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Abstract

We are interested in designing artificial universes for artifi-
cial agents. We view artificial agents as networks of high-
level processes on top of of a low-level detailed-description
system. We require that the high-level processes have some
intrinsic explanatory power and we introduce an extension of
informational closure namely interaction closure to capture
this. Then we derive a method to design artificial universes in
the form of finite Markov chains which exhibit high-level pro-
cesses that satisfy the property of interaction closure. We also
investigate control or information transfer which we see as an
building block for networks representing artificial agents.

Introduction
We are interested in designing artificial physics for artificial
agents. This paper presents an exploratory step in this direc-
tion and also expounds the conceptual and the formal point
of view we are taking. In this introduction we give a short
overview of our approach and then proceed to formally de-
fine the different elements.

Conceptually, we draw inspiration for our artificial
physics and agents from “real” physics and living organ-
isms. The artificial agents we have in mind are are minimally
represented by networks of “high-level” or “macroscopic”
processes. These high-level processes are derived from the
underlying artificial physics. This situation is analogous to
viewing living organisms as networks of processes (Matu-
rana and Varela, 1980) on a meso- or macroscopic scale
e.g. proteins or cells, and assuming an underlying physics
e.g. elementary particle physics. Formally, we model our
artificial physics simply as a univariate finite discrete time
Markov process. We choose a univariate process because we
do not want to presuppose any structure of the state space of
the artificial physics. We also assume there is no downward
causation (Campbell, 1974). This means that at all times, the
high-level processes are causally dependent on the underly-
ing physics. Loosely speaking, this means that the edges
(interactions) of the high-level network of processes repre-
senting the agent are actually mediated by the low-level pro-
cess. As we will see, this can formally be modelled using
Bayesian networks.

The final ingredient of our general approach tries to ac-
count for the success of doing science on scales larger than
elementary particles e.g. atomic physics, chemistry and bi-
ology. To take this into account, we require that the high-
level processes are as predictive of other high-level pro-
cesses as the underlying physics itself. In other words, the
high-level processes at least appear to be directly causally
related. Formally, we achive this by slightly extending the
notion of informational closure introduced by Bertschinger
et al. (2006) to two notions that we will call weak and strong
interaction closure. Requiring informational closure already
puts some constraints on the underlying process (Pfante
et al., 2014) and so do interaction closures.

Within this general setting we here inspect the situation
where one high-level process seems to control another one.
The idea is that any high-level network that represents an
agent needs such a mechanism. Consider for example a
sensor that writes its measurement to another process e.g.
a memory for further processing. Another interpretation
would be that the controlled process is part of the embod-
iment of the agent and therefore within the sphere of influ-
ence of the agent and shielded from the environment. The
latter interpretation is related to the notion of embodiment
put forward by Porr and Wörgötter (2005). Yet another,
more conservative, interpretation would be that the first pro-
cess simply transfers information to the second. Information
transfer is widely seen as an important part of decentralized
computation (Lizier et al., 2014). Which in turn may be just
what a network of processes representing an agent needs.
Formally, we use an information theoretic notion, the trans-
fer entropy (Schreiber, 2000), to quantify (here only appar-
ent) control. Control and transfer entropy have been linked
in another context by Touchette and Lloyd (2004).

Note that the mechanism we treat is a requirement we
introduce here in addition to interaction closure property.
In order to arrive at a complete agent further mechanisms
within larger networks are required. This will be investi-
gated in future work.

The results in this paper show that the requirements of
strong interaction closure and control from a pair of high-
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level processes put strong constraints on the dynamics of
the underlying process. To arrive at these constraints we as-
sume the ideal cases of both interaction closure and control.
It should be seen as an advantage of the information theo-
retic measures we employ that they are both “soft”. This
means they can readily be used to quantify also the degrees
to which closure and control are present in a system.

