Investigating The Limits of Instruction Level Parallelism

Richard D. Potter
Division of Computer Science,
University of Hertfordshire,
College Lane,
Hatfield,

Herts. AL10 9AB

email : comrrdp@herts.ac.uk

Technical Report No. 245
February 1996

Abstract

High performance computer architectures increasingly use compile-time instruction scheduling to
reorder code to expose parallelism that can be exploited at run-time. Although respectable performance
increases have been reported, there is still a significant performance gap between what has been
achieved and what has theoretically been shown to be possible. All scheduling algorithms used to
reorder code, either explicitly or implicitly introduce barriers to code motion, which in turn limit the
performance realised. Trace driven simulation is used to quantify the amount of instruction level
parallelism available in general purpose code and the impact of various artificial barriers to code
motion. This work is based on the Hatfield Superscalar Architecture, a progressive multiple instruction
issue processor. The results of this study will be used to direct future developments in instruction
scheduling technology.

Keywords : Superscalar, Instruction-Level Parallelism, Instruction Scheduling, HSA, Trace Driven
Simulation.

Table of Contents

L IDEEOGUCHION ..ottt s sttt b bbb e st es st s erena 1
2. This Study and Previous WOTKccccvivvieeriiieeiiieerercneen e esesesesesesssessssssesssssssesereseeeenesssenes 1
3. Hatfield Superscalar ATChItECIULEoivvvivririeveriieesteere et sttt er s et 3
3.1 A Generalised Delayed Branch..........ccoeeevveivveeininineniiineeneeiennene et 4
3.2 In-order INStrUuCiON ISSUCcovvureiviviirieieeriisee et ettt s srenenen 4
3.3 A Common Pool of Functional URLS.ccecervrvrrrerrreerinrrenernenrereiesinseseeseressssssesenssesessnenes 4
3.4 Full Floating-Point Capability.ccccoerenrnmienirieereenisesiesiessssesssesesensssesessessessens 5
3.5 Guarded InsStruction EXCCUHION.cveuveevirieierinninieererncnisnressesere s ess s e s s ese e 5
3.6 Speculative inStruCtion EXECULION. w...e.vverririrrerisisrersiererestsinesseresiesessssersssssesssseseseesessesesensnsons 5
4. Limits To Instruction-Level ParalleliSImccoovrvrivererinrnrniniiniesereennsie e seseesessenssssessennns 5
4.1 Data DEPendencCiescoovvererierrinriisisiresiensisieseresseseseeresessersmsssiessnsensssssesesssesssessseseons 6
4.2 Control Dependenciescriiriiinisieieriiesesiesessiese st es st re s 7
4.3 Artificial Limitations To Code MOtONcvcvrvrvrevirirrrririreireriersisisresssssssessseseessssenesssens s 7
4.3 1 LL0OPS cvveviirereereriee ettt ettt st st bbb r s nns 7
4.3.2 Procedure Call and REtUINSc.eocevevireiieiiirencencne e s 8
4.3.3 Memory Dependencies.........c.uvivreereerereieerireesesrsesieesieereseesessessssessssesssnnsens 8
5. Trace Driven SIMUIAHONcvcevveirriiriiieninireisnsreresresrssesssseseseesesessesesssse s ssesesessenessssensesessesesssssseessnsssenes 9
5.1 Overview of SIMUlAtor MOdElLeeviiiiiriiiniieiei e e 9
5.2 Representing Programs Within TDSccccccoviiiririnnecrcceee s, 10
5.2.1 Principle Parameters.....o..ecuververeiviersieririsnneseieseeesssessssesesseinsssessssessssssesnesesnsses 10
5.3 Loading the TDS TOO0Lccvveiireirreeirneiriei e ese s esesneresesnssserenessoseons 11
5.3.1 Loading The INSrUCtIONSccuvrveririerrireerisinnresmicnsresresneesensessressesrensessessessssessennees 11
5.3.2 DAta TLEINS 1eovvveveirereriieirieciees sttt b et be e bensseers e sre s 11
5.4 Main Simulation LOOPccvuveervnieiiniiinennrireseeesereses oo ssssssesssessssssssesssessseeseseseres 11
541 TIACE FIIES w.vivvviivcierirerecees sttt be st be e 11
5.4.2 Simulating the 'Execution' of a Benchmarkccccocecvnvecvinninnccnenerinenns 12
5.4.3 Ceilings and BreakpointS.........covevirerireerininreirineenenirieseneesinssrsseesessssesesvesesaseeen 12
6 . RESUILS ..ottt e b et b e re b b n s 13
6.1 Benchmark PIOZIAINSvvvveveeeriririiieriiisnisiesesesssissssesssesisassssesssssesesesmssssesssessssssesesessnssssseseseses 13
6.1.1 Composition of the Benchmarksccoovvviniiiiviinnniieeeres s 14
6.1.2 Branch Instruction Profilec.coveervcirininneniereinerennieesssssne e 15
6.1.3 Basic BIOCK StatiStiCSvvveveririririeriiereirerisescneresisnre e sesss e sere s 15
6.2 Oracle Base MOAELccoovviivirrreriririnreiissise s e srese s s esesesessssnssesesesesessssensesnesns 16
6.3 Procedure Call and RELUINSccvereeiieieiinieninsererieoiesesesessssesssesssssssssessssssssssensessesssoresns 17
6.3.1 Procedure TNHINE .oovevervienreveriireriesrne e s 17
6.3.2 Direct Recursion INHIINgGccoviivveirniinenoniienneeesie s snsneeseessensnns 18
6.4 Effect of LoOP CeIlINZSvvvreiiieieieiiineiee sttt tebess e sae st ns s v en s 19
6.4.1 Loop Construct REMOVAL........ccccrvrrireremeeiiiirnerereeereen s everess e 21
6.5 MEINOTY ..ottt ettt sb st e st bere s b be st e b et st et e st s be st st e as et ese st bestebe e s eseaeonensersasstossans 22
6.5.1 Memory DisambigUuation.........cccvreerrereienirirnrnereeeerinsnrinssesisesesssnesesesessssesns 22
6.5.2 Speculative WTILEScccvvrenreeririresenis et s b v s sess s 23
6.6 INSIUCHON LALBNCIES ..vuvivrreieeeeiiseriresseriiessasisissee e snssetsbe e sasesssssbsessssssesssesesesesenesnssesese s 24
6.6.1 Adjusting Instruction Set LateniCleseovvvvrereerererernnrninserereinrerssssinissnssssenes 24
6.6.2 MInimuim DIVISIONecvvveriririererinieriniesneeisreienneesssieresienesieessessssessessseeroresnssens 25
6.7 InsStruction COMDININGvvcevvivirieriiriieiririieesee s a e st reb oo rese st ne st s e 26
6.8 Distributions of ParalleliSImlccvvverrveeririinissesiseeeerere et s 27
7. Conclusions and FULUIE WOTKcvvueeiiieiiiiriiireeicteee it sesese et ses st sons 29
B RELEICICES ...t e bbbttt et n et eron 31

List Of Figures
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19

Figure 6.20

Read After Write Dependency.

Write After Read Dependency.

Write After Write Dependency.

HSA Memory Reference

Flowchart of Trace Driven Simulation
Sample Breakpoint File From permcd

An example section of a trace file

Distribution of Branch Types and Branch Taken Figures.

Dynamic Run Length Distribution of Taken Branches
Oracle Base Model Results

Effect of Ceilings on Procedure Call & Return.
Effect of Procedure Inlining

Inlined Recursive Procedure Calls

Effect of Loop Ceilings On Code

Effect of Serialising All Loops

Instruction Exec. Counts For Benchmark and After Loop Construct Removal.

Effect of Loop Construct Removal For Benchmarks.
Effect of Memory Model on Performance
Restrictive Memory Models

Speculative Writes

Speculative Writes - With Procedure Ceilings
Varying Latencies For Model

Results For Minimum Division Latency
Combining HSA code.

Combining With No Restrictions

Combining With Procedure Ceilings
Distributions of Parallelism

Figure 6.20a matxcd and puzlcd

Figure 6.20b permcd and sortcd

Figure 6.20c queencd and towcd
Figure 6.20d bublcd and treecd

1il

10
12
15
16
16
17
18
18
19
21
21
22
22
23
24
24
25
25
26
27
27

28

List Of Tables

Table 2.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4

Table 6.5

Limits of Instruction Level Parallelism

The Stanford "Cut Down" Benchmark Suite
Composition of Benchmarks by Instruction Type
Average Basic Block Sizes, Branch Distances
Recursive Procedure Statistics

Latencies Used

iv

14

14

15

19

25

1. Introduction

In recent years there has been increasing interest in the use of compile-time instruction scheduling to
improve the performance of superscalar processors [Bernstein92] [Smother93]. Instruction schedulers
speed up program execution by assembling groups of independent instructions which can be executed
in parallel at run time. Scheduling therefore involves moving or percolating each instruction up through
the code structure to form these instruction groups.

Our research in this area is based on the Hatfield Superscalar Architecture (HSA), a generic superscalar
architecture. HSA prefetches multiple instructions into an instruction buffer from the instruction cache.
In each cycle, the instruction decode logic attempts to issue as many instructions as possible from the
instruction buffer for parallel execution in multiple functional units. Ideally the instructions issued will
correspond to the parallel groups assembled earlier by the instruction scheduler. Since code has already
been reordered at compile time, the HSA instruction issue logic always issues instructions in order.

Numerous empirical studies [Lam92], [Smith89] and [Wall91] suggest that large numbers of
instructions in a sequential program can theoretically be executed in parallel. For example, Lam and
Wilson's study which aims to identify the upper limits of fine-grained parallelism, reported speedups of
up to 158 using the SPEC benchmarks. In contrast existing instruction schedulers [Collins95]
[Ebcioglu94] [Hank93] and [Wang93], typically achieve speedups in the range of 2 and 7. The speedup
available in theory therefore exceeds the speedups achieved by existing instruction schedulers by over
an order of magnitude. The objective of our research is to narrow this very significant performance gap.

Although notable performance improvements have been achieved, all instruction scheduling algorithms
erect artificial barriers or as Wang [Wang93] called them, ceilings to code motion. For example, a
particular algorithm may preclude the execution of any code within a loop body until all the code
originally preceding the loop has first been executed. As a result of these ceilings, we have developed a
Trace Driven Simulator (TDS), to quantify the instruction level parallelism in typical benchmarks and
to relate the available parallelism to alternative instruction scheduling strategies. The results will be
used to direct enhancements to the two HSA instruction schedulers which have been developed at the
University of Hertfordshire. In particular, future work will be directed to removing those barriers to
code motion which significantly limit performance, identified by the TDS tool.

This document is split into 7 main sections. The next section presents a summary of previous work in
this field and discusses the major results presented so far. Section 3 introduces the Hatfield Superscalar
Architecture and outlines its major features. Section 4 discuses some of the limits to instruction
parallelism and those limitations introduced by various scheduling strategies. Section 5 outlines our
approach to trace driven simulation. Section 6 presents a selection of the results so far generated.
Finally, Section 7 presents the conclusions based on this study and further work suggested by it.

2. This Study and Previous Work

A number of researchers have attempted to quantify the limits of instruction-level parallelism (ILP) and
their work has produced a large variety of results. This research has been approached in two distinct
ways, either by proposing a feasible system design or by investigating the upper limits based on
theoretical models, where many of the constraints have been relaxed other than those features under
evaluation. Presented below is a discussion of some of these studies in chronologically order.

Early studies [Tjaden70],[Riseman72] showed that average parallelism within basic blocks rarely
exceeded 3 on average. The study by Riseman was one of the first to show the effects of control flow
on parallelism. By modelling a machine with foreknowledge of conditional branch direction, Riseman
showed that a speedup of 51 was possible. Nicolau and Fisher [Nicolau84] referred to this as an Oracle
machine. Nicolau's study was based on evaluating trace scheduling for a VLIW architecture. This work
demonstrated that using a restricted processor model with perfect branch prediction and alias analysis,
speedups of 90 were possible. Though these speedups were achieved using small scientific benchmarks
where there is a large amount potential of ILP.

Smith et al [Smith89] used trace-driven simulation on a model of a realisable superscalar processor
with multiple functional units. For a model with perfect renaming, branch prediction and an ideal fetch
unit, speedups of between 2.3 and 4.1 were reported. However, several features of this study impeded
the performance of the processor. Firstly, the issue rate was limited to 4 instructions per cycle, even
though the processor had 9 functional units allowing a peak execution rate of 9 instructions per cycle
(IPC). Secondly, the configuration of the functional units poorly matched the instruction class

execution frequency. In the study, 38% of the instructions executed were integer operations but the
processor was resourced with only a single integer unit. The study noted that the biggest increase in
performance occurred when a further integer unit was added. Finally, the processor had a very small
look-ahead window of 32 instructions, which severely limits the ability of the processor to take
advantage of the ILP present in the benchmarks. The study concluded that non-scientific applications
contain enough instruction parallelism to sustain an instruction rate of two. This conclusion is only true
based on the assumptions made within this study, for this one restricted design. This highlights the
problems when attempting to quantify limits, that each reported limit is subject to all the limits and
assumptions made within the study.

The work by Butler et al [Butler91] is a direct progression from the work of Riseman and attempts to
refute the claims by Smith et al that the ILP within non-scientific code can only support an issue rate of
two. Butler et al attempts to identify ILP for a range of unconstrained as well as realistic processor
models. Butler's model used perfect branch prediction as well as unbounded functional units, issue rate
and instruction window size. For an Unrestricted Dataflow model, parallelism in the range of 17 to
1165 IPC was shown for nine of the SPEC benchmarks. This study also placed limits on the extraction
of ILP by assuming only one branch per cycle can be executed and no instruction following the branch
can be executed in the same cycle. This limits the available parallelism to the average size of the basic
block. Results for more realistic machine models suggest that, typically ILP inherent within non-
scientific code ranges from 2.0 to 5.8 IPC.

A further study in this year by Wall [Wall91], concluded that even with impossibly good techniques
parallelism rarely exceeds 7, with 5 more common. The most powerful model in this study had perfect
branch prediction, jump prediction, register renaming and alias analysis. The extracted parallelism for
this work was in the range 6.5 - 61. Wall's study had several features that limited the parallelism
exposed to his models. Firstly, instruction execution is simulated by packing instructions from an
instruction trace into a sequence of pending cycles. Each cycle could contain up to 64 instructions,
limiting the maximum ILP to this figure. Secondly, in order to model a superscalars instruction
window, the study's model only considers a constrained number of pending instructions. By default,
this is 2k. Therefore, independent instructions more than 2048 instructions apart in the instruction trace
will be prevented from executing concurrently. While 2k is an unrealistically large look-ahead window
for a superscalar processor, it still confines the processor to realising parallelism from a very limited
pre-fetch window of instructions.

Austin [Austin92] argued that 1st order metrics such as operation frequencies and branch prediction
accuracies, were not sufficient to understand the characteristics of dynamic program execution for MII
processors. To allow a thorough understanding of the interaction between operation dependencies, how
these are impacted by the processor model and their effect on performance, the use of dynamic
execution graphs were proposed. These graphs demonstrate how parallelism is distributed throughout
the execution of the program. This work is modelled around the latencies of a MIPS processor!, to
generate these graphs from an existing instruction trace. Using an Oracle dataflow model, parallelism
was measured for the SPEC benchmarks and was found to range from 13 - 23,303. Optimistic
assumptions about the usage of registers after system calls, increased the range to 33,748 IPC. More
significantly, the distributions of parallelism were shown to be bursty, with areas of high ILP followed
by areas of low ILP. The study concluded that a very extensive look-ahead window is needed, in excess
of 100,000 instructions, to extract significant quantities of the available parallelism.

Lam and Wilson [Lam92] attempted to relax the constraints on control flow by using control
dependence analysis, executing multiple flows of control simultaneously and using a speculative
execution model. As in earlier studies, instruction execution was only constrained by true data
dependencies and because an upper bound rather than a limit for a particular processor was being
evaluated, unit latencies were used. However, the model used attempted to enhance the benchmark
code by application of a perfect procedure inlining technique and loop unrolling. These mechanisms
relaxed several limitations inherent in the code and exposed significant parallelism. The results ranged
from 47 to 188,470 with a harmonic mean of 158.26.

As many of the benchmarks used in the above studies used the SPEC benchmark suite there is
considerable overlap between the studies. Table 2 presents these results. It can be seen from this table
that these limits' are directly affected by the assumptions used and by the architectures modelled. It can
be concluded that there is adequate parallelism inherent in most programs to support an order of
magnitude speedup through static instruction scheduling.

1 (Fp/Int Mult 6, Fp/Int Div 12, Fp Add/Sub 6, all other latencies 1)

Benchmark Butler? | wal® Austin? | Lam’
Eqgntott 300 - 942.4 3282.9
Espresso 179 40.6 176.3 742.3
Gee (ccl) 38 26.5 53.0 174.5
Doduc 55 56.8 107.2 -

fpppp 378 60.4 2032.8 -
Matrix 300 1165 - 33748.6 | 188470
Spice 2g6 17 - 138.4 843.6
Tomcatv 930 59.7 6800.3 3918
xlisp 162 - 13.3 -

Table 2.1 - Limits of Instruction Level Parallelism

This study is an attempt to find, for the benchmarks used within HSA, a reasonable upper bound on the
available ILP. As the initial work on the HSA project has concentrate on a smaller benchmark suite,
which are designed to be computationally intensive with unpredictable control flow, it will be
extremely beneficial to place the results in context. Secondly, the majority of the processor models in
the preceding work use superscalar out-of-order techniques, varying instruction latencies and branch
prediction. The HSA project, as will be seen in a later section, is an attempt to minimise the hardware
needed to issue multiple instructions in parallel by using static scheduling to re-order the code. The
difference in techniques, mean that while the above studies provide useful guides to possible
performance, they are not directly relatable. However, the principal aim throughout this study is to look
at limitations to ILP, placed implicitly or explicitly on the execution model by scheduling algorithms.
The effects of these limitations have not been studied so far.

3. Hatfield Superscalar Architecture

The Hatfield Superscalar Architecture (HSA) is a family of abstract Multiple Instruction Issue (MII)
processors. The HSA is highly parameterised to allow investigation of hardware and software
mechanisms to exploit instruction-level parallelism. The long term objective of the HSA project is to
achieve an order of magnitude speedup over a scalar RISC architecture.

