semantic structures whose accessibility satisfies this property.

It is easy to prove

THEOREM 1. 1. The common modal Logics T,54,55,and B, capture ideally the frames characterised
by the following properties, respectively: (1) reflexivity; (2) reflexivity+ transitivity, (3)
reflexivity+transitivity+symmetry ; and (4) reflexivity+symmetry.

_ The proof is left to the readerS.

On the other hand, as is showed below (theorem 2.1), 54.3 captures strongly, but not ideally,
the frames characterised by reflexivity+transitivity+connectivity (weak-linearity). $4.3.1
fails to capture in any sense any set of structures that can be defined solely by a property of
their frame. To the extent that we can talk of it as "capturing" any type of model, this will
involve an intertwining of frame and valuation properties.

1.4. Definitions for Frames that are Reflexive, Transitive and Connective . Let 'R ' denote
the converse of R, so that for a model M, connectivity can be represented by

RyURy  =WyXW,, and weak anti-symmetry by Ry,N Ry =the identity on W, XWy .
For R which is reflexive, transitive and connective, define <g as R—R . If Ris weakly anti-

symmetric this must be a proper linear ordering. For any model M, a possible case wEW; is
a right accumulation point (case) iff, in some maximally linear subset of Wy (relative to <Rry)

(YY)y<ru w = (Fz)(z<rq W & y<gry 2)]. Likewise, a left accumulation point w will be
defined by the condition (Vy)[w<gry y = (32)(Ww<py z & z<py y)I.
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In the context of Modal models and subsets of their cases, we shall use the term linearity
only with respect to <y .We shall call w an accumulation point when it is either a right, or a
left, accumulation point (or both). Ry, is discrete when there are no such points, and if <gy, is
a linear ordering, in addition, and we can talk of M as a linear discrete model. [In some
sources—in particular in connection with the logic $4.3.1—discreteness seems to have been used as merely

precluding left accumulation points®—which should be better described as discreteness-on-the-right . This,
however, will not affect our contention that 54.3.1 is not about discrete linear models. It is equally true that it is
not about right-discrete linear models (or about left-discrete models).]

A model, M, will be called boundedly compact when every linearly ordered subset of W, ,
with an upper(lower) bound in Wy, has a supremum (infimum) in Wy. This property is
also known as order completeness.” Any well ordered model is obviously boundedly compact,

but there are many boundedly compact models that are not well-ordered. Thus both w+w
and o~+o frames are boundedly compact but the latter is not well ordered. On the.other

hand an  + @~ frame is not boundedly compact but is fully discrete! The importance of
these definitions and observations to S4.3.1 stems from particular and general results

established later (sections 4. and 5). For example: One can use an w + w™~ frame the
construct a particular model refuting S4.3.1, although such frames arefully discrete . Any
modally continuous boundedly compact model validates 54.3.1, and any S4.3.1 model can
be elementarily embedded in such a model. Bounded compactness (or order completeness)
is therefore much more relevant to this logic than discreteness.

2. Models of S4.3.
2.0. S4.3 can be represented as S4+{L(LaDf)vL(LBDa)}8.

wl

Figure 2.A | Any "multiple river con-
— fluence" (with permitted
"river loops"), as in 2.A to
the left, fails connectivity,
and is therefore neither
weakly nor properly linear.
w8 w10 . But such frames are perfectly

: : legitimate as 54.3 frames,
s " 1 .
A "river c<.)nﬂuence. frrflme (the arrow stands for a transitive and can serve as an infra-
and reflexive accessibility. w9,w10 and wll form a mutual
e " structure for strongly
accessibility "cluster" )
normal models.

wl2

The significance of such non-standard models is usually dismissed because all their
generated subframes are of the standard weakly linear type, and because for ordinary
completeness one can take as an alternative characteristic class the set of all generated
submodels of members of a characteristic class®. This approach works, from a reverse
semantical point of view, only when those generated submodels are of the the type that is

desirable to us—as would be the case with respect to 4.3 and weakly linear models as the
chosen standard.
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2.1. We want to start our investigation by reproducing, from a reverse semantical point of
view, a well-known characterisation theorem for 54.3 . In particular we want to prove

THEOREM 2.1. Every strongly normal model of S4.3 is a strong intensional union of weakly linear
models —that is, models that are reflexive, transitive and connective.

As a preliminary we need only the following definition and easily proved lemmas: -

Definition 2.1.2. A model has the lower bound property iff for any its two possible cases
there is a possible case to which they are both accessible.

Lemma 2.1.3. If Mis transitive and reflexive then, for any wEW)y, M| has the lower bound
property;

Lemma 2.1.4. M is a strong intensional union of its generated submodels { M|w | weWy;
Lemma 2.1.5. It M is strongly normal so is M|w , for any wEW . :

Combining the above with the fact (theorem 1.I) that any strongly normal model of 54 is
reflexive and transitive, and with lemma 1.13 ( MIW mimics M in all its worlds), we get
Corollary 2.1.6. If M is a strongly normal model of S4.3 (or any extension S, of S4) then it is
a strong intensional union of strongly normal models of S4.3 ( S) which are reflexive,

transitive and have the lower bound property, and which are all casewise elementary
submodels.

To prove theorem 2.1 then it is enough to prove the following

Lemma 2.1.7. If M is a strongly normal model of S4.3 with the lower bound property then it is
connective (RyfUR =Wy XWp).

Proof. Let w1 and wj be any two possible cases of M. Assume that neither of them is accessible
to the other. Let w be a common lower bound, so that in this case w=w and w=w, by

assumption. Since <wq,wy>& Ry we have by strong norma]jty that EIY(V mLy,w1)=1 &

- Vm(y,w2)=0), and likewise, since <w2,w1‘>e$ Ry, that 33V M(LD,wo)=1 & V(8,w1)=0). It follows

that LyD? is false in wy while LoDy is false in w . Since both w1 and wy are accessible to w, both

L(LyDd) and L(LdDy) are false in w and so is L(LyDd) v L(LdDy) , cohtradicting the validity of the
S4.3 schemainM H® o
The results of this section can be summarised then by the following statement:

Corollary 2.1.8. Weakly linear models are strongly captured by S4.3 .

2.2. What about properly linear frames? It is well known that 54.3 is semantically characterised
by linear frames, but this does not mean that 54.3 is "specifically about them", unless we can
prove that every strongly normal weakly linear model is an intensional union (at least a weak
one) of legitimate linear models .

Unfortunately there are some very simple counter-examples. A weakly linear model which is
not properly linear must have some mutual accessibility equivalence class containing more than
one member. Now, it is easy to construct such a model in which every world w satisfies uniquely
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some classical formula ¢y, as is the case in the simple three world model M depicted in figure 2.B
below.

w and w3 are mutually accessible while w1 is an "earlier" case to which they are both accessible
(but not vice versa). Given that classical formulae maintain their value at u in submodels

containing u, and that M¢y has to be kept true in any world up to u but made false later, any
linear submodel of M mimicking M at w1 must arrange in a definite linear order all the worlds
of M but must retain the original order between mutual accessibility equivalence classes! Thus

we have only <wi<w)y<w3> or <wj<w3<wy> as possible frames for such a linear submodel
mimicking the original model at wy. Yet neither will do, since the first frame makes MLq true at

w1 while the second makes MLp true at wi—neither of which are true at wy in M.

FIGURE 2.8 This mo<|ie1 is what we te.rm'

. w2 g later an 'Entropy Maximiser'.
;/O The proof above establishes, then,
. that some such models can not be
decomposed into properly |
linear components without losing
too much valuable information—
such as LMp&LM-p as a valid
formula.

- i w3[-p; q)

A weakly linear model with a final non-trivial "cluster"

(arrow stands for transitive& reflexive accessibility)

Contrasting this example with Segerberg's "bulldozing technique"”, which can be used for the
transition from weakly linear to linear frames, when one wants to prove the completeness of
54.3 vis a vis linear models!%, we can now guage better the philosophical damage incurred by
going for completeness at any price. The "bulldosing” of the only"cluster” (non-trivial mutual
accessibility equivalence class)in M above requires X g copies of wa<w3 or of wa<wy—leading to
a redundant and anti-nominalistic model. The philosophical irony of such situations is that the

. additional infra-structural simplicity desired can be achieved only by losing the ability of our models to
reflect in their semantical make-up the very kind of frame desired! Linearity has to be reflected, in this
sense, in new necessary truths emerging with each true successor moment, but this is lost if we match
54.3 with properly linear frames. Weak linearity then must be the natural frame-correlate here.
In the case of 54.3.1, we show later, we shall describe a way of getting rid of all "clusters" except
the last which—as far as "capturing” goes—is sometimes ineliminable.