Related work
In general, artificial agents have been studied using infor-
mation theoretical concepts by several authors (e.g. Klyu-
bin et al. (2004); Lungarella et al. (2005); Bertschinger
et al. (2008); Williams and Beer (2010); Zahedi and Ay
(2013)). Of those authors many also employ Bayesian net-
works and specifically the perception-action loop (Klyubin
et al., 2004; Bertschinger et al., 2008; Zahedi et al., 2009)).
The perception-action loop is a Bayesian network describ-
ing the causal relations between four stochastic processes
representing environment, sensor, actuator, and memory (of
the agent) states respectively. In these papers the perception-
action loop is not seen as a network of high-level processes
in our sense since the interactions between the four pro-
cesses are direct and not mediated by an underlying process.

As already mentioned our notion of interaction closure is
an extension of the concept of informational closure intro-
duced by Bertschinger et al. (2006). The main difference
is that we define interaction closure between two processes
with respect to a third (the underlying one) while the orig-
inal notion concerns closure of one process with respect to
another only. We also use a stronger version of informa-
tional closure.

Conditions on underlying processes to exhibit “indepen-
dence” of a high-level process from an underlying one have
been studied for Markov chains at least since Kemeny and
Snell (1976). They study lumpability which requires that
the high-level process is itself a Markov process. Research
in this direction has been extended in Görnerup and Jacobi
(2008); Jacobi and Görnerup (2009). Very recently lumpa-
bility has been shown to be implied by informational clo-
sure by Pfante et al. (2014). In this work various other level
structure measures have also been thoroughly investigated.
Interactional versions were not studied though.

Our notion of apparent control or information transfer is
studied in the context of distributed computation in great de-
tail by Lizier et al. (2014). It is argued there that information
transfer (measured in the same way as here) is one of three
ingredients needed for computation the other two being in-
formation storage and information modification. Investiga-
tions into the computational capabilities of dynamical sys-
tems have a long history (e.g. Langton (1990); Mitchell
et al. (1993) and see Lizier et al. (2014) for more). As far
as we know, the focus there has not been on the implications
of computation occurring on a high-level for the underlying
process.

X X ′

Y Y ′

Figure 1: Bayesian network representing one time step of
the relationship of the underlying process {Xt}t∈I and a
high-level process {Yt}t∈I . The primed random variables
represent the process state one time step after the not primed
ones.

Formal concepts
Artificial universe
We start by representing an isolated system (referred to as an
artificial universe or the underlying process in the following)
by a finite Markov chain1 {Xt}t∈I on state space X defined
by the time-homogenous transition kernel (or Markov ma-
trix) P := p(X ′|X) := (px′x) with

px′x := p(x′|x) := Pr(Xt+1 = x′|Xt = x). (1)

Our assumption is that the isolated system should be
Markov, as there is no external storage of information about
past states. Choosing finiteness and time discreteness is
done to reduce technical issues and improve clarity of the
concepts, for the same reason we restrict ourselves to the
stationary case in this treatment. Stationarity may often be a
valid approximation for some time interval.

High level processes
We call a random process {Yt}t∈I on state space Y a high-
level process of {Xt}t∈I , if Yt is dependent only on Xt via
a transition matrix ΠY = (πYyx) defined by

πYyx := πY (y|x) := Pr(Yt = y|Xt = x). (2)

Note that the transitions πYxy are independent of time. See
Fig. 1 for the corresponding causal Bayesian network 2. We
also define the Bayesian inverse:

πY †xy =

{
0 if πY (y|x) = 0
πY (y|x) p(x)

p(y) else
(3)

where p(x) is the stationary distribution. For a detailed in-
vestigation of high-level processes see the work of Pfante
et al. (2014).

1We choose the index set I as the integers and initialize the
process in its stationary distribution at t = 0.

