
COMPILER SUPPORT FOR
MEASUREMENT-BASED TIMING ANALYSIS 1

Raimund Kirner2 and Michael Zolda3

Abstract
Measurement-based timing analysis (MBTA) techniques have been developed as a complimentary
to static WCET analysis, in order to exploit worst-case execution time (WCET) analysis at early
stages of system development. The direct advantage of MBTA is that, in contrast to static WCET
analysis, no timing model of the hardware platform has to be developed. Instead the timing model
is generated automatically by performing systematic execution time measurements. MBTA provides
high retargetability, as the test suite used for execution time measurements is typically derived from
the source code of the program. In order to provide an accurate WCET estimate, the test suite has to
provide a sufficient coverage of the temporal system behavior. Here also the compilation tool chain is
important as the compiler may introduce additional control flow that is not visible at the source code.
In this paper we present FORTAS, an MBTA tool that systematically generates test data using a range
of different techniques, like heuristics and model checking. Furthermore, we show how compiler-
support for MBTA can provide code optimization while preserving the code coverage achieved by
the MBTA test suite at source-code level. First evaluations indicate that the performance penalty for
ensuring coverage preservation of the test suite is low.

1. Introduction

The correct operation of real-time system demands to ensure that the worst-case timing costs of
individual actions are compliant with the timing constraints imposed by the environment and by the
hardware platform. To ensure this, we have to determine the worst-case execution time (WCET) of
all the relevant activities.

The WCET can be determined by static WCET analysis, which is based on static program analysis
of the machine code requiring a correct cost model for the hardware platform. Another approach
that is becoming increasingly popular in the research community is measurement-base timing anal-
ysis (MBTA), where the cost model used to search for a WCET estimate is calibrated by systematic
execution-time measurements [12, 13, 2]. Both approaches have their specific merits. With static
WCET analysis one can construct a proof for an upper bound of the WCET, based on the assumption
that the constructed cost model is fully correct. With MBTA once can avoid the high retargeting cost
of the analysis to a new hardware platform, but it is in general not possible to provide a proof that the
WCET estimate is safe, i.e., is an upper bound of the WCET. Furthermore, static WCET analysis can
result in quite high overestimations and do require a significant effort on code annotations, even at
machine-code level.

2University of Hertfordshire, Department of Computer Science, United Kingdom, r.kirner@complang.tuwien.ac.at
3Vienna University of Technology, Institute of Computer Engineering, Austria, michaelz@vmars.tuwien.ac.at
1This work has been supported by the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung)
within the research projects “Sustaining Entire Code-Coverage on Code Optimization” (SECCO) under contract No
P20944-N13 and “Formal Timing Analysis Suite of Real-Time Systems” (FORTAS-RT) under contract P19230-N13,
and by the European Union within the IST FP-7 research project “Asynchronous and Dynamic Virtualization through
performance ANalysis to support Concurrency Engineering (ADVANCE)” under contract no IST-2010-248828.

The preciseness of the MBTA approach heavily depends on the coverage achieved by the test suite at
the execution time measurements. One of our research subject is to find heuristics for generation of
test data that achieve a good coverage of the systems timing behavior [13].

In this paper we focus on a challenge for MBTA, the traceability of structural code coverage achieved
by a test suite at source code down to machine code during optimizing compilation [6]. In Section 2
we describe the principle of our MBTA tool FORTAS. In Section 3 we summarize the calculation
of so-called structured code-coverage profiles (SCCP), for which their integration into a compiler
is described in Section 4. Section 5 provides a performance evaluation of the SCCP technique and
Section 6 concludes the paper.

2. The Formal Timing Analysis Suite

The FORmal Timing Analysis Suite (FORTAS) is the research vehicle for our work on MBTA. De-
signed as an extensible, modular, distributed, concurrent framework, the most important use-case of
FORTAS is to obtain early WCET estimates. Given an existing piece of code, an engineer can em-
ploy the analysis tools to obtain an estimate of the code’s WCET on the target platform of his choice.
Doing so can help him in making design decisions concerning the software and/or the intended target
platform.

