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Abstract 
 

Various flow bifurcations are investigated for two dimensional combined mixing and separating 

geometry. These consist of two reversed channel flows interacting through a gap in the common 

separating wall filled with porous media of Newtonian fluids and other with unidirectional fluid 

flows. The Steady solutions are obtained through an unsteady finite element approach that employs 

a Taylor-Galerkin/pressure-correction scheme. The influence of increasing inertia on flow rates are 

all studied. Close agreement is attained with numerical data in the porous channels for Newtonian 

fluids. 
 

1.      Introduction 
 

It has been observed that from last many the flows of Newtonian and non-Newtonian fluids through 

porous medium in complex geometries have remained a very important research topic. 

Furthermore, the flow through a porous media of Newtonian and non-Newtonian fluids is an 

interesting subject matter of industrial importance  and particularly  in  various  engineering  

problems.  Normally, industrial problems are much harder to tackle and present complex flow 

phenomena. Particularly, in the field of processing applications presents many challenges for 

researchers. Examples of these industrial and engineering applications are petroleum industrial 

applications such as enhanced oil recovery, crude oil extraction, electronic cooling, transpiration 

cooling, drying processes, thermal insulations,  porous  bearing,  solar  collectors,  heat  pipes,  

nuclear  reactors, groundwater  flow, chemical reactors, packed bed reactors, biomechanics, ceramic 

processing, chromatography, Food, Pharmaceutical, biotechnology, filtration process, geothermal 

engineering, insulation, and many others [ 2,3, 25]. In many processes of the complicating 

factor is the use of the fluids, which exhibits very complex rheological behaviour. The literature 

shows that several investigators [2, 3, 21and 25] have studied the characteristics of the 

hydrodynamics as well as the thermal behaviour of Newtonian flows through porous channels. 

 
In current research study, the transient hydrodynamics characteristics of the flow of Newtonian 

fluid inside horizontal parallel-plate channels filled with porous medium have been investigated. A 

sophisticated  numerical  scheme  is  employed  to  explore  wide  parameter  ranges  of  inertia  and 

relative  flow  rates  are  of  specific  interest  to  this  study. In  this  study, by  employing  the  same 

geometry [1, 7] and modified one of unidirectional fluid flows this study extends the limited 

information  on  the  variety  of  Newtonian  fluid  flow  behaviour  in  the  mixing  and  separating 

geometry as well as in the other one in channel filled with porous materials. 
 

 
 
 

mailto:ar.khokhar@herts.ac.uk
mailto:ar.khokhar@herts.ac.uk
mailto:%2Ccy.2.xu@herts.ac.uk
mailto:%2Ccy.2.xu@herts.ac.uk


 

 
 
 
 
 

 
u = 

Figure-1(b) Diagram Newtonian fluid flows. 

2. Problem specification 

 
The detail of the particular mixing and separating flow problem considered are given schematically 

in figure–1(a). First consists of two inlet and two outlet flows in a planar channel that is divided into 

two different sections by the intersection of two thin plates, placed horizontally in the same central 

plane of the geometry and at a separation gap width of β. Other unidirectional geometry has one 

inlet from left bottom arm and outlet from right top arm of the channel. In this study wide gap 

geometry with a separation gap width of β=3L where L is characteristic length taken as the height of 

a single inlet channel arm. This facilitates an investigation of the impact of gap width on resultant 

flow structure. The thickness of the plate is taken as α=0.0254L. A sufficiently long length of 

channel of 23L is selected to reproduce fully developed entry and exit flow. We have preferred the 

wide gap geometry because in medium gap geometry and narrow gap geometry it was observed that 

flow characteristics do not have dramatic change. 

 
The flow domain is discretised into triangular elements that are generated by a uniform conformal 

mapping technique. The mesh design is such that the minimum size of element is in the 

neighbourhood of the separation or gap region, this being 0.003L.  A finite element mesh on the 

domain is presented in figure–1(b), where the total number of elements, nodes, boundary nodes, 

vertex nodes and degrees of freedom are 1328, 2853, 392, 763, and 6469 respectively. 
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Figure–1(a) Diagrams of the combined mixing and separating of fluid flows 



 

 

 

 
Figure–1(b): Finite element mesh used in the simulation. 

 
The choice of appropriate time-step was made following the precursor study of [11], governed 

principally by an explicit time-stepping scheme Courant condition constraint that depends on a 

measure  of  the  mesh  spacing  (taken  as  the  minimum  radius  of  encircle  over  the  triangular 

elements). A semi-implicit method is implemented with three Jacobi mass-matrix iterations to 

capture an accurate solution and typical time steps involved is ∆t≤0.0001 for Newtonian problems. 

The steady-state solutions are achieved at a time-step relative increment tolerance of 10
-6

as in [11]. 