2Following Pearl (2000) we only draw arrows for causal inter-
actions. Our measures on the other hand are all purely observa-
tional.
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We also explicitly mention the deterministic case. Call
a random process {Yt}t∈I on state space Y a deterministic
high-level process of {Xt}t∈I , if Yt = fY (Xt) for some
function f : X → Y we can represent such a function fY

by a matrix ΠY = (πYyx) defined by

πYyx := πY (y|x) = δfY (x)(y) :=

{
1 if fY (x) = y

0 else
(4)

Again transitions are independent of time. The Bayesian
inverse reduces to:

πY †xy =

{
0 if x /∈ (fY )−1(y)
p(x)
p(y) else

(5)

where
p(y) =

∑
x∈(fY )−1(y)

p(x). (6)

Weak and strong informational closure
Informational closure was introduced by Bertschinger et al.
(2006) to formalize the idea of closure known from systems
theory (see references ibid.) within the framework of infor-
mation theory. Loosely speaking, closure is attained by a
system if it can be described without reference to the envi-
ronment that it is part of (Bertschinger et al., 2006). We will
distinguish between a weak and a strong form of informa-
tional closure. For a high-level process {Yt}t∈I and under-
lying process {Xt}t∈I (Fig. 1) weak informational closure
is defined by (see Pfante et al. (2014)):

I(Y ′ : X|Y ) = 0 (7)

where I(Y ′ : X|Y ) is the conditional mutual information.
The conditional mutual information for three arbitrary ran-
dom variables X,Y, Z is defined by

I(X : Y |Z) =
∑
z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.

(8)
Intuitively one can read this as the amount of extra infor-
mation Y contains about X that is not already in Z. So
informational closure (Eq. 7) requires that the current high-
level process state Y is as predictive with respect to the next
high-level process state Y ′ as the current underlying process
state X . Note that this condition can be made stronger by
requiring that Y is even as predictive of Y ′ as the next un-
derlying process stateX ′. This is expressed by what we will
call strong informational closure:

I(Y ′ : X ′|Y ) = 0. (9)

It follows from the definition of high-level processes that
strong informational closure implies weak informational
closure (see Appendix A). Note that none of these condi-
tions actually change the causal structure of the Bayesian
network.

X X ′

Y Y ′

Z Z ′

Figure 2: Bayesian network representing one time step of
an underlying process {Xt}t∈I and high-level processes
{Yt}t∈I and {Zt}t∈I .

Interaction closure
We now extend the concept of strong informational closure
to two high-level processes. Given two high-level processes
{Yt}t∈I and {Zt}t∈I and an underlying process {Xt}t∈I ,
we say that we have strong interaction closure from {Yt}t∈I
to {Zt}t∈I if

I(Z ′ : X ′|Y ) = 0. (10)

This implies (see Appendix A) the weak interaction closure:

I(Z ′ : X|Y ) = 0, (11)

and
I(Z ′ : Y ) = I(Z ′ : X) = I(Z ′ : X ′). (12)

The idea behind interaction closure is, that the states of one
process are as predictive of the other’s next states as the
states (current or next respectively) of the underlying pro-
cess.

Apparent control
In order to measure in how far one high-level process
{Yt}t∈I appears3 to control another high-level process
{Zt}t∈I we use the one-step transfer entropy

I(Z ′ : Y |Z) (13)

(Schreiber, 2000). Transfer entropy has been shown to be
a measure of controllability by Touchette and Lloyd (2004).
Here we say that {Yt}t∈I appears to control {Zt}t∈I if

I(Z ′ : Y |Z) > 0. (14)

We call this apparent control because in our case the random
variable Y is part of a high-level process, and does not repre-
sent a true controller. The cause of the dynamics of {Zt}t∈I
remains {Xt}t∈I .

