
1 

 

General rational approximation of Gaussian wavelet series and 

continuous-time gm-C filter implementation 

 

Mu Li1, 2  |  Yichuang Sun2 

 
1School of Information and 

Electrical Engineering, 

Hunan University of Science 

and Technology, Xiangtan, 

China 

2School of Engineering and 

Technology, University of 

Hertfordshire, Hatfield, UK 

 

Correspondence 

Mu Li, School of 

Information and Electrical 

Engineering, Hunan 

University of Science and 

Technology, Xiangtan, 

China 

Email: 

mli@hnust.edu.cn 

 

 

 

Summary 

A general method of rational approximation for Gaussian wavelet 

series and Gaussian wavelet filter circuit design with simple gm-C 

integrators is presented in this work. Firstly, the multi-order 

derivatives of Gaussian function are analysed and proved as wavelet 

base functions. Then a high accuracy general approximation model of 

Gaussian wavelet series is constructed and the transfer function of 

first order derivative of Gaussian wavelet filter is obtained using 

quantum differential evolution (QDE) algorithm. Thirdly, as an 

example, a 5th order continuous-time analogue first order derivative 

of Gaussian wavelet filter circuit is designed based on multiple loop 

feedback structure with simple gm-C integrator as the basic blocks. 

Finally, simulation results demonstrate the proposed method is an 

excellent way for the wavelet transform implementation. The 

designed first order derivative of Gaussian wavelet filter circuit 

operates from a 0.53V supply voltage and a bias current 2.5nA. The 

power dissipation of the wavelet filter circuit at the basic scale is 

41.1nW. Moreover, the high accuracy QRS detection based on the 

designed wavelet filter has been validated in application analysis. 

KEYWORDS 
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1  |  INTRODUCTION 

Over the last few years, the wavelet transform (WT) has played a significant role in mathematic 

analysis tools for non-stationary and transient signals, which is widely used in various application 

fields such as image processing, speech processing and signal processing, especially medical signal 

processing. The main advantage of the WT over the other classical transform is that it provides 

combined time and frequency localization1, 2. In some wearable and implantable medical devices, 

such as pacemakers3-5, electroencephalograph6-8 and cochlear implants9, 10, the wavelet transform 

potentially has a large number of useful application. The common requirement for these devices is 

that they impose strict constraints on the power consumption, especially for the sensing circuit of 

implantable device, which is always active and for which the battery is hard to be replaced. 

Therefore, the power consumption of these medical devices is an important factor in design and 

manufacture. For a low power consumption perspective, many scholars and engineers used analog 
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circuit to implement the WT, and the better effect is obtained in practical applications.  

The implementation of analog WT is divided into two stages: wavelet base approximation and 

wavelet filter circuit design. Wavelet basis functions are usually not directly implemented because 

they are non-causal. Hence, the rational approximation of wavelet function is the first problem to 

be solved. Some approximation methods have been proposed in the literatures, including time 

domain and frequency domain approximation. Among them, the time domain approximation 

method mainly includes L2 approximation11 and optimal algorithm approximation12-14. The 

frequency domain approximation is Padé5, Maclaurin 6, 15, 16 and improved Maclaurin method17. In 

general, the time domain approximation method is more accurate than the frequency domain method 

because the fundamental expression of the wavelet is a time domain function. However, a common 

problem is that these studies are mostly focused on one type of wavelet base, while few studies are 

involved in a certain wavelet series. In fact, the general approximation method of wavelet function 

series is very significant and important to select the optimal wavelet base and implement analog WT. 