3. Digression: Simplified completeness of S4.3 and other extensions of S4.
The intensional decomposition into desired models of an extension of S4 can be sometimes
used to obtain a completeness proof vis a vis such models. Thus we have
THEOREM 3.0. Let So be any consistent extension of S4, closed under S4-deduction, which
satisfies the following conditions, with respect to a class, C, of structures:

(1) Every strongly normal model of S, s a (strong, weak, reqular )

intensional union of structures in C.
(2) Every member of Cis an S -model (consistency).

Then Sq is also complete with respect to C, and therefore captures its structures in the
corresponding sense (strong, weak, regular ).
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To prove this theorem, we need to recapitulate a certain strong completeness result for S4:

THEOREM 3.1. There exists a strongly normal “canonical” model of S4, MU=<Wy,Ry,Vu>,
in which every S4- consistent set of formulae is satisfied in some possible case.

Foregoing the well known type of proof, we only describe the make-up of such a model.
Define the set Wy of possible cases (worlds) as the set of all maximally consistent sets (of

Wifs) with respect to S4-provability. Define Ry by <SS1>ERy < (VB) [LB'eS —'LB'ES1),
and, finally, for any propositional variable v, define Vy(v, S) as 1 or 0 according to whether
VES or not, respectively. Prove, first, by induction,

Lemma 3.1.1. For any Wff a, Vy(a, S)=1iff «€S, and then, trivially
Lemma 3.1.2. MUY is strongly normal.
Then one proceeds to

Proof of Theorem 3.0. Let S® be the set {'L8'l 9 is é theorem of S }. The deductive closure

of S® is the same as that of S¢. LetS" be any maximally consistent set containingS®. This
defines a case in the universal 54 model MU. Let MU |g* be the submodel of MU, defined

asin §1.1, by taking the Ry-closure of {S*}. By the S4 axioms, all its cases satisfy S*, and it is
therefore a model of S. If I" is any set of formulae consistent -with respect to Sq , then it is

consistent with respect to S*. Choose S*,then, as containing S® U T" from the outset.

MU Is* becomes then, by lemmas 3.1.2 and 2.1.4, a strongly normal model of S, satisfying T
at its "root"-case. '

Given such a strongly normal model, M, of S satisfying T at one of its cases, w, we have, by
condition (1) of theorem 3.0, that it is an intensional union of models in C (which, by

condition (2) are all models of S). One of these component C—models must mimic M atw
(true of any union concept!) and therefore must satisfy I there. H

. We see then that for an extension of S4 completeness vis a vis a desired type of model is
guaranteed by the mere "intensional” decomposability of any proper model of such an
extension. In particular it follows from theorem 2.I that S4.3 is complete with respect to
weakly linear structures, and that we did not have to cite earlier proofs of this completeness
result in order to obtain our "capturing" corollary 2.1.8.

On the other hand, theorem 3.0 entails that incompleteness vis a vis a class of models
means also that such a class is insufficient to compose, even by weak intensional union,
every strongly normal model.

4. Prior's D (S4.3.1) and Discrete Models, or What S4.3.1 is not about.
4.0. The Logic S4.3.1 can be represented as 54.3+{L(L(oDLa)D ) DL(MLaD a)}. To refute in
a linear frame the schema added to S4.3 (AD) is tantamount to finding for some formula «

two possible cases wg and w1, where wy <g w1, such that o, is false at wy, is necessarily true
at w1, but changes its truth value twice more (and therefore infinitely often) after any case
>wy at which it is false.
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It is easy to construct a perfectly discrete model #.* which falsifies $4.3.1. Consider the
frame provided by the set{-1/n | lsn<w } U {1/n | l<n<w } together with the usual real
order. Define the valuation V by (i) V(p1, wy)=1if and only if >0 or 11/r!| is even; and
(ii) for i>1, p; is true(V=1) at w( 1) /li /2) and nowhere else [ '[x]' denotes the integral part of
x]. Thus p; will be necessarily true at any positively indexed world, will be false at w_; , but
will alternate infinitely many times for the negatively indexed worlds following the latter.

The frame is of order type w+w- which has no accumulation point of any sort and is
therefore perfectly discrete.

In well ordered frames we have discreteness on the right, which some people considered
(wrongly) the relevant frame property for $4.3.1. But well-orderedness beyond o does not
guarantee the validity of this logic either. It is trivial to construct an w+1 framed model
refuting 54.3.1: we just have to see to it that some formula will change its truth value

infinitely many times. Either it or its negation will be necessarily true at the last world(w,,)
and will therefore serve to refute AD at any naturally-indexed world in which it is false.

4.1. 54.3.1 and Modal Continuity—Preliminary remarks. It is easy to show that the only

well-ordered S4.3.1 frames (that is, independently of valuation) are either finite or w frames.
Yet this is to some extent misleading. There are infinitely many strongly normal linear
models of 54.3.1 of other order types(the non-linear models will be discussed later). In
particular we have well ordered models of S4.3.1 for every denumerable ordinal(lemma
4.1.3 below).

Many of these models are modally continuous ( see definition (iii), §0.3 above)—which
satisfy for any a: If it exists, the supremum (infimum) of a set of cases (worlds) where ais
everywhere possibly(necessarily) true must retain this possibility (necessity). The intimate
connection between modal continuity and the Logic 54.3.1, for some order types, is revealed
by pinpointing the S4.3.1-failure in such w+1 framed counter-models as described in 4.0

above. Any such w+1 framed counter-model to 54.3.1 must be modally discontinuous!

Although this suggests the correct insight that modal continuity is enough to ensure 54.3.1-
validity for well ordered models, it does not reveal the exact root cause of $4.3.1-failure in
other types of linear counter-models, such as the w+w~ framed "discrete” model M.*,
described above in 4.0. In that case, for instance, there were no accumulation points but

the model failed to be boundedly compact (order complete) . It was this that allowed a"discrete”
linear counter model to S4.3.1.

Since every well ordered model is boundedly compact, we will now generalise the above
insight about well ordered models and state

Lemma 4.1.1. Every Modally continuous boundedly compact linear model validates S4.3.1.
We leave this as an excercise to the reader

Corollary 4.1.2. Every modally continuous well ordered model validates 54.3.1
It is equally easy to prove

Lemma 4.1.3. There exist well ordered strongly normal and modally continuous models of $4.3.1
corresponding to every denumerable ordinal v.
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Proof. Each possible case will be indexed by a member of v (a lessér ordinal). Let Wp(v)
be the subset of perfectly discrete cases (i.e, the set of non-limit members of v). Let f be a 1-1
mapping of w on this subset. Define a valuation V by V(pi,u)=1iff f(i)<u. Each

propositional variable thus becomes true for the first time at some discrete non-limit ordinal
and remains so thereafter. It is easy to prove, then, by induction on formula-structure, that

for each formula there is a first ordinal<v at which it becomes non-contingent (necesarily
true or necessarily false) and that this ordinal must be a non-limit one (i.e, either the first or a

successor to another ordinal). Given any o which is possibly true at all the ordinals below a
given limit ordinal «, this possibility can not terminate at x—or else we would contradict the

assertion above, producing a limit ordinal as the place where Ma becomes false (forever) for
the first time.

It is likewise easy to prove that the above model is strongly normal. For each yEWp(v), -
'Lpt-Iy) will be true at or above vy, but will be false before y. If A is a limit ordinal<v, and u is
not accessible to A then u<) and there exists a discrete non-limit ordinal 8 between w and A
and we can then use Lpfls) as a formula true at or above A but false at p.H

4.2. 54.3.1-models and Intensional Unions. We will now prove
THEOREM 4.2.2. The exists a modally continuous, strongly normal, well-ordered model of $4.3.1
which 1s not a weak intensional union of discrete linear submodels.

Proof. Define a model M as follows: The frame is of order type w+o with a single .
accumulation point at wg,. Assume that the first case is wy. The valuation on the variables is
defined by V(paj-1,wyu)=1 iff p=i (u< w+w); and V(py; =1 iff pz o+ (p< w+w).