The HSA is often referred to as a minimal superscalar, as it is a progressive attempt to remove many of
the mechanisms used within superscalar processors. The HSA does not support out-of-order issue,
dynamic renaming or score-boarding and avoids branch prediction. Instead it by combines the best
features of previous MII architectures, most notably Very Long Instruction Word (VLIW) processors
and superscalar. Recent designs have shown that neither of these two methodologies have been
sufficient to bridge the performance gap between what is theoretically possible and what has been
realised. Both of these two distinct architectures have desirable features.

VLIW

VLIW architectures have the advantage that no dynamic analysis is needed - the compiler performs any
necessary analysis and schedules independent instructions into fixed length multi-operation instructions
(VLIW's). The compiler can take a global view of the program and utilise sophisticated analysis
techniques and code transformations that would be too expensive to perform at run-time. The use of
instruction scheduling greatly simplifies the hardware required, leading to faster processor designs.
However, schedulers for VLIW architectures [Ellis86] [Wang93] require the processor hardware to
conform exactly to the assumptions built into the scheduler with respect to the number if functional
units and operation latencies. Therefore the scheduled code is processor specific due to these rigid
assumptions. A further problem is introduced by the fixed size of the VLIWs, the density of the
schedule is dependent on the ILP present, if the scheduler cannot find sufficient independent
instructions to fill the VLIWs, NOPS have to be inserted leading to code expansion problems.

2 Non Uniform Latencies
3 Unit Latencies
4 Mips Latencies
5 Unit Latencies

|
|
!
i
|
|
|

Superscalar

Superscalar processors are typically processors that analyse the instruction stream dynamically, In each
cycle, every instruction within a given instruction window is analysed for dependencies. The processor
takes a local view of program and reorders these instructions dynamically to exploit ILP. The hardware
must therefore ensure all dependencies are detected and enforced. This dynamic analysis ensures code
compatibility between processors and allows instructions to be considered across branch boundaries,
for concurrent issue. The principal drawback with superscalar designs, is the hardware requirement to
perform this dynamic instruction stream analysis and to ensure correctness of execution. The
complexity of this hardware becomes prohibitively large at a moderate degree of parallelism. Existing
designs have had difficulty dynamically analysing 2 to 4 operations, thus restricting the processors
ability to exploit high ILP.

The HSA model attempts to combine these distinct designs by using compile time scheduling to
reduce the hardware complexity, while maintaining code compatibility. The HSA removes the
compatibility barrier for a static instruction scheduler by providing a generalised delayed branch
mechanism. The use of this mechanism, allows the parallelism exposed by scheduling to be maintained
when the code is converted back to sequential form, suitable for executing on a superscalar.

The HSA has the following major features ; a generalised delayed branch, in-order instruction issue,
out-of-order completion, conditional execution, a common pool of functional units, floating point
capabilities, speculative execution and guarded instruction execution. Some of these features are
discussed in the following sections :

3.1 A Generalised Delayed Branch

HSA provides a delayed branch mechanism, that allows instruction execution to continue while a new
instruction stream is fetched from the branch target. Branches have an explicitly encoded count value
which indicates the number of instructions that must be dispatched after the branch. Instructions are
then promoted to fill this branch delay region, including further branches. This flexibility allows the
branch mechanism to adapt to a wide range of cache latencies and instruction issue rates, yet maintains
instruction set compatibility over a range of implementations. This may have an impact on the overall
speedup, if the processor the code has been scheduled for and the processor executing the code, are far
apart in their ability to exploit the exposed parallelism. Results reported so far [Collins95], show that
the reduction in performance is much smaller than would be expected. If code scheduled for a machine
with infinite resources, is then executed on a machine whose degree of parallelism is only two, there is
only an 18% decrease in performance. This result is based on a comparison with the figures for
executing code scheduled for this 2-pipe processor. For a machine with a degree of parallelism of eight,
this is reduced to only 6%. These results assume that the processor has the ability to squash instructions
prior to dispatch .

3.2 In-order Instruction Issue

In the HSA model, instructions are always dispatched in program order to the functional units, as
sophisticated static code scheduling is used, making hardware re-ordering of the code redundant. By
moving the responsibility for instruction analysis to the instruction scheduler, this has the advantage of
avoiding a significant amount of hardware complexity in the instruction issue stage.

3.3 A Common Pool of Functional Units.

The HSA issues instructions to the appropriate functional unit from a common pool of resources from
the instruction buffer. The number of functional units within the HSA model is not fixed, Arithmetic,
Multiply, Memory Loads, Memory Stores, Branch, Relational, Shift and Floating Point functional units
are postulated.

There is a trade off between the complexity of design for a large number of functional units and the
usage of these resources. The greater the machine parallelism available, the greater the processor’s
ability to deal with areas of high ILP. Performance should not be greatly limited by instructions being
'blocked' from execution if there are not sufficient resources to handle it. Conversely, the number of
functional units should not be unduly high, as the number of interconnections needed would require a
very sizeable section of the chip area and there would be little to gain from a large number of lightly
used functional units. This trade-off is not studied here, but further work on the configuration of
functional units can be found in [Jourdan95] and [Collins95].

Three input operand functional units are provide in the HSA specification to allow combination of
instructions. This allows combining of infrequently executed logic instructions with other operations in
an attempt to avoid degrading ALU performance. A three input ALU unit may allow dependency chain
to be compressed. The results of combining can be seen in this study in section 6.7.

3.4 Full Floating-Point Capability.

The HSA model fully supports floating-point instructions and has floating point versions of the relevant
functional units. Floating point instructions would seem to further hamper performance as they have
long instruction latencies associated with them. In HSA, as the scheduler has the ability to perform
large scale code motion, it is thought that the floating point instructions with their long latencies will
provide an extra boost to the exploitation of instruction-level parallelism. By allowing interleaving of
the integer and floating point dependency threads, significant performance increases should be
achievable over a scalar implementation of floating point HSA. Floating point capabilities also extend
the usefulness of the processor itself, floating point resources can be used by both integer and floating
point programs alike, allowing further improvement in performance on a range of applications.

3.5 Guarded Instruction Execution.

All HSA instructions can be guarded by multiple guard Booleans allowing conditional execution. For
example consider:

FB1 ADD R1, R2, R3,

The ADD instruction will only execute to completion if its Boolean guard B1, evaluates to False at run-
time. HSA attempts to 'squash' or remove instructions from the instruction buffer every cycle whose
Boolean condition fails. The use of boolean guards helps improve resource utilisation by removing
instructions prior to dispatch, therefore saving on functional unit, result bus and write back resource
usage. Instructions can also be aborted within functional units allowing further savings.

An instruction scheduler can also use guarded execution to remove branch instructions by converting
if-then-else constructs to a sequence of guarded instructions. Theseif-then-else constructs typically use
conditional branches to select one of two short code segments. Booleans can be used to guard the
subsequent if and else code elements, removing the need for a branch, Recent work has shown that this
can reduce the number of dynamic branches dramatically; with the IMPACT group [Mahlke94]
reporting a 27% reduction and Collins [Collins95] reporting a reduction of 35%.,

3.6 Speculative instruction execution.

To gain maximum performance, all instructions in the HSA instruction set, apart from Stores and
Branches can exist in a non-speculative and speculative form. This allows instructions to be executed
much earlier than their control dependencies would otherwise allow. Speculative execution allows
instruction execution to proceed without waiting on the completion of previous instructions. This can
have significant benefits, for example, a load instruction executed speculatively could allow other
instructions dependent on its destination register, to begin execution much earlier. This could be
especially critical on a slow cache machine or when loading from memory hierarchies. HSA handles
the problems of exceptions in the presence of speculative execution by marking all registers with a flag
indicating whether or not the register contents are polluted. Only when a non-speculative instruction
attempts to access these polluted results will the exception finally be taken, thus allowing precise
interrupts.

For a more detailed evaluation of the features of HSA see [Collins93] and [Steven95]

4. Limits To Instruction-Level Parallelism

Instruction Level Parallelism (ILP) is a measure of the interaction between program parallelism and
machine parallelism. Program parallelism is defined as the number of instructions a processor may be
able to execute concurrently. Its is determined by the true data dependencies and control dependencies
within the code. The latencies of the instructions determine how severely true data dependencies limit
this program parallelism. Machine parallelism is a measure of the ability of the processor to exploit this
program parallelism. Its is determined by the number of instructions the processor can fetch and
execute at the same time. If the machine parallelism is smaller than the program parallelism, resource

conflicts will limit the processors performance. As these resource conflicts are not true limitations but
are removable by duplicating contested resources, it is assumed in this study that machine parallelism is
always sufficient. Therefore in this study, the available instruction level parallelism is determined
entirely by program parallelism.%

The following sections describe the remaining limiting factors, data dependencies and control
dependencies. They also explain how they each in turn limit instruction-level parallelism and ultimately
performance. Also covered in this section, is the area of memory dependencies.

4.1 Data Dependencies

There are five possible data dependencies between a pair of, three operand RISC instructions as used

by HSA. These are comprised of the three types of data dependencies that can limit the execution of
the instruction pair.

Read-After-Write (RAW) or True dependencies occur when an instruction uses a value produced by a
previous instruction. The second instruction is said to have a true data dependency on the first
instruction and must be delayed until the preceding instruction produces the required result. Figure 4.1,
shows two example HSA instructions, here the ADD requires the result of the preceding SUB
instruction (R4) and is data dependent upon the SUB’s destination register.

SUB R4, R9, R7 /* R4
ADD R5, R4, #28 /* R5

R9 - R7 */
R4 + 28 */

nou

Figure 4.1 - Read After Write Dependency.

It is this prevention of execution of subsequent instructions that can have a critical impact on the
execution of the program and severely limit the processors ability to execute more than one instruction
per cycle. True data dependencies on long latency instructions can often prevent further instructions
being executed leading to zero-issue cycles where no further instructions are executed. When the long
latency instruction does finally complete, there is often only one new instruction that can be executed,
thus creating a single-issue cycle due to the chaining of data dependencies through an instruction
sequence. The number of zero and single issue cycles has a detrimental impact on the processors
performance when executing a program. These true dependencies cannot be removed by instruction
scheduling and ultimately limit the performance of all multiple instruction issue (MII) processors.

Write-After-Read (WAR) or Anti Dependencies occur when a register defined as a source operand for
one instruction is also defined as the destination register for a succeeding instruction. The following
instruction must be delayed to allow its preceding instruction to read the register before its is
overwritten. In Figure 4.2, the register R6 cause the WAR dependency between the two ADDS.

ADD R4, R6, R8 /* R4
ADD R6, SP, #12 /* R6

R6 + RB */
SP + 12 */

Figure 4.2 - Write After Read Dependency.

Write-After-Write (WAW) or Output Dependencies occur when two instructions specify a common
destination register. This is show in Figure 4.3 where the two instruction both use R4 as their
destination register.

SUB R4, R5, #2 /* R4
ADD R4, R6, R7 /* R4

R5 - 2 */
R6 - R7 */

Figure 4.3 - Write After Write Dependency.

Both WAR and WAW dependencies are a side-effect of the re-use of register and memory locations in
the program; they cause a dependency between two otherwise independent instructions. These two
dependencies are sometimes called Storage Dependencies to reflect this. Many of these false
dependencies arise because compilers attempt to use as few registers as possible. In the case of

6 In the TDS tool, the processor is modelled as having infinite resources.
7 HSA instructions are typically of the form :-
<opcode><destination><source_register]> <source_register2>

i
i
4
i
i
g

registers, storage dependencies can be removed by using a different register for the second result. In
Figures 4.2 and 4.3 renaming R6 and R4 respectively, will remove the dependencies.

It is important to distinguish True dependencies from these storage dependencies, as this type of
dependency represents the flow of data and information through the program and therefore cannot be
eliminated readily.

4.2 Control Dependencies

Control Dependencies or procedural dependencies, are introduced as a result of control flow within the
dynamic instruction stream. If a processor has foreknowledge of all the instructions that will be
executed (this type of machine is often referred to as an Oracle) it has been shown that it can achieve
dramatic speedups [Lam92]. Unfortunately because of branches in the dynamic instruction stream, the
processor only discovers which instructions are executed as the program is executed. For every branch
taken, the branch target must be resolved, instructions must be fetched from the branch target stream
and any unwanted instructions removed from the instruction buffer. Therefore every execution of an
instruction, has a control dependency (sometimes called a procedural dependency) on the immediately
preceding branch. The average number of instructions between branches is usually small; Johnson
[Johnson91] reported an average of 6. If substantial ILP is to be realised, the effects of these control
dependencies can be reduced by speculatively executing instructions along one or more paths before all
the preceding conditional branch instructions have been resolved. Lam's study showed a harmonic
mean for the speedup of an oracle model of around 158. For a similar processor model using good
branch prediction the results were less encouraging, Wall's study reported speedups in the range of 4.1
to 7.4. This suggests that control flow is indeed a major inhibitor to performance.

4.3 Artificial Limitations To Code Motion

As well as the limitations inherent within the code, instruction scheduling algorithms also introduce
restrictions on instruction execution and code motion, which in turn limit the speedups realised. These
barriers may be introduced as side-effects of an algorithm or may be explicitly dictated by the
algorithm. In either case they may significantly limit the amount of ILP realised. Three major areas are
considered in this study where these barriers have a significant impact: loops, procedure calls and
memory disambiguation. Further work is also carried out to study the effects on instruction combining
and the impact of allowing speculative writes.

4.3.1 Loops

In may programs a significant proportion of the execution time is spent in loops. Therefore instruction
schedulers attempt to optimise these loops as way of optimising a major part of the execution time,
concentrating on generating efficient schedules for inner loops and on minimising the initiation interval
between successive iterations. The minimum loop iteration rate cannot be lower than the longest
latency instruction within the loop.

As long as a loop body is not duplicated or unrolled, the iteration interval can also never be less than
the minimum number of cycles required by the processor to execute a tight loop. In a machine with
dynamic branch prediction hardware, this minimum can be a single cycle. However, in a machine like
HSA with a delayed branch mechanism, the minimum iteration interval may be two or more cycles
depending on the minimum number of branch delay slots. An alternative way of viewing this lower
limit is to observe that there must always be a minimum delay before an instruction within a loop can
be re-executed.

Loop iteration intervals are also dictated by loop carried dependencies, where an instruction in one
iteration uses a result generated in a previous iteration. However, many of these dependencies are
introduce by loop indices. These are spurious dependencies and are not an intrinsic part of the loops
processing. For example, the final result of incrementing index i ten times in ten successive loop
iterations can be collapsed into a single addition of ten. The TDS tool examines the effect of combining
successive calculations involving literals, effectively collapsing all dependencies involving loop
indices.

Another side effect introduced during loop scheduling is that code within the body of the loop is only
executed after all the instructions preceding the loop have been executed. This delays the effective
starting time of the loop's execution and prevents parallel execution with other code. In particular, two

independent loops can never execute in parallel. The impact of this is modelled along with studying the
effects of code motion across loops and the effects of code motion into loops.

The final limitations studied are the barriers introduced by the compiler as it generates code for the
loop. As most compilers generate code for scalar machines, they produce unnecessary serialising
components. These components are not an inherent part of the loop semantics and the effects of their
removal are also studied here. These limiting factors include the incrementing of the loop index, as
discussed above, comparisons based on the loop indices and branches based on the result of these
comparisons.

4.3.2 Procedure Call and Returns

As the concept of modularity increases within applications (especially due to the prevalence of object
orientated techniques) the impact on performance of procedure calls and returns will be significant.

Instructions within a procedure are typically never issued until all the instructions in the calling
procedure are issued. The same is true for the return from a procedure, where the instructions after the
return have to wait for the instructions in the procedure to complete. This imposes a further barrier to
ILP. In the Stanford benchmark suite used in this study, procedure entry and exit calls typically
accounts for 26% of all branches. The impact of inlining of recursive calls and motion across the
procedure are investigated to asses their impact on reducing the impact of these ceilings. Recursive
procedure calls are treated as loops, by selectively removing the ceiling associated with procedure entry
for directly recursive loops and by partial collapsing of the associated stack frame.

The procedure construct also introduces unnecessary serialising constructs which are added during
compilation. A new stack frame is allocated and deallocated for each procedure introducing
dependencies on the stack pointer (SP), and a significant amount of memory traffic is generated saving
and restoring registers across procedure calls. For a program with many small procedures this will have
a major impact on the ability of a scheduler to take advantage of the available parallelism. To reduce
these barriers, the use of selective and perfect procedure inlining is studied.

4.3.3 Memory Dependencies

HSA, like other RISC architectures limits memory access to load and store instructions only. To take
advantage of any parallelism present in the code, a compiler/scheduler for HSA needs the ability to
perform large scale code motion. This will often involve the reordering of memory references. This
problem is compounded further, due to the large difference in processor speed and memory speed for
many architectures, resulting often in long instruction latencies. This implies that to avoid problems
associated with these long latency instructions, we have to execute multiple memory accesses in
paralle] and or out of order. The memory address therefore require aliasing or disambiguation to find
those access which are independent and that can therefore be executed safely in parallel.

Because the addresses of the memory locations being accessed are not always available at compile
time, the address are calculated from values held in the registers at run time,. The scheduler has to take
a conservative approach and execute memory access in the sequential order of the code. This is the only
safe assumption it can make, for example in Figure 4.4, unless the scheduler has the ability to ascertain
that the references in I1 and I2 cannot refer to the same memory location. In Figure 4.4 this would
mean writing to address 1 and then loading from address 2. It may be more beneficial to execute the
load from address 2 and then write to address 1 as the load will free up further dependent instructions.
However, this would result in the wrong value being read if it address 1 = address 2.

Il ST (R9, R10 /* address 1 */), RI11

12 1D R4, (R7, R8 /* address 2 */)
ADD R6, R5, R4

Figure 4.4 - HSA Memory Reference

The HSA scheduler would have to perform its disambiguation statically. Address 1 for example, is
calculated by adding R9 to R10 and address 2 by adding R7 to R8. As these addresses are calculated
from values held in the register file they cannot be distinguished at compile/schedule time and would
have to executed in order. Static disambiguation techniques are only effective when the memory access
patterns are linear and predictable, which is often not the case in general purpose code. Targeting loops
is one way to combat the problem, as most memory operations often involve array accesses. Even so

this form of static disambiguation involves solving complicated linear diophantine equations, may
require the loop bounds which are often not available and it cannot cope very well with pointer de-
referencing.

A central point of this research is to examine the effect of memory disambiguation with respect to the
scheduling algorithms used in the HSA scheduler.