The FORTAS approach is not intended to always provide a safe WCET estimate—a guaranteed upper
bounds of the WCET—as is the case in static WCET analysis. Rather, our tools have intentionally
been designed to be used in situations where rough (and possible unsafe) estimates are favored con-
sidering the major downsides of static WCET analysis: high initial costs to develop a dependable
analysis for a specific target platform, no or limited retargetability, and highly pessimistic WCET
bounds in the case of modern target platforms.

By design, our approach does not make any limiting assumptions about the target platform: The
analysis tools execute the code under scrutiny on the target platform to obtain time-stamped execution
traces. The information contained in these traces is then combined with control flow information
obtained via traditional code analysis, and a timing model is created. This timing model is then
specific to both, the code under scrutiny and the target platform.

The FORTAS approach is highly retargetable: The only component that needs to be provided to sup-
port a new target platform is a measurement backend that executes the code under scrutiny with given
input data and returns the corresponding time-stamped execution trace. The analysis components
can then make use of the new backend to probe the temporal behavior of the code under scrutiny
on the new target platform by generating appropriate suites of input data and integrating the learned
information into the timing model.

A novel feature of FORTAS is adaptive, iterative refinement of the timing model: Using a feedback
mechanism that periodically inspects the current timing model and generates new coverage goals for
subsequent input data generation, the tools can adaptively refine the timing model, such that more and
more precise WCET estimates can be obtained. During this iterative process, the engineer can, at any
time, obtain a WCET estimate from the timing model in its most recent state.

Figure 1 summarizes the workflow of an adaptive WCET analysis with FORTAS. In the following
we briefly explain the individual steps in this workflow. Internals of the used methods can be found
in [14, 4].

Figure 1. Basic Workflow of FORTAS

Code Analysis performs static code analysis on the code under scrutiny to obtain flow information,
most importantly the control flow graph (CFG). Code analysis can also derive loop iteration
constraints. In their current development stage, the FORTAS tools require manual specification
of loop iteration constraints.

Compilation and Linking takes the code under scrutiny and produces executable code for the target
platform. Currently the FORTAS tools are able to process C source code, but the approach
could also be used to analyze intermediate or machine code.

Input Data Generation is a central part of MBTA in general, and FORTAS in particular. This step
produces a set of suitable input vectors—a test suite—to be used in the subsequent measurement
step. Suitable here means that the test suite should conform to a given coverage goal. FORTAS
currently supports two different kinds of coverage goals: The first kind are structural coverage
goals, e.g., requirements like basic block, condition or decision coverage, or more sophisticated
specifications [5, 3]. The second kind are optimization goals, e.g., maximization of locally
observed execution times [4]. Concerning the applied techniques for input data generation, the
FORTAS tools currently rely primarily on model checking and genetic algorithms.

Measurement performs at least one run of the executable code on the target platform for each in-
put vector from the test suite and produces corresponding time-stamped execution traces. A
time-stamped execution trace indicates the exact execution sequence of the individual CFG
nodes and the execution duration for each entry in this sequence. The current FORTAS imple-
mentation supports non-intrusive capturing of end-to-end time-stamped execution traces on the
TriCore 1796 processor via a Lauterbach PowerTrace [1] device.

Timing Composition combines information from the obtained time-stamped execution traces with
the flow information obtained from code analysis into a timing model that summarizes the
temporal behavior of the code under scrutiny on the target platform.

Refinement Control examines the timing model and generates new coverage goals to be used during
subsequent input data generation. The objective of refinement is to increase the precision of the
timing model.

Estimate Inference produces a WCET estimate from the timing model. FORTAS currently provides
context-sensitive IPET [14] as core inference technique.