We could also use the term “information transfer” as in
Lizier et al. (2014) to put more emphasis on the relation to

3Actual control would require a direct causal influence.
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X X ′

S S′

M M ′

δfS

δfM

δfM′

δg

Figure 3: Bayesian network representing one time step of
an underlying process {Xt}t∈I and high-level processes
{St}t∈I and {Mt}t∈I . We indicate for the case mentioned
in the Result section the mechanisms associated with transi-
tions. Dashed arrows are not part of the Bayesian network
(not causal). Note δfS is also associated with X → S and
δfM also with X ′ →M ′. This is not indicated due to space
limitations.

computation, but as control was the first thing we had in
mind we stick to it in this publication4.

Note that strong interaction closure does not imply ap-
parent control, e.g. let {Yt}t∈I = {Zt}t∈I then according
to the definitions strong interaction closure implies that ap-
parent control is zero. This is due to the fact that apparent
control is based on non-causal transfer entropy and therefore
a process can never (apparently) control itself.

We also use the definition of perfect apparent control
(Touchette and Lloyd, 2004) to express the case where ap-
parent control is maximal.

Perfect apparent control means for all initial states z ∈ Z
and all final states z′ ∈ Z there exists a state y ∈ Y such
that

p(z′|z, y) = 1. (15)

Then I(Z ′ : Y |Z) = H(Z ′|Z) i.e. the transfer entropy
attains its maximum value.

Results
Implications of interaction closure
We now present the implications of strong interaction clo-
sure for the underlying process. In order to keep the nec-
essary technical terminology to a minimum we make a few
more assumptions which lead to stronger results.

In the following we will denote the process from which
the interaction closure “originates” by {St}t∈I and the “re-
ceiving” one by {Mt}t∈I . This is done to conform to an
interpretation as a sensor that (apparently) writes or trans-
fers information to a memory. In this case strong interaction
closure reads:

I(M ′ : X ′|S) = 0. (16)

4Also, we don’t want to discuss here what “apparent computa-
tion” would be.

In Appendix B. we show that under strong interaction clo-
sure and the two extra assumptions |M| = |S| and {Mt}t∈I
deterministic i.e.

πMmx = δfM (x)(m) (17)

the following hold (see also Fig.3):
The process {St}t∈I is also deterministic with respect to

{Xt}t∈I and we have an associated function fS : X → S.
Moreover, for each m′ ∈M

p(m′|x) = δfM′ (x)(m
′) (18)

for some function fM
′

: X →M. Also for each m′ ∈M

p(m′|s) = δg(s)(m
′) (19)

for some bijective function g : S → M with g := fM ◦
(fS)−1.

Furthermore,

p(x′|x) =

{
0 if x′ /∈ (fM )−1 ◦ fM ′(x)

≥ 0 else,
(20)

and

πS†(x|s) =

{
0 if x /∈ (fM

′
)−1 ◦ g(s)

≥ 0 else.
(21)

We have thus arrived at a condition on the transition ma-
trix of the artificial universe process from the requirement of
strong interaction closure. There are two main things to take
away from this.

The first is how to construct a transition matrix that obeys
strong interaction closure. For this choose a finite setX with
|X | = n. Then take two setsM and S with |M| = |S| and
functions fM : X →M and fS : X → S. Then construct a
matrix, split it vertically according to the preimages (fS)−1

and horizontally according to those of (fM )−1 (if for exam-
ple the first and the last row are part of (fM )−1(m) make
sure to remember they belong to the same block). Make
sure that each column sums to one, and note that the en-
tries in each column can only be larger than zero in one
block of the preimage of (fM )−1. Here is an example with
X = {1, 2, 3, 4, 5, 6}, M = S = {1, 2}, fM (x) = 1 for
x ≤ 3 else fM (x) = 2 and fS(1) = fS(4) = 1 else
fS(x) = 2:

P =



1
3 0 0 1

3 0 0
1
3 0 0 1

6 0 0
1
3 0 0 3

6 0 0
0 1

3
1
2 0 1

4
1
2

0 1
3

1
4 0 1

2 0
0 1

3
1
4 0 1

4
1
2

 (22)
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The second is that we have two partitions on the state
space X induced by the two functions fM and fM

′
. The

former, (fM )−1 partitions X into blocks of states mapped
to the same m ∈ M at the current time step and we call it
the current partition. The latter partitions X into blocks that
are mapped to the samem ∈M at the next time step and we
call it the future partition. Note that as g is bijective we can
also view the future partition as induced by fS = g−1 ◦fM ′

which shows that s ∈ S indicates the blocks of the future
partition at the current time step. Note that time evolution
starting in (s,m) would be (s,m), (s′, g(s)), (s′′, g(s′)), ....
Here s′, s′′, ... are determined by the underlying dynamics.