Now assume that this model is a weak intensional union of some discrete submodels.
Verify first that each discrete case (wj or we,+; ,where i is natural>1) has a classical formula
which is uniquely satisfied in it. For wi ( w4 ) ,where i is natural>1, it will be

P2i-1 & poi+1' ('p2i & pair2' ). Thus, the formulae {(M(pi&-pj+2) | l<i<w } must all be all
true at the case wj. Since the weak intensional union must include a submodel N
mimicking M at wy, such Ny will have to contain, for each i, a case accessible to wy,

at which pi&-pij +2 is true. Yet since classical formulae retain their values in any submodel,
N1 will have to contain all the discrete cases of M. Given that all components of the union
are linear, N1 will have to retain the entire M order structure amongst the discrete cases.
But a submodel of M containing all its discrete cases and the order amongst them can not
be discrete, since if it removes w, , it will have made wy,,] into a new accumulation point.

Contradiction. The Modal continuity and strong normality of M are easy to establish®

Since strong and regular intensional unions are a fortiori weak ones, it follows that M is not
decomposable into discrete linear models in any of the intensional-union-modes suggested
in this paper.
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5. What is 54.3.1 about? Temporal Cuts from a Modal Perspective.
5.0 The previous section makes it hard to view S4.3.1 as a "propositional logical reflection"

of discrete linearity. w-framed models (which are necessarily discrete) constitute a
traditional semantic characteristic, but do not give us a clue as to 54.3.1 models, in general.
Even worse, they are misleading, since they can't even suggest those model-features which
characterise many other well-ordered models of 54.3.1. We will therefore try to obtain a
better characterisation of strongly normal models of 54.3.1. '

5.1. Cuts in Weakly Linear Frames. Given a frame <W,R>, where R is a weakly linear
relation, define a cut , as usual, as an ordered pair <W1,W>>, satisfying the conditions:
(MHW=W1UW3; 2)W1NW2=g; and (3) 8=W1XW2CR-R". We shall add <& W> and <WJ > as
two trivial cuts.

Let '=¢' stand for mutual accessibility (RNR”). Given a cut <W1,W>>, we will refer to Wi as
its total past and to W3 as its total future. Since our frames are assumed weakly linear, R

must induce a proper linear ordering of the equivalence classes modulo =. :

Any cut also induces a classical Dedekind cut in the induced linear ordering, since by condition (3)
above two members of the same equivalence class cannot be on opposite sides of the cut.
The cuts themselves are linearly ordered by the relation of (strict) incluson between their
total pasts.

A cut is called discrete when its total past has a last member and its total future has a first
member. It is called open (bilaterally) when neither of these conditions is satisfied. If exactly
one of these conditions holds we might call the cut real. Thus, all the cuts are discrete in the
Integers, while in the Rationals no cut is discrete, but some cuts are open. In the Reals every
cut is real. A linear frame is boundedly compact when no cut is bilaterally open —that is,
when every cut is discrete or real. Notice that although discreteness of all non-trivial cuts
implies discreteness of frame, the converse is not truell! A weakly linear frame is an
Entropy-Maximiser when it has a cut whose total past is properly linear while

its total future is a single cluster of mutually accessible cases (a universal S5 frame)!2,

5.1.1. Recent Pasts and Immediate Futures; Determinism in Cuts. A recent past of a cut is
any non-empty intersection of its total past with the total future of some other cut (below it),
while an immediate future of a cut is analogously any non-empty intersection of its total
future with the total past of some other cut (above it). The semantic character of cuts in a
model depends on the limiting behaviour of formula valuation in such "neighbourhood"
pasts and futures.

Given any formula, o, we will say that it recently (immediately) necessary in a given cut iff it
is true everywhere in some recent (immediate) past (future) of this cut. In particular we will
be interested in recent or immediate determinacy in a cut, which means that the formula at
hand has a constant value in some recent past, or immediate future, respectively, in the
given cut.

A cut is called quasi-deterministic iff every formula which is immediately determinate in it
is also recently determinate. A cut is stoically determinate iff every formula is both
immediately and recently determinate in it. In particular every discrete cut must be stoic.
Finally, a cut is strictly deterministic iff every formula or its negation is both recently and
immediately necessary in the cut. Models will be called quasi, or stoically deterministic
when all their nen-trivial cuts are such.
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5.1.2. Synthetic and Analytic Clusters in Strongly Normal Models. Let the term cluster

stand for an equivalence classe modulo =; (mutual accessibility). When a cluster is a
singleton it will also be regarded as trivial. It is clear that a weakly linear model is properly
linear iff all clusters are trivial, and is an Entropy Maximiser iff all clusters but the last are
trivial.

We refer to a cluster as analytic iff every formula attains only one value within it. Otherwise
itis to be called synthetic. A non-trivial analytic cluster obviously exhibits total redundancy,
since it is semantically representable by any single case (world) therein; yet such
multiplicity solo numero is not ruled out by strong normality!

A weak linear accessibility induces a proper linear relation between the clusters. As noted
above, any cut in a weakly linear frame can eo ipso be regardedas a cut in the induced linear
structure of its clusters.

Given any set of cases, S, denote by SL the set of all necessities true everywhere in S

(call it the necessity set of S). Any non-empty subset of the same cluster (in a reflexive and
transitive model) has the same necessity set. The strongly normality of an S4 model is
tantamount to an isomorphism between the induced clusters' frame and the partial inclusion-
order amongst the necessity sets of these clusters. For a weakly linear model strong
normality is entailed by different clusters having different necessity sets.

Lemma 5.1.2.1. In a strongly normal S4.3.1 model no synthetic cluster has an immediate successor

cluster, and furthermore, if such a cluster, C, is not terminal then CL= ﬂc o C'L.

proof . Let o be both falsified and satisfied in C. If C has an immediate successor cluster, C.,
then clearly CL C C,L (proper inclusion). Let LB be true in C + and false in C.

Then y=avLB is both satisfied and falsified in C, while it is true every where in C; and
above. The cut between C and C; clearly falsifies 54.3.1: the special $4.3.1 schema (AD) is
falsified in any case of C in whichy is false. : ,

Thus C has no immediate successor; furthermore, if it has any clusters above it, it must
satisfy any necessity true in all of them (or else derive a contradiction by same type of
argument as above—omitting its second sentence and reading 'C+' as 'everything above C)
|

From the above one can easily deduce

Corollary 5.1.2.2. If a formula is satisfiable in a strongly normal weakly linear S4.3.1 model, then it
is either satisfiable above every non-terminal cluster, or it is satisfiable everywhere in some cluster.
(notice that this is utterly trivial for entropy maximisers and linear models).

5.2. 54.3.1 Models as Weak Intensional Unions of Entropy Maximisers. We now prove

THEOREM 5.2.1. Let ™M be any strongly normal weakly linear S4.3.1 model and let § be any choice
function which maps every non-terminal cluster on one of its own singleton subsets or on the empty

set 3. Let 'Cgin' denote the final cluster, if it exists, and & otherwise. Let M be the submodel of ™M
obtained by taking the cases in Cgn U U can §(C) as the set of possible cases. Then (1) M isa

weak intensional union of some or all those submodels of type M that are also casewise elementary
submodels; and (2) if Cgind we can take the union to be made exactly of those submodels of type

My for which §(C)#D, for every non-terminal C.




14
Proof. We separate the argument into two parts:

(@) Cgipd. In this case it suffices to show that when f (C)=Q for every non-terminal C,
TMygis a casewise elementary submodel of M. The fact that M is a weak intensional union of

these models will follow merely by observing that for each wEWs; — Cgi there is an
appropriate choice function picking w for the cluster containing it.

Let f(C)= for every non-terminal C. To prove that My is a casewise elementary submodel ,
it suffices to show (the Modal equivalent of Vaught's test) that if Va(Ma,w)=1 for w of My,
then Va(a,w' )=1 in some accessible case w' of Mj.

If weCip or if a is true in w itself or any where in Cfp , the claim is trivial. Assume then
that Ma and —a are both true in w&Cgj, but that o is true nowhere in Ctin -

Thus in the 54.3.1 model M| w (casewise elementary submodel of M) « is satisfiable but not

in the final cluster. If there is a penultimate cluster, then by the above corollary (5.1.2.2) «
would have to be satisfied everywhere in it. On the other hand, if there is no penultimate

cluster, then by the same lemma either some non-terminal cluster would satisfy a

everywhere, or else a would be both satisfied and falsified in infinitely many non-final
clusters (while necessarily true in Cgp). Since the last alternative is barred by the fact that

M|w is a weakly linear 54.3.1 model, it follows that a is true everywhere in some cluster C
above w, and in particular at f(O).