In addition, for the wavelet filter circuit design, some circuit design methods based on different 

structures such as cascade and multiple loop feedback prototype, and the basic building blocks such 

as log-domain5, 12, switched current (SI) 13, 14, switched capacitor (SC)18, current mirror19 and 

operational transconductance amplifier (OTA, i.e. gm)4, 15-17are proposed. Furthermore, for analog 

filter design, besides the basic blocks mentioned above, there are many other basic building blocks 

that can be selected such as current conveyor20, source-follower21, 22 and CMOS mixed-integrator23, 

24, etc. For log-domain circuit, the signal is nonlinearly compressed and expanded at the input and 

output terminal, respectively. In order to make the log-domain circuit characteristics linear, the 

dynamic range of the circuit is very limited. The drawback of SI and SC circuit is that working 

frequency is limited by Nyquist's theorem and sampling frequency. Moreover, there are aliasing 

effect and clock feedback problems in the SI and SC circuit. The main disadvantage of current 

mirror block is that it is difficult to match MOSFETS for use as mirrors. Compared with other 

candidate basic building blocks for high-order wavelet filter design, the gm-C has advantages in 

operating frequency, circuit structure and parameter adjustment. Therefore, the gm-C circuit design 

approach of wavelet filter is attracting attention. However, the structures and basic block of the 

wavelet filter based on gm-C circuit usually are relatively complex so that the wavelet filter circuit 

design is more difficult. 

In this work, a general relational approximation of Gaussian wavelet series and the inverse-

fellow-the-leader-feedback (IFLF) structure wavelet filter with simple gm-C integrator as the basic 

building block is presented. Firstly, Gaussian function and its multi-order derivative series are 

mathematical analyzed and the Gaussian series functions are proved to be wavelet bases. Then, a 

general time domain approximation model of the Gaussian wavelet base is structured according to 

the linear system theory. Subsequently, the optimal solution of the model is achieved by using QDE 

algorithm in order to obtain rational approximated transfer function of first order derivative of 

Gaussian wavelet filter. Thirdly, the 5th order Gaussian wavelet filter is designed with IFLF 

structure based on simple gm-C integrator as basic block. Finally, the simulation results demonstrate 

the proposed approach is feasible and it also provides a relatively simple strategy for the WT 

implementation.  

The paper is organized as follows. In section 2, Gaussian function and Gaussian wavelet series 

based on the multi-order derivatives of Gaussian function are analysis and proved as wavelet base. 

In Section 3, a general rational approximation model of Gaussian wavelet series in time domain is 



3 

 

described, which allows one to obtain a high accuracy approximated transfer function of wavelet 

system using QDE optimal algorithm. Section 4 illustrates a general design method of IFLF 

structure Gaussian wavelet filter with simple gm-C integrator as basic building blocks. Theoretical 

approximation, circuit simulation and application analysis of the 5th order Gaussian wavelet filter 

are given in Section 5. Finally, Section 6 presents the conclusions. 

2  |  GAUSSIAN FUNCTION AND GAUSSIAN WAVELET SERIES 

  Gaussian wavelet is widely used to extract features of signals and images because of its good 

time-frequency local characteristics. Those Gaussian wavelets are constructed by the Gaussian 

function. The Gaussian function and its Fourier transform are given by 
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where σ is the scale factor of the Gaussian function. The characteristics of time and frequency 

domain of Gaussian function are shown in Figure 1.When σ=1, the 1st-6th order derivatives of 

Gaussian function are described as 
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The corresponding functions of 1st-6th order derivatives of Gaussian are shown in Figure 2. From 

(2)-(7), we can find that every derivative has no uniform expression. However, in frequency domain, 

according to the higher order differential properties of Fourier transform in (8), the frequency 

function can be derived in (9). 
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Now we should prove every derivative of Gaussian function satisfies the admissibility condition 

of wavelet base in (10) so that the original signal can be reconstructed by the inverse WT. 
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Substituting (9) into (10), we get 
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Applying L'Hopital's rule to prove the function in (11) is bounded and convergent, that is 
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Obviously, every derivative of Gaussian function satisfies the admissibility condition and they are 

the wavelet bases. 

3  |  RATIONAL APPROXIMATIONS OF GAUSSIAN WAVELET SERIES 

3.1  |  General approximation model of Gaussian wavelet series 

The WT of a function f(x) at the scale a and position b is defined by25 

*1
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where ( )t is wavelet base and * denotes the complex conjugation. According to signal and system 

theory, the analog computation of ( , )fW a b can be achieved through the implementation of the linear 

filter bank of which the impulse response satisfies: 

1
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Usually, for a given wavelet base ( )t the transfer function ( )H s will be non-rational and non-causal. 