The relation between the two partitions can take two ex-
treme cases. The first is, when they coincide i.e. if for every
m ∈ M exists s ∈ S such that (fM )−1(m) ⊆ (fS)−1(s)
and vice versa. The other extreme case is when they are or-
thogonal i.e. when for every pair m, s ∈ M × S we have
(fM )−1(m) ∩ (fS)−1(s) 6= ∅.

For coinciding partitions the blocks coincide and each
block has unique associated high-level states s ∈ S and
m ∈ M. This means given s for a block, m is deter-
mined and vice versa. There is then a bijective function
h : S → M which maps the current s to the current m
(g maps it to m′ the next high-level state). We can then
write M = h(S) and S = h−1(M), the two processes up to
changes of the alphabet identical.

For orthogonal partitions, in every block of the current
partition there is at least one element of every block in the
future partition. This means by only knowing the block of
the current partition i.e. m ∈ X does not tell us anything
about the current s or the next m′ = g(s).

Implications of apparent control and strong
interaction closure
Here we only look at implications for apparent control under
the same assumptions as in the last section.

Recall that apparent control is measured in this context
by I(M ′, S|M). We then have the current and the future
partition of X . We consider the two extreme cases of coin-
ciding partitions and orthogonal partitions. For coinciding
partitions, apparent control vanishes. To see this recall that
we have a the bijective function h (see last section) such that

I(M ′, S|M) = I(M ′, h−1(M)|M) = 0. (23)

To see this note that the random variable h−1(M) can never
contain more information than M itself.

If we look at the orthogonal case we have that for every
block of the current partition indicated bym ∈M and every
m′ ∈ M there is an x ∈ X with fM (x) = m and fS(x) =
m and g(s) = m′. But this just implies perfect apparent
control, as in this case

p(m′|m, s) = 1. (24)

So our measure of apparent control varies from 0 to its
maximum H(M ′|M) due to the possible relations between
the current and future partitions.

We can also ask whether perfect apparent control implies
orthogonal partitions. As we need for every m,m′ ∈ M an
s ∈ S with

p(m′|m, s) = 1. (25)

we can see that in every block of the current partition cor-
responding to m there must be elements x in the future par-
tition (i.e. fS(x) = s) that lead to each m′. Due to strong
interaction closure, and |S| = |M| we have a one-to-one
relation between m′ and s given by g, so there must be ele-
ments x corresponding to each s in each block of the current
partition. This means the two partitions are orthogonal.

In order to construct a transition matrix of a system with
a pair of high-level processes, strong interaction closure
and perfect apparent control, follow the procedure for con-
structing the transition matrix for strong interaction clo-
sure only. Make sure though that for each s and m there
is a state x ∈ (fS)−1(s) ∩ (fM )−1(m). For exam-
ple in the example of the last section with ∩(s,m) :=
(fS)−1(s) ∩ (fM )−1(m) we find ∩(1, 1) = {1},∩(1, 2) =
{4},∩(2, 1) = {2, 3},∩(2, 2) = {5, 6} and thus we have
perfect apparent control there. We find also that, as ex-
pected, I(M ′, S|M) = H(M ′|M) = 0.95669.

Discussion
We were looking for design principles for artificial universes
especially with regard to the capability to contain artificial
agents on a higher or macroscopic level. Conceptualizing
artificial agents as networks of high-level processes, we fo-
cussed on the interaction of two such processes. To for-
malize the condition that there should be some explanatory
power on the macroscopic level we introduced interaction
closure as an extension to informational closure.