Figure 2. The necessary Relationship between Structural Coverage on two different Code
Levels to ensure Coverage Preservation

We have designed FORTAS to generate test suites at the source code level. The advantage of this
design is that test data generation is independent of the target platform. We need only one implemen-
tation of each generation method to obtain support for all FORTAS platforms.

Our test data generators currently process C source code. In particular, we are using the model-
checking based test-suite generator FSHELL [5], to create test suites from structural test goals (see
above).

On the other hand, measurement must always be performed at the executable level. It is therefore
important that the compilation step preserves the intended structural coverage of the test suite, i.e.,
the structural coverage achieved by the associated set of abstract traces on the source code level must
be subsumed by the corresponding set of measured traces on the executable level. Figure 2 illustrates
the necessary relationship between coverage on the two different code levels.

3. Compiler Support for MBTA

To prove that a structural coverage criterion is preserved during optimizing compilation, we have done
several steps. First, we have formalized the meaning of the structural code coverage criteria we want
to preserve and based on that we have derived corresponding formal coverage preservation criteria.
Furthermore, we formalized the code transformations at a suitable abstraction level. Based on that
we infer the SCCP profiles, which in essence is a table that indicates for each code transformation
whether it does ensure preservation of the structural code coverage criteria.

Table 1 shows an example of SCCP profiles for statement coverage (SC), condition coverage (CC),
and decision coverage (DC). As code transformations we have chosen condition reordering (where
it is interesting to note that there it makes a difference whether the language provides short-circuit
evaluation for the conditions), loop peeling (splitting the iteration space of a loop into multiple parts),
and loop inversion (converting a while loop into a do/while loop). For example, the table shows that

Code Optimization Coverage Preservation
SC CC DC

Condition reordering (without short-circuit) 3 · 3
Condition reordering (with short-circuit) 3 3 3
Loop peeling · · ·
Loop inversion 3 · ·

Table 1. Calculated Structural Code Coverage Preservation Profiles

loop inversion still preserves SC, but not CC or DC. More details of how such SCCP profiles are
calculated can be found in [7]. The derivation of preservation criteria for structural code coverage
metrics is described in [6].

Figure 3. Application of an SCCP Profile

The concept of integrating SCCP profiles into a compiler to preserve selected code coverage criteria
is shown in Figure 3. The SCCP profiles have to be realized as guards that enable only those code
optimizations for which the chosen coverage criteria are preserved. More details on the concrete
implementation are given in the following section.

4. Implementation of the SCCP-Compiler

Once the structural code coverage profiles (SCCP) profiles have been calculated, it is relatively easy
to integrate them into a compiler. In the following we describe the integration of the SCCP approach
into the GCC version 4.5.2 [10, 9]. GCC has been chosen because of its open source license and also
for its support of numerous target platforms, including some used in embedded computing.

The SCCP profiles can be thought as a table that indicates by a flag for each code optimization and
each code coverage metrics, whether the metrics is preserved by performing the code optimization,

like the example given in Table 1. The real implementation, however, needed some more effort,
as GCC supports quite a lot of code optimizations. GCC provides some generic optimization flags
-O0 . . .-O3, where -O0 means virtually no code optimizations are performed, and -O3 means the
activation of many code optimizations. Still, -O3 does not mean that all code optimizations in GCC
are to be activated, because some code optimizations are not generally beneficial, as, for example,
they can significantly increase code size or produce code that improves performance for a limited
set of code structures. For example, an optimization that needs explicit activation is loop unrolling.
GCC also allows to to individually enable/disable each of the code optimizations controlled by the
options -O0 . . .-O3. We have decided to implement support of SCCP profiles for all those code
optimizations effected by -O0 . . .-O3, and also loop unrolling, which resulted in total in 62 code
transformations.