In order to obtain the Causality system, the wavelet base ( )t  must be time-reversed and time-

shifted by a suitable value
0t  . Therefore, the performance of the analog WT implementation 

depends firstly on the accuracy of the approximation to
0( )t t  . For the generic situation of stable 

systems with distinct poles and conjugate complex poles, the impulse response function ( )h t is a 

linear combination of damped exponentials and exponentially damped harmonics. For low order 

systems, this makes it possible to propose an explicitly parameterized class of impulse response 

functions among which to search for a good approximation of the time-shifted wavelet
0( )t t  . As 

an example, if a 5th order approximation of the aforementioned Gaussian wavelet is attempted, the 

functions model of ( )h t will typically be given as 
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where the parameters k2, k4 and k8 must be strictly negative for reasons of stability. By modifying the 

approximation order, the corresponding items in the model can be increased or decreased. For instance, 

a 7th order approximation model of wavelet base is described as 
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The squared L2-norm based evaluation function between ( )h t and
0( )t t  is described as 
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The explicit form in (17) can be minimized in some ways using numerical optimization techniques 

and software. When the choice of the time-shift is
0 3t  , the mean squared error (MSE) of the 

discrete points is respectively given as 
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where M is the sampling points and t is the sampling time interval. To obtain a stable 5th order 

approximation ( )h t to
0( )t t  , the optimization model for approximating the Gaussian wavelet series 

in time domain is defined as 
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Next, the nonlinear constrained optimization problem in (19) will be solved using QDE algorithm. 

3.2  |  Approximating Gaussian wavelet series using QDE algorithm 

  (1) Encoding and measurement for quantum chromosome 

In the quantum evolution computation, a Q-bit has two ground states: 0 and 1 . According to the 

principle of superposition, a Q-bit may be in the “1” state, in the “0” state, or in a linear 

superposition of two states. 

0 1                                   (20) 

where α  and β  is the probability amplitude of 0  and 1  state, respectively, which satisfy the 

normalization condition 2 2
1   . In this algorithm, the probability amplitude of the Q-bit is 

described as [ ] [cos sin ]T   using quantum angle. For population scale n and length d, the 

quantum individual encoding is defined as 
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Equation (21) can be simplified as 1 2( , , , )t t t

d  tiq   
using the quantum rotating angle. In 

population initialization, the individual quantum angles ( 1,2, ; 0)t

l l d t    are randomly 

generated in[0,2 ] . In order to evaluate the goodness of the quantum individual, the Q-bit states of 

the individual need be measured by collapsing the superposition states into classical bit states. The 

measurement method of the quantum individual is described as follows. A random number [0,1]r

is generated. If
2

cos( )t

lr   , then the value of this bit is 1, otherwise it is 0. So a quantum 

chromosome will become a binary string by this method and we can use the binary string to solve 

the problem required. 

(2) Quantum chromosome updating by differential evolution 

The differential evolution (DE) is a kind of population based stochastic optimization algorithm 

proposed by Storn and Price26. The DE adopts the real number encoding scheme, mutation, 

crossover and selection operation based on differential vectors. In this work, the DE is used to 

update the quantum chromosome27 by employing its excellent ability of overall search ability. 

   According to the encoding regulation of quantum chromosome, which we have discussed 

above, we encode the quantum individual 1 2( , , , )t t t

d  tiq , where d is the length of chromosome. 
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Suppose
t

i  is the corresponding individual obtained by practicing the mutation operator on 

individual
t
iq . The selected mutation operator is 

1 2[( ) ( )]t t t t t t

i i best i r r+ F     q q q q q                    (22) 

where
1 2, [1, ]r r n , they are different from each other and different from i. 

t

bestq is the best individual 

in the current generation. (0,1)F  is the mutation factor which controls the amplification of the 

differential variation. 

  In order to increase the diversity of the parameter vector, the crossover operator is applied on the 

up-level individuals of the population. A trial vector
t

iu is generated with 
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where ( ) [0,1]rand   is a uniform random number. [0,1]CR is the crossover probability constant. 