The impact of speculative writes is also assessed within this study. Unguarded writes can only be
fetched as soon as the preceding control-flow has been resolved. Even if the write is guarded it can only
be executed once the branch condition has been resolved. These restrictions could limit performance if
the store blocks the motion of subsequent loads. This will occur when memory disambiguation fails.

5. Trace Driven Simulation

5.1 Overview of Simulator Model

The HSA TDS tool was developed to quantify the available parallelism in typical benchmarks and to
study the effects of the code ceilings introduced. All simulations are performed as shown in Figure 5.1.

Object File

HSA Simulator

Program
Parameters

(Results) (Output Files 2

Figure 5.1 Flowchart of Trace Driven Simulation

The optimised object code for the benchmark under evaluation, is first executed on the HSA simulator
[Collins93], which generates a compact trace of taken branches and load/store addresses. This trace
provides all the relevant information to perform trace driven simulation and considerably smaller than a
full instruction trace. Even so, the size of these trace files can reach 2Mb for the full-length versions of
the benchmarks used in this study. This dynamic trace stream and the original object code are then
loaded into the HSA TDS tool. The TDS tool simulates the execution of the object code based on a
model of the execution being tested. Various parts of the model can be activated or deactivated to allow
studying of individual and combined effects.

Each instruction as it is examined, is allocated a Parallel Instruction Time-slot (PIT), which indicates
the earliest time at which the instruction could be executed. The TDS tool determines for each
instruction, when the source operands including memory locations, will be available. The PIT time of
the source operand that was computed last is then added to the latency of the instruction to create a new
PIT, which is then associated with the destination register.

Instructions arbitrarily far apart in the original code can therefore be allocated the same PIT number,
indicating that they could have, theoretically been executed in parallel. The largest PIT created by the
program is then taken as the total execution time for the benchmark.

No instruction can be executed before its input operands are available.

1. Instruction To Execute :
16 1 L6: ASL R4 R6

Checking Source Operands For Instruction :
R6, 1

Pit That Instruction Can Be Executed In = 1

2. Instruction To Execute :
17 1 ADD R5 R4 R7

Checking Source Operands For Instruction :
R4, 2 R7, 1

Pit That Instruction Can Be Executed In = 2

Figure 5.2 - Sample Breakpoint File From permcd

Figure 5.2 is a sample trace of a TDS breakpoint trace file. The first instruction, ASL (arithmetic shift
left), has its source operands checked, in this case R6 which is shown to be available in PIT number 1.
The shift instruction is allowed to ‘execute’ in this time-slot and the destination register R4 is
associated with the latency of this instruction and this PIT. This can be seen in the ADD instruction
which has R4 as a source operand. R4 is checked and is shown to be available next in PIT 2. As this is
the latest operand for the ADD instruction, this is the also the time-slot that the instruction will be
allocated.

The TDS tool strictly enforces all true data dependencies, as shown above with R4. In contrast anti-
dependencies and output dependencies are effectively ignored. Since both these dependencies can be
removed by renaming, the TDS tool effectively assumes perfect renaming of both register and memory
locations.

The TDS tool has perfect knowledge of all memory addresses accessed by the program under
simulation and is therefore able to simulate perfect memory disambiguation. This simple execution
model with many of the restrictions on execution relaxed is used to compute the upper bounds of the
available instruction-level parallelism and is equivalent to the Oracle model used in other studies.
Additional restraints are then introduced to the model allowing the TDS tool to quantify the impact of
restrictions introduced by instruction scheduling algorithms.

5.2 Representing Programs Within TDS
5.2.1 Principle Parameters

The TDS tool has a high level of parameterisation, allowing individual components of the tool to be
switched on or off, to allow the study of a single effect or the combination of several models and
parameters. The TDS tool parameters are grouped around 6 main groups : viewing of data structures
and results, simulation, instruction latencies, code alterations, memory and breakpoints,

The TDS tool has facilities for viewing the structures used within the TDS to model caches and the
program under test, allowing the user to study the information held in the tool; viewing of the
instruction cache, procedures in the current program, the basic blocks that make up the procedures, the
current symbol table, distributions of parallel instruction time slots are a few of these.

The simulation group of parameters control the 'execution’ of the program and allow the user to specify
what output is produced by the TDS tool. Ceilings to code motion can also be set here, these include ;
entrance and exits to loops, procedure calls and returns and allowing specific code motion across the
ceilings.

The TDS tool has a number of predefined latency groups, the HSA latency set, a Unit latency set and
set of long latencies based on the Cydra 5 machine. The user can also set individual latencies for all the
principle instruction types within given limits. For Branch and Stores these limits are between zero and
ten. Loads can be set with latencies up to twenty six to allow the simulation of very slow memory
accesses or from cache hierarchies, Division latencies can be set as high as forty cycles to emphasise

10

e

the effects of very long instruction latencies. The other main instruction types are Multiplication and
Arithmetic, which are allowed latencies up to and including twenty five and twenty, respectively.

The TDS tool also allows manipulation and alteration of the original program code. Under the code
alterations menu the tool allows inlining of specific procedures, loop un-rolling, simulation of perfect
inlining and combination of instructions. Some of these operations alter the code and place new copies
of the code back into the instruction cache. These options cannot restore the code back to its original
state without re-loading and should be used with caution.

The final set of parameters allows various methods of memory disambiguation to be selected for
modelling. These range from perfect memory disambiguation through more restrictive models, to no
disambiguation and allow the impact of the memory disambiguation techniques to be studied. This
group also allows ceilings to placed on the memory references preventing them from executing out-of-
order, or speculatively before the preceding branches have been resolved. Further restraints can also be
placed preventing memory references from moving across procedure calls or out of their associated
basic blocks.

The facilities offered by breakpoints will be covered in Section 5.6, Tracing facilities.

5.3 Loading the TDS Tool
5.3.1 Loading The Instructions

The TDS tool allows object files to be selected and loaded into the TDS tool. The traces used for
simulation require that the instructions be held in an instruction cache that matches that of the HSA
simulator to ensure that the cache addresses given in the trace file will be identical. The instructions are
read in a line at a time from the object file, each line is identified, decoded and placed in an instruction
record. Each record contains fields to hold the primary components of each instruction including
attached labels, types, op-codes, destination operands, source operands and branching information. Any
labels in the code are collected as the instructions are loaded and placed in a general symbol table.

Once the main instruction file is loaded, the general symbol table is scanned for known library calls.
Any libraries identified are then also loaded. Currently the only standard C libraries supported by the
TDS tool are printf and malloc, which contain instructions to make the appropriate system calls. These
are again included to maintain a consistent model with the HSA simulator. As the object code is
designed to be re locatable, all the branch target labels are then placed within the symbol table and the
branch targets of every branch instruction can be then altered to map the branch target label to the
correct instruction.

5.3.2 Data Items

As the TDS tool is not required to model and simulate a data cache, all data items, both initialised and
uninitialised are collected and placed in a temporary data structure, These labels are then placed into
the general symbol table to allow the TDS tool to display and identify them easily. As well as being
placed into the symbol table, the data labels are placed directly into the memory map which is used to
associate an availability time with each memory location so that memory references can be handled as
operands.

5.4 Main Simulation Loop

The TDS tool performs most of its work within a main simulation loop. This loop controls and checks
the processing of each instruction and the collection of information about the program under
simulation. Although fairly complex, the loop consists of a number of distinct stages ; loading from the
trace file, using the trace file to step through the instruction cache, checking operand availability for
each instruction and allocating an execution time, checking for ceilings and breakpoints.

5.4.1 Trace Files

The TDS tool requires for each simulation a trace file of each benchmark executing on the HSA
simulator, these can be generated on request. An Example of such a trace is given in figure 5.3.

11

B 2 127 S 128 3968 B 129 89 S 90 3840 S 91 3848
S 92 3852 S 93 3856 B9 4 S 6 5568 B 8 95
B 96 18 s 19 3712 S 20 3720 S 21 3724 S 22 3728
S 23 3732 B 33 9 L 10 5568 S 14 5568 B 17 34
S 43 4164 B 46 33 B33 9 L 10 5568 S 14 5568

Figure 5.3 - An example section of a trace file

The trace file consists of all the branches taken and memory references used by the program. The
characters in the trace indicate the type of the instruction, B' for a branch, 'L' for a load and 'S' for a
store. For a branch, the first number is the address of this branch in the instruction cache and the second
number is the branch destination address within the instruction cache, This information is recorded into
the trace when the program counter is physically altered in the branch unit of the HSA simulator. For a
memory reference the first figure is again the current instruction cache address and the second is the
effective address for the memory access. This information is recorded into the trace when the
instructions are issued. All the traces files were generated on the single pipe model allowed by the
simulator.

The TDS tool reads a line at a time and separates the line into a sequence of tokens, these tokens are
then used to control the simulation.

5.4.2 Simulating the 'Execution' of a Benchmark

The program is assumed to begin executing at instruction cache address zero. The instruction at the
current program counter is identified and a specific handling routine for each instruction type is called.
Each source operand is checked, the latest operand time is associated with the instruction and a
destination time is associated with any destination operands. For each instruction type that does not
require information from the trace file, this will be as shown in Figure 5.2. At this stage it is assumed
that any ceilings being modelled, have effected the operand availability times or the execution time of
the instruction. A simplistic model of this is presented in the following section (5.4.3) and further
information is given for each simulation model when its results are presented.

For branches and memory references a slightly different sequence of events is initiated. Branches are
not guaranteed to appear in the trace file, they are only placed in the trace file by the HSA simulator, if
they are taken. For the Stanford benchmarks used, the figure for branches not taken is around 25%. The
TDS tool firstly checks if a branch is the next instruction it expects to see in the trace file. If so the
current program counter is checked against the branch instruction address read in. If these match, the
branch is taken and the program counter is adjusted to the branch target address, this new program
counter is checked against the read in branch target cache address, to ensure correctness, The TDS tool
has to also handle branches not appearing in the trace file and branches not matching in the trace file. In
both of these cases it has to assume that the branch under examination is not taken and execution
should continue at the branch's sequential successor.

Memory Loads and Stores, as well as providing effective addresses for memory references, are used to
check the simulation is executing as expected. These instructions will be examined by the TDS tool in
the same order as they were executed in the HSA simulator, the information they convey is used to
maintain simulation correctness. The effective address read in are used to perform memory
disambiguation within TDS. Each effective address is placed within a memory map and has the time of
the memory reference associated with it. All memory references are checked against this memory map.

The TDS tool will continue stepping through the instruction cache until all the trace file has been
processed and further instructions require trace file information, in which case an error has occurred, or
until a TRAP instruction is executed, indicating the successful completion of the program.

5.4.3 Ceilings and Breakpoints

In addition to the instructions held in the instruction cache, the TDS tool also has a further data
structure which models the program, its procedures and their associated blocks. The program is
modelled as a complex data structure, but at the top level it can be reduced to a program name and a list
of procedures. The procedures consist of pointers to further procedures, pointers to the instructions that
make up the procedure via basic blocks and a back edge list for all the loops in the procedure. This
higher level information allows the TDS tool to keep track of specific events, such as loop entrance and
loop exits. Which, with the use of global ceiling variables, can be used to set ceilings for code motion

12

|
|

that effect all the other procedures that implement the simulation. These ceilings can be for all
instructions or for a selected specific type of instruction, most commonly memory references.

The TDS tool allows various trace methods to be used during the simulation. By far the most useful of
these traces is the one controlled by breakpoint information. This allows breakpoints to be created for
specific instruction counts or instruction cache addresses. When a breakpoint is encountered, the
options to remove the breakpoint, trace a specific number of instructions, trace a specific number of
branches and memory references, examine the memory map and examine register usage at this point
are presented to the user. This allows valuable information to displayed in a controllable way. Tracing
instructions shows which ceilings are being implemented, the availability of operands and the
allocation of PITs to instructions as well as further information regarding register usage. This feature
was used to debug the TDS tool and is left in as it provides an in-depth and useful tool to examine
exactly what is happening and in what order at any stage. As yet there is no facility to enter the trace
mode when an etror occurs. This feature has been omitted because any errors that occur within the TDS
tool are likely to be fatal errors. These errors are likely either to be a problem with the implementation
or user error. Simple user error is the most common form, typically using object files and trace files that
do not match,

Further trace facilities are available to the user. Outputting the trace file to a given file can be selected,
presenting a more condensed form of the trace information. A tuple output file can be generated, this is
contains highly condensed output, consisting of a collection of instruction cache addresses and their
associated PITs. A branch error file can also be selected, storing information for all the branches not
taken,. These outputs are a representative sample of the TDS tool outputs.

6 . Results

This section presents the results of removing many of the constraints placed on executing code
sequences, to allow us to quantify the amount of ILP in non-numeric code. The effects of placing
barriers to code execution and the impact they have on the available ILP are also presented. The results
are displayed in terms of the speedup of a suite of benchmark programs running on the TDS tool
compared to the same programs executing on a single pipe HSA model. Speedup is defined as the
number of cycles taken by a scalar processor to execute the program divided by the number of cycles
taken by a superscalar processor to execute the same program. The results obtained are then analysed to
assess the cost, in terms of performance and impact on the available ILP, of these constraints, both as
singular effects and as combinations of constraints. The full set of results are available in Appendix A.

6.1 Benchmark Programs

For this implementation of TDS, the small integer Stanford benchmark suite was selected. This
collection of eight 'C" programs was designed by John Hennessey, to be representative of non-numeric
code while at the same time being compact. The benchmarks are computationally intensive with high
dynamic instruction counts. Under test, they perform very much like larger benchmark suites. All the
benchmarks were compiled by the HSA gnu 'C' Compiler which targets the HSA instruction set. For
this initial study, 'cut-down' versions of the benchmarks where used. The primary reason for using these
cut-down versions was the ease of testing and debugging with the smaller dynamic instruction counts
and also to avoid generating large trace files until TDS was more stabilised. These cut-down versions
(indicated by a "cd" suffix on the benchmark names), still implement exactly the same algorithms as
the full length versions but work on reduced problem sets, thus keeping most of the desired properties.

As shown in Table 6.1 each of the benchmarks consist of a small number of procedures (the average
size is approximately 8). Each procedure has an average basic block size of around four instructions.
Three of the benchmarks permed, towcd and treecd, are highly recursive with a large number of

procedure calls being made throughout the execution of the program. The average percentage of total
instructions that are branches for these three benchmarks is about 17%, of which 54% are procedure
call and returns. In contrast bublcd, matxcd, puzled and queencd spend over 80% of their time

executing within loops. An average of 50% of the total number of lines in these benchmarks accounts
for 88.4% of the total execution.

13

Program Num. | Lines | Basic | Avg Size Description
Procs Blocks | Of Block

bublcd 7 106 28 4 Bubble Sort an array of 50 Integers

matxcd 7 133 24 6 Multiplication of two 10 by 10
integer matrices.

permed 7 97 25 4 Recursive computation of all the
permutations for 5 elements.

puzled 8 589 145 4 Recursively solves a cube packing
problem.

queencd 6 164 33 5 Recursive solution of the eight
queens chess problem.

sortcd 8 145 35 4 Recursive quicksort of 100
elements.

towed 12 222 47 5 Solves the tower of Hanoi problem
for 7 discs.

treecd 11 219 54 4 Performs a binary tree sort of 100
elements.

Table 6.1 - The Stanford '""Cut Down'' Benchmark Suite

6.1.1 Composition of the Benchmarks

Four of the benchmark suite, bublcd, matxcd, sortcd and treecd, contain a mixture of Multiply and

Divide instructions. Although these represent a small proportion of the dynamic instruction count, (the
percentage of the dynamic composition for these instructions is 2% and 0.5%, respectively) the long
latency of these instructions may seriously limit the potential for parallelism, by delaying subsequent
instructions in the long dependency chains that exist in the benchmarks.

All the cut down benchmarks execute under 40,000 instructions, which means that while the individual
speedups achieved are individually meaningless, useful interpretations can still be drawn by
comparison across a range of results.

Program St % Ld % Arith %% Mult %
bublcd 1377 (8.8) 2801 (18.0) 4334 (27.9) 100 (0.6)
matxcd 1516 (5.9) 3215 (12.6) 10760 42.1) 1200 “4.7)
permed 1723 (20.1) 1716 (20.0) 3192 (37.2) 0 (0.0)
puzled 2304 (6.5) 2876 8.1) 12180 (34.5) 0 (0.0)
queencd 3157 (14.7) 3796 (17.6) 5631 (26.1) 0 (0.0)
sortcd 939 (7.1 2044 (15.5) 4093 (30.9) 200 (1.5)
towed 2892 (18.0) 3235 (20.1) 5808 (36.1) 0 (0.0)
treecd 2193 9.2) 5103 (21.4) 7985 (33.6) 200 (0.8)
Avg. 2013 11.3 3098 16.7 6748 33.6 213 0.95
Div % Bool % Branch | % Shift
bublcd 50 (0.3) 2698 (17.4) 2808 (18.1) 1373 (8.8)
matxcd 200 (0.8) 1330 (5.2) 1940 (7.6) 5390 21.1)
permcd 0 (0.0) 420 (4.9) 1314 (15.3) 212 2.5)
puzlcd 0 (0.0) 6084 (17.2) 6559 (18.6) 5347 (15.1)
queencd 0 (0.0) 3512 (16.3) 3849 (17.9) 1604 (7.4)
sorted 100 (0.8) 1701 (12.9) 2392 (18.1) 1760 (13.3)
- towed 0 (0.0) 794 (4.9) 2429 (15.1) 922 5.7
treecd 100 0.4) 2437 (10.3) 5123 (21.6) 595 (2.5)
Avg, 56 (0.3) 2372 (1.1) 3302 (16.5) 2150 (9.6)

Table 6.2 - Composition of Benchmarks by Instruction Type

14

Table 6.2 gives a distribution for each instruction type for the benchmark programs based on the
dynamic instruction count. If shift, multiplication, divide and arithmetic instructions are grouped
together to form a super-group of ALU operations, these comprise 44.5% of all the operations
executed. This figure compares favourably with those reported by Gross [Gross88] for the MIPS
instructions set usage, where ALU operations typically consisted of between 40-50% of all operations.

This is also true of loads and stores within the benchmarks which comprise 28% of the total, Gross
reported that loads and stores instructions are between 25-30% of the total. The MIPS work was
performed on the full length versions of the Stanford benchmark set and several much larger
benchmarks. Typically these benchmarks running for millions of instructions and this shows that the
"cut-down" Stanford set of benchmarks compare favourably. Although, some studies have shown that
small integer benchmarks do not contain many pairs of ambiguous memory references, this was not
found in this initial study.