The user interface of the compiler has been changed by two extra command-line options in order to
control the SCCP features:

–sccp-enforce = metrics-list is the primary option to tell the compiler that structural code coverage
preservation has to be considered for the comma-separated list of structural code coverage met-
rics. Currently, this list can include the items SC (statement coverage), cc (condition coverage),
dc (decision coverage), mcdc (modified condition-decision coverage), and pc (path coverage).
For example, to tell the compiler to focus on the preservation of CC and DC, it has to be called
with the following option: --sccp-enforce=cc,dc.

–sccp-warn-mode is the secondary command-line option, which, in case that the SCCP option
--sccp-enforce=〈metrics-list〉 is given as well, tells the compiler to be switched
to a passive coverage preservation mode, where no code optimizations are guarded, but instead
warnings are emitted, which inform the user that the specified coverage metrics may have been
disrupted. If this option is omitted, than the default mode of structural code coverage preserva-
tion is to disable in the compiler all those code optimizations that have the potential to disrupt
the coverage metrics specified in 〈metrics-list〉.

At the current stage of implementation the functionality behind the option --sccp-warn has not
been fully implemented, as experiments so far haven’t shown real need for it. In fact, the option
--sccp-warn would have been useful, if the enforcement of the SCCP mode by disabling code
optimizations had a significant reduction of performance of the generated code. The command line
interface of GCC has been extended by adding the additional options into the file common.opt, from
where an existing script of GCC automatically generates the code for parsing and basic handling of
the options [9].

s t r u c t s c c p c o v e r a g e p r o f i l e t y p e
{

enum s c c p c o d e t r a n s t r a n s ; /∗ i d o f code o p t i m i z a t i o n ∗ /
u n s i g n e d i n t p r e s e r v e s m a s k ; /∗ each b i t s e t r e p r e s e n t s a p r e s e r v e d

m e t r i c s ∗ /
i n t ∗ p f l a g ; /∗ a d d r e s s o f e n a b l i n g f l a g o f

o p t i m i z a t i o n ∗ /
c o n s t c h a r ∗ t rname ; /∗ name of code o p t i m i z a t i o n ∗ /

} ;

e x t e r n s t r u c t s c c p c o v e r a g e p r o f i l e t y p e s c c p c o v e r a g e p r o f i l e [] ;

Figure 4. Added Source Code in GCC to define SCCP Profiles

Having defined the user interface for the SCCP approach, we now demonstrate that it is rather easy
to integrate the SCCP behavior in the compiler. Figure 4 shows the definition of the data structure
to hold the SCCP profiles. trans is an integer value that specifies the numerical identifier of each
code transformation. This list of identifiers for all supported code optimizations has been added as
an enumeration type in ISO C. The variable preserves mask is a bitmask where a one at a bit
position indicates that the corresponding coverage metric is preserved by the code transformation.
pflag is a pointer to the control variable of the optimization; it is used to disable code optimizations
in case that they do not preserve the requested coverage metrics. The entry trname holds the name
of the optimization, which is used for optimization logs.

/∗ D e f i n i t i o n s f o r s t r u c t u r a l code c o v e r a g e p r e s e r v a t i o n (SCCP) ∗ /
s t r u c t s c c p c o v e r a g e p r o f i l e t y p e s c c p c o v e r a g e p r o f i l e [] = {

. . .
{ F INLINE SMALL FUNCTIONS , /∗ min −O2 ∗ /

SCCP NONE ,
&f l a g i n l i n e s m a l l f u n c t i o n s , "-finline-small-functions"} ,

{ F GLOBAL CSE , /∗ min −O2 ∗ /
SCCP SC | SCCP CC | SCCP DC | SCCP MCDC | SCCP PC ,
&f l a g g c s e , "-fgcse"} ,

{ F MINOR EXPENSIVE OPTS , /∗ min −O2 ∗ /
SCCP SC | SCCP CC | SCCP DC | SCCP MCDC | SCCP PC ,
&f l a g e x p e n s i v e o p t i m i z a t i o n s , "-fexpensive-optimizations"} ,