[1, ]rand n d  is a randomly chosen index, and  tij is the jth quantum angle of the individual
t
iq .  

Finally, a selection operator based on greedy algorithm is applied to compare the fitness function 

values of two competing vectors. The better individual will survive the next generation. 
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t t t
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f f
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where f denotes the fitness function in (19). 

(3) QDE for Gaussian wavelet series approximation 

The proposed QDE algorithm is used to solve the nonlinear constrained optimization problem in 

(19) for approximating Gaussian wavelet series. The processing procedure of QDE is as follows: 

Step1: Initialize control parameters. Specify the population size Pn=10, the sampling time interval

0.01t , the number of the sampling points M=900, the maximum evolution generation T=4900, 

the step of the quantum rotating angle is 0.01 . Set the value of the control parameters for QDE, 

difference vector scale factor F=0.85, crossover probability constant CR=0.7. 

Step2: Initialize the population. Determine initial population p0 0 0 0

1 2
[ ; ; ; ]

n
q q q , where

0

i
q 0 0 0

1 2
( , , , )

d
, n is the population scale and d is the length of chromosome. 

Step3: Evaluate the individual. Obtain the fitness values of the individual, store the best one into

bestq . 

Step4: Updating the quantum individual. Update the quantum chromosome by QDE strategy 

and produce the next generation quantum individual. 
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Step5: Evaluate the fitness of the quantum chromosome and store the optimum individual 
t

bestq

in this generation. If 
t

bestq is superior to
bestq , then

t

best bestq q ; Otherwise
t

best bestq q . After this 

operation, we save the better individual for the next generation iteration. 

Step6: Stopping condition check. If the evolution generation t T is met or the optimum results 

are found, output the optimum; else set 1t t  , return to Step 4 until to the maximum number of 

generation. 

According to the above steps of the QDE algorithm, the accurate global optimal solution
ik of the 

5th order approximation ( )h t is obtained in Table 1. The transfer functions of first order derivative 

of Gaussian wavelet filter (scale σ=1) resulting from this approximation is obtained as 

4 3 2

5 4 3 2

0.0127 0.2889 0.6301 2.5699 0.0553
( )

2.3654 7.1894 8.0957 7.5910 2.2355

s s s s
H s

s s s s s

   

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         (25) 

The approximated Gaussian wavelets using the improved Maclaurin method17, L2, DE and QDE 

algorithms are shown in Figure 3. Among them, because the improved Maclaurin method17 is a 

frequency domain method, so the approximation result needs to be transformed into the time domain. 

The approximation MSE based on different algorithms is shown in Table 2. From the comparisons, 

the QDE algorithm is more accurate than the improved Maclaurin method17, DE and L2 algorithms. 

Compared with the QDE and DE algorithm, L2 algorithm has the simplest computation process. 

However, one disadvantage of the L2 algorithm is that the computational accuracy is affected by the 

initial value so that it is difficult to select the initial value of the optimal solution. Obviously, the 

improved Maclaurin method17 has the lowest time domain approximation accuracy because it only 

approximates the denominator of the transfer function in frequency domain. The main advantage of 

this algorithm is that the numerator of the obtained transfer function has only one term, and the feed-

forward path in the multi-loop feedback network will be relatively simple. On account of the 

proposed approximation model is based on the linear system theory, the research shows that the 

constructed general model can be used to approximate arbitrarily wavelet function based on desired 

accuracy. Furthermore, because the model approximation is based on the numerical solution, it is 

also suitable for the wavelet bases without explicit expression such as Daubechies (Db) wavelet. 