6.1.2 Branch Instruction Profile

100 o

bubled matxcd permcd puzled queencd sorted towed treecd HM.

B Procedure E Cond B Uncond [Taken

Figure 6.1 - Distribution of Branch Types and Branch Taken Figures.

Figure 6.1 gives the distribution of branch types for the Stanford cut-down benchmarks, in terms of the
percentage of branches that where procedure calls and returns (Procedure), conditional (Cond) and
unconditional (Uncond). The high proportion of conditional branches in the benchmark suite is a good
representation of the complex dynamic control flow which is typical of non-numeric code. A further
good indication is that of branches taken. Although in some benchmarks, notably matxcd, a high
proportion of all branches are taken, the harmonic mean is around 73%, leaving 27% of branches
untaken. This figure correlates to the figures reported by Gross [Gross88] in which taken branches are
less than 20% of the dynamic instruction count. Based on the harmonic means, taken branches are
around 12% of this count for the cut-down benchmarks.

6.1.3 Basic Block Statistics

Benchmark | Static Dynamic Avg. Branch
Average Average Distance

bublcd 3.8 4.5 55

matxcd 5.5 12.3 13.1

permed 3.9 6.1 6.5

puzlcd 4.1 5.0 5.4

queencd 5.0 5.4 5.6

sortcd 4.1 4.7 5.5

towced 4.7 6.3 6.6

treecd 4,1 4.5 4.6

Table 6.3 - Average Basic Block Sizes, Branch Distances

Table 6.3 presents the average basic block size for each program. The dynamic average is calculated by
dividing the total number of instructions executed by the total number of basic blocks, The table also
presents the average distance between branches of each program. This distance is defined as the total
number of instructions between branch instructions, including the branch instruction itself. This is
related to the average basic block sizes but not identical because basic blocks need not be separated by
a branch instruction.

15

1 2 3 4 5 6 7 8+

B bublcd [Ematxcd HEpermed Epuzicd B queencd Esortced Etowed M treecd

Figure 6.2 - Dynamic Run Length Distribution of Taken Branches

For general purpose code, the instruction runs are quite short. Figure 6.2 shows the distribution of run
lengths for the Stanford benchmarks, The run-length is determined by the number of instructions
between taken branches. Branches not taken are counted as part of the run and every time a branch is
taken a new run length count is started. This is measured as the program execution is simulated by the
TDS tool and the output is optional. The average run length for the Stanford suite is around 6, but this
is aided by the large number of run lengths of eight instructions or more. The size of these run-lengths
has a critical impact on instruction fetching,

Harmonic means (H.M.) are used throughout this study as well as arithmetic means to avoid distortion
in the reported speedups by applying larger weightings to the programs reporting the smaller speedups.

For a set of N programs, each with a speedup S, the harmonic mean of all speedups is: Harmonic
Mean=N /(X 1/S).

The effects of this distortion can be seen in a number of the results reported. For example figure 6.3,
puzled has a considerably greater speedup than any other of the benchmarks, the arithmetic mean
reported here is 35.1 but the harmonic mean is only 21.5. The arithmetic mean does not accurately
reflect the speedups for the whole benchmark suite and is presented to allow comparisons only.

6.2 Oracle Base Model

As a base model for comparison, the TDS tool initially ran the benchmark programs with no constraints
being modelled. This Oracle model represents a processor with perfect memory disambiguation,
infinite resources and perfect branch prediction. Therefore the execution time of each program is
dependent on the true data dependencies (which represent the flow of data and information) present in
the programs only.

y B bublcd
100 e
" B permcd
" O puzled
.] queencd
sortcd
20
B towed
X . . @ treecd
1-Pipe I-Fipe M
(Adjusted)

Figure 6.3 - No Ceilings Modelled

16

Figure 6.3 shows these execution times as speedups over a single pipe HSA model. This single pipe
model has a fetch rate of one instruction per cycle, only one functional unit of each type and imposes
the same set of latencies as the HSA parallel models. The actual latencies used are presented later in
Table 6.4. The total number of machine cycles that each benchmark requires to execute on this single
pipe machine is collected from the HSA simulator and used to calculate this speedup. The set of
figures from Figure 6.3, identified by the '1-Pipe' legend, show the speedup of the TDS tool over these
base figures. The second set of figures, identified by the '1-pipe(adjusted)' legend, are the speedups
based on the set of base figures, with all the zero issue cycles due to branches removed. The HSA
architecture uses branch delayed regions in favour of branch prediction to minimise the impact of
control flow. As the base figures are taken from the HSA Simulator executing unscheduled code, each
branch instruction has an associated empty branch delay region. This impacts unfairly on the overall
machine cycle counts, as there is an additional penalty associated with each branch. These zero issue
cycles have been removed in the 1-Pipe(Adjusted) field, for all the branches taken. It is this second set
of base figures that will be used throughout the rest of the results section.

For these set of figures the H.M. of the speedups is 21.5 and 17.4 respectively, with a range between
9.5 for permcd and 87.2 for puzlcd. The available instruction level parallelism ranged from 9.6 for
permcd to 99.3 for puzlcd with an average around 29 instructions being executed per cycle. These
Oracle figures represent an upper bound for the ILP and will be used to quantify the impact of the
limitations introduced within this study.

6.3 Procedure Call and Returns

Typically, instructions within a procedure are never issued until all the preceding instructions have
completed and the code after procedure call is not executed until all the instructions in the procedure
have completed. The TDS tool simulates these limitations by placing ceilings on the entry and exit
from procedure calls preventing code from executing any earlier than these barriers. The impact of
recursive procedure calls have been included in this model.

40 = s 87.219

bubled matxcd permed puzled queencd sorted towed treeed HM.

B No Ceilings Proc Ceilings

Figure 6.4 - Effect of Ceilings on Procedure Call & Return.

Figure 6.4 shows the effect of ceilings on the procedure call and return. The H.M. is 4.072, with a range
of 2.238 for matxcd to 9.986 for queencd. This is a reduction of 13.266 in the overall speedup
compared to the base model. The three highly recursive benchmarks permcd, towcd and treecd all
suffer an appreciable decreases in performance. All the benchmarks suffered a significant reduction in
performance and this can be attributed to several reasons. Firstly, the available parallelism is limited to
the size of the average procedure. For the Stanford benchmarks the average procedure size is around 25
instructions (puzlcd has the largest static average and matxcd the smallest). This limitation is
compounded by the large number of small procedures within some of the benchmarks. Data
dependencies introduced by stack frames further reduce the ILP within the procedures. Secondly,
several of the benchmarks are highly recursive. The barriers on procedure entry and exit prevent
parallel execution of successive recursive procedure calls. Finally, many of the loops in the benchmarks
have procedure calls embedded within them, preventing loop iterations from executing in parallel. The
overhead of procedure calls to ILP has is therefore very significant.

6.3.1 Procedure Inlining
Procedure entry overhead can be reduced by procedure inlining. To study this further, two further
models were developed. The first model, selective procedure inlining attempts to inline procedures

based on a simple set of heuristics ; the size of the procedure, how complex the control flow is within
the procedure and if the procedure contains further procedure calls. Selective procedure inlining was

17

configured to inline procedures which contained less than 20 instructions and which made no further
procedure calls. SP dependencies were removed, along with the associated saving and restoring of
preserved registers. For most of the benchmarks, this model was able to find and inline at least two
procedures. The second model is that of perfect inlining. This is based on the work of Lam [Lam92].
All manipulations of the SP are removed along with the BSR calls themselves. Loads and Stores
associated with the procedure's stack frame are also removed, to simulate the effects of instruction
scheduling collapsing the stack frame save and restore instructions, once the preceding dependencies
had been removed.

150 + 237

100 -+

bublcd matxcd permed puzled queencd sorted towed treeed HM.,

B No Ceiling HSelected B Perfect

Figure 6.5 - Effect of Procedure Inlining

Figure 6.5 presents these results. For the selected procedure inlining model, the average number of
dynamic instructions removed is approximately 400 per benchmark. The removal of the procedure
overhead gives a performance increase of around 9% across the benchmarks. The effects of removing
BSR calls from within loops is most notable in permcd where inlining the two procedure calls within its
dominant loop, gave a performance increase of approximately 44%.

The figures for perfect inlining represent an upper bound to what is theoretically possible, using
procedure inlining. Because all the stack frames have been removed, the chains of dependent loads and
stores which may limit subsequent code motions, have been eliminated. This simulates the condition
where the procedure has been inlined and the scheduler succeeds in removing all the values previously
saved across the procedure call and return in registers. The improvement is most dramatically shown in
puzled where a massive speedup of 237.0 is observed. The H.M. for this set of figures is more
conservative, at 26.2 compared to the no ceilings base model of 17.3. Here the flow of information in
the procedures, is almost entirely within the registers themselves.

6.3.2 Direct Recursion Inlining

To asses the impact of procedure ceilings on recursive procedure calls, the TDS tool can identify
directly recursive calls. These procedures that directly call themselves become candidates for dynamic
inlining. This models the effect of not producing a new stack frame for every direct call. This inlining is
not as comprehensive as static procedure inlining. For each direct recursive procedure call, ceilings will
not be set on procedure entry and exit. Any SP manipulations are identified and ignored. This helps to
partially collapse the stack frame construct, but the associated state restoring loads and stores are still
executed.

25 -
20 -

bublcd matxcd permcd puzled queencd sorted towed treecd HM.

B Proc Recursive Proc

Figure 6.6 - Inlined Recursive Procedure Calls

18

Figure 6.6 presents the results for inlining direct procedure calls, displaying the figures for ceilings on
procedure call and returns to allow comparison. On average 36% of the benchmarks' procedure calls
and returns are removed, with queencd having 96.6% of all its procedure calls and returns inlined. The
change in speedups exhibited across the suite, when compared to the procedure call and return figures,
range from, 0.0 for bublcd and matxcd (which had no direct procedure calls) to +10.54 for queencd.
Although gueencd had a dramatic speedup increase, the other recursive programs did not exhibit such
large performance increases. Both sorted and treecd had much smaller performance increase of around
13%, while permcd managed an increase of around 20%. By not handling recursive procedure calls as a
special case, would cause a performance loss, for this benchmark suite, of 10.5%.

Program No. of Proc % of BSR& Change in
Calls Inlined | MOV's 9 speedup

bublcd 0 0 0.0
matxcd 0 0 0.0
permcd 205 (410) 57.0 1.0
puzlcd 19 (38) 10.7 0.7
queencd 112 (224) 96.6 10.5
sortcd 88 (176) 45.6 0.3
towed 126 (252) 19.2 0.2
treecd 684 (1368) 62.9 04
Total 1234 (2468) 292 13.1
Average 154.3 (308.5) 36.5 1.6

Table 6.4 - Recursive Procedure Statistics

Table 6.4 presents a summary of the results. queencd reported the largest impact as its dominant loop
contains a recursive procedure call. When this call is inlined, the barrier to exploitation of ILP caused
by this procedure call is removed allowing the code from across the call and the code from within the
call to be considered for parallel execution. The treecd benchmark reports a much lower speedup than
the number of inlined procedure calls would suggest, as its control flow is dominated by recursive
procedure calls. These procedures though have complex control flow and call subsequent procedures
thus reducing the increase in ILP.

6.4 Effect of Loop Ceilings

In this section, the effects of barriers within loop execution are examined. For the eight benchmark
programs, the average number of instructions within a loop is 36% of all instructions but these count
for 58% of all instructions executed!0, These figures are lower than the commonly quoted figure of
90%, as several of the benchmarks notably permcd, towcd and treecd (the recursive benchmarks) have
loops which account for under 12% of the total number of instructions executed.

25
20
15
10

5

bublcd matxed permed puzicd queencd sorted towed treeed HM,

B Entry & Exit EEntry H Exit [Across

Figure 6.7 - Effect of Loop Ceilings On Code

At the other end of the scale bublcd, matxcd and puzicd spend over 91% of their time executing loops.
Firstly, the impact of preventing a loop from executing until all the code proceeding the loop has

8 Shows the number of procedure calls and then the figure including return from procedures removed.
9 Percentage based on programs execution count.
10 See Appendix A - Set 47 for full results.

19

completed, as outlined in the limitations section is studied. The effects of reducing this barrier by
allowing subsequent code motion is then considered, these code motions include code motion across
loops, code motion into loops and code motion out of loops. Figure 6.7 presents the results for these
four barriers with no other code restrictions being modelled and with the normal HSA instruction
latencies.

The 'Entry & Exit' category represents the most severe model of the group of four. The benchmarks
with the largest number of loops, many of these nested, had the greatest performance degradation. The
performance of bubled was reduced by 32.5, puzlcd by 77.9 and sortcd by 16.9. The main cause of this
degradation was the effect of these ceilings on nested loops, where an outer loop enclosed an inner
loop. The ceilings on entry and exit, effectively serialised the execution of the outer loops. The queencd
benchmark was unaffected by these loop ceilings. The speedup was reduced by only 0.3, as its
execution is dominated by a single simple loop which accounts for over 77% of its execution. permcd
reported the smallest reduction in speedup of 0.2, this programs has no nested loops and relies on
recursive procedure calls for the bulk of their execution. This shows that the assumption made when
scheduling a loop body have a significant degrading factor on performance.

The 'Entry' legend shows the effect of allowing code to percolate into the loop but no higher. Here a
single ceiling is set at the loop entrance. Initial expectations of an improved performance, as one of the
barriers to code motion had been removed were not proved. The H.M. of improved speedups is 0.1 with
arange of 0.02 for treecd to 1.2 for sortcd. This increase is limited for several reasons, primarily there
is only a small pool of additional instructions that can take advantage of this model. The performance
benefit occurs due to overlapping of the encapsulating loops execution with the encapsulated loop's
body. The execution of code from within the inner loop is unaffected (Inner most loops, account for
most of the instruction execution. In bublcd 89% of the program's execution occurs within an inner
loop.). Below the innermost loop bodies, there are either a small number of instructions that deal with a
backward branch, in the case of nested loops or instructions that rely on data set within the loop body.
This limits severely the exposure of additional ILP within this model. This is often compounded by
dependencies on the SP In ideal circumstances, for an unconstrained superscalar model, the
performance benefit is approximately 10%. However, this figure is achieved with perfect memory
disambiguation and infinite resources and it may prove to be too difficult to repeat this is in a realisable
superscalar model. Any impacts of this code motion into loops lengthening inner loop execution has
not been studied here.

The 'Exit' category reports the effect of code motion out of loops. In this model, code from below the
loop body is prevented from executing until after the loop has completed. The H.M. of the increases in
speedup is 0.1 with a range of 0.0 for queencd to 9.2 for matxcd. Again only a small number of
instructions are candidates for this code motion, loop carried and SP dependencies prevented most code
from percolating higher.

Finally the 'Across’ set of figures, quantify the effect of allowing code motion across loops. The TDS
tool places execution ceilings only on the loop code preventing it from moving higher than the loop
entrance. All other instructions are allowed to percolate as high as possible. With this model only
sortcd shows any increase in performance, the increase in speedup is 2.1. The impact on performance is
very similar to code motion into loops. Code within the loop bodies is often serial in nature, preventing
substantial code motion across the loop due to dependencies within the loop body. Typically after the
exit from an inner loop, there are several register restore operations which are dependent on the SP and
a number of iteration control instructions which have limited scope for concurrent execution, without
code transformations. It has beneficial effects for a small numbers of instructions in the outer loop,
effectively allowing most of them to be executed in parallel.

The impact of these loop-ceilings for ILP is on average a 64% decrease in the performance when
compared to the Oracle base model. As expected, these barriers to code motion do have a critical
impact on performance.

As a final measure of loop assumptions, the effect of serialising all the loops was studied. This would

occur if there was no concurrent execution of loops, if each loop iteration could only be executed if all
proceeding iterations of the loop had completed.

20

bublcd matxcd permcd puzled queencd sorted towcd treecd HM.

B Entry & Exit B Serial

Figure 6.8 - Effect of Serialising All Loops

Figure 6.8 demonstrates the dramatic impact that this extreme case has had. Using the figures for entry
& exit as a guide, the HM. is 2.8, a reduction of 5.0. The H.M. of the reduction suffered by each
benchmark is 1.6. As expected the benchmarks with the greatest dependency of loop execution (bublcd,
puzled and matxcd) have been the most adversely affected. There has been almost an order of
magnitude decrease over the base model figures, showing that the loop iteration rate is a critical
limitation to parallelism. This is effectively a simulation of loop execution where the loop iteration rate
is equal to the critical path through the loop body. For the code presented above, the loop iteration rate
is controlled by the data dependencies and their associated instruction latencies within the loop.

6.4.1 Loop Construct Removal

The loop construct removal model studies the effects of collapsing the dependencies introduced by loop
indices by simulating loop unrolling. The TDS tool aims to remove the effects of code generation for
scalar machine. For each loop, all the registers which are incremented once per iteration by a constant
are identified. TDS uses iterative data flow analysis [Aho86] on each of the benchmark programs to
achieve this. TDS then identifies and marks all incremental instructions, comparisons of loop indices
and branches based on the result of these comparisons. These instructions are then ignored when they
are encountered within the trace. The technique implemented identifies the majority of loop indices and
simulates near perfect loop unrolling.

Figure 6.9 presents the results for the number of instructions executed before and after loop construct
removal. The average number of instructions removed per benchmark is around 2566.8, or about 13%
of the total dynamic instruction count.

40000 =
30000 4-

bubled matxed permcd puzled queencd sorted towed treeed Avg

B With Constructs E No Constructs

Figure 6.9 - Instruction Exec. Counts For Benchmark and After Loop Construct Removal.

Figure 6.10 presents the speedup for the benchmarks after loop-construct removal. They are presented
with reference to procedure ceilings, as without any limitations apart from those inherent in the code,
loop construct removal made no visible impact!!.

11 gee Appendix A - Set 7. Although the number of instructions executed by the benchmarks has
decreased by around 13%, no change visible in the reported speedups.

21

bublcd matxcd permecd puzled queencd sorted towed treeed HM.

8 Proc Construct+Proc B Loop Ceilings B Construct+Loops

Figure 6.10 - Effect of Loop Construct Removal For Benchmarks.