(b) M has no terminal cluster. Let F be the set of all wffs and let <a1,02,...> be an
enumeration thereof. For any case w let Cy, be the cluster containing it. Define a function ¥
from F into Rp“{w} as follows: If M ¢ is false in w then Wap=w. If Mq; is true in w, let w
be the highest case in the set Sj={w, (1), 4( 02),..., Y ai-1)} in which Mo is still true.

aj is satisfiable in Ry “{w'; }. If it is satisfiable above CwUCp(an)Ye-UCy iy let Y(a) be such
a case. (clearly then w'; <pp Y(j) ); otherwise a; is satisfiable in Cw4 but not above! By
corollary 5.1.2.2. above it must be satisfiable everywhere in this latter non-terminal cluster.
We can choose then y(a;) as w';.

~ The set ¥(w)={w} U (aj) li< w} contains at most one element per each cluster of M. Define
F(O)=CN¥(w). My has then W(w) as its set of cases. Assume Ma is true in M at a case
w'e¥(w). Clearly w'=w or w'= () for some n>1>. Since the enumeration of wffs above is
complete, there must be infinitely many values of k for which 'o=a,4i' is a substitution
instance of a propositional tautology. By definition Yonk)zWon) , where P( oK) satisfies
an+k and therefore a as well. H

The above theorem yields several weak intensional decomposition results which, combined
with theorem 2.1, and with the (easily proved) fact that an intensional union (of any sort) of
weak intensional unions (of models of a given type ) is itself a weak intensional union of
such models, produce the overall result that strongly normal 54.3.1 models are
decomposable into (strongly normal) entropy maximisers (we forego detailed proofs). The
semantic characteristics of these 54.3.1 entropy maximisers will be fully discussed in the
next section. The immediate consequences of 5.2.1 are the following (remembering that the
term cluster includes the trivial case of a singleton):
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Corollary 5.2.2. Any (strongly normal) weakly linear model of S4.3.1 without any final cluster is a
weak intensional union of (strongly normal) linear o- framed models.

If, on the other hand, we start with a weakly linear $4.3.1 model that has a final cluster, the
above tells us that it must be a weak intensional union of entropy maximisers—all of which
end with the original model's final cluster. Since it is easily seen that any analytic cluster in
any (casewise) elementary submodel can be replaced by any of its members without loss of
"mimicry" ability in the reduced submodel (relative to remaining cases), an entropy
maximiser with an analytic end-cluster must itself be 2 weak intensional union of linear
models with a final case. Using the "transitivity" of intensional union concepts we get

Corollary 5.2.3. Any (strongly normal) weakly linear model of S4.3.1 with an analytic final cluster
is @ weak intensional union of (strongly normal) linear models with a final case.

Corollary 5.2.4. Any (strongly normal) weakly linear model of E=54.3.1+{M(Lctv L-o)}13
is a weak intensional union of (strongly normal) proper linear models.

A third straightforward consequence is

Corollary 5.2.5. Any (strongly normal) weakly linear model of S4.3.1 with a synthetic final cluster
is a weak intensional union of (strongly normal) entropy maximisers with a single end cluster. It is
not such a union of strongly normal linear submodels.

That this is the best we can do in in this case should be apparent from the following
argument (related to the one used in the counter-example of §2.2) :

A final synthetic cluster Cgy, in a strongly normal weakly linear model, M, would entail the
existence of some o for which L(M oA M—a) is true everywhere in Cfjn. Thus any linear

submodel of M mimicking it at any world, w, of the final cluster would have to be infinite, if

itis to satisfy the above formula at w; yet we can easily choose its final synthetic cluster to
be finite14, ,

5.3 Quasi-Determinism , Modal Continuity and S4.3.1. In an Entropy Maximiser every
non-trivial cut has a linear past and an Entropy maximising future. The last non-trivial cut,
with a single cluster as its only immediate & total future, will be called the special cut.

We start by extending the definition of Modal Continuity to cuts:

A cut <W1,Wo> is modally continuous iff U, ew, WL =N, ew, WL, Notice that a model is

modally continuous, according to our previous definition, iff every real cut is such!
We now have

Lemma 5.3.1. In a weakly linear model of $4.3.1 every cut is either quasi-deterministic or modally
continuous. g

Proof. If a cut <W1,Wp> is not modally continuous, then (since Uw ew, Wl Qﬂw ew,Wh)

let LB be true everywhere in Wy but false everywhere in W1. If the cut is not quasi-
deterministic, there is a formula a which is not recently determinate in it. The formula avLp
will serve then to refute the 54.3.1 special axiom. at any possible case where o is false.

The converse is true as well for entropy maximisers
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Lemma 5.3.2. An entropy maximiser in which every cut is modally continuous or quasi-
deterministic is an 54.3.1 model.

Proof. Let a be a formula refuting the special schema of $4.3.1 (AD), in an entropy
maximiser, as described for a linear model at the opening comments of §4.0 above. Consider
the two sets of cases: S1, all these cases above which a changes its value at least twice; and
S, all these cases in which a is necessarily true. The refutation of $4.3.1 requires only that

(1) S1 and Sy be both non-empty, while (ii) any a-falsifying case belong to S1. To prove 5.3.2
it is enough to show that <51,5,> constitutes a proper cut, for then it will either violate

modal continuity or fail quasi-determinism, respectively, according to whether S; has a
minimum or not. (If Sy is the final cluster, we can treat the whole cluster as its own

minimum). Since S1<Sp, <S1,59> must be a proper cut if the set S3 of cases above which o
changes only once is shown to be empty! Since a becomes necessarily true it must remain

so to the end. Therefore, at any member of S3, & must be false (one change backwards from
eventual truth). But then by (ii) above it must be a member of S1. :

We can be more precise about cuts that fail quasi-determinism in models of $4.3.1 .

Lemma 5.3.3. Ifa cut <W1,Wy>, in a strongly normal S4.3.1-entropy maximiser, is not quasi-
deterministic, then it is a real cut in which Wy has a minimum case w* which is the infimum of
Wy — {w*}. Furthermore, removing w* from the given model would produce a casewise elementary
submodel, with <W1,Wy - {W*}> as quasi-deterministic.

Proof. Suppose first that some formula, a, would be immediatey determinate while failing
recent determinacy in the special cut. Since this cut has only one immediate future—the

final cluster—immmediate determinacy means that o is not contingent in the final cluster.

Since this cut must also be, by lemma 5.3.1, modally continuous, either Lo, or L-o. must be
true somewhere in its past, implying recent determinacy. (contrad.)

Let us abbreviate quasi-deterministic as 3.D. We now prove the following

daim. A (bilaterally) open cut in a model of the assumed type must be quasi-deterministic.

' Suppose a non-trivial regular cut <W1,W>is not q.D. Lety be immediatey determinate
while failing recent determinacy in it. W1 must be infinite without maximum. If W5 has no
minimum , then any immediate future AF in which vy has fixed value (such must exist) has
infinitely many cases. Let w'<w" be two such cases which are not in the final cluster (this is
possible because the cut is not special). By strong normality there is a & such that Ls is true
at w" but not in w'. Either yvLd or -yvL& would then refute S4.3.1 in our model (in much
the same way as in the w+w~ model M* of 4.0).This proves the claim.

A non q.D cut as above could not be open, then, and its future W) must have a minimum—
say w*. But this w* must also be the infimum of Wo—{w*], since a proper successor case w*+
entails a contradiction to 54.3.1, by strong normality, using the same technique as above: Let
mbe yify is true at w* and —y otherwise, for a y manifesting the non-q.D nature of the cut,
and let LE be true at w*+, but not before. Then nvLE is the refuting formula.

Suppose L is true everywhere in Wp—{w*], but no-where in W1. Let  be as above. nvL{
would then constitute a counter-example to $4.3.1. We thus gather that
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U, ey wk =w*L=, ews— {w* WL and therefore, that the truth of any formula at w* must
imply its satisfiability above. This is enough in order to prove, at the crucial induction step,
that removing w* leaves the infrastructure for a casewise elementary submodel .