The approximation coefficients of 2nd-3rd order derivative of Gaussian wavelet using the 5th 

order approximation model are also listed in Table 1. The associated approximation functions are 

shown in Figure 4 (A)-(C). The approximation coefficients of 4th-6th order derivative of Gaussian 

wavelet based on the 7th order approximation model are listed in Table 3. The associated 

approximated wavelet bases are shown in Figure 4 (D)-(F). From these simulation results, we can 

see that the proposed approximation model and solution algorithm in this work can get a better 

rational approximation function of Gaussian wavelet series. Next, three main parameters (i.e. 

approximation order N, sampling interval Δt and time-shifted t0) affecting the approximation 

accuracy of wavelet function are further discussed. To higher order N, it is well known that the 

approximation accuracy of wavelet base will be higher. However, the associated analog network 

will be more complex. If the value of the sampling interval Δt goes down, the approximation 

precision becomes better but it will spend more time to compute. Karel et al11 and Zhao et al28 have 

shown that different values of time-shifted t0 affect the approximation accuracy. However, there is 

no comprehensive analysis combined with the other two factors. On the one hand, t0 shifting too 

much may make the beginning of the wavelet have a relatively flat slope, which leads to the need 
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for high order (N) approximation model to achieve high precision. On the other hand, shifting too 

little yields truncation of wavelet base and causes an integral not to be zero, which makes it difficult 

to restore the wavelet. Commonly, the time-shifted t0 should be chosen reasonably according to the 

approximate support regions of the wavelet. In the next section, the obtained approximation function 

of wavelet base will be employed to design analog wavelet filter. 

4  |  GENERAL DESIGN METHOD OF GAUSSIAN WAVELET FILTER 

From the system theory we know that there are many possible state space descriptions for a circuit 

that implements a certain transfer function, since state-space descriptions and their corresponding 

filter topologies are not unique representations of a dynamical system. Hence, the designer is 

allowed to find a circuit that fits his/her specific requirements. The trend towards low power 

integrated continuous-time filters has increased the interest in new design techniques for analog 

integrated filters29, 30. In this work, the gm-C integrator and the IFLF structure are used to implement 

wavelet filter. The 5th order general transfer function of wavelet filter can be described as 

4 3 2

4 3 2 1 0

5 4 3 2

5 4 3 2 1 0
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A s A s A s A s A

H s
B s B s B s B s B s B
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As an example, the first order derivative of Gaussian wavelet is selected. A similar procedure can 

also be applied for other wavelet filter implementations. The approximated 5th order transfer 

function of first order derivative of Gaussian wavelet filter can be realized by the IFLF topology31-

33 depicted in Figure 5. The realized general transfer function is given by 
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(27) 

where
i  is the time constant and Gj is the gain factor. Comparing (26) with (27) the derived 

expressions of
i and Gj are described as 

5 1

5

( )( 1,2, 5)i

i

i

B
i

B
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

   ， ( 0,1, 4)
j

j

j

A
G j

B
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(28) 

where 1/ u  ,
u is the unity-gain frequency. 

The simple OTA used as the active element in the integrators of Figure 5 is given in Figure 6. 

Considering that the MOS transistors operate in subthreshold region, the transistors Mn5-Mn6 and 

Mn7-Mn8 have aspect rations A:1 and 1:A, respectively. The value of the transconductance of the 

OTA is given by34, 35 

2

4

(1 )

o

m

T

I A
g

kV A


                               
(29) 

where VT is the thermal voltage, k is the subthreshold slope factor of an MOS transistor and Io is the 

bias current. The realized time constants of (27) are given by 

2(1 )
, 1,2, ,

4

i i T

i

m o

C C kV A
i n

g I A



   

                   
(30) 

Setting A=5 and according to (25) and (28), it is easy to obtain the time-constant
i and gain factors 

Gj. Using simple gm-C integrator as the basic block, the designed 5th order Gaussian filter circuit is 
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shown in Figure 7. Next, the performance of the designed generalized filter structure will be 

evaluated through circuit simulation. 

5  |  SIMULATIONS AND ANALYSIS 

The designed first order derivative of Gaussian wavelet filter in a 0.35μm CMOS process was 

simulated using PSpice software. The supply voltage was VDD=0.53V and VSS=-0.53V. The aspect 

rations of the transistors of the OTA are 10μm/2.5μm for M9-M10, 25μm/5μm for M5, M8, 5μm/5μm 

for M6, M7 and 60μm/1.5μm for M1-M3. The calculated values of capacitor Ci and gain factors Gj 

are summarized in Table 4 when the bias current Io is set to 2.5nA. Because the five order term in 

the numerator of the transfer function is equal to 0, so G5 is 0. In addition, the minus sign in G1 and 

G3, corresponding to the circuit diagram, means the input signal is connected to the reverse input 

terminal of the OTA. 

