Why is software development so difficult to manage?
Technical Report No.137

R. Barrett and D. B. Christianson

May 1992




Why is software development so difficult to manage?

Ruth Barrett and Bruce Christianson

School of Information Sciences, Hatfield Polytechnic
Herts AL10 9AB, England, Europe

Software is extremely complex, invisible, and easy to change. Because it's so
plastic, it's tempting to make lots of changes. Software is also an amazingly
unforgiving medium with which to work. Changes to software frequently have
devastating effects which were not intended, fail to have the effects which were
intended, take far longer than seems reasonable to make, and if made in
sufficient number, can cause the whole product to fall apart in your hands.

Yet change is inevitable in any project. Why is managing a project which
involves software different to managing any other project? Why is software so
hard to get right and so difficult to change? What can we as managers do to
facilitate?

Of course there are plenty of snake-oil merchants who will claim that they have
the answer to these questions, whether it be CASE tools, formal methods, fourth
generation languages, relational databases or integrated programming
environments. These are all very worthy innovations, and properly used they
may do a lot of good. But they won't turn managing a software development
project into a routine engineering exercise.

In real life, there are no such easy answers. Millions of man years have been
invested in software development, and if there were any sure-fire solutions we
would know them by now. No one who discovered such valuable information
would be able to keep it a secret for long. The fact that so much effort has been
invested without anybody finding a way of making managing a software
development project look much like managing other engineering projects

leads us to the firm belief that no such unifying approach exists. Software is
somehow essentially different from other design media from a management
point of view and we have to begin by accepting that, and trying to understand
why.

The first thing is to understand why software is so fragile. The reason is that

all code has a great deal of hidden context. By this we mean that it isn't obvious,
just by looking at a piece of code, what assumptions it makes. It's hard to tell
what it relies upon to make it work. A change somewhere else, in a far off part
of the program, may have the effect of changing the context for this part of the
program. In consequence a change that would have been all right yesterday
may have a dreadful side effect if it's made today. That effect in turn may not
become apparent for several weeks, until a change is made somewhere else
again.

It's almost never possible to make just one change. Usually a whole heap of
concommitant changes have to be made together. In the worst case, some of the
knock-on changes may be incompatible with each other. In this case the
proposed change simply isn't viable. Even if the changes can all be made
together, the result may be to change the context of other pieces of code so as to
make them more rigid and more prone to error.




Software interfaces are particularly difficult to isolate. It is not usually easy to
see exactly what is being interfaced with what, and therefore what assumptions
are required for the interface to behave in the intended way. This is because
software interfaces usually have a great deal of history-dependent state buried
within them. The representation of this state is usually implicit, rather than
explicit. This makes software interfaces particularly resistent to change.

There are two main defences against software fragility. The first is to keep
change to a minimum. Think of software as being something that is hard to
change and respond to pressures for changes accordingly. Fix the software
specifications early in the development process, and resist committing to
changes once design is underway. Even if the changes look straightforward.
Even (indeed especially) if the code hasn't been written yet.

Changes in the specification force the designer to re-draw their mental map of
the complex internal context dependencies in the software which they are
designing. It's hard to do that. It's hard to re-check that everything is still
consistent, It's even harder to do this several times in succession. It's almost
impossible if the effects of each change also have to be communicated to several
other people whose invisible context may have been affected.

The use of CASE tools and programming environments which support formal
methods can help the designer here by automating much of the detailed
conceptual checking and so increasing the designer's mental reach. But there

is a danger that management will simply use this as an excuse to increase the
amount of change imposed. Management must accept responsibility for
constraining the amount and timing of change if the quality of the finished
artifact is to be secured. They need to be very clear about the real requirements
of a project and so avoid window dressing.

The second defence against fragility is a good design. A good design has a high
degree of internal coherence. This conceptual integrity makes it easier to spot
where related changes are required. A good design makes it easier to
understand the context of a piece of code, and hence to identify the
concommitant changes. The required design integrity cannot be achieved by
team effort, it is not possible if too many people are involved too early on.

A good design is only arrived at through a thorough understanding of the
application domain and its potential for change. The components and
relationships of the application domain should be mirrored in the software
structure. Changes in the functionality or data in the application should result
in corresponding changes in the software components. This structural view of
a software system is only part of the picture, but it goes a long way to capturing
and controlling the complexity of a system. Of equal importance is the control
of the system and the resulting state of the system at any point in time - this is
the context sensitive information that is so hard to capture and reason about.
This state information is what makes it so hard to decouple components in the
design and specify the precise nature or timing of an interaction. The problem
is magnified when the designer must also build in concurrency and
interprocess communication.