 
3.        Governing system of equation 

 

We consider a spatial bounded domain Ω→ R
2 

with a piecewise smooth boundary Γ and a temporal 

domain [0, T] with x and t representing the associated spatial and time coordinates. In the absence 

of body forces, the corresponding equations for conservation of mass and Darcy–Brinkman- 

Forchheimer momentum transport for an incompressible isothermal isotropic flow through 

homogeneous porous media may be stated as: 
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or in non–dimensional form 
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Where u(x, t) is the fluid velocity vector field, p(x, t) is the isotropic pressure (per unit density), ρ 

and µ are the fluid density and viscosity respectively and K is the intrinsic permeability of the 

porous medium. The D is the rate-of-deformation tensor,  is the gradient operator in the above 
 

equations (1), (2) and (3), the acceleration co-efficient tensor is assumed to be 
1  

and   is the 


porosity of the porous domain.  Where   D =   
1 

[∇u + (∇u)t )  and t denotes matrix transposition. 
2 

For Newtonian fluid µ is assumed as constant. 

 
The flow is considered to be hydro-dynamically fully developed hence velocity does not depend on 

axial direction of the channel. As a result of the continuity equation, the flow is a unidirectional one 

and it is expressed in terms of axial velocity alone as function of transversal direction. Also, the 

pressure gradient is assumed to be constant. 
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It is often convenient to cast the governing system of the equations in the form of non-dimensional 

form, using non-dimensional variables x
*
, t

*
, u

*
, p

*
, and K

*
. This may be achieved by selecting a 

suitable choice of characteristic scaling factors in the following manners: 

x = Lx
*
, t = 

L 
t
*
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*
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p
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and K = L2 

K
*
,where L is a characteristic length taken as 

U 
height of channel and U is maximum inlet channel velocity. This leads to the following  non- 

 

dimensional groups of Reynolds number Re = 
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To complete the well posed problem specification it is necessary to prescribe the initial and 

boundary conditions. Simulations commence from quiescent initial conditions, or from two parallel 

but opposing flows, to obtain a steady–state solution for a fixed level of the inertial and elasticity 

parameters. Subsequently, to accelerate the computation times for higher parameter values, prior 

steady-state solutions are adopted as starting condition for higher parameter runs. 

 
Initial conditions for the problem consist of specifying the value of u at the initial time. 

 
u(x,0) = u0(x), (4a) 

 

subject to 
 

 

 .u0 = 0.  (4b) 
 

In this case the pressure p is determined is up to an arbitrary constant. 

 
The above equations (1–3) are supplemented by boundary conditions. Boundary conditions are 

taken as no slip on solid walls and inserted plates, and flow profiles are imposed at both entry flow 

sections to provide equal flow rates in both channel arms. 

 
for porous media at both inlets an exact velocity profile is imposed as follows: 
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b    a 
], on x = 0 (bottom left arm) and x = 23L 

Da 

(top  right  arm),  where as  Neauman  boundary  conditions  are  imposed  at  both  exits.  At  both 

geometry exit sections, a traction free normal condition is enforced consistent with a fixed pressure. 

This approximation is found to be quite adequate through a careful check of the numerical flow 

fields derived in the fully developed flow regions, and in  no way reduce the global accuracy of 

solutions. 

 
4.     Numerical scheme and weak formulation 

 
To obtain steady solution we employ an unsteady Taylor–Galerkin/Pressure-correction technique. 

The Taylor–Galerkin/pressure–correction method was originally proposed at an early development 

stage by Townsend and Webster [8], and subsequently advanced by Hawken et al. [9] for Newtonian 

flows. More recently through the work of Carew et al. [10], this scheme has been extended in its 

range of application to cover highly elastic and complex flows. 

 
Employing a Taylor–Galerkin/Pressure–correction technique algorithm for the governing system of 

equation (1-2) we obtain a semi-discrete system over a time step [tn, tn+1]. 
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Stage 2: 

 ∇2(pn+1 − pn ) = 
1 
∇. u∗(5c) 

∆t 
 

Stage 3: 
1 

(un+1 − u∗ ) = −  ∇(pn+1 − p∗ ).(5d) 
∆t

 

In above equations n represents the time step index. Velocity components at half step n + 
1 

are 
2

 
calculated in single step 1a from data at level n and in stage 1b an intermediate non-solenoidal 

velocity u
*  

is calculated at the full time step, using solutions at the levels n and n + 
1
.  Solving a 
2

 
Poisson equation with the non-solenoidal velocity field u

*
, the pressure difference over full time 

step interval [n, n+1] at stage 2 is evaluated and for second order accuracy in time the Crank- 

Nicolson choice    = 0.5 is adopted. Finally, at step three a solenoidal velocity at the end of the time 

step cycle from pressure difference field is captured. The inclusion of the half-step within the first 

fractional stage characterises the extension of the first to second-order projection method to Taylor- 

Galerkin/pressure correction scheme. 

 
Stage one and three are governed by augmented mass-matrices and solved by a Jacobi iterative 

method, that necessitates using only a small fixed number of mass iterations typically, three or so. 

At  stage  two,  the  Poisson  equation  matrix  is  symmetric  and  positive  definite  with  a  banded 

structure, for which it is appropriate to employ a direct Choleski method. 