{ F DO CSE AFTER LOOP OPTS , /∗ min −O2 ∗ /
SCCP SC | SCCP CC | SCCP DC | SCCP MCDC | SCCP PC ,
&f l a g r e r u n c s e a f t e r l o o p , "-frerun-cse-after-loop"} ,

{ F SAVE REGS AROUND CALL , /∗ min −O2 ∗ /
SCCP SC | SCCP CC | SCCP DC | SCCP MCDC | SCCP PC ,
&f l a g c a l l e r s a v e s , "-fcaller-saves"} ,

. . .
} ;

Figure 5. Excerpt of Source Code added in GCC to initialize SCCP Profiles

The code for the initialization of the SCCP profiles is shown in Figure 5, which shows the initialization
for five out of the 62 code optimizations supported by our implementation in GCC. For example, the
first entry describes the entry for a special form of function inlining, i.e., the body of subroutines of
up to a certain size will be copied into the place of where the function call has been given. Here
F INLINE SMALL FUNCTIONS is the numeric identifier of the code optimization. SCCP NONE
is the bitfield which defines for each structural code coverage metrics whether it is preserved by
that code optimization. In the case of macro SCCP NONE is says that none of the coverage metrics
is be guaranteed to be preserved. &flag inline small functions is the name of the code
flag used by GCC to control whether this optimization is enabled or not. Thus, when evaluating
the SCCP arguments, this flag will be modified if the corresponding code optimization needs to be
disabled to ensure coverage preservation. The entry -finline-small-functions represents
the corresponding name of the command-line option used to enable/disable this optimization in GCC.
The comment /* min -O2 */ simply means that this code optimization is by default enabled in a
general code optimization level of -O2 or higher has been selected.

The code examples above show the basic mechanism of how we implemented the SCCP profiles in
GCC. For other compilers we expect that the integration is of similar ease. However, what made
the implementation in GCC nice to test is the ability to control the activation of any code optimiza-
tion individually. The source code of the prototype implementation of the SCCP compiler can be
downloaded from the homepage of the SECCO project [11].

5. Evaluation

The main question behind the SCCP method is how much performance does it cost in order to guaran-
tee preservation of structural code coverage. In this section we describe some first experiments with
different settings of optimization levels in GCC 4.5.2. The benchmarks we used are taken from the
standard worst-case execution time (WCET) benchmark suite assembled by the Mälardalen Univer-
sity [8]. The Mälardalen WCET benchmarks have been slightly modified in order to show the effects
of different optimization levels. This modification consists of adding a new entry routine that calls
the original entry routine several times. With this modification the program execution times become
a more dominant timing contribution compared to the program call overhead. The experiments were
run on a Mac OS-X 10.6 machine with an Intel Core 2 Duo processor running at 3.06 MHz. The
execution time measurements where done for different optimization settings of the compiler, using
a measurement accuracy of 1ms. The different optimization settings are listed in Table 2. The first
four settings are the different generic optimization levels of GCC. In setting FULL we added loop
unrolling as an optimization, which is not activated automatically by -O3. The setting SCCP1 also
uses -O3 as optimization level, but activates the SCCP enforcement of statement coverage. In setting
SCCP2 we enforce the preservation of all currently supported code coverage metrics: statement cov-
erage, condition coverage, decision coverage, MCDC coverage, and path coverage. For both SCCP
settings we have chosen -O3 as the optimization level, as this would be normally the standard setting
one chooses to get a high degree of optimization.

Setting Command-line Option for GCC
O0 -O0
O1 -O1
O2 -O2
O3 -O3
FULL -O3 –unroll-loops –unroll-all-loops
SCCP1 -O3 –sccp-enforce –sccp=sc
SCCP2 -O3 –sccp-enforce –sccp=sc,cc,dc,mcdc,pc

Table 2. Compiler Options for the Different Settings

The numerical results of the performance comparison with different optimizations and preservation of
coverage metrics is shown in Table 3. What we actually see from these first results is, that the compiler
operation with any SCCP mode is nearly always very close or equal to the optimization mode -O3.
This is a very good result as it means that with GCC 4.5.2 ensuring preservation of structural code
coverage does not cost any significant performance, but provides an extra confidence in the coverage
of a test suite obtained at the source-code level.