To prove that the cut <W1,Wp — {w*}> is g.D in this submodel, it is enough, by the proved
claim above, to note that it is open and that this submodel is itself an $4.3.1model. ®

The above lemma suggests that one could stop fussing about the topological nature of 54.3.1
models and try to characterise them solely by the deterministic character of their "cuts".
Itis indeed possible to use the above to provel5

THEOREM 5.3.4. Let M. be a strongly normal boundedly compact S4.3.1- entropy maximiser,

Then ™M is a casewise elementary extension of the quasi-deterministic submodel MY obtained by
removing all the cases in the linear part which do not have a quasi-deterministic cut immediately

below them. Furthermore, if M is dense in the linear part, then MO is dense in M.: there is a case of
MA between any two cases of the linear part of M.

Just as importantly, we can reverse the direction of this theorem. Inasmuch as a strongly
normal S4.3.1 entropy maximiser has (like the submodel above) some cuts that are either
open or fail modal continuity (all of which must be quasi-deterministic) we can plug each of
these cuts with a new "reifying" case—so as to create a boundedly compact and modally
continuous elementary extension (both casewise and globally).

THEOREM 5.3.5. Any strongly normal denumerable S4.3.1~-Entropy Maximiser is casewise
elementarily embeddable in an (elementarily equivalent) cofinal entropy maximiser which is
boundedly compact (order complete) and modally continuous.

Proof. If a strongly normal $4.3.1-Entropy Maximiser, M, is not boundedly compact, it must
have some open cuts (none of which is special), and all such cuts must be quasi-

deterministic. Likewise, if M is not modally continuous, there must be a real cut with a non-
ending past, which is not modally continuous, but is also quasi-deterministic (lemma 5.3.1).
In either case the problem cuts have an infinite past without a maximal element. For each - -

- such cut C=<W<,W<,> let AWS;) denote the set of all recent pasts. A(W©) has the finite

intersection property. We can therefore extend it to an ultrafilter, D(W<), over W<, which,
for such cuts, must contain the Fréchet filter over WSy , Fr(W<;)= {X | XCWE & WS X is
finite}—since every member of Fr(W<;) contains members of AWE)). Also, since every
member of AIW®) is included in some member of Fr(W<)) it follows that an ultra-filter over

WS1 contains A(WS;) if and only if it extends Fr(W ;). Finally we notice that every member
of such an ultra-filter must be cofinal with W<;, or else it would have a null intersection with
some recent past of C. v

Define now a new case wec —where the value of a variable v is set by

V(v,wo)=1 iff {w | weEW1&V(v,w)=1}EDW;)

Each such wc is placed "inside" the corresponding cut (i.e W ;<wc<W%). Let M* be any
mode] obtained in this manner; we will show that this operation can not create new
problem cuts but must eliminate the "treated" ones!

Prove by induction the following two claims (together):
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(a) For any plugged C as above Vy«(a,wo)=1 iff {w wewcl&Vm(a,w)ﬂ}ED(WCl ),
for any formula o—implying that
recent necessity (impossibility) of a in C => a is true (false) in wc — and
(b) For any wff o, Vay*( o, w)=Vp( o, w) at any old case wEWyy.

The basis claim and the induction step for truth functions are simple to prove, and depend
only on universal properties of ultra-filters (completely analogous steps are carried out
in proving Theorem 6.2.] in appendix I below).

If Vyx(La,wo)=1 then

(YW') (W' 2p1* we = Vppx(a,w')=1), which, by the Induction Hypothesis—using both (a)
and (b)—is true iff

both (Vw') (w' € WS, ->Vp(a,w' ) =1 }and

(VC') (C' =C& C'is a "problem cut" in M —{w | wEWS 1 &V p( o, w)=1}ED' (WC& ).
where the inequality in the last expression refer to the natural order amongst cuts in M. The
last conjunct clearly implies that S1=priwl! WEWS 1 &V p(a,w)=1}€ D(W 1), while the first
conjunct implies that o W)L . Since M is quasi-deterministic, it follows that a is recently
determinate in C. This, together with the cofinality of S; with W< , implies that {w | wEWS,
&Vpm(La,w)=1} includes a recent past of C and therefore must belong to D(W®< ).

Conversely, if {w|wEWS 1&V(La,w)=1} belongs to D(WS1), it must be non-empty, and «
must be recently necessary in C, and in every cut above it, and true in every

old case of W<, It then follows from the induction hypothesis that Vi *(La,we)=1.
A straighforward application of the induction hypothesis shows that L must remain false
at old cases in M* when it was so in M. All the above shows not only the case wise

elementary equivalence of M* and M, but also their ordinary elementary equivalence.
That the new model is boundedly compact follows from the mere plugging of all open
cuts. New open cuts can not be created. '

To prove Modal Continuity, let S be any bounded-above-set of cases (possible worlds) in

M, which has no maximal (latest) member, but which satisfies Mo everywhere. Suppose it
has a supremum w5 in M*. Let C* be the cut immediately below this case, i.e, '
<{cases<wS},{cases>wS}>. C*'s past is cofinal both with S and with the past of C*'s old
counterpart in M, C ( {old-cases<wS},{old-cases>wS}). Thus M« is recently necessary both in
C* and in C. If wS is a new case, it satisfies Ma. by claim (a) above. If wS is an old case, then
C*=C, where C as a real cut must have been originally modally continuous. M

6. Strongly normal S4 Models and the Idiosyncracy of w-frames.

6.0. The above results are enough to show that $4.3.1 is not about discrete linearity and that
its discrete well-ordered models (finite and w-based) are exceptional, in a sense, despite

their sufficiency for an ordinary completeness result. Yet the question lingers: If the w—frames
are so idiosyncratic, what is their relationship to the more general type of model?
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6.1. Alluring Topological Intuitions. Consider strongly normal S4 models. Within their
necessarily transitive frames there may occur end points and "bubbles”, which constitute
"local” S5 submodels. A seeming "semantical eye-catching” topological predicate of such
frames has to do with such end features. Anend cluster —which may be a singleton—has
only its own elements as accessible to any of its worlds. Now, there is a topological
difference between models/ frames in which every possible-case has in sight some accessible
end-cluster, on one hand, and those, on the other, in which there may be a"branch" or "open
ended section" with no such clusters. One is tempted to correlate the former structures with
the validity of the set of statements asserting the possible necessity of S5 theorems.

6.2. But Misleading. This however is a topological mirage for logicians! The truth is that
there is nothing formulable as an extension of S4 that is exclusively about open ended linearities such

as w. For every w-based model there is an elementary extension which is an Entropy

Maximiser, and for some w-based models such extensions are necessarily non-linear.

THEOREM 6.2.1. Let M. bean w-model ,i.e, M =<w, < ,V>. Then there exists an

Elementary End Extension of M, M*=<W* R* V*>, satisfying:

(1) P * is an Entropy-Maximiser with M as a maximal initial linear model, and, therefore
M=M*~M =<W*- w, R" - < ,V*| Fofmulae X W= >, 18 a S5-model;

(2) M. 15 a case-wise elementary submodel of M* ; and

) Forany a, M |—MLa <=> M |—La.

This is proved in Appendix I below, where the cases of M correspond to all the ultrafilters
over o containing the Fréchet filter (= {X | XCw & w~X is finite}). Notice that if M has some
necessarily contingent formula, M* will be irreducibly non-linear.

From the proof of this theorem, and its generalisation to models with any linear order type
without end, one can see that discarding models with open ended linear "branches" is not
going to affect the ordinary characterisation of any 54 extension logic (this does not mean

- thatany o-framed model is reducible , or dispensible from a reverse semantical point of
view).

6.3. Syntactic correlate of Theorem 6.2.1. The syntactic relationship deducible from the
above theorem therefore amounts to

THEOREM 6.3.1. If S5|—a then S4 |—MLa

which can be proved directly by straightforward syntactic induction. The converse is trivial.

7. Concluding remarks.
7.1. The concept of (reverse semantical) ""capture". We recognise that our explications of
this concept seem to contain an arbitrarily circumscribed move—that of trying to represent

every (nominalistically acceptable) model of a logic L as an intensional union —in one of the
senses used in this paper—of the models we want to capture. After all, it might be claimed,
one could have presented a different mode of "intensional" composition, which might have
givenrise to different relationships between reductandum-models and candidate
reductans-models.
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One must stress, however, that the required reduction is subject to some essential
constraints, first and foremost of which is the natural reductive requirement that the
components of the reduction should "worldwise" retain between them all the semantic
value information of the original (strongly normal) model. But this, of course, does not
always allow a perfect reconstruction of the original accessibility-frame. Since such
accessibility frames, in general, can take many mathematical shapes and forms, we used a
universal mode of composition, in which frame-overlaps among components could be as
large as needed to retain essential frame properhes This corresponds to what is required in
classical model theory in order to form unions of models (out of chains or directed
families)16,

A critic of the restriction to "simplistic" intensional unions might argue that our very proof
of theorem 6.2.1 shows how an entropy maximising elementary extension of an w-model

can be obtained from this very w-model by using "composition” by ultra-filters, and may go
on to suggest that any legitimate entropy- maximising model of 54.3.1 is related to its initial
linear-segment in a similar manner. Our remarks in §2.2 suggest however that, in analogy to
the case of finite entropy maximisers, this is not so for infinite ones, either. Indeed, one can

easily construct infinite entropy maximising models of S4.3.1, with an initial w-segment, that
are not elementarily equivalent to any of their w-submodels.