We found that if we require interaction closure, equal car-
dinalities of the high-level processes’ state spaces and deter-
minism of the receiving process, the dynamics of the under-
lying process must respect (see Eqs. 20, 21) two partitions
of state space 5. How the two partitions are related is not de-
termined by interaction closure. In other words, interaction
closure does not specify the kind of interaction and requires
only that it is closed with respect to the underlying process.
To design an underlying process we can then choose the par-
titions (which induce the two processes) freely and create
the transition matrix accordingly (see Results). Consider-
ing that we can choose the underlying state space arbitrarily
large we expect that a large variety of high-level dynamics
can be implemented in this way.

5The partitions also exist and are respected if the receiving pro-
cess is not deterministic but the cardinality of its set of extreme
points is equal to the cardinality of the other process (see Eqs. 48
and 49).

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



We also investigated a special kind of interaction, appar-
ent control, between the high-level processes. It can be inter-
preted as one high-level process controlling the other or as
one process transferring information to the other. We iden-
tified to extreme cases which occur. The first occurs if the
two partitions associated with the interaction closure coin-
cide, the two high-level process are essentially the same, and
apparent control vanishes. The second occurs when the two
partitions are orthogonal, the two high-level processes are
complementary, and control is maximal. Intermediate rela-
tions between the partitions would led to intermediate levels
of control.

In the future we want to investigate complete networks
of high-level processes that are informationally and interac-
tionally closed. Further interesting measures are the other
ingredients of computation, information storage and modifi-
cation as well as their localized versions (Lizier et al., 2014).
These are interesting to us because computation seems rele-
vant for artificial agents. We also want to focus on network
structures relevant for artificial agents with metabolisms.
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APPENDIX
A.
To see that strong interaction closure implies weak interac-
tion closure (snd therefore strong informational closure im-
plies weak informational closure), note

I(Z ′ : X,X ′|Y ) = I(Z ′ : X ′|Y ) + I(Z ′ : X|X ′, Y )
(26)

= 0 (27)

where the first term on the right vanishes because it repre-
sents strong interaction closure and the second term van-
ishes because {X ′, Y } d-separates Z ′ and X according to
the Bayesian network in Fig. 2. In general:

I(Z ′ : X|Y ) ≤ I(Z ′ : X,X ′|Y ) (28)

and as conditional mutual informations are non-negative,
I(Z ′ : X|Y ) = 0 as well, which means we have weak in-
teraction closure. By replacing Z ′ by Y ′ the same argument
also proves the informational closure. For d-separation in
the context of Bayesian networks and conditional mutual in-
formation see Ay and Polani (2008).

To see that strong interaction closure implies

I(Z ′ : Y ) = I(Z ′ : X) = I(Z ′ : X ′) (29)

consider

I(Z ′ : Y,X) = I(Z ′ : Y ) + I(Z ′ : X|Y ) (30)
= I(Z ′ : X) + I(Z ′ : Y |X). (31)

In both lines the second terms on the right hand side vanish.
In the upper case because this is the requirement of weak
interaction closure (which is implied by the strong version)
and in the lower equation because X d-separates Z ′ and Y .
This gives us the first equality in Eq.29, the second follows
by replacing X by X ′ and using the same reasoning.

B.
Terminology and background Let ∆(A) denote the set
of all probability distributions over A. For each fixed b the
conditional probability p(a|b) defines a probability for each
a ∈ A and thereby an element p(A|b) in ∆(A). Define the
convex hull C(A|B) induced by a transition matrix p(A|B)
as the set of all the convex combinations of the p(A|b):

C(A|B) := {p(A) ∈ ∆(A)|p(A) =
∑
b

cb p(A|b)} (32)

here the cb, b ∈ B are convex coefficients, i.e. for all b ∈ B
we have cb ≥ 0 and

∑
b cb = 1. Note that for deterministic

transition matrices with full rank (which we will assume in
the following) C(A|B) = ∆(A).