Table 3 shows also some interesting performance results of GCC in general. For example, in case

Name #LOC Measured Execution Time (ms)
O0 O1 O2 O3 FULL SCCP1 SCCP2

qurt 166 45.00 28.00 29.00 28.00 24.00 28.00 28.00
adpcm 878 99.00 55.00 68.00 65.00 64.00 65.00 65.00
matmult 177 52.00 24.00 22.00 15.00 13.00 16.00 15.00
ludcmp 147 111.00 45.00 42.00 34.00 39.00 35.00 34.00
jfdctint 375 77.00 35.00 34.00 31.00 31.00 31.00 31.00
crc 128 31.00 19.00 20.00 18.00 18.00 18.00 18.00
edn 285 128.00 43.00 42.00 28.00 29.00 28.00 28.00

Table 3. Performance Evaluation of SCCP

of benchmark adpcm we see that the performance of the generated code is significantly better with
optimization level -O1 than with -O3. This is a quite common phenomenon, as code optimizations
also have side effects like increasing code size or changing memory layout, which in some cases
can turn down any performance gain. This is also the reason why many other code optimizations
are not included automatically when choosing -O3. From the SCCP method this is a neutral result,
because if the SCCP settings can match the -O3 setting, it implies that in can also handle the -O1
setting with the same precision as there are less optimizations included in -O1. We also see there that
the optimization setting FULL does not always give a better result than O3 does, as can be seen for
benchmark ludcmp.

80
90
100

e
n

t)

edn

60
70
80
90
100

e
 (

P
e
rc

e
n

t)

edn

crc

fd

30
40
50
60
70
80
90
100

io
n

 T
im

e
 (

P
e
rc

e
n

t)

edn

crc

jfdctint

ludcmp

matmult

0
10
20
30
40
50
60
70
80
90
100

E
x
e
cu

ti
o

n
 T

im
e
 (

P
e
rc

e
n

t)

edn

crc

jfdctint

ludcmp

matmult

adpcm

qurt0
10
20
30
40
50
60
70
80
90
100

O0 O1 O2 O3 SCCP2 SCCP1 FULL

E
x
e
cu

ti
o

n
 T

im
e
 (

P
e
rc

e
n

t)

edn

crc

jfdctint

ludcmp

matmult

adpcm

qurt0
10
20
30
40
50
60
70
80
90
100

O0 O1 O2 O3 SCCP2 SCCP1 FULL

E
x
e
cu

ti
o

n
 T

im
e
 (

P
e
rc

e
n

t)

edn

crc

jfdctint

ludcmp

matmult

adpcm

qurt0
10
20
30
40
50
60
70
80
90
100

O0 O1 O2 O3 SCCP2 SCCP1 FULL

E
x
e
cu

ti
o

n
 T

im
e
 (

P
e
rc

e
n

t)

edn

crc

jfdctint

ludcmp

matmult

adpcm

qurt

Figure 6. Performance of the Different Optimizations, subsumed for a Number of Benchmarks

Figure 6 subsumes the experimental results as a combined graph for all benchmarks. Each vertical
bar shows the total execution time of all the benchmarks summed up for one optimization setting.
Here we can see directly, that the average performance of both SCCP settings matches that of -O3.

To summarize, the performance results of integrating the SCCP approach into GCC has proven to be
done quite easily and the performance is quite the same as without SCCP.

6. Summary and Conclusion

In this paper we have described the issue of tracing structured code coverage from the source code to
the machine code in case of optimizing compilation. We have described the need for portable test data
generation for our MBTA tool FORTAS, which uses a combination of different test data generation
methods to achieve efficient generation and high coverage. However, there are code optimizations
that can introduce additional control-flow decisions to improve the average-case performance, but
increase the WCET. When test data are generated from the source code, it is quite likely that such
additional control-flow decisions are not coverage by the test suite, providing a cause for WCET
underestimation.