More important, however, is the fact that most of our results, concerning different types of
54.3.1 models, are significant independently of the concept of intensional union, and can be
interpreted conventionally as stating that this logic has many (nominalistically) legitimate-
models, which are very different from its linear-discrete models and are seemingly
irreducible to them by any standard device that is structurally intelligible independently of
specific semantic information. Furthermore, as indicated above, while linear models can
always be embedded in non-linear entropy-maximisers, the latter do not always contain
(casewise) elementarﬂy equivalent linear submodels. The fact that each entropy-maximiser
can be made to agree in a world of its linear part with some infinite (well-ordered) linear
extension of its linear part (as in Segerberg's constructions) is not philosophically significant
and certainly does not "reduce" that entropy maximiser to linearity—even if we ignore the
fact that such linear extensions violate any canon of (nominalistic) semantic parsimony.
Such constructions are mere artefacts of completeness proofs.

Equally important is the result that modally-continuous, order-complete. entropy-
maximising (and linear) models are a better choice as paradigmatic models of 54.3.1, which
match more perspicuously its special axiom. One may argue that entropy maximisers are
quite linear (although to our mind the "linearity" of such weakly linear models diminishes
when the cardinality of their linear part is small compared with that of its (final) S5-cluster);
but one can hardly claim that order-complete, dense, sets (like the Reals) are quite discrete!
Even if we were to choose all modally continuous, order complete, strictly linear structures as our
preferred semantically characteristic set for S4.3.1, in the classical sense, we would still be

putting ourselves far beyond the set of w-framed models—which would then constitute a
very special subset of our favoured linear models.
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More generally we can say that the weak-linearity of certain classes of $4.3.1 models
that suffice for completeness is inherited from S4.3. Its special axiom. however, does not
dictate an additional frame property, but a quasi-determinism and/or modal continuity of
the valuation function, within the same frame types. The completeness-sufficiency of -
frames for $4.3.1 is thus interesting but not model-informative! All these results are valid
independently of the significance one attaches to the enterprise of "reverse semantics".

However, it is only through some "reverse semantical" concept of "capturing" that one can
elaborate a coherent notion of a paradigmatic type of model (of a Logic). As the greek term
suggests, a pardigm should be be fully instrumental to understanding the totality of beings
it exemplifies. Thus, for example, it is not enough to choose the prime models of a theory as
paradigmatic, unless we have a standard way of reconstructing from them the other

legitimate models”. We should not regard the w-framed models of $4.3.1 as paradigmatic
any more than we should regard the "standard" model of Arithmetic as paradigmatic of
Peano Axioms. Indeed the partial-similarity between $4.3.1 and Peano-Axioms with respect
to the relationships between "standard" and "non-standard" models, and inter alia amongst
the latter, using cofinal and end-extensions, is quite strikings,

7.2. Entropy Maximisers, Deterministic-Causal mechanisms and The Nature of Time.
Results such as theorem 6.2.1 show that no extension of S4 can capture "exactly” the concept
of a strictly linear time, in its full generality (results such as 5.2.3 and 5.2.4 are connected only
with those linear frames, with a terminal "moment", that can be derived from intensionally .
decomposable entropy maximisers; they do not apply to open-ended linearity). Yet can’t we say
that logics such as $4.3.1 are about an alternative concept of time ? One reason for raising this
possibility here is that entropy-maximisers are strongly indicated, as a minimally liberalised
version of strictly linear time, by two very different conceptual schemes—both of which are
intimately linked to Physics.

First there is the old idea (Clausius and Boltzmann) that the one-directionality of time is
connected with the overall increase of entropy (in a closed system). This suggests that when
~ entropy reaches a maximum, the directionality of time breaks down in the sense that
allowed physical transitions are reversible and there is no criterion to distinguish very
recent past from some "future"”. In a finite universe with a certain kind of physics a maximal
entropy is inevitable. It seems to us, then, that the appropriate global physical structures
that make time possible for such a universe must be those of non-linear entropy maximisers (or
intensional unions thereof). Linear time then will have been explained by a structure which
eo ipso explains also its ultimate destruction (notwithstanding the seeming paradox behind
this very statement!).

A second and perhaps more fascinating indication come from a different quarter, which
connects well with Field theory. Consider a "quantised" scalar field @ in space-time obeying
a deterministic-causal law of evolution. For simplicity assume that @ is restricted to a finite
range of values. The causal action of the field on itself may be restricted by some universal
upper limit (e.g., the speed of light). In a discrete space and time, this would be represented
by a rule of the type ®d(x, t+1)=F({d(x;, t)| ;& N()}), (where N(x) is an appropriate
"neighborhood" of space-cell x, that can be made "commensurate in size" with the maximal
speed of propagation of causal action). Such a rule describes what is known as a




22

cellular automaton and is itself alluded to as its transition function or transition-rule . The

behaviour of such automata can be adequately modelled by using a two-valued scalar
function.

Now there is an obvious way in which each such binary cellular automaton will provide us
with a finitary model of discrete temporal logic. Let the concurrent (binary) scalar field
values at the different "spatial” cells correspond to the valuation of (finitely many) different
"basic" propositions, so that a global state configuration (GSC) corresponds to a finitary
"possible world" or a "moment", and let FX(C) be the GSC obtained by applying this cellular

automaton (defined by F) k times to the global state configuration, C; Then a is necessarily

true in C iff o is true in FK(C) for all k=0. Inasmuch as « is a modal function of propositions
whose values for each GSC are the scalar values in predetermined cells therein, the truth-

value of o is computable. Remembering, now, that such mechanisms are used here

to model a deterministic universe, we can say that the corresponding time-like structure is
determined by the way the automaton partitions the state-space (the set of all

a-priori possible GSC's) into paths of deterministic evolution.

Yet here again we end up with nothing but Entropy Maximisers! Such cellular automata will
always partition the state-space into separate basins of attraction, each of which consists of an
attractor-cycle (which could be a fixed-point) with any possible number (including 0) of
transient lines leading into this cycle (transients may merge like rivers before reaching an _
attractor cycle, but they can not split-up). It is clear that each such basin of attraction is a
(strong) intensional union of entropy maximisers, and that we can regard the whole induced
global partition structure as such a union as well. We notice that there is no possibility of an
infinite-length transient, in the above universe, unless the state-space itself is infinite. Since
we assumed the number of scalar values to be finite, a space of finitely many "cells" would

preclude any infinite (w) transient. However an «-time line can be easily generated by a
cellular automaton operating on infinite state configuration. B

Analysing the global temporal structures that such mechanisms induce in the state-space—
structures that just began to be seriously mapped (e.g, by [Wuensche and Lesser, 92))
without the seductive analogy of "Chaos Theoretical" attributes of continuous non-linear
dynamic behaviour—opens up a whole new field of fascinating study into the relationship
between the fundamental transition function that determines the evolution of a discrete
scalar field and the overall structure of the intensional-unions of entropy maximising "time
lines" that describe this evolution. Although these hyper-temporal structures depend both on
the transition function and on the innate topology of the "spatial" field (e.g., for cellular
automata, on the exact total number of cells and on what constitutes a neighbourhood),
there are some important features that can be linked directly, for most spaces, to the nature
of the transition-function itself. For instance, it is possible to deduce high symmetries in
such hyper-temporal structures—isomorphism amongst most of the maximal entropy
maximising sub-frames thereof—in the case of transition functions that are relatively good
at partially preserving the (semantic) information encoded in global-state-configurations.

