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Anyone out there? Galactic Halo Post-AGB stars
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Abstract. We present results of a survey of post-asymptotic giant branch stars (post-AGBs) at high
galactic latitude. To date, few post-AGB stars are known throughout the Galaxy and the number
of known members of the older populations like the galactic halo is even smaller. This study looks
at the number of post-AGB stars which are produced using different synthetic population methods
and compare the results with observations. The resulting synthetic populations are compared to
observational results from a complete and studied subsample from the photographic Palomar-
Green (PG) survey (with high resolution spectroscopic follow-up for post-AGB candidates) and the
SDSS spectroscopic database. The results show only two candidate post-AGB stars in a complete
subsample of the PG survey spanning 4200 deg2 and one in the SDSS database. We discuss and
explore any observational biases which may cause the result. If found to be truely representative of
the halo population, one can expect the majority of Population II stars to fail to ascend the AGB and
evolve through other evolutionary channels such as the extended horizontal branch.
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INTRODUCTION

In the standard scenario, all low and intermediate mass stars should evolve up the
asymptotic giant branch (AGB) and enter the white dwarf cooling sequence as post-
AGB stars. It is known that extreme horizontal branch (EHB) stars become white dwarfs
without an AGB/post-AGB phase but their numbers are estimated to be low [∼1%,
1, 2, 3]. The number of known PNe and post-AGB stars in the galactic halo is quite
small. The Torun catalogue [4] is the most complete compilation of known post-AGB
stars. However, most of the objects included in this catalogue were detected due to their
IR excess including all of the IRAS objects from [5]. This canbe expected to introduce
a bias in favour of higher mass pop. I post-AGB stars with dense envelopes. Only 20
objects in the catalogue are possible or probable pop. II stars.
Higher mass post-AGB stars have suffered from strong mass loss and are evolving
quickly. As a result they can remain enshrouded in their circumstellar envelope during
most of this phase. Extinction makes the star difficult to detect in the optical, but they
are easily found by the IR surveys mentioned above. Low mass post-AGB stars (of pop.
II) experience relatively small mass loss and evolve slowly. As a result little or no IR
excess is expected, but the stellar radiation is essentially unabsorbed.
Classifying post-AGB stars is difficult as some types of object have a similar appearance.
Examples include, horizontal branch stars (HB), extreme HB(EHB), post-EHB (pEHB)
and hot, massive MS stars. Accurate parameters and sometimes only detailed chemical
abundance analyses tells them apart from post-AGB stars. However, the number of stars
contaminating the post-AGB region is expected to be small and our findings can only
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increase the number of objects found in the post-AGB region.
Here we describe the results of systematic searches for highgalactic latitude post-AGB
stars facilitating optical and UV data. Results are compared with expectations based on
the standard scenarios and we discuss the implications.