The simulated and QDE approximated impulse responses of the wavelet filter are shown in Figure 

8. The excellent approximation for the approximated first order derivative of Gaussian wavelet 

based on QDE algorithm confirms the performance of the design wavelet circuit. In order to verify 

the performance of the whole wavelet filter system, which is able to scale and shift the wavelet base 

function, another simulation is operated in the next. By changing the values of the bias currents in 

the gm-C integrator of the designed wavelet filter circuit, which can obtain a dyadic scale system, 

other different scales (σ=0.5, 2) first order derivative of Gaussian wavelets are illustrated in Figure 

9. The output results also have good approximation performance. Alternatively, we may change the 

capacitance values (Ci) to get the same results. Figure 10 illustrates the frequency responses of the 

wavelet filter circuit and the approximated wavelet system for 3 dyadic scales (σ=0.5, 1, 2). We can 

see that the simulation value of the wavelet filter circuit is close to the approximation value. By 

denormalizing the filter transfer function, the center frequency of the filter can be moved to the 

desired frequency point. Because the MOSFETS are susceptible to temperature changes, therefore 

in order to demonstrate the stability of the designed circuit, the temperature sweep analysis using 

Monte Carlo analysis is performed for temperature variations from 0-50oC with 1oC increment. The 

wavelet circuit output result (σ=1) is shown in Figure 11, which shows the small variation with 

temperature. The origin of this phenomenon is that the MOSFETS in the weak inversion operation 

are affected by the thermal voltage. Finally, the performance of the designed wavelet filter is 

summarized in Table 5. The root-mean-square values of the input- referred noise can be obtained 

by the noise integrated within the passband of each filter as 0.0188V, 0.0266V and 0.0334V, 

respectively. Thus, the dynamic range of the filter with different scales is about 29 dB, 26 dB and 

24 dB, respectively. However, the circuit has a relatively low dynamic range. The main reason is 

that the maximum input signal is limited to linear range of the circuit, and the minimum range of 

acceptable input signal is limited to noise level. 

  Furthermore, in order to evaluate the performance of the proposed general method in the 

application, the multi-scale wavelet filters are applied to the front-end signal processing of QRS 

detection in ECG signal. The wavelet filter output signals will be analyzed by the QRS detection 

algorithm in Cui et al36. The block diagram of QRS detection based on wavelet filter is shown in 

Figure 12. The four wavelet filters with different scales σ=21, 22, 23, 24 are used to preprocess ECG 

signal. The main strategy of the detection algorithm reported in Cui et al36 is to first determine the 

position of R-wave using the modulus maxima method, and then determine Q-wave and S-wave 

based on modulus maximum lines. The ECG signals (ECG 100 and 105) in the MIT-BIH database 
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is used as the input signal of the detection system. ECG 100 is a pure signal and ECG 105 is a 

natural ECG signal with baseline drift and much noise. The output signals of the wavelet filters with 

four scales are shown in Figure 13 and 14, respectively. Figure 13 and 14 show that the transformed 

signal can better locate the peak point of QRS after passing the wavelet filters. In order to further 

verify the validity of the wavelet filter in QRS detection, the detection results of the selected nine 

ECG signals are shown in Table 6. The accuracy detection rate of the QRS detection based on multi-

scale wavelet filters is 96.86 % (false detection rate 3.14%), which is close to the results of the 

method in Cui et al36. The obvious reason is that the method in Cui et al36 uses complete digital 

analysis, which has a higher detection accuracy than the detection method based on wavelet filter 

circuit. The application results indicate the proposed general method is feasible for wavelet filter 

design. 