We have described a solution to this problem, by developing a coverage preservation mode for the
compiler, which guarantees that in case a concrete structural code coverage has been achieved at the
original code, it will also be fulfilled at the transformed code. To do this, we infer from the formal-
ization of the code transformations and the coverage-preservation criteria whether the code transfor-
mation guarantees preservation of the structural code coverage criterion. We demonstrated the light
effort necessary to integrate this approach into a compiler, by providing a prototype implementa-
tion for GCC 4.5.2. Experimental results have shown that this technique provides quite negligible
performance costs, which allows it to use for timing analysis for final production code.

References

[1] Powertrace. Product Information from Lauterbach GmbH, Höhenkirchen-Siegertsbrunn, Ger-
many.

[2] BETTS, A., MERRIAM, N., AND BERNAT, G. Hybrid measurement-based wcet analysis
at the source level using object-level traces. In Proc. 10th International Workshop on Worst-
Case Execution Time Analysis (Brussels, Belgium, July 2010), pp. 54–63. Available: http:
//drops.dagstuhl.de/opus/volltexte/2010/2825.

[3] BÜNTE, S., ZOLDA, M., AND KIRNER, R. Let’s get less optimistic in measurement-
based timing analysis. In 6th IEEE International Symposium on Industrial Embedded Systems
(SIES’11) (June 2011).

[4] BÜNTE, S., ZOLDA, M., TAUTSCHNIG, M., AND KIRNER, R. Improving the confi-
dence in measurement-based timing analysis. In 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing (ISORC’11) (Mar. 2011).

[5] HOLZER, A., TAUTSCHNIG, M., VEITH, H., AND SCHALLHART, C. How did you specify
your test suite? In 25th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’10) (Sept. 2010), pp. 407–416.

[6] KIRNER, R. Towards preserving model coverage and structural code coverage. EURASIP
Journal on Embedded Systems 2009 (2009).

[7] KIRNER, R., AND HAAS, W. Automatic calculation of coverage profiles for coverage-based
testing. In 15. Kolloquium Programmiersprachen und Grundlagen der Programmierung (Maria
Taferl, Austria, Oct. 2009).

[8] Mälardalen research and technology centre WCET benchmarks. Web page (http://www.
mrtc.mdh.se/projects/wcet/), 2009. Accessed online in April 2011.

[9] STALLMAN, R. M., AND GCC DEVELOPER COMMUNITY. GNU Compiler Collection
Internals. GNU Press, Boston, USA, Dec. 2010. GCC version 4.5.2, available online at http:
//gcc.gnu.org/gcc-4.5/.

[10] STALLMAN, R. M., AND GCC DEVELOPER COMMUNITY. Using the GNU Compiler
Collection. GNU Press, Boston, USA, Dec. 2010. GCC version 4.5.2, available online at
http://gcc.gnu.org/gcc-4.5/.

[11] VIENNA UNIVERSITY OF TECHNOLOGY. The SECCO project: Sustaining entire
code-coverage on code optimization. web page (http://pan.vmars.tuwien.ac.at/
secco/). accessed in May 2011.

[12] WENZEL, I., KIRNER, R., RIEDER, B., AND PUSCHNER, P. Measurement-based timing
analysis. In Proc. 3rd Int’l Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (Porto Sani, Greece, Oct. 2008).

[13] ZOLDA, M., BÜNTE, S., AND KIRNER, R. Context-sensitivity in IPET for measurement-
based timing analysis. In Proc. 4th Int’l Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (Oct. 2010), Springer Verlag.

[14] ZOLDA, M., BÜNTE, S., AND KIRNER, R. Context-sensitive measurement-based worst-case
execution time estimation. In 17th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’11) (Aug. 2011). submitted.

10