For Figure 6.10 the impact can be clearly seen, the harmonic mean for loop construct removal with
procedure ceilings is 4.4, around 8% faster than when the loop components are not removed. When
compared to the results for loop ceilings the HM increases to 9.6 around 22% faster. These figures
suggest that loop transformations to remove the effect of these unnecessary serialising constraints
should be considered.

6.5 Memory
6.5.1 Memory Disambiguation

Up to this point all results have been presented with a perfect disambiguation model, the effect of
ambiguous memory references has been removed. For a statically scheduled architecture such as HSA,
this is not a realistic model , the majority of the address components are held within registers and will
therefore be unknown at the time scheduling will be performed. The models used so far have been
further boosted by the use of results forwarding. If a load follows a store to the same location, it is
modelled as being generated at the same time (if no other ceilings are in place and data dependency
considerations have been met) as the store. Stores are forced to wait for any preceding conflicting
memory references to complete and loads are allowed to percolate as high as they can. This means that
a large number of memory address disambiguations would have had to been resolved, which is unlikely
in a model based on static dependence analysis.

100 ==

bubled matxed permed puzled queencd sorted towed treecd HM.

B No Code Superscalar B Perfect

Figure 6.11 - Effect of Memory Model on Performance

Figure 6.11 presents the results of different memory disambiguation models for the benchmark
programs. The 'No Code' figures, represent the base model which has a perfect memory disambiguation
model, along with the result forwarding described previously. In this model stores can complete out-of-
order and can bypass all memory references apart from the references to the same effective address.

The 'Superscalar’ model is based on Johnson's model [Johnson91]. Here loads are still perfectly
disambiguated, but stores are forced to complete in order and only after all preceding instructions have
completed. This allows insight into the effect of allowing loads to by pass stores which is a more
realistic model. Here the H.M. for the speedups has been reduced to 10.7, with bublcd, matxcd and

22

sortcd being effected significantly. A possible cause is that these benchmarks and treecd to a lesser
extent, contain long latency divide instructions. Data dependency chains involving divide instructions
would greatly effect the times at which the stores at the end of a procedure or loop iteration could
execute. These stores could then delay subsequent loads from the same location.

The final model in this group is the 'Perfect’ memory model, this represents an idealised cache, with
memory latencies of zero. Surprisingly, the benchmarks with greatest percentage of memory references
in their dynamic instruction count, permcd, treecd and towcd did not exhibit drastic speedups. Only
queencd reported a sizeable increase in performance of 67.9. The HM for this model was 20.5, an
increase of 2.5 over the Oracle base model.

Figure 6.12 presents the results for the most restrictive memory models.

40
30
20
10

0
bubled matxcd permcd puzled queencd sortcd towed treecd HM.

B No Mem Restrict @ Super + Restrict

Figure 6.12 - Restrictive Memory Models

The first model, 'No Mem' represents a processor with no memory disambiguation. Here loads and
stores are executed in program order although result forwarding is still used. The H.M. is reduced
considerably from 17.3 for perfect disambiguation to 3.6. The programs least effected by this are
permcd, queencd, towcd and treecd again, suggesting that their execution is not limited by memory
references.

The 'Restrict' model places a further memory reference ceiling on the execution model. A barrier is
placed to prevent memory reference motion across procedure calls within the TDS tool. In a realistic
model, a scheduler would often be unable to move a memory reference across a procedure call, as the
call would introduce many new memory references. This additional memory references would be very
difficult to statically disambiguate successfully. This is especially problematic, if a procedure stored
and restored a large number of items onto its stack frame. The problem of nested procedure calls would
also impose significant problems and prevent most memory references being percolated across the
procedure call. The impact of this ceiling reduced the H.M. to 4.6. The principle cause of this reduction
is the result of constraining the load operations to execute later. In the No Mem' model, the loads could
percolate up to the top of a procedure, where the preserved register stores onto the stack frame would
prevent then floating higher. In this new model, memory references are often limited by further
procedure calls within the current procedure, delaying their execution further, This has further
repercussions, delaying any instructions dependent on the destination result of the load. These barriers
effectively re-introduce the effects of the procedure call and return ceilings for memory references.

The effect of preventing load reference motion is further illustrated by the final set of figures, here the
superscalar disambiguation model has this added constraint. The Harmonic mean of the speedups is
reduced from 10.7 to 3.8.

6.5.2 Speculative Writes

In arealistic processor, stores cannot be issued until the immediately preceding conditional branch has
been executed. If speculative issue was allowed, the store could only be promoted as far as the
immediately preceding relational instruction. The TDS tool quantifies the effects of these limitations by
placing a memory ceiling at either the last conditional branch or at the last relational instruction
controlling a branch to be executed. Although this would only a save a single cycle on an HSA, the
cumulative effects of many such speculative writes may produce a reasonable saving in execution time.

Figures 6.13 and 6.14 present the results for these ceilings. The first figure shows the effect speculative
writes without any other constraints and then with a restrictive memory model. The impact of allowing

23

Speculative writes increases the H.M. speedup by only 0.004 for the benchmark suite. The restrictive
memory reference model is used to prevent memory references from executing before the immediately
executed procedure call. The impact is as expected but the performance benefit of speculative writes is
diminished to only an increase of 0.02 for the H.M.

100
80

60

40

bubled matxcd permcd puzled queencd sorted towed treeed HM.

B SpecW + Bra SpecW + Bool H SpceW+Bra+R [SpecW+Bool+R

Figure 6.13 - Speculative Writes

bublecd matxed permecd puzled queencd sortcd towed treecd HM.

B SpecW+Bra+Pro SpecW+Bool+Pro B SpceW+Bra+R+Pro [SpecW+Bool+R+Pro

Figure 6.14 - Speculative Writes - With Procedure Ceilings

Figure 6.14 presents two further sets of results for progressively more restrictive models. The first set
of figures are for speculative writes under a procedure ceiling model. An increase in the H.M. of the
speedups of 0.03 is recorded under this model. The second figures are for a restrictive model using
procedure ceilings as well. Again a very small performance increase of allowing speculative writes of
0.03 is noted. These figures are as expected. In the Stanford benchmarks, the small number of stores
within loops and that these stores do not significantly block the motion of subsequent memory
references means that any impact on stores is not passed on to the performance of the benchmarks.

Further work with memory models!2 show that even with limited or no memory disambiguation, where
stores will block the motion of subsequent memory references, the largest reported change of allowing
speculative writes was 0.6. These figures suggest that allowing speculative writes will not gain
significant performance advantages for a more constrained model such as HSA.

6.6 Instruction Latencies
6.6.1 Adjusting Instruction Set Latencies

To allow comparison of the figures reported for this TDS tool to other limits of ILP studies, the
instruction latencies used can be adjusted. Unit latencies were modelled, this avoids the constraints
placed by using real instruction latencies and allows the upper limit for ILP to be approximated. The
effects of long latencies are also studied by taking the worst-case figures for the Cydra-5 machine
[Beck93], the most noticeable instruction latencies here are the load instruction which can take up to 20

12 See Appendix A - Sets 37-42.

24

cycles and the Arith. latency, the most frequent instruction type executed, which is 5 cycles. The
complete latency sets are given in Table 6.5.

Latency Unit HSA Long |
Load 1 1 20

Store 1 1 1
Branch 1 1 3
Arithmetic 1 1 5
Division 1 32 22
Multiply 1 3 5
Boolean 1 1 2

Shift 1 1 1

Table 6.5 - Latencies Used

Figure 6.15 presents the results for these two instruction latency sets at opposite ends of the scale, from
theoretical to a realised, though long latency implementation. The Unit latency set's H.M. is increased
to 19.0, suggesting that the longer latency instructions do inhibit the exploitation of ILP (although the
increase in Speedup is only 1.6). Unsurprisingly the much larger set of latencies, has a detrimental
speedup. Apart from gueencd, which suggest that the majority of load and arithmetic instructions are
not part of its critical path. The H.M. for the long latency figures is 4.1, ranging from 1.6 for permcd to
17.3 for puzlcd.

100 o

bubled matxcd permed puzled queencd sorted towed treeed HM.

EHSA Unit B Cydra 5

Figure 6.15 - Varying Latencies For Model’

6.6.2 Minimum Division

To investigate the impact of the long latency instructions, as suggested by the results in the previous
section, the impact of the very long latency HSA divide instruction is evaluated. It has been suggested
that these long latency instructions delay further dependent instructions and therefore lengthen the
critical path.

bublcd matxcd sortcd treecd HM.

B HSA Min Div

Figure 6.16 - Division Latency = 1.
The large latency also may cause problems for scheduling as the latency region associated with this

instruction, will need to be filled with code to minimise the subsequent performance loss. The HSA
divide instruction has a latency of 32 cycles and therefore should have a measurable impact on the

25

model's performance. The four benchmarks with divide instructions (bublcd, matxcd, sortcd and treecd)
were run with a divide latency set to a single cycle.

The H.M. of the speedups reported in Figure 6.15 is 17.6, an increase of 0.2. Surprisingly, bublcd,
which has the smallest number of divides reported the largest increase of 3.5. These figures suggest that
the long latency of the divide instruction does not critically limit the performance for these benchmarks.
The benchmarks have though only a very small number of divides, under 1% of the dynamic
instruction count, so this still may be an important factor when a more significant proportion of divides
is present. As reported earlier, the long dependency chains created by divides instructions still have an
impact on memory references, which will be magnified by more restrictive memory models.

6.7 Instruction Combining

HSA uses three input functional units and its instruction set takes advantage of this by providing
‘Combined' instructions. To evaluate the use of combined instructions, the TDS tool attempts to
aggressively combine as many instructions as possible. The combinations available are defined within
instruction classes allowing assessment of the combinations between single instruction types, as well as
more aggressive multiple combinations. The main combinable groups within HSA are Arithmetic,
Multiplication, Shift, Relational and Branch. The combinations are simulated within TDS at run time.
This dynamic combining removes the control dependency that would hinder static evaluation and
exposes considerably more instructions to combining. This dynamic combination within TDS is
modelled to generate an upper bound on the performance increase.

Each instruction is examined as its executed by the TDS tool. If it is part of the currently selected
Combinable Instruction Group (CIG) and it has not been combined with a predecessor instruction, its is
selected for combining. The instruction's destination register is marker as a COMBINE type and has the
time of the availability of the instruction's source operands associated with it. If a subsequent
instruction is processed that uses this destination register and the instruction is also a member of the
CIG combination is simulated. Instead of using the destination register, the availability time associated
with the destination register is used.

Il: MULT R4,R4,1309 I3: ADD R5, (R4*1309),13849

I2: ADD R5,R4,13849

Figure 6.17 - Combining HSA code.

In Figure 6.17, there is a true data dependency between I1 and 12, on R4 . This would normally prevent
12 from executing until at least three cycles after 11 (ignoring any result forwarding). With combination
selected, as Il is being examined, the combine processes marks (subject to the constraints outlined
above) R4 as a COMBINE type. R4 also has associated with it the latest source operand time (in I1, it
would be the time R4 was previously available). When 12 is subsequently processed, as R4 is examined
it will be identified as a combinable result and the two instructions will be combined to form a new
instruction I3. I3 can then be executed in parallel with I1. RS is now generated much earlier and may
allow early execution of dependent instructions. I2 can then be removed. If live variable analysis is then
used and if R4 has no further uses, I1 can be removed also. This final stage is omitted in the current
implementation of TDS.

A limited number of instructions are selected for combination within this implementation of TDS; these

include Arith, Shift and Mult instructions. The full list of currently combined instructions is available in
Appendix B.

26

bublcd matxcd permcd puzled queencd sorted towed treecd HM.

& No Ceilings E Combine

Figure 6.18 - Combining With No Restrictions

Figure 6.18 presents the results for combining when no restrictions are being modelled. 16.8% of all
instructions executed in this model were successfully combined, with matxcd having the largest
percentage of combined instructions, 33.4%. All but one of the benchmarks reported a significant
speedup over the base model figures!3. The average speedup increase across the benchmarks, was 22.9
and the change in Harmonic Speedups was 11.2. The most surprising observation was that many of the
combinations were a direct result of SP manipulations within the procedure stack frames. The
instructions incrementing and decrementing the SP were a prime candidates for combination, being
simple integer Add or Sub instructions. As combining is performed dynamically, these SP
manipulations are also combined between procedures.

Figure 6.19 presents the figures for combining with procedure entry and exit ceilings. The impact of
combining is still very notable on this restricted model. Every benchmark reported a speedup over the
Procedure Entry and Exit Ceilings figures, with an average speedup increase of 2.1. The ceilings on
procedure entry and exit prevented substantial collapsing of the stack frame as seen in Figure 6.18 and
consequently combining has a reduced effect. Further procedure calls within procedures also prevented
much combination across procedure calls. The harmonic mean for the performance increase, for all the
benchmarks, is 1.0.

20 =

15+

10+

bublcd matxed permecd puzled queencd sorted towed treecd HM.

B Proc Combine+Proc

Figure 6.19 - Combining With Procedure Ceilings

These figures show that there is an observable performance increase with instruction combining. If
combining can be implemented without substantial hardware costs or any impact on the cycle time, it
justifies its inclusion in the HSA specification. The results are based on a limited implementation of a
subset of the possible combinations, increasing the set of combinations and the number of operands
combined simultaneously, much greater performance increases should be possible.

6.8 Distributions of Parallelism

All the distributions presented in this section were extracted from the execution traces as they were
processed by the TDS tool. By default, only the distributions over the first 2,000 cycles are recorded,
but this can be redefined by the user. The TDS currently records an occupancy count for each PIT.
Further information regarding the instruction mix and register usage is not stored due to limitations in

13 See 1 and 43 from Appendix A.

27

the support environment. All the benchmarks were run to completion, although only the first few
hundred cycles are shown below in figures 6.20a-d14. These distributions were generated with the HSA
latency set on the oracle machine model. The y-axis represents the instruction count for the PIT
groupings and the x-axis represent the PIT numbers in increasing order (the PIT numbers are grouped
into tens (0-9, 10-19 etc.).

The sortcd benchmark distribution represents the bursty distributions reported by Austin for the SPEC
benchmarks [Austin92], here large areas of parallelism are followed by areas of low parallelism. The
rest of the benchmarks typically have am ILP distribution which shows that the majority of their
instruction execution occurs within the first few hundred cycles.

30000 1000
=L fmatxcd =& fpermecd
—é— fpuzled 200 ———— fsortcd

20000 -]
600

LTTTL

I, e . .
0 10 20 30 40 0 20 40 60 80
Figure 6.20a - matxcd and puzicd Figure 6.20b - permcd and sortcd
3000 5000
—— fqueencd i —B— fhubled
—*— ftowed 4000 - —— fireecd

2000 -

1000

Figure 6.20c - queencd and towcd Figure 6.20d - bublcd and treecd

From the distributions it can be seen, that the critical path through the data is limited by a small number
of instructions. More work is required to identify the cause of these distributions, but they are a useful
indication of the parallelism inherent in these small benchmarks These distributions are idealistic, as
the removal of control flow barriers allows significant concurrent execution of instructions arbitrarily
far apart in the instruction trace.

14 please note the scale differences in the x and y-axis.

28

7. Conclusions and Future Work

This project has shown that using trace-driven simulation, to quantify the upper limits of instruction-
level parallelism, ILP ranged from 1.0 for a highly restricted model, based on serialising loops, to 264.4
for an Oracle processor with perfect procedure inlining. The average ILP across the models used, is
around 20 instructions per cycle, which is encouraging. This may increase further for scheduled code,
where code motion and code transformation could expose significantly more parallelism. Compared to
the average ILP for results reported so far for the Conditional Group Scheduler (CGS), of 4 instructions
per cycle fully executed and around 5 instructions per cycle issued, it shows that even for the small
benchmarks there is still much room for improvement. The range of parallelism correlates well both the
Wall's and Lam's studies. The base model is directly relatable to Wall's perfect model, with perfect
branch prediction, jump prediction, register renaming and alias analysis. The TDS tool offers a further
useful analysis of the benchmarks, by recording the distributions of parallelism. Initial work with these
distributions showed that most of the programs execution could be performed within a small number of
cycles, with only a few instructions being executed within the later cycles. The ideal situation is to have
the ILP match the machine parallelism, so the functional units are used as greatly as possible. Theobald
[Theobald92] defined this as smoothability. The ability to asses the distribution of parallelism may
prove beneficial in assessing the quality of schedules produced by further HSA instruction schedulers.

The most surprising result so far reported is that for Procedure Ceilings, speedups over the scalar RISC
machine, were degraded by an average of 76%. This ceiling proved even more detrimental than
serialising loop execution. Several benchmarks reporting a speedup of little over 2. These figures are
aided by the other perfect methods still in place, perfect memory disambiguation and perfect renaming,
The impact on a realistic processor would be even more significant. This suggests that reducing the
procedure overhead is critical and techniques such as directed procedure inlining should be
implemented. A study by Serrano [Serrano95] reported that for a simple compile inlining decision
algorithm, for every program tested, inlining did not hamper code execution and on average execution
time exhibited a speedup of 10%. Although the impact of procedure inlining is dependent on the cost of
function calls. These figures are further strengthened by the results for selected inlining of procedures
within the Stanford set, where even with a very simplistic inlining decision algorithm, speedup
increases of up to 43% where reported. There is concern that aggressive inlining will cause
unreasonable code explosion. Increased object code size for compilers between 10-24% have been
reported by previous studies. However, in the study by Serrano, object code size was actually reduced
by up 10%. Although this is based on work on functional languages, it can only be taken as an
promising result. Further work is needed in this area to select an algonthm that balances the
performance gain from inlining and the overall code expansion.

The figures reported for Memory Disambiguation show that this is another critical area and should be
carefully considered by any static scheduler. If no memory disambiguation is implemented, there is
almost 80% depreciation in performance. There are unfortunately no figures for a reasonable
implementation of static disambiguation for the HSA model. However, based on the work trying to
implement such a model, few memory references within the benchmarks would be have been statically
disambiguated successfully. Static disambiguation is hampered by the problems of non-linear array
access, memory locations being read out of another memory location (i.e. pointer de-referencing) and
the need for information not always available (i.e. loop bounds). As the Instruction-Issue rate increases
for MII processors, parallel and out-of-order execution of loads and stores will become a critical factor,
suggesting that techniques that expose load and store parallelism will become essential. The use of a
hybrid disambiguation methods (which uses both static and run-time information to control
disambiguation) should be carefully considered. Huang et al. [Haung94] introduced a technique called
Speculative Disambiguation (SpD). SpD creates for each ambiguous memory reference, two copies of
the code. In one copy, the addresses are assumed to be the same, in the other they are assumed to be
different. Code without side effects is executed speculatively else it is conditionally guarded, based on
the result of comparing the addresses. The study reported a significant speedup of around 10% at the
sot of large scale code expansion. Further more on processors with insufficient resources, SpD can
actually slow down the machine. But the benefits of applying a similar technique such as this to critical
areas of the code could be significant based on the provisional results presented by the TDS tool.