An element e of a convex set C is called an extreme point
if from e =

∑
i civi with vi ∈ C, ci > 0 (note, strictly

larger) it follows that e = vi for all i that are summed over.
We denote the set of extreme points of C(A|B) by E(A|B).
Note that in general for each extreme point e ∈ E(A|B)
there must exist at least one be ∈ B such that

e = pA(A|be). (33)

Therefore |B| ≥ |E(A|B)|. In case of equality |B| =
|E(A|B)| each p(A|b) must correspond to a different ex-
treme point and we get a one-to-one relationship between
b ∈ B and extreme points e ∈ E(A|B):

pA(A|b) = eb and e = pA(A|be). (34)

For any probability distribution p(A) ∈ ∆(A) we also
define the set BA(p(A)) of states b with p(A|b) = p(A).
Note if e is an extreme point of C(A|B) i.e. e ∈ E(A|B)
then from Eq. 33 we know that BA(e) is not empty.

In the deterministic case pA(a|b) := δf(b)(a). The sets
BA(δi) for each i ∈ A then partition B into |A| blocks and
we have BA(δi) = f−1(i). We also have

{δi(A)|i ∈ A} = E(A|B). (35)

Sketch of proof Now assume

• Bayesian network of Fig. 2, with Y → S and Z →M ,

• the stationary distribution of {Xt}t∈I has full support (for
all x ∈ X , p(x) > 0),

• strong interaction closure I(M ′, X ′|S) = 0,

• for each x ∈ X we have πM (M |x) is an extreme point of
C(M |X) (e.g. if πM (M |x) is deterministic),

• |S| = |E(M |X)| =: k (= |M| in the deterministic case)

A sketch of the proof is as follows.

1. First we show that

E(M |X) =: E(M ′|X ′) = E(M ′|X) = E(M ′|S).
(36)

2. Then we show that for each e ∈ E(M |X) =
E(M ′|X) = E(M ′|S) the underlying dynamics p(x′|x)
must map elements of XM ′(e) into X ′M ′(e). Similarly,
πS†(x|s) must map elements of SM ′(e) into XM ′(e).

3. Then we prove that the sets {XM ′(e)|e ∈ E(M |X)} and
{XM (e)|e ∈ E(M |X)} are both partitions of X which
induce functions f̂M

′
and f̂M . Also that ΠS is deter-

ministic. We then define ĝ. Then if ΠM is deterministic
f̂M

′
and ĝ generate fM

′
, g and Eqs. 20 and 21.
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Proofs

Ad 1.) Clearly, if two convex sets coincide, then their sets
of extreme points coincide. So show first that

C(M ′|S) ⊆ C(M ′|X ′) and C(M ′|S) ⊇ C(M ′|X ′)
(37)

Left inclusion first:

p(M ′|s) =
∑
x′,x

πM (M ′|x′)p(x′|x)πS†(x|s) (38)

=
∑
x′

πM (M ′|x′)p(x′|s). (39)

Where we only needed the Bayesian network structure of
Fig. 2. So each p(M ′|s) is a convex combination with
coefficients p(x′|s) of the distributions πM (M ′|x′) which
span C(M ′|X ′).

Right inclusion:

p(M ′|x′) =
∑
a,x

p(M ′, x′, x, s)

p(x′)
(40)

=
∑
a,x

p(M ′|s)p(x′, x|s) p(s)
p(x′)

(41)

=
∑
a

p(M ′|s)p(s|x′). (42)

Where for the step from the first to second line we used

p(m′, x′, x|s) = p(m′|s) p(x′, x|s) (43)

which follows directly from Eq. 26 which states:

I(M ′ : X ′, X|S) = 0. (44)

So this time we see that all p(M ′|x′) are convex combi-
nations of the p(M ′|s) which proves the right inclusion.