6  |  CONCLUSION 

To implement WT in analog domain, high accuracy general rational approximation model of 

Gaussian wavelet series in time domain is built and wavelet filter circuit is designed using 

continuous-time analog circuit with multiple loop feedback structure, which is composed with gm-

C integrators as the basic building blocks. The proposed approximation model of wavelet base may 

be extended to arbitrarily order and any wavelet function including the wavelet base without explicit 

formulation. Taking the first order derivative of Gaussian wavelet base as an example, the 5th order 

rational approximation model is applied to obtain the approximated transfer function of wavelet 

filter. The approximation results indicate the proposed time domain approximation method is 

superior to the DE, L2 and improved Maclaurin approach. Then the IFLF structure first order 

derivative of Gaussian wavelet filter is designed using simple gm-C integrators as the basic blocks. 

By adjusting the bias current of the OTA, different scale wavelet function can be easily obtained for 

the WT implementation. The simulation and practical application results of wavelet filter circuit 

demonstrate the design method is effective. Furthermore, this method also provides a general way 

for other analog WT implementation based on different wavelet base. 
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TABLE 1 The 5th order approximation coefficients of 1st-3rd order derivative of Gaussian wavelet 

Approximated 

coefficients 
Ψ’(t) Ψ’’(t) Ψ’’’(t) 
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k1 0.313 -0.241 0.651 

k2 -0.421 -0.648 -1.809 

k3 -0.533 0.226 -0.230 

k4 -0.510 -0.181 -0.166 

k5 1.010 -1.205 2.416 

k6 -4.620 7.895 -83.754 

k7 0.213 0.127 -0.341 

k8 -0.462 -0.144 -0.178 

k9 -1.983 2.151 1.470 

k10 -4.216 0.559 2.106 

 

 

 

TABLE 2 Comparison of approximation mean squared error (MSE) of different methods 

Methods 
Improved Maclaurin 

method17 
L2 DE QDE 

Approximation 

order 
5 5 5 5 

MSE 6.916×10-4 1.292×10-4 9.803×10-5 3.496×10-5 

 

 

TABLE 3 The 7th order approximation coefficients of 4th-6th derivative of Gaussian wavelet 

Approximated 

coefficients 
Ψ(4)(t) Ψ(5)(t) Ψ(6)(t) 

k1 0.879 1.124 -3.779 

k2 -1.518 -1.384 -1.602 

k3 0.868 -1.779 -5.519 

k4 -0.262 -0.240 -0.308 

k5 -2.277 2.207 -2.475 

k6 2.970 2.162 0.528 

k7 0.623 -0.808 2.950 

k8 -0.257 -0.204 -0.330 

k9 -1.391 3.114 1.627 

k10 -7.401 4.438 3.563 

k11 0.261 0.742 2.233 

k12 -0.238 -0.247 -0.260 

k13 -3.209 1.317 3.363 

k14 -5.493 -6.249 -4.531 

 

TABLE 4 Capacitor and gain factor of Gaussian wavelet filter  

Bias current and  

capacitor 
Value Gain factor Value  

Io 2.500nA G0 0.025 

C1 23.972pF G1 -0.339 
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C2 18.656pF G2 0.078 

C3 50.359pF G3 -0.040 

C4 60.475pF G4 0.005 

C5 192.549pF G5 0.000 

 

 

 

TABLE 5 Performance of 3 scales wavelet filter circuits 

Parameters Values of performance 

Bias current (Io) Io=5.0nA Io=2.5nA Io=1.25nA 

Scale of wavelet (σ) 0.5 1 2 

Transconductance (gm) 71.22 nS 35.61nS 17.81 nS 

Supply voltage 0.53V 0.53V 0.53V 

Dynamic range (DR) 29 dB 26 dB 24 dB 

Power dissipation 85.3nW 41.1nW 22.5 nW 

 

 

 

TABLE 6 QRS detection results based on wavelet filter with four scales 

ECG 

record 

name 

Total 

beats 

False 

positives 

False 

negatives 

Failed 

detection 

False detection 

rate (%) 

False detection rate 

by Cui et al36 (%) 