The impact of speculative writes was not found to be significant. In the later models, the use of
speculative writes saved under 0.2%. Based on these figures, the decision made for the HSA model, of
not supporting speculative writes seems justified. In the benchmark programs used, stores did not
significantly block the execution of loads and so their impact on the overall execution time was
minimal. The impact of result forwarding which is imbedded within the current memory models,
according to Johnson gained very little over allowing loads to execute out-of-order. It gained 1% for a

29

two instruction decoder and 4% with four-instruction decoder. The impact of these techniques for a
resource constrained processor is beyond the boundaries of this study, but may show whether the
implementation costs associated with these methods are justified

Instruction combining within TDS produced some very favourable results, even with a restrictive
model it had a H.M. increase in performance of around 10%. When limited combining was first tried on
the Harp project [Steven93], it was dismissed as not being a critical factor in increasing performance
and this was accounted to combining too few instructions. In the TDS tool, combining is performed on
a much larger and aggressive scale and appears from these results, to add noticeably to the
performance. The other argument against combining in HARP, was that it is effects where negated by a
concurrent execution. For scalar processor, combining a Shift and an Add, will save a cycle but when
this performed in parallel, the Shift and the Add will be executed concurrently, saving nothing. In the
TDS tool's models, it was shown that often the instructions being combined had a true data
dependency, thus preventing this parallel execution. While the results for a restrictive, but still very
much ideal processor model may be disappointing, it sill suggest that combining may be beneficial to
many programs and should be carefully considered.

The final area of study, the impact of constraints on loop, was as proposed at the beginning of this
report, a highly important factor. Any ceilings placed on loop execution severely effected the overall
execution time. The impact on nested loops was particularly noticeable and the heuristics used to
schedule such loops should be chosen with care. Scheduling nested loops as a single unit is one
possibility. The performance bottleneck introduced by loop induction variables was also shown to be
significant. Removal of induction variable dependencies boosted ILP by over a factor of 2. These
figures suggest that scheduler which target MII processors should strive to remove these spurious
dependencies. '

The work carried out on this TDS tool has shown that the areas previously targeted by the instruction
schedulers developed so far, both for the HARP and the HSA projects have been justified. The results
reported within this study establish that there is room for significant improvement and that the key
objective of the HSA project, namely to achieve an order of magnitude speedup over a scalar RISC
processor, is theoretically achievable. Further work in the area of scheduling techniques is needed,
especially to improve procedure inlining and also to develop enhanced hybrid memory disambiguation
techniques for scheduling. These two techniques both highlight the need to asses the quality of the
schedules produced to gain the maximum cost/benefit ratio.

30

8. References

[Aho86]

[Beck93]

[Bernstein92]

[Butler91]

[Collins93]

[Collins95]

[Ellis85]

[Gross88]

[Huang94]

[Johnson91]

[Jourdan95]

[Lam92]

[Melvin91]

[Nicolau84]

[Noonbrg94]

A.V. Aho, R. Sethi and J.D. Ullman. Compilers : Principles, Techniques and
Tools, Addison-Wessley, Reading, Mass. 1986.

G.R. Beck, D. Yen and T.L. Anderson. The Cydra 5 Minisupercomputer:
Architecture and Implementation, The Journal of Supercomputing, Vol. 7, No. 1/2,
pages 143-180, 1993.

D. Bernstein, D. Cohen, Y. Lavon and V. Rainish, Evaluation of Instruction
Scheduling on the IBM Risc System/6000, In Proceedings of the 275h Annual
International Symposium on Microarchitecture, pages 226-235, Portland, Oregon,
December 1992,

M. Butler, T-Y Yeh, Y. Patt , M. Alsup, H. Scales and M. Shebanow. Single
Instruction Stream Parallelism is Greater Than Two, Proceedings of the 18th
Annual International Symposium on Computer Architecture, pages 276-286,
Toronto, Canada, May 1991.

R. Collins. Developing a Simulator for the Hatfield Superscalar Processor,
Division of Computer Science Technical Report No. 172, University of
Hertfordshire, December 1993.

R. Collins. Exploiting Instruction-Level Parallelism In A Superscalar Architecture,
Ph.D. Thesis, University of Hertfordshire, October 1995.

I.R. Ellis. Bulldog : A Compiler for VLIW Architectures, Ph.D. Thesis, Yale,
U/DCS/RR-364, Yale University, Feb 1985.

T. Gross, J. Hennessy, S. Przybyski and C. Rowen. Measurement and Evaluation of
the MIPS Architecture and Processor, ACM Transactions on Computer Systems,
Vol 6 no.3, pages 229-257, August 1988.

A.S. Huang, G. Slavenburg and I.P. Shen. Speculative Disambiguation : A
Compilation technique for Dynamic Memory Disambiguation, In Proceedings of

the 21st Annual International Symposium on Computer Architecture, pages 200-210,
Chicago, April 1994.

M. Johnson. Superscalar Microprocessor Design., Prentice-Hall, Englewood
Cliffs, New Jersey, 1991.

S. Jourdan, P. Sainrat and D. Litaize. Exploring Configurations of Functional Units
in an Out-of-Order Superscalar Processor, The 22nd International Symposium on
Computer Architecture, June 1995.

M. Lam and P.R. Wilson. Limits of Control Flow on Parallelism, Proceedings of
the 19th Annual Symposium on Computer Architecture”, pages 46-57, Gold Coast,
Australia, May 1992,

S. Melvin and Y. Patt. Exploiting Fine-Grained Parallelism Through a
Combination of Hardware and Software Techniques, In Proceedings of the 18th
International Symposium on Computer Architecture, pages 287-296, May 1991.

A. Nicolau and J.A. Fisher. Measuring the Parallelism Available for Very Long
Instruction Word Architectures, IEEE Transactions on Computers, Vol. C-33, pages
968-976, November 1984.

D. Noonburg and J. Shen. Theoretical Modelling of Superscalar Processor

Performance, In Proceedings of the 27th Annual International Symposium on
Microarchitecture, pages 52-62, November 1994.

31

[Riseman72]

[Serrano95]

[Smith90]

[Smother93]

[Steven93]

[Steven94]

[Steven95]

[Theobald92]

[Tjaden70]

[Wall91]

[Wang93]

E.M. Riseman and C.C. Foster, The Inhibition of Potential Parallelism by
Conditional Jumps, IEEE Transactions on Computers, Vol. C-22, pages 1404-1411,
December 1972,

M.Serrano. A Fresh Look To Inlining Decision, In Proceedings of ICIS 1995.

M.D. Smith, M. Johnson and M.A. Horowitz. Limits on Multiple Instruction
Issue, Proceedings of the 3rd International Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 290-302, April 1989,

M. Smotherman, S. Chawal, S. Cox and Brian Malloy. Instruction Scheduling for
the Motorola 88110, In Proceedings of the 26th Annual International Symposium
on Microarchitecture, pages 257-262, Austin, Texas, December 1993,

F.L. Steven, G.B. Steven and L. Wang. Arn Evaluation of the Architectural Features
of the iHarp Processor, Division of Computer Science, Technical Report No.170,
University of Hertfordshire, December 1993.

G. Steven. The Hatfield Superscalar Architecture, Division of Computer Science
Technical Report, University of Hertfordshire, 1994.

G. Steven, B. Christianson, R. Collins, R. Potter and F. Steven. A Superscalar
Architecture to Exploit Instruction-Level Parallelism, To be Published in IEEE
Microprogramming and Microprocessors, 1996.

K.B. Theobald, G.R. Gao and L.J. Hendren. On the Limits of Program Parallelism
and its Smoothability, Proceedings. of the 25th Annual International Symposium
On MicroArchitecture, pages 10-19, Portland, Orgeon, 1992,

G.S. Tjaden and M.J. Flynn. Detection and Parallel Execution of Independent
Instructions, IEEE Transaction on Computers, Vol. C-19, pages 889-895, October
1970.

D. Wall. Limits of Instruction-Level Parallelism, Proceedings of the 4th International
Symposium on Architectural Support for Programming Languages and Operating
Systems, pages 176-188, July 1991.

L. Wang. Instruction Scheduling For a Family of Multiple Instruction Issue
Architectures, PhD. Thesis, University of Hertfordshire, December 1993,

32

Appendix A - Full Results

Appendix A - Results for the HSA TDS Tool.

1. No Code Restrictions1?

Program 1-pipe Exec Times 16 Imstrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 391 39747 51455 40.693
fmatxcd.ins 30510 26882 25552 1441 17732 21.173 18.655
fpermcd.ins 10674 8546 8578 896 9.574 11913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 992 21724 247766 20.857
fsortcd.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowed.ins 19864 16124 16081 1312 12.257 15.140 12290
ftreecd.ins 32841 24291 23737 2179 10.894 15072 11.148
Totals : 198264 158958 159621 8308 229.083 280.529 221.269
Average : 24783 19870 19952.6 1038.5 28.635 35.066 27.659
Harmonic : 21474 17.338

2. Ceilings on Loop Entrance and Exit

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ins 20119 15911 15542 1952 7.962 10307 8.151
fmatxcd.ins 30510 26882 25552 5152 4960 5922 5218
fpermcd.ins 10674 8546 8578 913 9.395 11.691 9.360
fpuzled.ins 41426 31050 35351 3085 11.459 13.428 10.065
fqueencd.ins 24568 20690 21550 995 21.658 24.691 20.794
fsorted.ins 18262 15464 13230 3901 3.391 4.681 3.964
ftowcd.ins 19864 16124 16081 1347 11.938 14.747 11970
ftreecd.ins 32841 24291 23737 2718 8.733 12.083 8.937
Totals : 198264 158958 159621 20063 79.496 97.550 78.459
Average : 24783 19870 19952.6 2507.9 9.937 12.194 9.807
Harmonic : 9632 7.872

3. Ceiling On Loop Entrance (Code Motion Into Loop)

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15541 1754 8.860 11.470 9.071
fmatxcd.ins 30510 26882 25551 4351 5872 7012 6.178
fpermed.ins 10674 8546 8577 903 9498 11.821- 9.464
fpuzled.ins 41426 31050 35350 2855 12.382 14.510 10.876
fqueencd.ins 24568 20690 21549 992 21723 247766 20.857
fsortcd.ins 18262 15464 13229 2980 4439 6128 5.189
ftowcd.ins 19864 16124 16080 1329 12.099 14947 12.132
ftreecd.ins 32841 24291 23736 2713 8.749 12105 8.954
Totals : 198264 158958 159613 17877 83.622 102759 82.721
Average : 24783 19870 19951.6 2234.6 10453 12.845 10340
Harmonic : 10.864 8.844

4. Ceiling On Loop Exit (Code Motion Out Of Loop)

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15541 1803 8.620 11.159 8.825
fmatxcd.ins 30510 26882 25551 4378 5836 6969 6.140
fpermed.ins 10674 8546 8577 901 9.519 11.847 9.485
fpuzled.ins 41426 31050 35350 2909 12152 14241 10.674
. fqueencd.ins 24568 20690 21549 995 21.657 24.691 20.794
fsortcd.ins 18262 15464 13229 3450 3.834 5293 4482
| ftowed.ins 19864 16124 16080 1344 11.964 14780 11.997
ftreecd.ins 32841 24201 23736 2713 8.749 12,105 8.954
Totals : 198264 158958 159613 18493 82331 101.085 81.351
Average : 24783 19870 19951.6 2311.6 10291 12.636 10.169
Harmonic : 10424 8.497

15 Using Stanford cut down benchmarks and HSA latencies where not otherwise stated.

16 Rigures for benchmarks on HSP Simulator for single pipe model. First figure is the complete
execution time, second is discounting branch delay slots.

Appendix A - Full Results

5. Ceiling For Loop Code Only

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15541 1803 8.620 11.159 8.825
fmatxcd.ins 30510 26882 25551 4378 5836 6969 6.140
fpermced.ins 10674 8546 8577 901 9.519 11.847 9.485
fpuzlcd.ins 41426 31050 35350 2909 12.152 14.241 10.674
fqueencd.ins 24568 20690 21549 995 21.657 24.691 20.794
fsortcd.ins 18262 15464 13229 2533 5223 7210 6.105
ftowed.ins 19864 16124 16080 1344 11.964 14.780 11.997
ftreecd.ins 32841 24291 23736 2713 8.749 12,105 8.954
Totals : 198264 158958 159613 17576 83720 103.002 82.974
Average : 24783 19870 19951.6 2197.0 10465 12.875 10372
Harmonic : 11.155 9.068

6. Serialising The Loops17

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 15542 6595 2.357 3.051 2413
fmatxcd.ins 30510 26882 25552 21847 1.170 1.397 1.230
fpermced.ins 10674 8546 8578 1080 7943 9.883 7913 .
fpuzled.ins 41426 31050 35351 12029 2.939 3444 2581
fqueencd.ins 24568 20690 21550 4917 4.383 4997 4.208
fsortcd.ins 18262 15464 13230 7991 1.656 2.285 1.935
ftowed.ins 19864 16124 16081 1391 11.561 14.280 11.592
ftreecd.ins 32841 24291 23737 6475 3.666 5072 3.752
Total : 198264 158958 159621 62325 35.675 44409 35.624
Average : 24783 19870 19952.6 7790.6 4459 5551 4.453
Harmonic : 3418 2.809

7. Removal Of Loop Constructs (Perfect Loop Unrolling)

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ins 20119 15911 14069 390 36.074 51.587 40.797
fmatxcd.ins 30510 26882 21562 1441 14963 21.173 18.655
fpermed.ins 10674 8546 8190 896 9.141 -11913. 9.538
fpuzlcd.ins 41426 31050 26960 356 75730 116.365 87.219
fqueencd.ins 24568 20690 17025 991 17.180 24791 20.878
fsortcd.ins 18262 15464 12119 740 16377 24.678 20.897
ftowcd.ins 19864 16124 15970 1312 12,172 15140 12290
ftreecd.ins 32841 24291 22942 2179 10.529 15.072 11.148
Total : 198264 158958 138837 8305 192.166 280.719 221.422
Average : 24783 19870 17354 1038.1 24.021 35090 27.678
Hamronic : 21482 17344

8. Removal of Loop Constructs and Loop Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ing 20119 15911 14069 788 17.854 25532 20.192
fmatxcd.ins 30510 26882 21562 4212 5.119 7244 6382
fpermed.ins 10674 8546 8190 906 9.040 11.781 9.433
fpuzled.ins 41426 31050 26960 981 27482 42228 31.651
fqueencd.ins 24568 20690 17025 993 17.145 24741 20.836
fsortcd.ins 18262 15464 12119 3767 3217 4848 4105
ftowcd.ins 19864 16124 15970 1329 12.017 14947 12.132
ftreecd.ins 32841 24291 22942 2717 8.444 12.087 _8.940
Totals : 198264 158958 138837 15693 100.318 143.408 113.671
Average : 24783 19870 17354.6 1961.6 12.540 17926 14.209
Harmonic : 11729 9.642

17 Tnvolves having a run time ceiling for every occurrence of a loop header, therefore preventing loops
from overlapping their iterations.

9. Removal of Loop Constructs and Procedure Ceilings

Appendix A - Full Results

Program 1-pipe Exec Times Instrs Max Pit P Speedups
fbublcd.ins 20119 15911 14069 2356 5972 8.539 6.753
fmatxcd.ins 30510 26882 21562 10550 2.044 2892 2548
fpermcd.ins 10674 8546 8190 1752 4.675 6.092 4.878
fpuzlcd.ins 41426 31050 26960 1818 14.829 22.787 17.079
fqueencd.ins 24568 20690 17025 1156 14728 21.253 17.898
fsortcd.ins 18262 15464 12119 5430 2232 3.363 2.848
ftowed.ins 19864 16124 15970 4075 3919 4.875 3957
ftreecd.ins 32841 24291 22942 8349 2.748 3934 2909
Totals : 198264 158958 138837 35486 51.147 73735 58.870
Average : 24783 19870 17354.6 4435.8 6393 9217 7359
Harmonic : : 5425 4426
10. Removal of Loop Constructs and Unit Latencies

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 14069 257 54.743 78284 61.911
fmatxcd.ins 30510 26882 21562 1010 21.349 30208 26.616
fpermcd.ins 10674 8546 8190 896 9.141 11913 9.538
fpuzlcd.ins 41426 31050 26960 356 75730 116.365 87.219
fqueencd.ins 24568 20690 17025 991 17.180 24791 20.878
fsortcd.ins 18262 15464 12119 507 23.903 36.020 30.501
ftowcd.ins 19864 16124 15970 1312 12,172 15.140 12.290
ftreecd.ins 32841 24291 22942 2179 10.529 15.072 11.148
Totals : 198264 158958 138837 7508 224747 327.793 260.101
Average : 24783 19870 17354.6 938.5 28.093 40974 32513
Harmonic : 23.605 18967
11. Removal of Loop Constructs and Serial Loops

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 14069 6547 2,149 3.073 2.430
fmatxcd.ins 30510 26882 21562 21847 0.987 1.397 1.230
fpermcd.ins 10674 8546 8190 1080 7.583 .9.883 7913
fpuzled.ins 41426 31050 26960 12029 2.241 3444 2,581
fqueencd.ins 24568 20690 17025 3819 4.458 6.433 5418
fsorted.ins 18262 15464 12119 7886 1.537 2316 1.961
ftowcd.ins 9864 16124 15970 1374 11.623 14457 11.735
ftreecd.ins 32841 24291 22942 6375 3599 5152 3810
Total : 198264 158958 138837 60957 34.177 46260 37.078
Average : 24783 19870 17355 7619.6 4272 5.783 4.635
Harmonic : 3505 2877
12. Code Ceiling On Procedure Call and Return