The solution to this problem is to not to hide the important decisions at the lowest
level, but to ensure the control is modelled at a level abstract enough for the
behaviour of the software system to be validated. The safety and liveness




properties of the system can then be ensured. One other fly in the ointment is the
treatment of errors or illegal states. All errors in input, whether human or data
transmission errors, should be retried at the point at which they occur, and so
only valid data is passed to the components in the design. Run-time errors
within other components should be propogated to a component which is able to
recover the legal state. This policy will ensure clear interfaces between

modules. A third important, often glossed over, aspect of design is the

allocation of resources such as processor time, memory, human effort, and the
estimation of these resources in differing situations. It is these calculations
which may determine the viability of alternative designs.

Good design therefore takes time. It requires a detailed consideration of
alternatives. But design is often an invisible process. It doesn't seem to have a
deliverable. As managers we get nervous with activities which we can't
monitor. How do we know whether things are going well or badly? At least once
code is being cut we can see something being produced - and once we start
testing we seem to be on safer ground at last.

We dispute this. If writing software is an engineering process then it's a very
peculiar one. It has no production phase. Once a program is ready to ship, it's
all just 0's and 1's. Coding is just an advanced stage of design, where the
detailed decisions about representation and manipulation of data are being
made. Being in a hurry to force detailed decisions before deciding
fundamental issues is not going to improve the chances of things working.

With testing, we are on even shakier ground. The vast complexity of most
useful pieces of software means that it is not possible (even in principle) to test
every path. The implicit historical state information hidden in most interfaces
means that it isn't generally even possible to test whether a software component
meets its specification. What is really being tested is the integrity of the design.
In fact, the hardest part of testing is to get an error into the open where the cause
(ie context) can be determined. Furthermore, design changes imposed as a
consequence of detecting non-trivial bugs create further problems for the
designer. '

Ultimately, the only defence against failure is to have a good design from the
beginning.

This design should have a high level of conceptual integrity, which should not
be destroyed as detailed design of the representation of the data and individual
algorithms are added. The conceptual integrity is ensured by using the same
philosophy when decomposing the system and by ensuring that all components
at one level are at the same level of abstraction. The decomposition should be
based on data rather than functions because the data is more stable over time.
The conceptual integrity is also ensured by being able to adequately specify the
behaviour of the system in all circumstances. A design with a high level of
conceptual integrity can be shared more easily among the development team,
communicated to those responsible for finding bugs, and changed with a higher
degree of confidence.

The need to communicate software design gives us a clue to how to manage the
software development process more effectively. Design documents are an
important project deliverable. They are essential for unambiguous
communication between members of the team, and for handover to
maintenance (ie post initial development change).




Here lies a great difficulty, what form shall these documents take? How can
we capture the decisions taken, and those rejected, without the production of the
documents becoming an end in itself? The most useful documents for the
designer are those which allow him to express and validate his design. The
most useful to the project manager are those that represent some completion
point. We must not force the generation of design documents solely for
management purposes. They must evolve as part of the design process,
otherwise they will not accurately represent the internals of the design.

There are very many aspects to this internal design, to try to capture all
decisions in one type of document is confusing and counter-productive. The
structure of the system can be represented diagrammatically, but the diagrams
will need supporting text. These diagrams can show the relationship between
the individual hardware and software components, but are not helpful in
showing the functionality. The design of the control of the system is more
difficult to document, many decisions are made using application and
language specific knowledge and rely heavily on the experience of the
designer. Pseudocode is inadequate except for very small systems or for
detailed design. Attempts to address this problem include formal languages
and synchronisation diagrams.

It is very difficult, if not impossible, to show the complete traceability of
requirements in the design, and this contributes to the difficulty in quantifying
the impact of making a change in the software structure. Good code
documentation and CASE tools to capture design decisions increase the
maintainability of the software. We agree with the notion of "separation of
concerns” in deriving different aspects of design and yet a change in
requirements rarely has an isolated effect. We come to the conclusion that
software must be designed to accommodate change, but that this change must be
carefully controlled.

As managers we must commit ourselves to an understanding of the nature of
design documents and how they evolve. We must become concerned with the
process by which they are generated. We must use their contents to become
familiar with the internal structure of the artifact. The pressure to get the
external behaviour correct at the expense of the internal design must be
resisted.

If managers insist on regarding the software which their project produces as a
black box, then the software will remain invisible to them (and hence remain
beyond their management control) right through the crucial specification and
design stages. They must be aware of the consequences of the decisions made
in these stages on the fragile software structure. They will then be in a position
to impose some discipline on the software operations.

Otherwise, by the time the software enters the coding stage, it may be too late to
save the project.