POST-AGB STARS IN HIGH GALACTIC LATITUDE SURVEYS

Sloan Digital Sky Survey (SDSS): SDSS perfomed an imaging survey of 12,000 square
degrees of the northern sky, mostly with|b|> 10◦. An extensive spectroscopic database
of over 1.6 million objects followed-up is available. In a brute force apporach to iden-
tify post-AGB stars in SDSS we carried out Balmer line fittingof all objects bluer than
g′− r ′ < 0.0. Quasars and other extra galactic objects were identified and discarded.Teff
and logg of the remaining objects were compared with post-AGB tracks. In the endonly
one star remained with parameters compatible with a post-AGB nature. This is obvi-
ously at odds with any plausible estimate of post-AGB numbers. However, one has to
have in mind possible biases in the selection of SDSS targetsfor follow-up. Such biases
include some objects saturating, photometry not being unique and post-AGBs are low
priority for follow-up. Some post-AGB objects are known in the SDSS survey area [4]
but were not included in the spectroscopic database. This islikely due to one of the rea-
sons mentioned above.
Palomar-Green (PG) Catalogue: In an effort to double check the completely unex-
pected outcome of our search of the SDSS database, we studiedfindings from the PG
survey. This is a 10,714 square degrees photographic surveyof UV-excess objects of
high galactic latitude [6]. 1874 objects were selected for low resolution spectroscopic
follow-up based upon the criteriaU−B<−0.46 and given a spectral classification. Due
to the low resolution of the spectra the classifications werequite broad or mistakenly la-
belled HBB, sd, sdB and sdBO which with higher resolution follow-up later determined
to be post-AGB, HBB, pHBB, pEHB, and pop. I and II main sequence stars. Saffer et al.
[7] carried out intermediate resolution follow-up of a collection of stars categorised as
above and the resultingTeff-logg diagram is shown in Fig. 1. The interesting objects for
our study are the ten post-AGB candidates which are found near the [8] post-AGB tracks.
However, also apparent from the other tracks are the ambiguity of the candidates with
the hotter objects possible post-EHBs and other potential pop. I MS stars. Therefore, to
confidently classify the different types, high resolution spectroscopy is required to de-
termine chemical compositon. In an effort to contain a complete sample for their study
and priortise objects for follow-up observations, [7] selected three fields (see Fig. 2) and
a brightness limitBPG< 14.7. Only three of the ten post-AGB candidates fulfill the cri-
teria, PG1212+369, PG1243+275 and PG2120+062. The high resolution spectroscopy
revealed that PG1212+369 had a close secondary component which it had probably in-
teracted with, ruling it out as a post-AGB candidate [9]. PG1243+275 is metal-poor and
its abundance makes it a strong post-AGB candidate. PG2120+062 was confirmed as a
post-AGB star through its CNO depletion. Further details ofthe object can be found in
[10]. Thus only two post-AGBs observed within the 4200 deg2 region of sky followed-
up for the complete sample. The position of all the candidates in theTeff-logg diagram
suggests that they are low mass (M < 0.55M⊙). This is in agreement with observed mass



FIGURE 1. The Teff-logg diagram of the followed-up PG region. This table is Fig. 5 in Saffer et al.
(1997). The solid symbols are halo B-type star candidates and the squares are the complete sample (details
in this and their paper). The evolutionary tracks from low tohigh gravity are firstly, the two solid lines are
the post-AGB tracks of Schönberner (1983) for the stated masses. The dash-dot line is the pop. I ZAMS,
the various dashed, dotted and undulating curves are HB and post-HB tracks with the solid He ZAMS at
the bottom.

distributions for similar WD populations [11, 12].

SYNTHETIC POPULATION PREDICTIONS

We generate a synthetic post-AGB galactic population usingan adaptation of the WD
Monte Carlo simulation of [13]. The simulation uses the galactic model structure of [14]
to randomly assign locations of a large number of stars basedon observed densities.
Depending on population membership each star is given a metallicity, an initial mass
and kinematical properties. Number densities of the three populations (thin disc, thick
disc and halo) are calibrated with the local population based on the Supernova Type Ia
Survey [SPY, 11, 15]. The evolution of each individual star up to the post-AGB phase
is determined from the Padova evolutionary tracks [16] and refs. therein. The tracks
give a metallicity range of Z=0.0001–0.1 corresponding to a[Fe/H] of −2.3 to 0.95.
This fully covers the range from observed populations whichare reproduced in the
simulation. All stars which are not old enough to have evolved to the tip of the AGB
are discarded. The evolution of the remaining stars is followed through the post-AGB
phase and the WD cooling sequence. We performed simulationsusing various mass and
metallicity post-AGB tracks of [8], [17], [18], [19] and [20] to computeTeff and logg.
The masses range from 0.524–0.943M⊙ and metallicitiesZ=0.0005 to 0.04 (equivalent
to [Fe/H]=−1.6 to 0.3). All post-AGB tracks used for our analysis see thestar leave
the AGB as hydrogen-burners. He-burners evolve slower and thus would produce an
even higher number of observable stars. The higher mass post-AGB stars evolve much



TABLE 1. Simulated post-AGB population for various models in the region of the Saffer et al. (1997)
complete sample.

Post-AGB Mass
M⊙

MS Mass
M⊙

MS Met.
(Z)

No

thin disc
No

thick disc
No

halo Total
Grid
Ref.