100 2273 0 1 1 0.044 0.000 

101 1865 1 1 2 0.107 0.000 

103 2084 1 0 1 0.048 0.000 

105 2572 36 21 57 2.216 1.090 

118 2278 1 0 1 0.044 0.040 

119 1987 1 0 1 0.050 0.050 

202 2136 0 2 2 0.094 0.050 

207 1862 3 7 10 0.537 0.270 

213 3251 0 0 0 0.000 0.000 

Total 20308 43 32 75 3.140 1.500 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 Gaussian function. (A) Time domain (σ=1), (B) Frequency domain (σ=0.5) 
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FIGURE 2 Multi-order derivatives of Gaussian function. (A) 1st order derivative, (B) 2nd order 

derivative, (C) 3rd order derivative, (D) 4th order derivative, (E) 5th order derivative, (F) 6th order 

derivative 

 

FIGURE 3 First order derivative of Gaussian wavelet approximation with different algorithms (σ=1, 

t0=3) 

 

FIGURE 4 Time-reversed and time-shifted 2st-6th order derivative of Gaussian wavelet 

approximation (t0=4). (A) 2nd order derivative (5th order model), (B) 3rd order derivative (5th order 

model), (C) 4th order derivative (7th order model), (D) 5th order derivative (7th order model), (E) 

6th order derivative (7th order model) 

 

FIGURE 5 Block diagram of the IFLF structure for wavelet filter 

 

FIGURE 6 Simple operational transconductance amplifier (OTA) 

 

FIGURE 7 5th order Gaussian wavelet filter using gm-C integrators 

 

FIGURE 8 Simulated and QDE approximated first order derivative of Gaussian wavelet (σ=1) 

 

FIGURE 9 Simulated and approximated impulse responses of first order derivative of Gaussian 

wavelet with other scales (σ=0.5, 2) 

 

FIGURE 10 Simulated and approximated frequency responses of first order derivative of Gaussian 

wavelet filter (σ=0.5, 1, 2) 

 

FIGURE 11 Temperature sweep analysis of the designed wavelet circuit (σ=1) 

 

FIGURE 12 Block diagram of QRS detection based on wavelet filters 

 

FIGURE 13 ECG 100 signal and the outputs of wavelet filters with four scales 

 

FIGURE 14 ECG 105 signal with baseline drift and much noise, and the outputs of wavelet filters 

with four scales 
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                   (A)                                  (B) 

FIGURE 1 Gaussian function. (A) Time domain (σ=1), (B) Frequency domain (σ=0.5) 

 

  

(A)                       (B)                    (C) 

 

(D)                      (E)                       (F) 

FIGURE 2 Multi-order derivatives of Gaussian function. (A) 1st order derivative, (B) 2nd order 

derivative, (C) 3rd order derivative, (D) 4th order derivative, (E) 5th order derivative, (F) 6th 

order derivative 
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FIGURE 3 First order derivative of Gaussian wavelet approximation with different algorithms (σ=1, 

t0=3) 

 

    

(A)                                     (B)  

  

(C)                           (D)                            (E) 

FIGURE 4 Time-reversed and time-shifted 2st-6th order derivative of Gaussian wavelet 

approximation (t0=4). (A) 2nd order derivative (5th order model), (B) 3rd order derivative (5th order 

model), (C) 4th order derivative (7th order model), (D) 5th order derivative (7th order model), (E) 

6th order derivative (7th order model) 
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FIGURE 5 Block diagram of the IFLF structure for wavelet filter 

 

 

FIGURE 6 Simple operational transconductance amplifier (OTA) 

 

  

FIGURE 7 5th order Gaussian wavelet filter using gm-C integrators 
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FIGURE 8 Simulated and QDE approximated first order derivative of Gaussian wavelet (σ=1) 

 

 

FIGURE 9 Simulated and approximated impulse responses of first order derivative of Gaussian 

wavelet with other scales (σ=0.5, 2) 
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FIGURE 10 Simulated and approximated frequency responses of first order derivative of Gaussian 

wavelet filter (σ=0.5, 1, 2) 

 

 

FIGURE 11 Temperature sweep analysis of the designed wavelet circuit (σ=1) 
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FIGURE 12 Block diagram of QRS detection based on wavelet filters  

 

 

FIGURE 13 ECG 100 signal and the outputs of wavelet filters with four scales 
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FIGURE 14 ECG 105 signal with baseline drift and much noise, and the outputs of wavelet filters 

with four scales 

 

 