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15541 2404 6.465 8369 6.619
fmatxcd.ins 30510 26882 25551 11549 2212 2642 2328
fpermcd.ins 10674 8546 8577 1791 4.789 5960 4772
fpuzled.ins 41426 31050 35350 3118 11.337 13.286 9.958
fqueencd.ins 24568 20690 21549 2072 10400 11.857 9.986
fsortcd.ins 18262 15464 13229 5690 2325 3209 2718
ftowcd.ins 19864 16124 16080 4099 3923 4846 3934
ftreecd.ins 32841 24291 23736 8545 2.778 3.843 2.843
Totals : 198264 158958 159613 39268 44229 54012 43.158
Average : 24783 19870 19951.6 4908.5 5529 6.751 5.395
Harmonic : 4989 4072

iii

13. Selective Procedure Inlining

Appendix A - Full Results

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins18 20119 15911 15338 391 39.228 51455 40.693
fmatxcd.ins!9 30510 26882 24748 1441 17174 21.173 18.655
fpermed.ins?0 10674 8546 7622 622 12254 17161 13.740
fpuzlcd.ins21 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins?2 24568 20690 21550 992 21724 24766 20.857
fsorted.ins23 18262 15464 12826 741 17309 24.645 20.869
ftowcd.ins24 19864 16124 16069 1306 12304 15210 12.346
ftreecd.ins2 32841 24291 22633 1777 12737 18481 13.670
Totals : 198264 158958 156137 17626 232.031 289.256 228.049
Average : 24783 19870 19517.1 953.2 29.004 36.157 28.506
Harmonic : 23928 19.397
14. Selective Inlining and Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15338 543 28.247 37.052 29.302
fmatxcd.ins 30510 26882 24748 4013 6.167 7.603 6.699
fpermcd.ins 10674 8546 7622 1485 5.133 7.188 5.755
fpuzlcd.ins 41426 31050 35350 3118 11337 13.286 9.958
fqueencd.ins 24568 20690 21549 2072 10400 11.857 9.986
fsortcd.ins 18262 15464 12826 1929 6.649 9.467 8.017
ftowcd.ins 19864 16124 16069 4093 3.926 4.853 3.939
ftreecd.ins 32841 24291 22633 4685 4.831 7.010 5.185
Totals : 198264 158958 156135 21938 76.690 98.316 78.841
Average : 24783 19870 19516.9 27422 9.586 12,290 9.855
Harmonic : 8.776 7.085
15. Perfect Procedure Inlining

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15325 391 39,194 51455 40.693
fmatxcd.ins 30510 26882 24331 1441 16.885 21.173 18.655
fpermcd.ins 10674 8546 6789 622 10915 17.161 13.740
fpuzled.ins 41426 31050 34642 131 264.443 316.229 237.023
fqueencd.ins 24568 20690 21550 992 21.724 24766 20.857
fsortcd.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowcd.ins 19864 16124 13460 385 34961 51595 41.881
ftreecd.ins 32841 24291 19388 741 26.165 44.320 32.781
Totals : 198264 158958 148715 5444 432,141 551.344 426.499
Average : 24783 19870 18589.4 680.5 54,018 68918 53.312
Harmonic : 31.873 26.193

18 _Rand, _Initrand, _printf

19 Rand, _Innerproduct

20 _Swap x2, _Initialise, _printf

21 Control flow too complicated to in-line
22 Control flow too complicated to in-line
23 _Initrand, _Rand, _printf

24 Makenull x3, _Error x3, _printf x2

25 _Initrand, _Rand, _printf, _malloc x2

iv

16. Recursive Procedures and Procedure Ceilings

Appendix A - Full Results

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 0 2404 6.465 8.369 6.619
fmatxcd.ins 30510 26882 0 11549 2212 2642 2.328
fpermcd.ins 10674 8546 205 1791 4790 5960 4.772
fpuzled.ins 41426 31050 19 2987 11.835 13.869 10.395
fqueencd.ins 24568 20690 112 1087 19.825 22,602 19.034
fsortcd.ins 18262 15464 88 5267 2512 3.467 2.936
ftowcd.ins 19864 16124 126 3923 4.099 5.063 4,110
ftreecd.ins 32841 24291 684 7782 3.050 4.220 3.121
Totals : 198264 158958 1234 36790 54788 66.192 53.315
Average : 24783 19870 154.3 4599 6.849 8274 6.664
Harmonic : 5315 4340

(Change from (12) 3 Unchanged. Avg of changes is +2.031, H.M. is +0.307. Max is +9.048 fqueencd)

17. Motion Across Procedures

Program 1-pipe Exec Times Instrs Max Pit p Speedups
fbublcd.ins 20119 15911 15542 2255 6.892 8922 7.056
fmatxcd.ins 30510 26882 25552 11217 2.278 2720 2397
fpermcd.ins 10674 8546 8578 1425 6.020 7.491 5.997
fpuzled.ins 41426 31050 35351 2315 15270 17.895 13.413
fqueencd.ins 24568 20690 21550 1321 16313 18598 15.662
fsorted.ins 18262 15464 13230 5599 2.363 3262 2762
ftowed.ins 19864 16124 16081 3289 4.889 6.040 4902
ftreecd.ins 32841 24291 23737 7890 3008 4162 3.079
Totals : 198264 158958 159621 35311 57.033 69.090 55.268
Average : 24783 19870 19952.6 4413.9 7.129 8.636 6.908
Harmonic : 5.574 4559
18. Code Motion Across Loops (with Procedure Ceilings)

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 14216 2207 6.441 .9.116 = 7.209
fmatxed.ins 30510 26882 25551 11217 2.278 2720 2397
fpermcd.ins 10674 8546 8577 1425 6.019 7.491 5.997
fpuzled.ins 41426 31050 35350 2315 15270 17.895 13413
fqueencd.ins 24568 20690 21549 1321 16313 18598 15.662
fsortcd.ins 18262 15464 13229 5599 2363 3262 2762
ftowed.ins 19864 16124 16080 3289 4.889 6.040 4902
ftreecd.ins 32841 24291 23736 7890 3.008 4162 3.205
Totals : 198264 158958 158288 35263 56.581 69.284 55.547
Average : 24783 19870 19786.0 44079 7.073 8.661 6.943
Harmonic : 5.583 4.600
19. Superscalar Memory Disambiguation26

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbubled.ins 20119 15911 15541 1309 11.872 15370 12.155
fmatxcd.ins 30510 26882 25551 4611 5541 6617 5.830
fpermcd.ins 10674 8546 8577 896 9.573 11913 9.538
fpuzled.ins 41426 31050 35350 356 99.298 116.365 87.219
fqueencd.ins 24568 20690 21549 992 21723 24.766 20.857
fsorted.ins 18262 15464 13229 2312 5722 7.899 6.689
ftowcd.ins 19864 16124 16080 1312 12256 15.140 12.290
ftreecd.ins 32841 24291 23736 2341 10.139 14.029 10376
Totals : 198264 158958 159613 14129 176.124 212.099 164.954
Average : 24783 19870 19951.6 1766.1 22016 26512 20.619
Harmonic : 13.050 10.734

26 Stores In Enforced Order, Loads still have perfect disambiguation and can float as high as possible.

20. No Memory Disambiguation

Appendix A - Full Results

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 3541 4.389 5682 4493
fmatxcd.ins 30510 26882 25552 14119 1.810 2.161 1.904
fpermed.ins 10674 8546 8578 2839 3.021 3760 3.010
fpuzled.ins 41426 31050 35351 2477 14272 16.724 12.535
fqueencd.ins 24568 20690 21550 3309 6.513 7425 6.253
fsortcd.ins 18262 15464 13230 5242 2.524 3484 2950
ftowed.ins 19864 16124 16081 4477 3592 4437 3.602
ftreecd.ins 32841 24291 23737 7668 3.096 4.283 3.168
Totals : 198264 158958 159621 43672 39217 47956 37.915
Average : 24783 19870 19952.6 5459.0 4902 5995 4739
Harmonic : 4.336 3.552
21. Restrictive Memory Model

Program 1-pipe Exec Times Instrs Max Pit p Speedups
fbubled.ins 20119 15911 15542 2455 6.331 8.195 6.481
fmatxcd.ins 30510 26882 25552 10412 2454 2930 2582
fpermcd.ins 10674 8546 8578 1776 4.830 6.010 4812
fpuzled.ins 41426 31050 35351 641 55150 64.627 48.440
fqueencd.ins 24568 20690 21550 1451 14.852 16932 14.259
fsortcd.ins 18262 15464 13230 5362 2.467 3406 2.884
ftowcd.ins 19864 16124 16081 3682 4367 5395 4379
ftreecd.ins 32841 24291 23737 8221 2.887 3.995 2.955
Total : 198264 158958 159621 4949 93338 111.490 86.792
Average : 24783 19870 19953 619 11.667 13.936 10.849
Harmonic : 5581 4.562
22. Perfect Memory and Restrict Memory

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 2305 6.743 8.728 6.903
fmatxcd.ins 30510 26882 25552 8966 2.850 3.403 2.998
fpermcd.ins 10674 8546 8578 896 9.574 . 11913 9.538
fpuzlcd.ins 41426 31050 35351 479 73.802 86484 64.823
fqueencd.ins 24568 20690 21550 705 30.567 34.848 29.348
fsortcd.ins 18262 15464 13230 5121 2.583 3.566 3.020
ftowed.ins 19864 16124 16081 2409 6.675 8.246 6.693
ftreecd.ins 32841 24291 23737 6874 3453 4778 3.534
Totals : 198264 158958 159621 27755 136.247 161.966 126.857
Average : 24783 19870 19952.6 3469.4 17031 20246 15.857
Harmonic : 6.995 5.730
23. Superscalar Disambiguation and Restrictive Memory

Program 1-pipe Exec Times Instrs Max Pit p Speedups
fbublcd.ins 20119 15911 15542 3671 4234 5481 4334
fmatxcd.ins 30510 26882 25552 10479 2.438 2912 2.565
fpermcd.ins 10674 8546 8578 2215 3.873 4.819 3.858
fpuzled.ins 41426 31050 35351 2593 13.633 15976 11.975
fqueencd.ins 24568 20690 21550 3209 6.715 7.656 6.447
fsorted.ins 18262 15464 13230 5646 2.343 3.235 2.739
ftowcd.ins 19864 16124 16081 4553 3532 4.363 3.541
ftreecd.ins 32841 24291 23737 8634 2.749 3.804 2.813
Totals : 198264 158958 159621 41000 39.517 48246 38272
Average : 24783 19870 19952.6 5125.0 4940 6.031 4784
Harmonic : 4.630 3771

vi

Appendix A - Full Results

24. Limited Memory Disambiguation and Restrictive Memory

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 2455 6.331 8.195 6.481
fmatxcd.ins 30510 26882 25552 10412 2454 2930 2582
fpermed.ins 10674 8546 8578 1776 4830 6.010 4.812
fpuzled.ins 41426 31050 35351 641 55.150 64.627 48.440
fqueencd.ins 24568 20690 21550 1451 14.852 16932 14259
fsortcd.ins 18262 15464 13230 5362 2467 3.406 2.884
ftowced.ins 19864 16124 16081 3682 4.367 5395 4379
ftreecd.ins 32841 24291 23737 8221 2887 3995 2955
Totals : 198264 158958 159621 34000 93338 111.490 86.792
Average : 24783 19870 19952.6 4250.0 11.667 13936 10.849
Harmonic : 5.5807 4.562

25. Perfect Memory Model27

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 291 53409 69.137 54.677
fmatxcd.ins 30510 26882 25552 1040 24.569 29.337 25848
fpermcd.ins 10674 8546 8578 895 9.584 11926 9.549
fpuzled.ins 41426 31050 35351 355 99.580 116.693 87.465
fqueencd.ins 24568 20690 21550 233 92.489 105.442 88.798
fsortcd.ins 18262 15464 13230 541 24.455 337756 28.584
ftowed.ins 19864 16124 16081 1311 12.266 15.152 12,299
ftreecd.ins 32841 24291 23737 2178 10.899 15.079 11.153
Totals : 198264 158958 159621 6844 327251 396.522 318.373
Average : 24783 19870 19952.6 855.5 40906 49.565 39.797
Harmonic : 25.609 20.495

26. Minimum Division28

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 360 43.172 55.886 44.197
fmatxcd.ins 30510 26882 25552 1410 18.122 21.638 19.065
fpermcd.ins 10674 8546 8578 896 9.574 11913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 992 21.724 24766 20.857
fsortcd.ins 18262 15464 13230 710 18.634 25721 21.780
ftowcd.ins 19864 16124 16081 1312 12.257 15140 12290
ftreecd.ins 32841 24291 23737 2179 10.894 15.072 11.148
Totals : 198264 158958 159621 8215 233.678 286.501 226.094
Average : 24783 19870 19952.6 1026.9 29.210 35.813 28.262
Harmonic : 21722 17.532

27. Wall Latencies29

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 15542 258 60.240 77981 61.670
fmatxcd.ins 30510 26882 25552 1010) 25299 30208 26.616
fpermcd.ins 10674 8546 8578 896 9.574 11913 9,538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 992 21.724 24766 20.857
fsortcd.ins 18262 15464 13230 508 26.043 35949 30.440
ftowced.ins 19864 16124 16081 1312 12.257 15.140 12.290
| ftreecd.ins 32841 24291 23737 2179 10.8904 15.072 11.148
i Totals : 198264 158958 159621 7511 265332 327.394 259.778
) Average : 24783 19870 19952.6 938.9 33167 40924 32472
Harmonic : 23.595 18.959

< 27 Perfect Memory - MEM_LD_LATENCY =0, MEM_ST_LATENCY =0.
‘ 28 Minimum Division - DIV_LATENCY =1, everything else as HSA.
: 29 Wall Latencies - All latencies are unit latency

vil

28. Cydra 5 Style Long Latencies30

Appendix A - Full Results

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 15542 1652 9.408 12.179 9.631
fmatxcd.ins 30510 26882 25552 6455 3958 4727 4165
fpermed.ins 10674 8546 8578 5382 1.594 1.983 1.588
fpuzled.ins 41426 31050 35351 1793 19.716 23.104 17.317
fqueencd.ins 24568 20690 21550 1199 17.973 20490 17.256
fsorted.ins 18262 15464 13230 3252 4.068 5.616 4755
ftowcd.ins 19864 16124 16081 6573 2.447 3.022 2453
ftreecd.ins 32841 24291 23737 10930 2172 3.005 2.222
Totals : 198264 158958 159621 37236 61.336 74.126 59.387
Average : 24783 19870 19952.6 4654.5 7.667 9.266 7.423
Harmonic : 4620 3.708

29. Speculative Writes Using Immediately Preceding Branches

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbubled.ins 20119 15911 15542 391 39.749 51455 40.693
fmatxcd.ins 30510 26882 25552 1441 17732 21.173 18.655
fpermed.ins 10674 8546 8578 896 9.574 11913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 1019 21.148 24110 20304
fsorted.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowcd.ins 19864 16124 16081 1312 12.257 15.140 12290
ftreecd.ins 32841 24291 23737 2187 10.854 15.016 _ 11.107
Totals : 198264 158958 159621 8343 228.469 279.817 220.675
Average : 24783 19870 19952.6 1042.9 28.559 34977 27.584
Harmonic : 21396 17.277

30. Speculative Writes Using Immediately Preceding Branches and Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 2577 6.031 7.807 6.174
fmatxcd.ins 30510 26882 25552 11549 2212 2642 2328
fpermcd.ins 10674 8546 8578 1791 4790 5960 . 4.772
fpuzlcd.ins 41426 31050 35351 3150 11.223 13.151 9.857
fqueencd.ins 24568 20690 21550 2313 9.317 10.622 8.945
fsortcd.ins 18262 15464 13230 5694 2323 3207 2716
ftowed.ins 19864 16124 16081 4131 3893 4.809 3.903
ftreecd.ins 32841 24291 23737 8549 2777 3.842 2.841
Totals : 198264 158958 159621 39754 42,566 52.040 41.536
Average : 24783 19870 19952.6 4969.2 5.321 6.505 5.192
Harmonic : 4924 4019

31. Speculative Writes Using Immediately Preceding Branches and Restrictive Memory

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 15542 2615 5.943 7.694 6.085
fmatxcd.ins 30510 26882 25552 10412 2454 2930 2582
fpermcd.ins 10674 8546 8578 1776 4.830 6.010 4.812
fpuzled.ins 41426 31050 35351 642 55.064 64.526 48.364
fqueencd.ins 24568 20690 21550 1517 14206 16.195 13.639
fsortcd.ins 18262 15464 13230 5366 2.466 3.403 2.882
ftowced.ins 19864 16124 16081 3682 4.367 5395 4379
ftreecd.ins 32841 24291 23737 8284 2.865 3964 2932
Totals : 198264 158958 159621 34294 92.195 110.117 85.675
Average : 24783 19870 19952.6 4286.8 11.524 13.765 10.709
Harmonic : 5531 4520

30 Taken From Worst case cydra 5 latencies, main effect is the long load instruction latency.
Branch =3 Store =1 Load =20 Arith=5 Mult=35 Div =22 Shift=1 Boolean=2

viii

Appendix A - Full Results

32. Speculative Writes Using Immediately Preceding Branches, Restrictive Memory and
Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 2628 5914 7.656 6.054
fmatxcd.ins 30510 26882 25552 11751 2174 2.596 2.288
fpermcd.ins 10674 8546 8578 1879 4.565 5.681 4.548
fpuzled.ins 41426 31050 35351 3173 11.141 13.056 9.786
fqueencd.ins 24568 20690 21550 2315 9.309 10.613 8.937
fsorted.ins 18262 15464 13230 5851 2.261 3.121 2.643
ftowcd.ins 19864 - 16124 16081 4522 3.556 4393 3.566
ftreecd.ins 32841 24291 23737 9680 2452 3.393 2.509
Totals : 198264 158958 159621 41799 41372 50.509 40.331
Average : 24783 19870 19952.6 52249 5172 6314 5.041
Harmonic : 4691 3.821

33. Speculative Writes Using Immediately Preceding Booleans

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbubled.ins 20119 15911 15542 391 39.749 51455 40.693
fmatxcd.ins 30510 26882 25552 1441 17732 21.173 18.655
fpermcd.ins 10674 8546 8578 896 : 9.574 11913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 1018 21.169 24.134 20.324
fsorted.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowed.ins 19864 16124 16081 1312 12257 15140 12290
ftreecd.ins 32841 24201 23737 2185 10.864 15.030 11.117
Totals : 198264 158958 159621 8340 228.500 279.855 220.705
Average : 24783 19870 19952.6 10425 28563 34982 27.588
Harmonic : 21402 17.281