0.524 1.00 0.021 11±2 36±4 160±9 208±10 [19]
0.546 0.80 0.021 13±3 28±4 59±5 99±8 [8]
0.565 1.00 0.021 0±1 1±1 13±3 15±3 [8]
0.605 3.00 0.021 0±0 0±1 16±3 16±3 [19]
0.569 1.00 0.016 1±1 3±1 97±7 100±7 [17]
0.597 1.50 0.016 1±1 1±1 32±4 34±4 [17]
0.633 2.00 0.016 0±0 0±0 9±2 9±2 [17]
0.530 1.20 0.008 1±1 1±1 34±4 36±4 [20]
0.531 1.00 0.004α 0±1 2±1 37±4 40±4 [20]
0.533 1.20 0.004 1±1 2±1 35±4 37±4 [20]
0.623 1.50 0.001 0±0 2±1 35±4 37±4 [17]
0.663 2.00 0.001 0±0 0±0 6±2 7±2 [17]
0.534 1.00 0.0005α 1±1 2±1 36±4 39±4 [20]
0.599 2.00 0.0005α 0±0 0±0 3±1 3±1 [20]
Observed – – 0 0 2(?) 2

α indicates anα-enhanced initial composition.

quicker to hotter temperatures and so will spend less time onthe top of the H-R diagram
and resulting in less post-AGB stars at a given time. The finalpost-AGB population is
normalised to the local WD population as described in [13].
Simulation of the Complete PG Subsample: We simulated the [7] sample of post-AGB
candidates by selecting the stars from the same fields applying the same brightness limit
(BPG< 14.7) as those for the complete sample defined in [7]. We applied atemperature
criterion of 14,000–34,000K. This was defined at the low end due to the PGU −B cutoff
criteria and the photometric uncertainty attached to this,and the top end by the hottest
found post-AGB candidate in their sample. These criteria are conservative and can be
interpreted as a lower limit on the number of stars which should be observed in that
survey.

THE RESULTS

The resulting post-AGB numbers differ greatly from one track to another and there is a
general trend with mass and metallicity. Fig. 2 shows a simulated post-AGB population,
within the brightness and positional criteria set out, assuming a mass of 0.546M⊙.
We run the simulation for each post-AGB evolutionary track we have obtained and
summarise the most relevant tracks in Tab. 1. The masses stated are the final post-
AGB/WD and the initial ZAMS in their respective papers. The metallicities are the initial
compositions of the stars on the MS. The numbers for each population and the total
are given. The reference for the model used is stated in the final column. The original
simulation contains a multiple of the evolved stars presentin our galaxy. A normalisation
factor is calculated and a random set of stars selected for the multi-Galaxy. This way 100
synthetic representations of the Galaxy are produced.



FIGURE 2. Left: An Aitoff-Hammer projection of the post-AGB population from the three selected
complete regions in galactic coordinates. This example is for a 0.546M⊙ assumed post-AGB mass. The
red, square, open symbols represent thin disc post-AGBs, the black, filled, diamonds the thick disc and
the blue filled circles the halo.Right: A spatial coordinate projection of the post-AGB population. Note
the galactic centre is at vector [X,Z]=(0,0) and the objectsconverge to our Sun’s position in the galaxy at
approximately [X,Z]=(8500,0).

CONCLUSION

The observed PG subsample of [7] implies that there are very few post-AGBs in the
halo and the ones that exist have low masses (M < 0.55M⊙). The masses are very much
in agreement with halo WD mass distributions both within theMilky Way and other
galaxies [11, 12]. However, our synthetic galactic model shows that the lower the mass
of the central star (and progenitor) the slower the evolution and the number of stars
meeting our brightness and temperature criteria will increase. This is displayed in Fig. 16
of [20]. In the same figure, a small metallicity effect can be seen and this is reflected in
our numbers but this is fairly small effect at sub-solar metallicities. Our results suggest,
as the observational fields are complete, the evolutionary paths or timescales for the
majority of halo stars differ from the theory. Increasing the central star evolutionary
speed across the HR diagram would bring the observed and theoretical populations in
agreement, however, a PN would be a likely result. Even fewerPN are known in the
halo than post-AGBs ruling out that option. An alternative solution is that the majority
of evolved stars in the halo do not ascend the AGB. Obviously,this would reduce the
expected number of post-AGB stars and would also be consistent with the HB post-AGB
ratio observed in the [7] sample. A similar HB to post-AGB ratio is observed in M32 by
[21]. Brown et al. [21] propose that this is unlikely due to anincrease in evolutionary
speed or circumstellar absorption. The post-AGB population may not be observed as
they do not exist. Instead of ascending the AGB, the pop. II halo stars would evolve
via the EHB and straight on to the WD cooling track. If this is the case for all such
populations then there would be implications for subsequent galactic evolution.
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