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Abstract. The Implicit Path Enumeration Technique (IPET) has be-
come widely accepted as a powerful technique to compute upper bounds
on the Worst-Case Execution Time (WCET) of time-critical software
components. While the technique works fine whenever fixed execution
times can be assumed for the atomic program parts, standard IPET does
not consider the context-dependence of execution times. As a result, the
obtained WCET bounds can often be overly pessimistic.
The issue of context-dependence has previously been addressed in the
field of static timing analysis, where context-dependent execution times
of program parts can be extracted from a hardware model. In the case
of measurement-based execution time analysis, however, contexts must
be derived from timed execution traces.
In the present extended abstract we present an overview of our work on
the automatic detection and exploitation of context dependencies from
timed execution traces.

1 Introduction

The well-known IPET approach [3, 2] provides a scheme for formulating the
problem of determining a WCET estimate of a software component as an integer
linear programming (ILP) [1] problem. Working on the level of the control flow
graph (CFG), the method introduces variables for the execution count of each
block, as well as for each control flow edge between blocks. These variables are
subject to linear constraints that can exclude some (but not all) infeasible control
flow through the CFG. Assuming the availability of a fixed local upper WCET
bound for each individual block, the determination of an upper bound of the
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global WCET is reduced to the problem of maximizing the cost-weighted sum
of execution counts over all blocks.

When we want to use IPET in practice, two important problems emerge.
Both of them can be traced back to the fundamental assumption of a fixed local
upper WCET bound for each individual block. They are:

1. How to determine the required local WCET bounds on a real processor that
contains highly unpredictable hardware components, like caches, pipelines,
branch predictors, out-of-order execution, etc.?

2. How to overcome the high pessimism introduced by using a single local
WCET bound for each block, even for those blocks that show a broad spec-
trum of different execution times, the maximum of which possibly occurring
only in very special situations?

As the creation of accurate, precise, and effective formal analyses of the
behavior of modern microprocessors has become a highly complex and time-
consuming task, measurement-based timing analysis (MBTA) has been proposed
as a quick, effective, and easily deployable complementary approach.

MBTA allows for the derivation of empirical local WCET estimates from
an elaborate choice of representative execution traces. Once such local WCET
estimates have been determined for each block, they can be directly used as
block costs in an IPET problem.

2 Context-Dependent Execution Times

We are currently working on a method for extending IPET to distinguish between
different block execution times, based on empirically determined correlations
with the blocks execution history and future.

Figure 1 illustrates the settings of our approach from a bird’s eye view.
Our rationale is that the execution time of a block can show both, backward

and forward dependencies, with respect to the execution traces.
Backward dependency is the more prominent case, where the execution time

of a block depends on the concrete execution history. This is easily exemplified
by the distinction of execution times of a block in the presence of a cold vs.
a warm instruction cache: In a simple setting, a certain block might be absent
from the instruction cache during the first iteration of a loop, but present during
all subsequent iterations. A distinction of execution times of the block can then
be based on whether the loop body is entered via the back edge, or from outside.

Our archetype for a forward dependency concerns the execution time of con-
ditional jumps: The execution time of such a jump can depend on whether the
jump condition is true or false. Because the jump condition controls the subse-
quent flow of control, we observe an apparent dependency of a block’s execution
time on its execution future (a circumstance that might seem counterintuitive
at first thought).

It is infeasible and impractical to consider all possible dependencies of the
execution time of a block on its concrete execution traces. Also, we have to
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Fig. 1. Pieces of information used in the generation of a context-sensitive IPET prob-
lem. The highlighted pieces of information in the center represent our present state
of research: Timed traces are obtained from runs of the software executable on the
target hardware and dependent block execution times are extracted. Considering the
possible flows in the software flow graph, suitable history / future contexts are derived
that separate the different execution times of each block. These contexts can be easily
mapped to graph segments (structural clusters of paths). It is then easy to derive seg-
ment structure constraints that model the control flow through each segment. Also, a
new objective function is derived that consists of the cost-weighted segment execution
frequencies. Adding the usual graph structure constraints, which can be derived auto-
matically from the flow graph, the necessary loop bounds, and possibly additional flow
facts, the context-sensitive IPET problem is derived.

consider a method to integrate such a distinction into IPET. In our approach,
we therefore consider a subset of dependencies that we consider particularly
interesting and apt to allow a reduction of the pessimism introduced by IPET.



3 Evaluation

To assess our approach, we used the following experimental setup: We analyzed
1000 traces obtained from running a slightly modified version of the bsort100
benchmark from the Mälardalen WCET suite. The modifications of the bench-
mark consisted of reduction of the input array to 15 elements and code refor-
mating for technical reasons. The program was compiled using GCC for the
TriCore 1796 processor without optimization. Our second benchmark was a
core routine of an elevator control application. To generate the input data we
used a mixed approach of systematic block coverage via model checking and a
pseudo random data generation. The traces were recorded using a Lauterbach
Power Trace device.

To estimate the overestimation introduced by IPET, we used the difference
between the IPET result and the longest observed end-to-end execution time
over all generated traces. Comparing the results of our context-sensitive ap-
proach with those of standard IPET, the experiments showed a marginal im-
provement for the (tiny) bsort100 benchmark. For the second benchmark, the
overestimation was reduced by 8%.

4 Conclusion and Outlook

We have presented our approach towards using context-dependent execution
time measurements to reduce the pessimism in IPET, introducing history / fu-
ture sensitivity. We have also presented first results that show that our approach
can in fact help to reduce IPET pessimism in a experimental setting. The details
of the approach shall be presented in a full paper.

To improve the effectiveness of our approach, we are currently working on
the following two aspects3:

Firstly, the separation of contexts by history / future relies on the availability
of a suitable set of timed execution traces. To this end, we are currently working
on suitable coverage metrics and input-data generation methods.

Secondly, to exploit the full potential of context separation, it will be nec-
essary to derive additional flow facts that restrict the possible combinations of
contexts. With respect to this aspect, we are currently pursuing a method to ex-
tract such constraints from control flow paths that are known to be infeasible.
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