34. Speculative Writes Using Immediately Preceding Booleans and Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ins 20119 15911 15542 2499 6.219 8.051 6.367
fmatxcd.ins 30510 26882 25552 11549 2212 -2.642 2328
fpermcd.ins 10674 8546 8578 1791 4790 5960 4772
fpuzled.ins 41426 31050 35351 3124 11.316 13.261 9.939
fqueencd.ins 24568 20690 21550 2185 9.863 11.244 9.469
fsortcd.ins 18262 15464 13230 5692 2324 3,208 2717
ftowced.ins 19864 16124 16081 4099 3.923 4.846 3934
ftreecd.ins 32841 24291 23737 8547 2777 3842 2.842
Totals : 198264 158958 159621 39486 43424 53.054 42368
Average ; 24783 19870 19952.6 4935.8 5.428 6.632 5.296
Harmonic : 4959 4.048

35. Speculative Writes Using Immediately Preceding Booleans and Restrictive Memory

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 2538 6.124 7.927 6.269
fmatxcd.ins 30510 26882 25552 10412 2.454 2.930 2.582
: fpermcd.ins 10674 8546 8578 1776 4.830 6.010 4812
i fpuzled.ins 41426 31050 35351 641 55.150 64.627 48.440
| fqueencd.ins 24568 20690 21550 1480 14561 16.600 13.980
}]‘ fsortcd.ins 18262 15464 13230 5364 2.466 3.405 2.883
‘ ftowcd.ins 19864 16124 16081 3682 4367 5.395 4379
ftreecd.ins 32841 24291 23737 8223 . 2.887 3.994 2.954
Totals : 198264 158958 159621 34116 92.839 110.888 86.299
Average : 24783 19870 19952.6 4264.5 11.605 13.861 10.787
Harmonic : 5560 4.544

X

Appendix A - Full Results

36. Speculative Writes Using Immediately Preceding Booleans, Restrictive Memory and
Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ins 20119 15911 15542 2550 6.095 7.890 6.240
fmatxcd.ins 30510 26882 25552 11751 2174 2596 2.288
fpermcd.ins 10674 8546 8578 1879 4.565 5.681 4.548
fpuzled.ins 41426 31050 35351 3147 11233 13.164 9.867
fqueencd.ins 24568 20690 21550 2187 9.854 11.234 9.460
fsortcd.ins 18262 15464 13230 5849 2262 3122 2644
ftowcd.ins 19864 16124 16081 4490 3.582 4424 3591
ftreecd.ins 32841 24291 23737 9630 2.465 3.410 2,522
Totals : 198264 158958 159621 41483 42230 51.521 41.160
Average : 24783 19870 19952.6 51854 5.279 6440 5145
Harmonic : 4.727 3.851

37. Speculative Writes Using Immediately Preceding Branches and No Disambiguation

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbublcd.ins 20119 15911 15542 5399 2.879 3.726 2.947
fmatxcd.ins 30510 26882 25552 14119 1.810 2.161 1.904
fpermcd.ins 10674 8546 8578 2839 3.021 3.760 3.010
fpuzled.ins 41426 31050 35351 2979 11.867 13.906 10.423
fqueencd.ins 24568 20690 21550 3921 5.496 6.266 5277
fsorted.ins 18262 15464 13230 5290 2.501 3452 2923
ftowcd.ins 19864 16124 16081 4499 3.574 4415 3.584
ftreecd.ins 32841 24291 23737 9813 2.419 3.347 2.475
Totals : 198264 158958 159621 48859 33567 41.033 32.543
Average : 24783 19870 19952.6 61074 4196 5129 4.068
Harmonic : 3915 3191

38. Speculative Writes Using Immediately Preceding Branches and Limited Disambiguation

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 391 39.749 51455 40.693
fmatxcd.ins 30510 26882 25552 1441 17.732 . 21.173 18.655
fpermcd.ins 10674 8546 8578 896 9.574 11913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 1019 21.148 24.110 20304
fsortcd.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowed.ins 19864 16124 16081 1312 12.257 15140 12.290
ftreecd.ins 32841 24291 23737 2187 10.854 _15.016 11.107
Totals : 198264 158958 159621 8343 228.469 279.817 220.675
Average : 24783 19870 19952.6 10429 28.559 34977 27584
Harmonic : 21.396 17.277

39. Speculative Writes Using Immediately Preceding Branches and Superscalar Disambiguation

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 2538 6.124 7927 6.269
fmatxcd.ins 30510 26882 25552 5719 4.468 5335 4700
fpermed.ins 10674 8546] 8578 1518 5.651 7.032 5.630
fpuzled.ins 41426 31050 35351 2262 15.628 18314 13.727
fqueencd.ins 24568 20690 21550 3159 6.822 7.777 6.550
fsortcd.ins 18262 15464 13230 3043 4.348 6.001 5.082
ftowcd.ins 19864 16124 16081 2507 6.414 7923 6.432
ftreecd.ins 32841 24291 23737 4196 5.657 7.827 5.789
Totals : 198264 158958 159621 24942 55.112 68.136 54.179
Average : 24783 19870 19952.6 3117.8 6.889 8.517 6.772
Harmonic : 7550 6.152

Appendix A - Full Results

40. Speculative Writes Using Immediately Preceding Booleans and No Disambiguation

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 4776 3254 4213 3.331
fmatxcd.ins 30510 26882 25552 14119 1.810 2.161 1.904
fpermcd.ins 10674 8546 8578 2839 3.021 3760 3.010
fpuzled.ins 41426 31050 35351 2811 12.576 14.737 11.046
fqueencd.ins 24568 20690 21550 3703 5820 6.635 5.587
fsortcd.ins 18262 15464 13230 5264 2.513 3.469 2.938
ftowcd.ins 19864 16124 16081 4492 3580 4422 3589
ftreecd.ins 32841 24291 23737 8927 2.659 3.679 2721
Totals : 198264 158958 159621 46931 35233 43.076 34.126
Average : 24783 19870 19952.6 5866.4 4404 5385 4.266
Harmonic : 4059 3314

(Change From (37) - 2 Unchanged - Avg of changes is +0.264 with max of +0.623 fpuzlcd.ins)

41. Speculative Writes Using Immediately Preceding Booleans and Limited Disambiguation

Program 1-pipe Exec Times Imstrs Max Pit Lp Speedups
fbublcd.ins 20119 15911 15542 391 39.749 51455 40.693
fmatxcd.ins 30510 26882 25552 1441 17732 21.173 18.655
fpermcd.ins 10674 8546 8578 896 9.574 11.913 9.538
fpuzled.ins 41426 31050 35351 356 99.301 116.365 87.219
fqueencd.ins 24568 20690 21550 1018 21.169 24.134 20324
fsortcd.ins 18262 15464 13230 741 17.854 24.645 20.869
ftowcd.ins 19864 16124 16081 1312 12257 15140 12290
ftreecd.ins 32841 24291 23737 2185 10.864 15.030 11.117
Totals : 198264 158958 159621 8340 228.500 279.855 220.705
Average : 24783 19870 19952.6 1042.5 28.563 34982 27.588
Harmonic : 21402 17.281

(Change From (38) - 6 results unchanged. Avg of changes is +0.015)

42. Speculative Writes Using Immediately Preceding Booleans and Superscalar Disambiguation

Program 1-pipe Exec Times Instrs Max Pit ILp Speedups
fbublcd.ins 20119 15911 15542 2525 6.155 7968 6.301
fmatxcd.ins 30510 26882 25552 5719 4468 5335 4700
fpermed.ins 10674 8546 8578 1518 5.651 7.032 5.630
fpuzlcd.ins 41426 31050 35351 2262 15.628 18314 13.727
fqueencd.ins 24568 20690 21550 3159 6.822 7777 6.550
fsorted.ins 18262 15464 13230 3041 4351 6.005 5.085
ftowcd.ins 19864 16124 16081 2507 6.414 7923 6432
ftreecd.ins 32841 24291 23737 4194 5660 7.830 5.792
Totals : 198264 158958 159621 24925 55.149 68.184 54.217
Average : 24783 19870 19952.6 3115.6 6.894 8523 6777
Harmonic : 7.556 6.157

(Change From (39) - 5 benchmarks reported no change. Avg. of changes for remainder is +0.013)

43. Combining Instructions31

Program 1-pipe Exec Times Instrs Max Pit ILP Speedups
fbublcd.ins 20119 15911 15542 202 76.941 99.599 78.767
fmatxcd.ins 30510 26882 25552 802 31.860 38.042 33.519
fpermcd.ins 10674 8546 8578 622 13.791 17.161 13,740
fpuzled.ins 41426 31050 35351 180 196.394 230.144 172.500
fqueencd.ins 24568 20690 21550 992 21.724 247766 20.857
fsortcd.ins 18262 15464 13230 402 32910 45428 38.468
ftowcd.ins 19864 16124 16081 658 24439 30.188 24.505
ftreecd.ins 32841 24291 23737 1091 21.757 30.102 22.265
Totals : 198264 158958 159621 4949 419.816 515.430 404.621
Average : 24783 19870 19952.6 618.6 52477 64429 50578
Harmonic : 35.137 28.493

31 Instructions 'combined' dynamically at run time,

xi

Appendix A - Full Results

44. Combining With Procedure Ceilings

Program 1-pipe Exec Times Instrs Max Pit e Speedups
fbubled.ins 20119 15911 15542 1953 7.958 10302 8.147
fmatxcd.ins 30510 26882 25552 9323 2.741 3.273 2.883
fpermcd.ins 10674 8546 8578 1224 7.008 8.721 6.982
fpuzled.ins 41426 31050 35351 2013 17.561 20.579 15.425
fqueencd.ins 24568 20690 21550 1400 15393 17.549 14779
fsortcd.ins 18262 15464 13230 4445 2976 4.108 3.479
ftowced.ins 19864 16124 16081 3029 5.309 6.558 5.323
ftreecd.ins 32841 24291 23737 7424 3.197 4.424 3.272
Totals : 198264 158958 159621 30811 62.143 75514 60.290
Average : 24783 19870 19952.6 38514 7.768 9.439 7.536
Harmonic : 6.427 5.242

Change from 12. H.M. of changes is +1.04, Average is +2.142. Range is +5.467(fpuzlcd) to +0.555 (fmatxcd).

45. Instruction Counts For Benchmarks

St %o Ld % Alu % Mult %

| fbubled 1377 (8.8) 2801 (I18.0) 4334 (279 100 (0.6)

] fmatxed 1516 (5.9) 3215 (126) 10760 (42.1) 1200 (47)
tpermed 1723 (20.1) 1716 (200) 3192 (37.2) O (0.0)
fpuzled 2304 (6.5) 2876 (8.1) 12180 (345) O (0.0)
fqueencd 3157 (147 3796 (17.6) 5631 (261) O (0.0)
fsorted 939 (7.1) 2044 (155) 4093 (309) 200 (1.5)
ftowed 2892 (180) 3235 (20.1) 5808 (361) O (0.0)
ftreecd 2193 (92) 5103 (21.4) 7985 (33.6) 200 (0.8
Total : 16101 90.3 24786 1333 53983 2684 1700 7.6
Average : 2013 113 3098 167 6748 336 213 0.95
Harmonic 9.3 152 32.8 1.032

Div % Bool % Bra % Shift

fbubled 50 (03) 2698 (174) 2808 (181) 1373 (8.8)
fmatxcd 200 (0.8 1330 (52) 1940 (7.6) 5390 (21.1)
fpermed 0 (0.0) 420 @49 1314 (153) 212 2.5)
fpuzled 0 (0.0) 6084 (17.2) 6559 (186) 5347 . (151)
fqueencd 0 (0.0) 3512 (163) 3849 (17.9) 1604 (7.4)
fsortcd 100 0.8 1701 (129 2392 (181 1760 (13.3)
ftowed 0 0.0 7% @4.9) 2429 (151 922 (5.7)
fireecd 100 (04) 2437 (103) 5123 (21.6) 595 (2.5)
Total : 450 (23) 18976 (89.1) 26414 (132.3) 17203 (76.4)
Average : 56 (03) 2372 (L1) 3302 (165 2150 (9.6
Harmonic : 0.5 8.4 15.1 5.7

46. Branch Counts For Benchmarks

Total Bsr+Movs % Cond % UnCo % Taken %

fbublcd.ins 2808 104 3.7 2698 %61 2 0.1) 2095 (74.6)
fmatxcd.ins 1940 610 (314 1330 (68.6) O 0.0) 1807 93.1
fpermcd.ins 1314 894 (68.0) 420 (3200 0 0.0) 1054 (80.2)
fpuzlcd.ins 6559 354 5.4 6084 92.8) 121 (1.8) 5180 (79.0)
fqueencd.ins 3849 232 (6.0 3512 91.2) 105 2.7 1930 (50.1)
fsortcd.ins 2392 386 (16.1) 1701 (71.1) 305 (12.8) 1623 (67.9)
ftowcd.ins 2429 1310 (539 794 327y 325 (13.4) 1856 (76.4)
ftreecd.ins 5123 2174 (42.4) 2437 (47.6) 512 (10.0) 4136 (80.7)
Total : 26414 6064 226.9 18976 532.1 1370 40.8 19681 602

Average : 3301.8 758 284 2372 66.5 1713 51 24601 753

Harmonic : 3430 104 55.7 0.5 731

32 Based on the four sets of figures that generate a value

Xii

47. Loop Measurement

Appendix A - Full Results

Program Prog. Prog. Exec Loop % Loop Exec %0
Lines Count Lines Count

fbublcd.ins 106 15542 47 443 15048 96.8

fmatxcd.ins 133 25552 63 474 22290 87.2

fpermcd.ins 97 8578 27 27.8 1721 20.1

fpuzled.ins 589 35351 363 61.6 31514 89.1

fqueencd.ins 164 21550 79 482 17327 80.4

fsortcd.ins 145 13230 52 359 9576 724

ftowced.ins 222 16081 14 6.3 186 1.2

ftreecd.ins 219 23737 34 15.5 3083 13.0

Total : 1675 156137 679 286.8 100745 460.2

Average : 2094 19518 84.9 359 12593.1 575

Program Loops Nesting Comments

(num*depth)

fbubled.ins 3 1%2 fbublcd dominated by inner loop (22 lines) accounts for
89% of execution.

fmatxcd.ins 5 2%2 fmatxcd dominated by a single loop which accounts for
70% of the overall execution time. Loop contains a BSR.,

fpermed.ins 3 0 fpermcd spends only 20% of its time its three simple
loops. 2 of the loops contain 2 BSR calls.

fpuzlcd.ins 50 14%*3, 1%2 Loop in _Fit (16 lines) accounts for 34%. Procedure
_Puzzle contains the majority of the loops, 45. Their
inner loops account for 37% and all the loops in this
procedure, account for 38% of the total program
execution.

fqueencd.ins3 ~ 1%2 Dominated by a single loop in _Try (52 lines) which is
responsible for 77% of the computation time. Has a BSR
which recursively calls _Try.

fsorted.ins 4 0 Largest loop in _Quicksort has most complex control of
any of the loops (26 lines), program spends 54.6% within
this loop.

ftowed.ins 2 0 Has 2 very small loops (4 & 8 hnes) which account for
only 1.2% of execution.

ftreecd.ins 2 0 Program has 2 loops, each contain a BSR Wthh are
responsible for 13% of the computation time

Total 72 14%3,7*%2

Xiii

Current Combinable Instructions

B.1 Computational (ALU) Instructions

ADD Ri, (Rj + Rk),Rl

ADD Ri, (Rj + RK)#Imm
ADD Ri, Rj (ASL #2), Rk
ADD Ri, Rj (ASL #2), #Imm

ADDV Ri, (Rj + Rk),Rl
ADDV Ri, (Rj + Rk)#Imm
ADDV Ri, Rj (ASL #2), Rk
ADDV Ri, Rj (ASL #2), #Imm

SUB Ri, (Rj + Rk), Rl
SUB Ri, (Rj - Rk), Rl
SUB Ri, (Rj + Rk), #Imm
SUB Ri, (Rj - Rk), #Imm

SUBV Ri, (Rj + Rk), RI
SUBV Ri, (Rj - Rk), Rl
SUBV Ri, (Rj + RK), #Imm
SUBV Ri, (Rj - Rk), #Imm

B.2 Shift Instructions

Where O<=Imm <32;

AND Ri, Rj (ASL #Imm), Rk

AND Ri, Rj (ASL #Imm), #Imm?2

AND Ri, Rj(ASR #Imm), Rk

AND Ri, Rj(ASR #Imm), #Imm2

OR Rj, Rj (ASL #Imm), Rk
OR Ri, Rj (ASL #Imm), #lmm?2
OR Ri, Rj(ASR #Imm), Rk
OR Ri, Rj(ASR #Imm), #Imm?2

B.3 Multiply Instructions

ADD Ri, (Rj * Rk), Rj

ADD Ri, (Rj * #Imm), Rj
ADD Ri, (Rj * Rk), #Imm
ADD Ri, (Rj * #Imm), #Imm2

SUB Ri, (Rj * Rk), Rj
SUB Ri, (Rj * #Imm), Rj

Appendix B - Combine Instructions

Ri:=Rj+ Rk + Rl
Ri:= Rj + Rk + #lmm
Ri:=(Rj *4) + Rk
Ri:=(Rj *4) + Rk

Ri:=Rj+ Rk + Rl
Ri:= Rj + Rk + #Imm
Ri:= (Rj *4) + Rk
Ri:=(Rj *4) + Rk

Ri:=Rj+Rk-RI

Ri:=Rj-Rk-RI

Ri :=Rj + Rk - #Imm
:=Rj - Rk - #lmm

Ri
Ri:=Rj+Rk-RI
Ri:=Rj-Rk-RI

Ri :=Rj + Rk - #lmm
Ri :=Rj - Rk - #Imm

= (Rj << #Imm) AND (Rk)
(Rj << #Imm) AND (#Imm?2)
:= (Rj >> #Imm) AND (Rk)
:= (Rj >> #Ilmm) AND (#Imm?2)

:= (Rj << #Imm) OR (Rk)
= (Rj << #Ilmm) OR (#Imm2)
:= (Rj >> #Imm) OR (Rk)
:= (Rj >> #Imm) OR (#Imm?2)

AEPE AERPZ

:=Rj * Rk + Rj

= Rj * #Imm +Rj

= Rj * Rk + #Imm

= Rj * #lmm + #Imm?2

:=Rj *Rk-Rj
= Rj * #Imm -Rj

AR PRPRAR