The proof of C(M ′|X) = C(M ′|X ′) proceeds along the
same lines. The sets of extreme points then also coincide
i.e. Eq. 36 holds.

Ad 2.) Show that all x ∈ XM ′(e) map into X ′M ′(e). We
have

e = p(M ′|xe) =
∑
x′

πM (M ′|x′) p(x′|xe), (45)

we see that e = p(M ′|xe) is a convex combination
of πM (M ′|x′) with convex coefficients p(x′|xe). But
the only convex combinations that result in an extreme
point have positive coefficients only for those πM (M ′|x′)
with πM (M ′|x′) = e i.e. those πM (M ′|x′) with x′ ∈
X ′M ′(e), i.e.

p(x′|xe) =

{
0 if x′ /∈ X ′M ′(e)
≥ 0 else,

(46)

which proves the condition on p(X ′|X). The proof that

πS†(x|s) =

{
0 if x /∈ XM ′(es)

≥ 0 else
(47)

proceeds along the same line. Notice that each s ∈ S is
an se (Eq. 34) and we therefore moved the index in Eq.
47.

Ad 3.) {XM ′(e)|e ∈ E(M |X)} is a partition iff a.) for
e1 6= e2 ∈ E(M |X) XM ′(e1) and XM ′(e2) are disjoint
and b.) for all x ∈ X there exists e ∈ E(M |X) with e ∈
XM ′(e). Note a.) is true by construction. We show b.).
Take an arbitrary x∗ ∈ X . Notice that there exists s∗ ∈ S
with πS(s∗|x∗) > 0 because ΠS has full rank. But then
via definition (Eq.3) and using that p(X) has full support
we get πS†(x∗|s∗) > 0. But Eq. 47 tells us that then
x∗ ∈ XM ′(e) for some unique e. This means for every
x∗ ∈ X there is ex∗ with x∗ ∈ XM ′(ex∗). This proofs b.)
and allows us to define a function f̂M

′
: X → E(M |X)

via f̂M
′
(x∗) = ex∗ . Then (f̂M

′
)−1(e) = XM ′(e).

Next show that {XM (e)|e ∈ E(M |X)} is a partition. Re-
call XM (e) = X ′M ′(e) because of time independence of
the high-level processes. Again disjointness is clear. No-
tice that because the underlying process is positive recur-
rent (as it has a stationary distribution) there exists x ∈ X
with p(x′∗|x) > 0. Then from Eq. 48 there must exists a
unique e with x′∗ ∈ X ′M ′(e). So {XM (e)|e ∈ E(M |X)}
is also a partition and we define the function f̂M analo-
gous to f̂M

′
. We can now extend Eq. 46 and get:

p(x′|x) =

{
0 if x′ /∈ X ′M ′(ex) = (f̂M )−1 ◦ f̂M ′(x)

≥ 0 else.
(48)

Now show that ΠS is deterministic. Let s1 6=
s2 and πS(s1|x), πS(s2|x) > 0. This implies
πS†(x|s1), πS†(x|s2) > 0 and from Eq.47 x ∈ XM ′(es1)
and x ∈ XM ′(es2) which implies (disjointness) es1 = es2
which is not possible as |S| = |E(M |S)| (see Eq. 34).
We then have an associated function fS : X → S.

Define ĝ := f̂M
′ ◦ (fS)−1 (it is bijective). Then

πS†(x|s) =

{
0 if x /∈ XM ′(es) = (f̂M

′
)−1 ◦ ĝ(s)

≥ 0 else
(49)

If ΠM is deterministic, e = δi (i ∈ M see Eq. 35) and
we define fM

′
and g by requiring: if f̂M

′
(x) = e = δi

then fM
′
(x) := i and if ĝ(s) = e = δi then g(s) = i. If

this is plugged into Eqs. 48 and 49 we get Eqs. 20 and
21. End of proof.
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