 
5. Numerical Prediction and discussion 

 
5.1  Newtonian flow in porous channels 

 
5.1.1    The influence of inertia on flow structure 

 
In this study geometry of mixing and separating flows as shown in fig. 1(a) channel filled with 

porous material have been chosen. Here particular attention is paid to see any dramatic change in 

flow characteristics by opposing influences of flow inertia in channel filled with porous medium. 

Numerical simulations are given in figure 5.1.1for Newtonian fluid with increasing Reynolds 

number from (01≤Re≤5000) for equal flow rate. 

 
Equal(1,1) flow rate is analysed by presenting streamline patterns, which are not plotted at equal 

intervals in two flow regions, those of unidirectional and reversed flow.  In our numerical program 

power law index is one, permeability is taken as 0.0001 and porosity is 1.0. In the mixing region 

contours are plotted from the separation line to centrally located plate and in the unidirectional flow 

region from the channel wall to the separation to the separation line. Numerical simulations have 

been started from Re=01 the flow is observed to respond to the presence of the gap and breaks up, 

with some flow unidirectional and most of the flow reversing and mixing in both upper and lower 

exit sections of the geometry. By adopting a continuation approach in the value of Reynolds 

number, solutions are obtained up to 1000 without any significant change in the flow structure. By 

Further increase in Rewe observed very weak activity behind the centrally positioned insert plates 



 

 
 

in the exit flow channel arms. By applying the same increase in value of Reynolds number we 

observed the activity of vortex recirculation at the same positions of the insert plates at Re=5000 

and the further recirculation of vortex have given rise to two eddies near the insert plates at same 

locations as was the situation in equal flow rate in non-porous medium case. The small eddies have 

maintained their position inclined with the insert plates and seems they become more stable (cf. 

5.1.1at Re=5000) beyond this we are not aware about inertia effects. Here there is no any evidence 

of strong vortex development behaviour for low Reynolds number and it is the indication of very 

low opposing inertia effects on flow structure and it was expected as literature review reveals for 

Newtonian fluids. 
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Figure. 5.1.1 Streamline functions for Newtonian combined mixing and separating flow of equal 

flow rate (1, 1) in a both arms of channel filled with porous medium, increasing Re from top to 

bottom. 

 
5.2   Newtonian fluid flows in unidirectional geometry when channel filled with porous medium 

 
5.2.1   The influence of inertia on flow structure 

 
Numerical predictions are given in fig. 5.2.1 for thegeometry of fig. 1 (a) of unidirectional fluid 

flows for   (01≤Re≤6000).   Simulations   started   with   unit   Reynolds   number but   we   do   not 

notice anything in either of the channel arms. By adopting the same continuation approach in the 

value of Re we found very late as well as very weak response of vortex development at Re = 5000 

on the centrally positioned insert plates in the same side of   top channel . Here both observed 

vortices are very weak but vortex on insert plate in the direction of flow channel is little bit stronger 

than the other located at insert plat of top arm of the same top arm of channel. By further increase in 

Re have not given us  any significant effect but the vortex behind the insert plate in top arm in the 

direction of flow is little bit in more in size as compared with the remaining at an another adjacent 

insert plate. Results demonstrate the existence of very weak vortex behind the centrally positioned 

plate one in salient arm of top arm of channel and other behind the insert plate towards exit flow. 

Here there is no strong vortex development behaviour, very weak vortex is appears at very high 

value of Reynolds number. Here one thing which is surprisingly very different that vortices are on 

the same side of centrally positioned insert plates that is not the case in no porous medium, there 

vortices are on different sides of centrally positioned insert plates. 
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Figure–5.2.1 Streamline functions of Newtonian fluid flow in channel filled with porous medium, 

increasing Re from top to bottom. 

 
Conclusion 

 
The semi-implicit time-stepping Taylor-Galerkin pressure correction primitive variable finite 

element algorithm has been found to be robust, stable and accurate in its predictions of steady fluid 

flows in channel filled with porous medium. From the results of two dimensional combined mixing 

and separating geometry and in unidirectional fluid flows algorithm gives adequate mesh 

convergence for the full compressible Navier-Stokes equation. 

 
For monitoring the level of inertial effects the value of Reynolds number has been increased for 

equal flow rates in both geometries introduced in figure 1(a). It has been observed that increase in 

the value of Reynolds number has increased the intensity of the vortex development but activity is 

very slow when compared to channels filled without porous materials. Vortexes are very weak and 

small in size. At very high Reynolds numbers inertial effects were observed but process of 

meandering is not possible as was the case even with Re = 200 in case of channel filled with no 

porous medium in same geometries. 

 
Therefore, it is predicted that inertial term has insignificant effects on the flow behaviour with 

power law index one and over the entire range of Darcy numbers which is in very good agreement 

with numerically results with [22]. It is observed that porous medium domains of low Darcy 

numbers have very small transient times for all ranges of microscopic inertial numbers and this 

implies that the effect of local inertia can be neglected because of they are having insignificant 

effects in porous domains. As the mass of fluid content in porous medium decreases its local inertia 

decreases. 
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