University of Hertfordshire
May 1995




Appendix I: Elementary End Extensions of w-Models

THEOREM: Let M be an w-model, i.e, M =<w, <,V>.Then there exists an Elementary End Extension of M ,
M =<W*, R* ,V* >, satisfying:
(1) " is an Entropy-Maximiser with M as a maximal initial linear model, and, therefore
M=M-M = <W*'-0, R*-<,V*| Formulae X W*= >, isa S5-model;
(2) 1 is a case-wise elementary submodel of M*; and
(3) For any o, M|—MLa <=> M|—La.

Proof: Let Fr be the Fréchet filter over w,i.e, Fr = {X| XCow & w-X is finite).
Let 1 be the value corresponding to truth, while 0 corresponds to falsehood.
Let TV(s)' denote the truth-value of a statement s.
Let UF(w) be the set of all ultra-filters over w, and let Wepd and Vend be defined by
Wend={DIDEUF(w) & DDOFr } and, for any propositional variable, u,
Vend (u,D)=truth-value ( {i| V(u,i)=1} €D),
together with the usual recursive valuation clauses.
Let Rend= WendXWend and set M as <Wend ,Rend,V end > so that
W*= 0UWend; R*= <o UW *XWend; V*| varXw="V and V*| Var XWend =Vend-

Lemma 1. For any formula a, Vend(a,D)=truth-value ({i| V(a,i) =1} € D).
Proof (by induction on construction of ). For propositional variables this is true by definition. If the main
connective is negation(—) then
Vend(“a /D)=Df 1‘Vend(a,D)
=1-TV( {i| V(ai)=1} €D) (by Induction Hyp.)
1-TV(w - {i| V(c,i) =1} & D) (by Ultra-filter properties)
=1-TV ({i| V(i) =0} & D)
=1-TV({i| V(-a,i) =1} ¢D)
= TV =( {i | V(o) =1} €D)
=TV ({i| V(~o,i) =1} € D).
If the main connective is conjunction (A) then
Vend(@aB, D) = Vend(a,D) X Vend(B,D) .
=TV({i| V(i) =1} €D)xTV({i | V(i) =1} € D) (by Induction Hyp.)
=TV({i|V(a,i)=1} €D & {i | V(B,i) =1 }€D) .
but since for any ultra-filter D, AED & BeD iff ANBED the above is
=TV( {i | V(ei) =1 IN{i| V(B,i) =1) D
=TV({i| V(a,i) =V(8,i)=1}eD)
=TV({i| V(arB, i)=1)€ D).

For other truth-functional connectives the proof is similar, relying on the inductive hypothesis about the
operands and on the properties of any ultrafilter.
The crudial part of proof is for the case when the main operator (connective) is necessity (L). Then
- Vend(La, D)=1 iff
(VD) (D' €Weng — V(a,D")=1), which, by the Induction Hypothesis, is true
iff (VD')(D'€Wend — {i| V(a,i) =1} €D'), or equivalently
iff {i| Vigi)=1} €N {D' | DEWepd)
But it is easy to prove that the intersection of all ultra-filters over w which include a proper filter F over w must be F
itself 1% hence
Vend(Lo,D)=1 iff {i|V(i)=1}EFr. (4)
Now suppose
{i|V(Lo,i)=1} €D
This is the case iff (by definition)
{il (V)(=zi—> Vj)=1)}€D
Since D is a proper Ultrafilter, this implies that
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{i] (V)) (=i~ V(aj)=1)} =@ (the empty set)
which means that
(A1) (vj) jzi~> V(aj) =1)

Let iy be the minimal value of i satisfying the matrix of the existential quantifier. Then
the set {i| iz i} is exactly the set {i (V) (jzi— V(o) =1) } and it is obviously
a member of the Fréchet Filter, Fr. Thus by the equivalence (A) above, Vapq(La,D)=1.
Conversely: Suppose Vend(La,D)=1, for any DEWengq . Then, by (4)
{i| V(e,i) =1} E Fr
< o{i | V(o,i) =1} is finite
< @) (V) zi— V(aj) =1)
< (F XVR)[kzi— (V)) Gj=k— V(o) =1)]
< (3 XVK)[k=i— V(Lo,k) =1)] : '
< {k | V(Lo,k) =1} 2fi| i =iy}, where iy is any value of i
satisfying the existential quantifier above. But since the smaller set belongs to Fr ,
so does the superset {k | V(La,k) =1}. '
Since Fris the intersection of all the members of Wepg, (k| V(Lok) =1)€D, for any DEWgpq .
We can now prove the rest of thr above theorem. We prove first [(3) above] that for any a,
M|—MLa <=> M |—La . This will follow from
Lemma 2. ‘
(?1]—MLo ) — (VD) (DEWend —Vend(a,D)=1);
(M |—ML-a ) (VD) (DEWend = Vend(a,D)=0); and
(| —LMar LM-a )= (3D1) (D1EWend & Vend(e,D1)=1)&(ID2) (D2EWend & V end (e, D)=0).
Proof.
(M|—MLa ) - @)(V)) (jzi—> V(aj)=1)
= @) lj=1}CkIV(gk) =1}
— (kiIV(a,k)=1}EFr
~> (VD) (DEWepd — (k1V(o,k) =1}€D), since (VD) (DEWepq — DOFr )
= (VD) (DEWend > Vend(c,D)=1)
(1| —ML-a ) = (F)(V)) (jzi— V(-a,) =1)
= @)[{jlj=1}C &kIV(ak) =0}
— {klV(a k) =0}Fr :
— (VD) (DEWenq — (k! V(o k) =0}€D ), since (VD) (DEWendq —DDFr )
— (VD) (DEWend — Vend(a,D)=0) ‘
If (M| —IMoaaLM-a) thenboth (kI V(a,k) =1} and {k V(o k) =0}= o {k1V(a,k) =1} must be infinite.
So neither of them belong to Fr. We now use the following basic
lemma?®. If F is a proper filter over w and a subset Y of w is such that neither it nor its w complement, (w—Y), belong tc
F, then there is a proper ultrafilter over w containing F L{Y}),
We can apply this lemma twice to show the existence of ultrafilters D1 and Dy containing
Fr U{k1V(o,k) =1} and Fr U(o- (k| V(e k) =1}, respectively, which by definition implies
(3D1) D1€Wend &Vend (@,D1)=1)&(ID2) (D2EWend &V end (e, D)=0).

A corollary of this proof is (3) For any a , M|—MLa <=>M |—La.

That M* as defined is an Entropy Maximiser follows straightkorwardly from definitions.

To prove that ™ is a casewise elementary submodel of M*, we show that if
(Vi<w)[V(a,i)=V*(a,i)] then (Vi<w)[V(La,i)=1 <=>V*(Lo,i)=1].

But V*(La,i)=1 <=>df (VD) (DEWend —V end (@, D)=1) & (Vj) (j = i= V(a,j) =1) . The second conjunct on the
right is definitionally equivalent to V(La,i)=1 which implies ®|—MLa , which implies, by the above,
M|—La ,which is equivalent by definition to the first conjunct.

Thus V*(La,i)=1 <=>(Vj) jz=i— V(a,j) =1) <=>V(Lo,i)=1.

This is sufficient to prove by induction that M is a casewise elementary submodel of M*,




Appendix II:  Syntactic Proof that If S5|— o then S4 |[—MLa.

In the following proof we shall use the notations of and references from Huges and Creswell's An Introductzon
to Modal Logic [henceforth abbreviated as IML]. 'PC' stands for classical propositional calculus.

Derived rules of Inference
DR1:If |—oDf then|—LoDLp [IML p.33]
valid in KCTCS4.

THEOREM . |—L(cOf )D(McOMB) (T8 in IML, p.37, valid in KCTCS4.)

DR3:If |—oDf then|—MaOMp [IML p.37]
Follows from above theorem via Necessitation of hypothesis. Valid in KCTC4.

An $4 Derived rule NCN: If 54 |— LoD then $4 |—LoDLB
Proof: apply DR1, then use $4|— LoDLLa ,and Hyp. Syll.

An 54 Derived rule MLdist: If S4 | —ML(cOB) then $4|— MLoOMLB
Proof:

(0) S4 |—ML(cDB) [Hypothesis]

(1) 4 |— aD(aDp D) [PC]

(2) $4|— LaDL(cDBDP) [DR1 (1)]

(3) $4 |— L(aDB DB (I{aDB)DLP) [L'-distribution over ' D' or A6 1nIML]
4) S4|— LoD(L(cOP) DLB) [Hyp. Syll., (2)&(3)]

(6) 54 |— LoDL((cDB)DLP) [NCN (4)]

(6) S4 |— L(L(cDB)DLB) DMML(cDB)DMLB) [ Subs. inst. of T8, IML p.37 ]
(7) S4|— La D(ML(o2) DMLB) [Hyp. Syll, G)&(6)]

(8) S4 |— ML(aDB)D(LaDMLPB) [PC—Permutation.,(7)]

(9S4|— LaDMLB [MP, (8)&(0)]

(10) S4|— MLoDMMILB [ DR3, (9)]

(11) S4|— MMLBOMLP [ T18,IML p.46]

(12) $4|— MLaDMLB [Hyp. Syll,, (10)&(11)]

An$4 Derived rule MLMP: If $4 | —ML(cDB) and S4 |— MLa, then $4 |—ML[3
Proof: apply MLdist and MP.

Lemmal. If S4|—a, then S$4 |—MLa
Proof: trivial.

THEOREM: $4 |—ML(MLoDLa)

Proof:

(1) LaoMLoDLo) [ Subst. inst. of PC |

(2) LLoDOL(MLoDLa) [DR1, (1)]

(3) LoDLLa [$4 schema]

(4) LoDL(MLaDLa) [Hyp. Syll,, (3)&(2)]

(5) "MLoOMLoDLa) [ Subst. inst. of PC ]

(6) LM-oO-MLa [M definition, K and PC]

(7) LM~oD(MLoDLa) [H.Syll, (6)&(5)]

(8) LLM-aDL(MLaDLa) [DR1, (7)]

9) LM-oDLLM-a [S4 axiom]

(10) LM-oOL(MLaDLa) [H.Syll, (9)&(8)]

(11) -MLoDLM=a [ M definition, K and classical logic]
(12) ~“MLeDL(MLaDLa) [H.Syll, (11)&(10)]

(13) LMLoOLa) DMLMLeOLa) [instance of LaDMa&EDCTCS4]
(14) ~MLeOML(MLoDLa) [H.Syll, (12)&(13)]

(15) MLoOML(MLaDLa) [DR3, (4)]

(16) -MLavMLa [subst. inst. of exc. middle]

(17) ML(MLoOLa) [Constructive dilemma,(14)&(15)&(16)]




MAIN THEOREM: If S5 | —a then $4 |—MLc.

We prove by induction on the length of the minimal proof TI(a) of a in S5 that applying ML to all the formulae
in TI(o) yields a sequence that can be enriched by interpolation to an S4-proof . If the length=1, then a is an St
axiom. If it is also an S4 axiom, we can derive MLa in $4 according to Lemma 1. If it is an instance of the S5
Axiom Schema ML3DLY, then the proof is given by the last theorem provedabove,

Suppose the length of the minimal proof of a in S5 is n+1, where n>1. Then « is not an axiom of S5. It must
follow from previous formulae either by Modus Ponens(MP) or by ‘

N(Necessitation). Apply ML to all the formulae of the proof . An MP transition will correspond then S4-
transition by MLMP above. By Ind. Hyp. the ML-transformed premises are provable in $4. Therefore the ML-
transformed conclusion must provable in 54.

A Necessitation inference (from S5 |— § to S5 |— LB.) is transformed into (from S4 |—MLB to

$4 |— MLLB.) which can be enriched by interpolation to ( |—MLB ,|— LB DLLB ,

|[—MLB DMLLB, |—MLLB ). By Induction Hyp. S4 |—MLB, while the second and the third provability
statements are an S4-axiom and an application to it of DR3 (see above). 54 |— MLLB follows from these

by Modus Ponens. ‘

Since the converse of the main theorem is trivially proved through the S5 Axiom Schema MLoOLa, and the
fact that S5 contains 54, we have :

COROLLARY: S5 |—a if and only if $4 |— MLa.




Footnotes.

1. Prominently, Prior, Kripke, Hintikka, Lemmon, Cocchiarella and Dummet. [Cf. the appendices to Prior's
Past,Present and Future (1967)]

2 Terms such as 'reverse semantics’ are used tongue in cheek : We do not really believe that there should be
any privileged direction in proceeding between formal-theories, on one hand, and structures in which we wish
to anchor their semantics, on the other. It is interesting however that a strong consciousness of the reverse
semantical direction, which is so germane to mathematics, occurs almost as an after-thought to some Modal
Logicians. Thus, in their book A Companion to Modal Logic (84)—most of which is devoted to the relationship
between Modal theories and frames—the idea of looking at the whole semantical enterprise from the opposite
point of view occurs to the authors, G.E.Hughes and M.].Cresswell , only on a single occasion(ch.3, p.47), in a
section entitled conditions not corresponding to any axiom. It is only there that we find the question posed:
“But what, we may wonder, is the position about the reverse direction?”. The ensuing discussion is scanty.

3. Model-Normality follows from distinguishability (see [Hughes & Cresswell,84, p.75 ] ), and is also entailed by

- Strong Normality (It is equivalent to strong normality for finite models).

4. The principle of Modal continuity entails also the following: In a Linear Model every discrete case is semantically
distinguished from all others by a uniquely true formula.
5. The proofs follows along the same lines as those which establish the relevant frame properties of Canonical
models of said modal logics.
6. Cf. [Hughes G.E& Cresswell M.], An Introducton to Modal Logic, 1968] p.289.
7. Cf. Kelly, J.L., General Topology, p.14.
8. Cf. [Hughes G.E& Cresswell M.J, A Companion to Modal Logic, 1984] p.30
9. Op.Cit. Corollary 5.10, p.81. This, however, does not work for $4.3.1.
10. Cf. Segerberg, K, An Essay in Classical Modal Logic, Uppsala 1971, pp.78-81; and also
[Hughes and Cresswell, 84, p.84].

11. An w+w™ frame, such as in M above, is discrete although it has one open cut.
12. Formally <W,R> is an entropy maximiseing frame iff W=W1UW2, W1NW3 =&, (W1U (W3 XW2)CR , an
<W1,RN(W1xW1q )> is linear. (Notice that <Wp, RN(W2 XW7) > is then a universal S5 frame). i

13. This is related to sobocifiski's K systems. The E schema above is equivalent to the schema
Kb={LMaDMLa)} in [Hughes & Cresswell, 68] p.265. The system E would seem to be K4.3.1

14. Essentially this shows that a non-trivial S5 model without"Occamian" redundancy can not be described as
aunion of linear submodels. Segerberg's method of bulldosing clusters (and replacing them with infinite
linear stretches) is, in fact, an intuitive result of the above argument.

15. The proof is straightforward, using the above lemma and the techniques used in proving it. The denseness
of the submodel follows from the fact (due to strong normality) that for any (topologically)closed interval
[w,w'] in the original model there is a formula satisfied only within it. One uses then the elementary submodel
property to show that the submodel could satisfy it only within the interval.

16. c.f [Chang& Keisler's Model Theory 73] pp. 113-121, and especially exercise 3.19

17. A prime set of models of T is a minimal one with repect to the property that every model of T contains a
submodel isomorphic to one of its members.

18. Cf. [Gaifman,H.,1972, pp.128-144.] where it is proved that every extension of a non-standard model of
Arithmetic can be obtained by taking a cofinal elementary extension and then an end extension. A very similar
theorem to this theorem of Gaifman can be shown by our results to apply to models of 54.3.1.

19. Suppose S=[ (DI DEUF(w) & DDOF}] - F, where F is a proper filter, is not empty. Let X be a member of S.
Clearly X does not belong to F. Suppose w—-Xbelongs to F. Then it belongs to every ultra-filter that

contains F, and therefore X does not belong to any of them, and a fortiori is not a member of their intersection
and could not belong to S. (contradiction, derived fron the fact that for any ultrafilter over w contains a subset
of w iff it does not contain its w-complement). Thus neither X nor o—-X belong to F .

On the other hand, we must have a non-empty intersection YN (w—-X) for every member Y of F, since
otherwise we would have YCX, for some Y in F, which would imply—by the proper filter properties—that

X belongs to F. Thus the set FU[Y N (0-X) | YEF } must have the finite intersection property

and is extendible to an unltrafilter D* over w. Since XED* as a member of S, and since (w—X) =N (0-X)ED*
by its construction, we get @=XN (w-X)ED* (contradiction).

20. For any Xin F, YNX=@ or else XC w - Y and by filter propertiesw - Y belongs to F (contrad.) Hence prove
that F U{Y NX|XEF} has the finite intersection property and can therefore be extended to a proper ultrafilter.
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